1
|
Madrid-Wolff J, Toombs J, Rizzo R, Bernal PN, Porcincula D, Walton R, Wang B, Kotz-Helmer F, Yang Y, Kaplan D, Zhang YS, Zenobi-Wong M, McLeod RR, Rapp B, Schwartz J, Shusteff M, Talyor H, Levato R, Moser C. A review of materials used in tomographic volumetric additive manufacturing. MRS COMMUNICATIONS 2023; 13:764-785. [PMID: 37901477 PMCID: PMC10600040 DOI: 10.1557/s43579-023-00447-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/08/2023] [Indexed: 10/31/2023]
Abstract
Volumetric additive manufacturing is a novel fabrication method allowing rapid, freeform, layer-less 3D printing. Analogous to computer tomography (CT), the method projects dynamic light patterns into a rotating vat of photosensitive resin. These light patterns build up a three-dimensional energy dose within the photosensitive resin, solidifying the volume of the desired object within seconds. Departing from established sequential fabrication methods like stereolithography or digital light printing, volumetric additive manufacturing offers new opportunities for the materials that can be used for printing. These include viscous acrylates and elastomers, epoxies (and orthogonal epoxy-acrylate formulations with spatially controlled stiffness) formulations, tunable stiffness thiol-enes and shape memory foams, polymer derived ceramics, silica-nanocomposite based glass, and gelatin-based hydrogels for cell-laden biofabrication. Here we review these materials, highlight the challenges to adapt them to volumetric additive manufacturing, and discuss the perspectives they present. Graphical abstract Supplementary Information The online version contains supplementary material available at10.1557/s43579-023-00447-x.
Collapse
Affiliation(s)
| | - Joseph Toombs
- Department of Mechanical Engineering, University of California, Berkeley, CA USA
| | - Riccardo Rizzo
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA USA
| | - Paulina Nuñez Bernal
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - Rebecca Walton
- Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Bin Wang
- Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Frederik Kotz-Helmer
- Institute of Microstructure Technology (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany
| | - Yi Yang
- Department of Chemistry, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
- Center for Energy Resources Engineering (CERE), Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - David Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155 USA
| | - Yu Shrike Zhang
- Division of Engineering Medicine, Department of Medicine, Harvard Medical School, Brigham and Women’s Hospital, Cambridge, MA 02139 USA
| | - Marcy Zenobi-Wong
- Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences & Technology, ETH Zürich, Otto-Stern-Weg 7, 8093 Zurich, Switzerland
| | - Robert R. McLeod
- Materials Science and Engineering Program, University of Colorado, Boulder, USA
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, USA
| | - Bastian Rapp
- Institute of Microstructure Technology (IMTEK), University of Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany
| | | | - Maxim Shusteff
- Lawrence Livermore National Laboratory, Livermore, CA USA
| | - Hayden Talyor
- Department of Mechanical Engineering, University of California, Berkeley, CA USA
| | - Riccardo Levato
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Clinical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Christophe Moser
- Ecole Polytechnique Féderale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
2
|
Wang B, Engay E, Stubbe PR, Moghaddam SZ, Thormann E, Almdal K, Islam A, Yang Y. Stiffness control in dual color tomographic volumetric 3D printing. Nat Commun 2022; 13:367. [PMID: 35042893 PMCID: PMC8766567 DOI: 10.1038/s41467-022-28013-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/13/2021] [Indexed: 12/22/2022] Open
Abstract
Tomographic volumetric printing (TVP) physically reverses tomography to offer fast and auxiliary-free 3D printing. Here we show that wavelength-sensitive photoresins can be cured using visible ([Formula: see text] nm) and UV ([Formula: see text] nm) sources simultaneously in a TVP setup to generate internal mechanical property gradients with high precision. We develop solutions of mixed acrylate and epoxy monomers and utilize the orthogonal chemistry between free radical and cationic polymerization to realize fully 3D stiffness control. The radial resolution of stiffness control is 300 µm or better and an average modulus gradient of 5 MPa/µm is achieved. We further show that the reactive transport of radical inhibitors defines a workpiece's shape and limits the achievable stiffness contrast to a range from 127 MPa to 201 MPa according to standard tensile tests after post-processing. Our result presents a strategy for controlling the stiffness of material spatially in light-based volumetric additive manufacturing.
Collapse
Affiliation(s)
- Bin Wang
- Department of Mechanical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Einstom Engay
- National Center for Nano Fabrication and Characterization, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Peter R Stubbe
- National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Saeed Z Moghaddam
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Esben Thormann
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Kristoffer Almdal
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Aminul Islam
- Department of Mechanical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Yi Yang
- Department of Chemistry, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
- Center for Energy Resources Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
3
|
Ravanbakhsh H, Karamzadeh V, Bao G, Mongeau L, Juncker D, Zhang YS. Emerging Technologies in Multi-Material Bioprinting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104730. [PMID: 34596923 PMCID: PMC8971140 DOI: 10.1002/adma.202104730] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/10/2021] [Indexed: 05/09/2023]
Abstract
Bioprinting, within the emerging field of biofabrication, aims at the fabrication of functional biomimetic constructs. Different 3D bioprinting techniques have been adapted to bioprint cell-laden bioinks. However, single-material bioprinting techniques oftentimes fail to reproduce the complex compositions and diversity of native tissues. Multi-material bioprinting as an emerging approach enables the fabrication of heterogeneous multi-cellular constructs that replicate their host microenvironments better than single-material approaches. Here, bioprinting modalities are reviewed, their being adapted to multi-material bioprinting is discussed, and their advantages and challenges, encompassing both custom-designed and commercially available technologies are analyzed. A perspective of how multi-material bioprinting opens up new opportunities for tissue engineering, tissue model engineering, therapeutics development, and personalized medicine is offered.
Collapse
Affiliation(s)
- Hossein Ravanbakhsh
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Vahid Karamzadeh
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Guangyu Bao
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - Luc Mongeau
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A0C3, Canada
| | - David Juncker
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3A0G1, Canada
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Hasselmann S, Hahn L, Lorson T, Schätzlein E, Sébastien I, Beudert M, Lühmann T, Neubauer JC, Sextl G, Luxenhofer R, Heinrich D. Freeform direct laser writing of versatile topological 3D scaffolds enabled by intrinsic support hydrogel. MATERIALS HORIZONS 2021; 8:3334-3344. [PMID: 34617095 DOI: 10.1039/d1mh00925g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this study, a novel approach to create arbitrarily shaped 3D hydrogel objects is presented, wherein freeform two-photon polymerization (2PP) is enabled by the combination of a photosensitive hydrogel and an intrinsic support matrix. This way, topologies without physical contact such as a highly porous 3D network of concatenated rings were realized, which are impossible to manufacture with most current 3D printing technologies. Micro-Raman and nanoindentation measurements show the possibility to control water uptake and hence tailor the Young's modulus of the structures via the light dosage, proving the versatility of the concept regarding many scaffold characteristics that makes it well suited for cell specific cell culture as demonstrated by cultivation of human induced pluripotent stem cell derived cardiomyocytes.
Collapse
Affiliation(s)
- Sebastian Hasselmann
- Fraunhofer Project Center for Stem Cell Process Engineering Neunerplatz 2, Würzburg 97082, Germany
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
| | - Thomas Lorson
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
| | - Eva Schätzlein
- East Bavarian Technical University of Applied Sciences, Prüfeninger Str. 58, Regensburg 93049, Germany
| | - Isabelle Sébastien
- Fraunhofer Institute for Biomedical Engineering, Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, Würzburg 97082, Germany
| | - Matthias Beudert
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Julia C Neubauer
- Fraunhofer Institute for Biomedical Engineering, Fraunhofer Project Center for Stem Cell Process Engineering, Neunerplatz 2, Würzburg 97082, Germany
| | - Gerhard Sextl
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, Würzburg 97082, Germany.
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, University of Würzburg, Röntgenring 11, 97070, Germany
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science University of Helsinki, Helsinki 00014, Finland.
| | - Doris Heinrich
- Fraunhofer Institute for Silicate Research ISC, Neunerplatz 2, Würzburg 97082, Germany.
- Institute for Bioprocessing and Analytical Measurement Techniques, Rosenhof, Heilbad Heiligenstadt 37308, Germany
- Faculty for Mathematics and Natural Sciences, Ilmenau University of Technology, Ilmenau, Germany
| |
Collapse
|
5
|
Lowen JM, Leach JK. Functionally graded biomaterials for use as model systems and replacement tissues. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909089. [PMID: 33456431 PMCID: PMC7810245 DOI: 10.1002/adfm.201909089] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Indexed: 05/03/2023]
Abstract
The heterogeneity of native tissues requires complex materials to provide suitable substitutes for model systems and replacement tissues. Functionally graded materials have the potential to address this challenge by mimicking the gradients in heterogeneous tissues such as porosity, mineralization, and fiber alignment to influence strength, ductility, and cell signaling. Advancements in microfluidics, electrospinning, and 3D printing enable the creation of increasingly complex gradient materials that further our understanding of physiological gradients. The combination of these methods enables rapid prototyping of constructs with high spatial resolution. However, successful translation of these gradients requires both spatial and temporal presentation of cues to model the complexity of native tissues that few materials have demonstrated. This review highlights recent strategies to engineer functionally graded materials for the modeling and repair of heterogeneous tissues, together with a description of how cells interact with various gradients.
Collapse
Affiliation(s)
- Jeremy M. Lowen
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
| | - J. Kent Leach
- Department of Biomedical Engineering, University of California, Davis, CA, 95616
- Department of Orthopaedic Surgery, UC Davis Health, Sacramento, CA 95817
| |
Collapse
|
6
|
Topa M, Ortyl J. Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4093. [PMID: 32942676 PMCID: PMC7560344 DOI: 10.3390/ma13184093] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023]
Abstract
The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low energy consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages. Moreover, this article represents the challenges faced when using the latest inventions in the field of dental materials, with a particular focus on photoinitiating systems based on iodonium salts. The beneficial properties of dental composites cured using initiation systems based on iodonium salts have been demonstrated.
Collapse
Affiliation(s)
- Monika Topa
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
| | - Joanna Ortyl
- Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Cracow, Poland
- Photo HiTech Ltd., Bobrzyńskiego 14, 30-348 Cracow, Poland
| |
Collapse
|
7
|
Nguyen AK, Goering PL, Elespuru RK, Sarkar Das S, Narayan RJ. The Photoinitiator Lithium Phenyl (2,4,6-Trimethylbenzoyl) Phosphinate with Exposure to 405 nm Light Is Cytotoxic to Mammalian Cells but Not Mutagenic in Bacterial Reverse Mutation Assays. Polymers (Basel) 2020; 12:E1489. [PMID: 32635323 PMCID: PMC7408440 DOI: 10.3390/polym12071489] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023] Open
Abstract
Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP) is a free radical photo-initiator used to initiate free radical chain polymerization upon light exposure, and is combined with gelatin methacryloyl (GelMA) to produce a photopolymer used in bioprinting. The free radicals produced under bioprinting conditions are potentially cytotoxic and mutagenic. Since these photo-generated free radicals are highly-reactive but short-lived, toxicity assessments should be conducted with light exposure. In this study, photorheology determined that 10 min exposure to 9.6 mW/cm2 405 nm light from an LED light source fully crosslinked 10 wt % GelMA with >3.4 mmol/L LAP, conditions that were used for subsequent cytotoxicity and mutagenicity assessments. These conditions were cytotoxic to M-1 mouse kidney collecting duct cells, a cell type susceptible to lithium toxicity. Exposure to ≤17 mmol/L (0.5 wt %) LAP without light was not cytotoxic; however, concurrent exposure to ≥3.4 mmol/L LAP and light was cytotoxic. No condition of LAP and/or light exposure evaluated was mutagenic in bacterial reverse mutation assays using S. typhimurium strains TA98, TA100 and E. coli WP2 uvrA. These data indicate that the combination of LAP and free radicals generated from photo-excited LAP is cytotoxic, but mutagenicity was not observed in bacteria under typical bioprinting conditions.
Collapse
Affiliation(s)
- Alexander K. Nguyen
- Joint UNC/NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA;
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (P.L.G.); (R.K.E.); (S.S.D.)
| | - Peter L. Goering
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (P.L.G.); (R.K.E.); (S.S.D.)
| | - Rosalie K. Elespuru
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (P.L.G.); (R.K.E.); (S.S.D.)
| | - Srilekha Sarkar Das
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (P.L.G.); (R.K.E.); (S.S.D.)
| | - Roger J. Narayan
- Joint UNC/NCSU Department of Biomedical Engineering, North Carolina State University, Raleigh, NC 27695, USA;
| |
Collapse
|
8
|
Seppälä J, van Bochove B, Lendlein A. Developing Advanced Functional Polymers for Biomedical Applications. Biomacromolecules 2020; 21:273-275. [DOI: 10.1021/acs.biomac.9b01701] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jukka Seppälä
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Bas van Bochove
- Department of Chemical and Metallurgical Engineering, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Andreas Lendlein
- Institute of Biomedical Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
- Institute of Chemistry, University of Potsdam, Potsdam, Germany
| |
Collapse
|
9
|
Abstract
Production of objects with varied mechanical properties is challenging for current manufacturing methods. Additive manufacturing could make these multimaterial objects possible, but methods able to achieve multimaterial control along all three axes of printing are limited. Here we report a multi-wavelength method of vat photopolymerization that provides chemoselective wavelength-control over material composition utilizing multimaterial actinic spatial control (MASC) during additive manufacturing. The multicomponent photoresins include acrylate- and epoxide-based monomers with corresponding radical and cationic initiators. Under long wavelength (visible) irradiation, preferential curing of acrylate components is observed. Under short wavelength (UV) irradiation, a combination of acrylate and epoxide components are incorporated. This enables production of multimaterial parts containing stiff epoxide networks contrasted against soft hydrogels and organogels. Variation in MASC formulation drastically changes the mechanical properties of printed samples. Samples printed using different MASC formulations have spatially-controlled chemical heterogeneity, mechanical anisotropy, and spatially-controlled swelling that facilitates 4D printing. Objects with varied mechanical properties can be produced by additive manufacturing, but multimaterial control along all three axes of printing is still limited. Here the authors use wavelength control during vat polymerization and demonstrate printing of objects with spatial control of the composition and stiffness.
Collapse
|
10
|
Konuray O, Fernández-Francos X, Ramis X, Serra À. State of the Art in Dual-Curing Acrylate Systems. Polymers (Basel) 2018; 10:E178. [PMID: 30966214 PMCID: PMC6415122 DOI: 10.3390/polym10020178] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 11/16/2022] Open
Abstract
Acrylate chemistry has found widespread use in dual-curing systems over the years. Acrylates are cheap, easily handled and versatile monomers that can undergo facile chain-wise or step-wise polymerization reactions that are mostly of the "click" nature. Their dual-curing processes yield two distinct and temporally stable sets of material properties at each curing stage, thereby allowing process flexibility. The review begins with an introduction to acrylate-based click chemistries behind dual-curing systems and relevant reaction mechanisms. It then provides an overview of reaction combinations that can be encountered in these systems. It finishes with a survey of recent and breakthrough research in acrylate dual-curing materials for shape memory polymers, optical materials, photolithography, protective coatings, structured surface topologies, and holographic materials.
Collapse
Affiliation(s)
- Osman Konuray
- Thermodynamics Laboratory, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain.
| | - Xavier Fernández-Francos
- Thermodynamics Laboratory, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain.
| | - Xavier Ramis
- Thermodynamics Laboratory, ETSEIB, Universitat Politècnica de Catalunya, Av. Diagonal 647, 08028 Barcelona, Spain.
| | - Àngels Serra
- Department of Analytical and Organic Chemistry, Universitat Rovira i Virgili, C/Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
| |
Collapse
|
11
|
Development of polymeric functionally graded scaffolds: a brief review. J Appl Biomater Funct Mater 2017; 15:e107-e121. [PMID: 28009418 DOI: 10.5301/jabfm.5000332] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2016] [Indexed: 12/20/2022] Open
Abstract
Over recent years, there has been a growing interest in multilayer scaffolds fabrication approaches. In fact, functionally graded scaffolds (FGSs) provide biological and mechanical functions potentially similar to those of native tissues. Based on the final application of the scaffold, there are different properties (physical, mechanical, biochemical, etc.) which need to gradually change in space. Therefore, a number of different technologies have been investigated, and often combined, to customize each region of the scaffolds as much as possible, aiming at achieving the best regenerative performance.In general, FGSs can be categorized as bilayered or multilayered, depending on the number of layers in the whole structure. In other cases, scaffolds are characterized by a continuous gradient of 1 or more specific properties that cannot be related to the presence of clearly distinguished layers. Since each traditional approach presents peculiar advantages and disadvantages, FGSs are good candidates to overcome the limitations of current treatment options. In contrast to the reviews reported in the literature, which usually focus on the application of FGS, this brief review provides an overview of the most common strategies adopted to prepare FGS.
Collapse
|
12
|
Lu Y, Zhang S, Liu X, Ye S, Zhou X, Huang Q, Ren L. Silk/agarose scaffolds with tunable properties via SDS assisted rapid gelation. RSC Adv 2017. [DOI: 10.1039/c7ra01981e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We developed a simple approach to fabricate silk/agarose scaffolds with tunable properties via controlling the gelation degree of silk fibroin.
Collapse
Affiliation(s)
- Yue Lu
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Shupeng Zhang
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Xiangyang Liu
- Research Institute for Soft Matter and Biomimetics
- Xiamen University
- Xiamen 361005
- China
- Department of Physics
| | - Shefang Ye
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Xi Zhou
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| | - Qiaoling Huang
- Research Institute for Soft Matter and Biomimetics
- Xiamen University
- Xiamen 361005
- China
| | - Lei Ren
- Department of Biomaterials
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources
- College of Materials
- Xiamen University
- Xiamen 361005
| |
Collapse
|