1
|
Slattery SM, Wilkinson J, Mittal A, Zheng C, Easton N, Singh S, Baker JJ, Rand CM, Khaytin I, Stewart TM, Demeter D, Weese-Mayer DE. Computer-aided diagnostic screen for Congenital Central Hypoventilation Syndrome with facial phenotype. Pediatr Res 2024; 95:1843-1850. [PMID: 38238566 DOI: 10.1038/s41390-023-02990-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/30/2023] [Accepted: 12/13/2023] [Indexed: 07/14/2024]
Abstract
BACKGROUND Congenital Central Hypoventilation Syndrome (CCHS) has devastating consequences if not diagnosed promptly. Despite identification of the disease-defining gene PHOX2B and a facial phenotype, CCHS remains underdiagnosed. This study aimed to incorporate automated techniques on facial photos to screen for CCHS in a diverse pediatric cohort to improve early case identification and assess a facial phenotype-PHOX2B genotype relationship. METHODS Facial photos of children and young adults with CCHS were control-matched by age, sex, race/ethnicity. After validating landmarks, principal component analysis (PCA) was applied with logistic regression (LR) for feature attribution and machine learning models for subject classification and assessment by PHOX2B pathovariant. RESULTS Gradient-based feature attribution confirmed a subtle facial phenotype and models were successful in classifying CCHS: neural network performed best (median sensitivity 90% (IQR 84%, 95%)) on 179 clinical photos (versus LR and XGBoost, both 85% (IQR 75-76%, 90%)). Outcomes were comparable stratified by PHOX2B genotype and with the addition of publicly available CCHS photos (n = 104) using PCA and LR (sensitivity 83-89% (IQR 67-76%, 92-100%). CONCLUSIONS Utilizing facial features, findings suggest an automated, accessible classifier may be used to screen for CCHS in children with the phenotype and support providers to seek PHOX2B testing to improve the diagnostics. IMPACT Facial landmarking and principal component analysis on a diverse pediatric and young adult cohort with PHOX2B pathovariants delineated a distinct, subtle CCHS facial phenotype. Automated, low-cost machine learning models can detect a CCHS facial phenotype with a high sensitivity in screening to ultimately refer for disease-defining PHOX2B testing, potentially addressing gaps in disease underdiagnosis and allow for critical, timely intervention.
Collapse
Affiliation(s)
- Susan M Slattery
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - James Wilkinson
- Department of Computer Science, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Angeli Mittal
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Computer Science, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Charlie Zheng
- Department of Computer Science, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Nicholas Easton
- Department of Computer Science, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Saumya Singh
- Department of Computer Science, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Joshua J Baker
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Genetics, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Casey M Rand
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Ilya Khaytin
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tracey M Stewart
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - David Demeter
- Department of Computer Science, Northwestern University McCormick School of Engineering, Evanston, IL, USA
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Stanley Manne Children's Research Institute, Chicago, IL, USA
| |
Collapse
|
2
|
Wang Y, Wang L, Chen X, Liu S, Han W, Yu X, Cao X, Liu X, Wang J. Congenital central hypoventilation syndrome in Chinese population: Analysis of three new cases and review of the literature. Mol Genet Genomic Med 2023; 11:e2267. [PMID: 37712713 PMCID: PMC10724499 DOI: 10.1002/mgg3.2267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Congenital central hypoventilation syndrome (CCHS) is a rare autosomal dominant disease that is mainly caused by PHOX2B mutations. The purpose of this study is to analyze and summarize the clinical and genetic characteristics of CCHS patients in the Chinese population from our study and previous literature. METHODS The potential pathogenic gene mutations of CCHS were identified and verified by next generation sequencing combined with Sanger sequencing, fluorescent probe PCR and capillary electrophoresis. The clinical characteristics and gene mutations of CCHS cases in Chinese population were summarized from our study and previous literature to explore the genotype-phenotype correlations. RESULTS We identified 48 CCHS cases including three new cases from our report in China. Overall, 77.1% of the patients had PHOX2B polyalanine repeat expansion mutations (PARMs), and the remaining 22.9% had 10 distinct PHOX2B non-polyalanine repeat expansion mutations (NPARMs). Compared to those with PARMs, patients with NPARMs were more likely to have premature birth (54.5% vs. 2.8%, p < 0.001) and lower birth weight (33.3% vs. 3.2%, p = 0.030), with statistical significance. The patients with PARMs were more likely to have cardiovascular defects (64.9% vs. 27.3%, p = 0.063), cerebral hemorrhage (29.7% vs. 9.1%, p = 0.322) and seizures (37.8% vs. 9.1%, p = 0.151) than those with NPARMs, with no statistical significance. CONCLUSIONS CCHS patients with PHOX2B NPARMs were more likely to have premature birth and low birth weight, while PHOX2B PARMs tended to be positively associated with the risk of cardiovascular defects, cerebral hemorrhage and seizures in Chinese population.
Collapse
Affiliation(s)
- Yaoyao Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| | - Lina Wang
- Department of Respiratory Medicine, the Affiliated Hospital of Qingdao UniversityQingdao UniversityQingdaoShandongChina
| | - Xiaoying Chen
- Department of NICU, Qingdao Women and Children's HospitalQingdao UniversityQingdaoShandongChina
| | - Shiguo Liu
- Medical Genetic Departmentthe Affiliated Hospital of Qingdao UniversityQingdaoShandongChina
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
- Department of Clinical Research Center, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| | - Xinjuan Yu
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
- Department of Clinical Research Center, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| | - Xipeng Cao
- Department of Neurology, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| | - Xiuxiang Liu
- Department of NICU, Qingdao Women and Children's HospitalQingdao UniversityQingdaoShandongChina
| | - Jiahui Wang
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal HospitalQingdao UniversityQingdaoShandongChina
| |
Collapse
|
3
|
Slattery SM, Perez IA, Ceccherini I, Chen ML, Kurek KC, Yap KL, Keens TG, Khaytin I, Ballard HA, Sokol EA, Mittal A, Rand CM, Weese-Mayer DE. Transitional care and clinical management of adolescents, young adults, and suspected new adult patients with congenital central hypoventilation syndrome. Clin Auton Res 2023; 33:231-249. [PMID: 36403185 DOI: 10.1007/s10286-022-00908-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/31/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE With contemporaneous advances in congenital central hypoventilation syndrome (CCHS), recognition, confirmatory diagnostics with PHOX2B genetic testing, and conservative management to reduce the risk of early morbidity and mortality, the prevalence of identified adolescents and young adults with CCHS and later-onset (LO-) CCHS has increased. Accordingly, there is heightened awareness and need for transitional care of these patients from pediatric medicine into a multidisciplinary adult medical team. Hence, this review summarizes key clinical and management considerations for patients with CCHS and LO-CCHS and emphasizes topics of particular importance for this demographic. METHODS We performed a systematic review of literature on diagnostics, pathophysiology, and clinical management in CCHS and LO-CCHS, and supplemented the review with anecdotal but extensive experiences from large academic pediatric centers with expertise in CCHS. RESULTS We summarized our findings topically for an overview of the medical care in CCHS and LO-CCHS specifically applicable to adolescents and adults. Care topics include genetic and embryologic basis of the disease, clinical presentation, management, variability in autonomic nervous system dysfunction, and clarity regarding transitional care with unique considerations such as living independently, family planning, exposure to anesthesia, and alcohol and drug use. CONCLUSIONS While a lack of experience and evidence exists in the care of adults with CCHS and LO-CCHS, a review of the relevant literature and expert consensus provides guidance for transitional care areas.
Collapse
Affiliation(s)
- Susan M Slattery
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA.
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Iris A Perez
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Maida L Chen
- Division of Pulmonary and Sleep Medicine, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - Kyle C Kurek
- Department of Pathology and Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Kai Lee Yap
- Molecular Diagnostics Laboratory, Department of Pathology & Laboratory Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Thomas G Keens
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Ilya Khaytin
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Heather A Ballard
- Department of Pediatric Anesthesiology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
- Department of Anesthesia, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth A Sokol
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Division of Hematology/Oncology, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | - Angeli Mittal
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Casey M Rand
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
| | - Debra E Weese-Mayer
- Center for Autonomic Medicine in Pediatrics (CAMP), Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Center, 225 E. Chicago Ave, Box #165, Chicago, IL, 60611, USA
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
4
|
Wo LL, Itani R, Keens TG, Marachelian A, Ji J, Perez IA. Congenital central hypoventilation syndrome without hypoventilation: is it congenital central hypoventilation syndrome? J Clin Sleep Med 2023; 19:1161-1164. [PMID: 36798979 PMCID: PMC10235709 DOI: 10.5664/jcsm.10512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare condition caused by pathogenic variants of the PHOX2B gene. There have been case reports describing variable phenotypes and mutations of the PHOX2B gene, not commonly tested for, that may challenge the classic definition of CCHS. We report on 3 family members with a rare heterozygous deletion encompassing the entire PHOX2B gene with variable phenotypes, including sleep-disordered breathing and autonomic nervous system involvement, but an unexpected lack of alveolar hypoventilation, which is usually a defining feature of CCHS. Our cases highlight the dilemmas in making a diagnosis of CCHS and emphasize the need for expanded genetic testing, including for PHOX2B gene deletion. More patients with variable phenotypes of CCHS may be identified through comprehensive genetic testing and warrant surveillance as they are still at risk for high-risk complications of CCHS. CITATION Wo LL, Itani R, Keens TG, Marachelian A, Ji J, Perez IA. Congenital central hypoventilation syndrome without hypoventilation: is it congenital central hypoventilation syndrome? J Clin Sleep Med. 2023;19(6):1161-1164.
Collapse
Affiliation(s)
- Laura Lazzarini Wo
- Division of Pulmonology and Sleep Medicine, Children’s Hospital Los Angeles, Los Angeles, California
| | - Reem Itani
- Division of Pulmonology and Sleep Medicine, Children’s Hospital Los Angeles, Los Angeles, California
| | - Thomas G. Keens
- Division of Pulmonology and Sleep Medicine, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Araz Marachelian
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California
- Division of Cancer and Blood Disease Institute, Children’s Hospital Los Angeles, Los Angeles, California
| | - Jianling Ji
- Division of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, California
- Department of Clinical Pathology, Keck School of Medicine of University of Southern California, Los Angeles, California
| | - Iris A. Perez
- Division of Pulmonology and Sleep Medicine, Children’s Hospital Los Angeles, Los Angeles, California
- Department of Pediatrics, Keck School of Medicine of University of Southern California, Los Angeles, California
| |
Collapse
|
5
|
Ceccherini I, Kurek KC, Weese-Mayer DE. Developmental disorders affecting the respiratory system: CCHS and ROHHAD. HANDBOOK OF CLINICAL NEUROLOGY 2022; 189:53-91. [PMID: 36031316 DOI: 10.1016/b978-0-323-91532-8.00005-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation, and Autonomic Dysregulation (ROHHAD) and Congenital Central Hypoventilation Syndrome (CCHS) are ultra-rare distinct clinical disorders with overlapping symptoms including altered respiratory control and autonomic regulation. Although both disorders have been considered for decades to be on the same spectrum with necessity of artificial ventilation as life-support, recent acquisition of specific knowledge concerning the genetic basis of CCHS coupled with an elusive etiology for ROHHAD have definitely established that the two disorders are different. CCHS is an autosomal dominant neurocristopathy characterized by alveolar hypoventilation resulting in hypoxemia/hypercarbia and features of autonomic nervous system dysregulation (ANSD), with presentation typically in the newborn period. It is caused by paired-like homeobox 2B (PHOX2B) variants, with known genotype-phenotype correlation but pathogenic mechanism(s) are yet unknown. ROHHAD is characterized by rapid weight gain, followed by hypothalamic dysfunction, then hypoventilation followed by ANSD, in seemingly normal children ages 1.5-7 years. Postmortem neuroanatomical studies, thorough clinical characterization, pathophysiological assessment, and extensive genetic inquiry have failed to identify a cause attributable to a traditional genetic basis, somatic mosaicism, epigenetic mechanism, environmental trigger, or other. To find the key to the ROHHAD pathogenesis and to improve its clinical management, in the present chapter, we have carefully compared CCHS and ROHHAD.
Collapse
Affiliation(s)
- Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Kyle C Kurek
- Department of Pathology & Laboratory Medicine, University of Calgary, Calgary, AB, Canada
| | - Debra E Weese-Mayer
- Division of Autonomic Medicine, Department of Pediatrics, Ann & Robert H Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute; and Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, United States.
| |
Collapse
|
6
|
Artamonova IN, Zlotina AM, Ismagilova OR, Levko TA, Kolbina NY, Bryzzhin AV, Smorodin AP, Borodin AV, Mamaeva EA, Sukhotskaya AA, Kagantsov IM, Malysheva DA, Vasichkina ES, Pervunina TM, Petrova NA. Case Report: A novel PHOX2B p.Ala248_Ala266dup variant causing congenital central hypoventilation syndrome. Front Pediatr 2022; 10:1070303. [PMID: 36874254 PMCID: PMC9975566 DOI: 10.3389/fped.2022.1070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/30/2022] [Indexed: 02/17/2023] Open
Abstract
INTRODUCTION Congenital central hypoventilation syndrome (CCHS) is a rare disease characterized by central alveolar hypoventilation and impaired autonomic regulation, caused by pathogenic variants of PHOX2B gene. More than 90% of patients have a polyalanine repeat mutation (PARM) in the heterozygous state, characterized by the expansion of GCN repeats and an increase in the number of alanine repeats, so that genotypes 20/24-20/33 are formed (the normal genotype is 20/20). The remaining 10% of patients harbor non-PARMs. CASE DESCRIPTION We present a clinical case of a girl with a novel PHOX2B heterozygous genetic variant in the exon 3: NM_003924.4: c.735_791dup, p.Ala248_Ala266dup. The duplication includes 16 GCN (alanine) repeats and 3 adjacent amino acids. Both clinically healthy parents demonstrated a normal PHOX2B sequence. In addition, the girl has a variant of unknown significance in RYR1 gene and a variant of unknown significance in NKX2-5 gene. The child's phenotype is quite special. She needs ventilation during sleep, and has Hirschsprung's disease type I, arteriovenous malformation S4 of the left lung, ventricular and atrium septal defects, coronary right ventricular fistula, hemodynamically nonsignificant, episodes of sick sinus and atrioventricular dissociation with bradycardia, divergent alternating strabismus, and oculus uterque (both eyes) (OU) retinal angiopathy. Two episodes of hypoglycemic seizures were also registered. Severe pulmonary hypertension resolved after appropriate ventilation adjustment. Diagnostic odyssey was quite dramatic. CONCLUSION Detection of a novel PHOX2B variant expands the understanding of molecular mechanisms of CCHS and genotype-phenotype correlations.
Collapse
Affiliation(s)
- Irina N Artamonova
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anna M Zlotina
- Institute of Molecular Biology and Genetics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Olga R Ismagilova
- Federal State Budgetary Scientific Institution, Research Centre for Medical Genetics (RCMG), Moscow, Russia
| | - Tatyana A Levko
- Department of Pediatric and Medical Rehabilitation, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Natalia Yu Kolbina
- Department of Pediatric and Medical Rehabilitation, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Aleksandr V Bryzzhin
- Pediatric Anesthesiology and Intensive Care Unit, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Andrey P Smorodin
- Pediatric Surgery Anesthesiology and Intensive Care Unit Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Alexandr V Borodin
- World-Class Research Centre for Personalized Medicine, Research Centre of Unknown, Rare and Genetically Determined Diseases, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Ekaterina A Mamaeva
- Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Anna A Sukhotskaya
- Department of Pediatric Surgery for Congenital Malformations, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Ilya M Kagantsov
- Department of Pediatric Surgery for Congenital Malformations, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Daria A Malysheva
- Department of Pediatric Surgery for Congenital Malformations, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Elena S Vasichkina
- World-Class Research Centre for Personalized Medicine, Research Centre of Unknown, Rare and Genetically Determined Diseases, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Tatiana M Pervunina
- Institute of Perinatology and Pediatrics, World-Class Research Centre for Personalized Medicine, Research Centre of Unknown, Rare and Genetically Determined Diseases, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| | - Natalia A Petrova
- World-Class Research Centre for Personalized Medicine, Research Centre of Unknown, Rare and Genetically Determined Diseases, Institute of Perinatology and Pediatrics, Almazov National Medical Research Centre, Saint-Petersburg, Russia
| |
Collapse
|
7
|
Adolescent Congenital Central Hypoventilation Syndrome: An Easily Overlooked Diagnosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182413402. [PMID: 34949014 PMCID: PMC8703802 DOI: 10.3390/ijerph182413402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/12/2021] [Accepted: 12/14/2021] [Indexed: 11/17/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS), also known as Ondine’s curse, is a rare, potentially fatal genetic disease, manifesting as a lack of respiratory drive. Most diagnoses are made in pediatric patients, however late-onset cases have been rarely reported. Due to the milder symptoms at presentation that might easily go overlooked, these late-onset cases can result in serious health consequences later in life. Here, we present a case report of late-onset CCHS in an adolescent female patient. In this review we summarize the current knowledge about symptoms, as well as clinical management of CCHS, and describe in detail the molecular mechanism responsible for this disorder.
Collapse
|
8
|
Kasi AS, Li H, Jurgensen TJ, Guglani L, Keens TG, Perez IA. Variable phenotypes in congenital central hypoventilation syndrome with PHOX2B nonpolyalanine repeat mutations. JOURNAL OF CLINICAL SLEEP MEDICINE : JCSM : OFFICIAL PUBLICATION OF THE AMERICAN ACADEMY OF SLEEP MEDICINE 2021; 17:2049-2055. [PMID: 33983112 DOI: 10.5664/jcsm.9370] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Congenital central hypoventilation syndrome (CCHS) is a rare disorder affecting the autonomic nervous system that is caused by variants in the PHOX2B gene. About 10% of patients with CCHS have nonpolyalanine repeat mutations (NPARM) that are associated with severe phenotypes requiring continuous assisted ventilation, Hirschsprung's disease, and increased neural crest tumor risk. However, some patients with NPARMs have milder phenotypes. Our objective was to describe the phenotypes in patients with CCHS PHOX2B NPARM. METHODS Retrospective case series of patients with CCHS PHOX2B NPARM was conducted at two children's hospitals to evaluate their phenotypes. RESULTS We identified eight patients with CCHS PHOX2B NPARM aged 3-31 years. Seven patients were diagnosed in infancy and one patient at two years of age. All patients presented with respiratory depression in the first two months of life. Only one patient was identified with a severe phenotype requiring continuous assisted ventilation, Hirschsprung's disease, and a neural crest tumor, that was resected. Five patients required positive pressure ventilation via tracheostomy only during sleep and two patients required oxygen only during sleep. Four patients had Hirschsprung's disease and one patient had a cardiac pacemaker due to a bradyarrhythmia. None of the patients had echocardiographic abnormalities. CONCLUSIONS Patients with CCHS PHOX2B NPARM can have variable phenotypes emphasizing the importance of implementing a plan of care that is individualized for each patient. The type of NPARM and its respective location on the PHOX2B gene may play a critical role in the severity of phenotypes displayed by each patient.
Collapse
Affiliation(s)
- Ajay S Kasi
- Department of Pediatrics, Division of Pediatric Pulmonology, Emory University, Children's Healthcare of Atlanta, Atlanta, GA
| | - Hong Li
- Department of Human Genetics, Emory University, Children's Healthcare of Atlanta, Atlanta, GA
| | - Taryn J Jurgensen
- Department of Pediatrics, Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA
| | - Lokesh Guglani
- Department of Pediatrics, Division of Pediatric Pulmonology, Emory University, Children's Healthcare of Atlanta, Atlanta, GA
| | - Thomas G Keens
- Department of Pediatrics, Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine of the University of Southern California
| | - Iris A Perez
- Department of Pediatrics, Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA.,Keck School of Medicine of the University of Southern California
| |
Collapse
|
9
|
Zhou A, Rand CM, Hockney SM, Niewijk G, Reineke P, Speare V, Berry-Kravis EM, Zhou L, Jennings LJ, Yu M, Ceccherini I, Bachetti T, Pennock M, Yap KL, Weese-Mayer DE. Paired-like homeobox gene (PHOX2B) nonpolyalanine repeat expansion mutations (NPARMs): genotype-phenotype correlation in congenital central hypoventilation syndrome (CCHS). Genet Med 2021; 23:1656-1663. [PMID: 33958749 DOI: 10.1038/s41436-021-01178-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE CCHS is an extremely rare congenital disorder requiring artificial ventilation as life support. Typically caused by heterozygous polyalanine repeat expansion mutations (PARMs) in the PHOX2B gene, identification of a relationship between PARM length and phenotype severity has enabled anticipatory management. However, for patients with non-PARMs in PHOX2B (NPARMs, ~10% of CCHS patients), a genotype-phenotype correlation has not been established. This comprehensive report of PHOX2B NPARMs and associated phenotypes, aims at elucidating potential genotype-phenotype correlations that will guide anticipatory management. METHODS An international collaboration (clinical, commercial, and research laboratories) was established to collect/share information on novel and previously published PHOX2B NPARM cases. Variants were categorized by type and gene location. Categorical data were analyzed with chi-square and Fisher's exact test; further pairwise comparisons were made on significant results. RESULTS Three hundred two individuals with PHOX2B NPARMs were identified, including 139 previously unreported cases. Findings demonstrate significant associations between key phenotypic manifestations of CCHS and variant type, location, and predicted effect on protein function. CONCLUSION This study presents the largest cohort of PHOX2B NPARMs and associated phenotype data to date, enabling genotype-phenotype studies that will advance personalized, anticipatory management and help elucidate pathological mechanisms. Further characterization of PHOX2B NPARMs demands longitudinal clinical follow-up through international registries.
Collapse
Affiliation(s)
- Amy Zhou
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Casey M Rand
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | - Sara M Hockney
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA.,Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Grace Niewijk
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA
| | | | | | - Elizabeth M Berry-Kravis
- Departments of Pediatrics, Neurology, and Biochemistry, Molecular Diagnostics Laboratory, Rush University Medical Center, Chicago, IL, USA
| | - Lili Zhou
- Departments of Pediatrics, Neurology, and Biochemistry, Molecular Diagnostics Laboratory, Rush University Medical Center, Chicago, IL, USA
| | - Lawrence J Jennings
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Min Yu
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | - Tiziana Bachetti
- IRCCS Istituto Giannina Gaslini, Genoa, Italy.,Lab Neurobiologia dello Sviluppo, Dip. Scienze della Terra dell'Ambiente e della Vita (DISTAV), Università di Genova, Genova, Italy
| | | | - Kai Lee Yap
- Department of Pathology, Molecular Diagnostics Laboratory, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA.,Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Debra E Weese-Mayer
- Department of Pediatrics, Division of Autonomic Medicine, Center for Autonomic Medicine in Pediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago and Stanley Manne Children's Research Institute, Chicago, IL, USA. .,Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Pediatrics, Pediatric Autonomic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
10
|
Bachetti T, Bagnasco S, Piumelli R, Palmieri A, Ceccherini I. A Common 3'UTR Variant of the PHOX2B Gene Is Associated With Infant Life-Threatening and Sudden Death Events in the Italian Population. Front Neurol 2021; 12:642735. [PMID: 33815256 PMCID: PMC8017182 DOI: 10.3389/fneur.2021.642735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/02/2021] [Indexed: 11/13/2022] Open
Abstract
Heterozygous mutations in the Paired like homeobox 2b (PHOX2B) gene are causative of congenital central hypoventilation syndrome (CCHS), a rare monogenic disorder belonging to the family of neurocristopathies and due to a defective development of the autonomic nervous system. Most patients manifest sudden symptoms within 1 year of birth, mainly represented by central apnea and cyanosis episodes. The sudden appearance of hypoxic manifestations in CCHS and their occurrence during sleep resemble two other unexplained perinatal disorders, apparent life-threatening event (ALTE) and sudden and unexpected infant death (SUID), among which the vast majority is represented by sudden infant death syndrome (SIDS). Differently from CCHS, characterized by Mendelian autosomal dominant inheritance, ALTE and SIDS are complex traits, where common genetic variants, together with external factors, may exert an additive effect with symptoms likely manifesting only over a “threshold.” Given the similarities observed among the three abovementioned perinatal disorders, in this work, we have analyzed the frequency of PHOX2B common variants in two groups of Italian idiopathic ALTE (IALTE) and SUIDs/SIDS patients. Here, we report that the c*161G>A (rs114290493) SNP of the 3′UTR PHOX2B (i) became overrepresented in the two sets of patients compared to population matched healthy controls, and (ii) associated with decreased PHOX2B gene expression, likely mediated by miR-204, a microRNA already known to bind the 3′UTR of the PHOX2B gene. Overall, these results suggest that, at least in the Italian population, the SNP c*161G>A (rs114290493) does contribute, presumably in association with others mutations or polymorphisms, to confer susceptibility to sudden unexplained perinatal life-threatening or fatal disorders by increasing the effect of miR-204 in inducing PHOX2B expression down-regulation. However, these are preliminary observations that need to be confirmed on larger cohorts to achieve a clinical relevance.
Collapse
Affiliation(s)
- Tiziana Bachetti
- Laboratorio di Neurobiologia dello Sviluppo, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita (DISTAV), Università di Genova, Genoa, Italy.,Laboratorio di Genetica e Genomica delle Malattie Rare, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
| | - Simona Bagnasco
- Laboratorio di Genetica e Genomica delle Malattie Rare, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
| | - Raffaele Piumelli
- Centro per i Disturbi Respiratori nel Sonno-Centro Regionale SIDS, Ospedale Meyer, Florence, Italy
| | - Antonella Palmieri
- Dipartimento di Emergenza, Centro SIDS-ALTE, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
| | - Isabella Ceccherini
- Laboratorio di Genetica e Genomica delle Malattie Rare, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS) Giannina Gaslini, Genoa, Italy
| |
Collapse
|
11
|
Adult-onset congenital central hypoventilation syndrome due to PHOX2B mutation. Acta Neurol Belg 2021; 121:23-35. [PMID: 32335870 DOI: 10.1007/s13760-020-01363-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/16/2020] [Indexed: 01/29/2023]
Abstract
Central hypoventilation in adult patients is a rare life-threatening condition characterised by the loss of automatic breathing, more pronounced during sleep. In most cases, it is secondary to a brainstem lesion or to a primary pulmonary, cardiac or neuromuscular disease. More rarely, it can be a manifestation of congenital central hypoventilation syndrome (CCHS). We here describe a 25-year-old woman with severe central hypoventilation triggered by analgesics. Genetic analysis confirmed the diagnosis of adult-onset CCHS caused by a heterozygous de novo poly-alanine repeat expansion of the PHOX2B gene. She was treated with nocturnal non-invasive ventilation. We reviewed the literature and found 21 genetically confirmed adult-onset CCHS cases. Because of the risk of deleterious respiratory complications, adult-onset CCHS is an important differential diagnosis in patients with central hypoventilation.
Collapse
|
12
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Research Advances on Therapeutic Approaches to Congenital Central Hypoventilation Syndrome (CCHS). Front Neurosci 2021; 14:615666. [PMID: 33510615 PMCID: PMC7835644 DOI: 10.3389/fnins.2020.615666] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022] Open
Abstract
Congenital central hypoventilation syndrome (CCHS) is a genetic disorder of neurodevelopment, with an autosomal dominant transmission, caused by heterozygous mutations in the PHOX2B gene. CCHS is a rare disorder characterized by hypoventilation due to the failure of autonomic control of breathing. Until now no curative treatment has been found. PHOX2B is a transcription factor that plays a crucial role in the development (and maintenance) of the autonomic nervous system, and in particular the neuronal structures involved in respiratory reflexes. The underlying pathogenetic mechanism is still unclear, although studies in vivo and in CCHS patients indicate that some neuronal structures may be damaged. Moreover, in vitro experimental data suggest that transcriptional dysregulation and protein misfolding may be key pathogenic mechanisms. This review summarizes latest researches that improved the comprehension of the molecular pathogenetic mechanisms responsible for CCHS and discusses the search for therapeutic intervention in light of the current knowledge about PHOX2B function.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy.,NeuroMi-Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy.,CNR-Institute of Neuroscience, Milan, Italy
| |
Collapse
|
13
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
14
|
Trang H, Samuels M, Ceccherini I, Frerick M, Garcia-Teresa MA, Peters J, Schoeber J, Migdal M, Markstrom A, Ottonello G, Piumelli R, Estevao MH, Senecic-Cala I, Gnidovec-Strazisar B, Pfleger A, Porto-Abal R, Katz-Salamon M. Guidelines for diagnosis and management of congenital central hypoventilation syndrome. Orphanet J Rare Dis 2020; 15:252. [PMID: 32958024 PMCID: PMC7503443 DOI: 10.1186/s13023-020-01460-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 07/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Congenital Central Hypoventilation Syndrome (CCHS) is a rare condition characterized by an alveolar hypoventilation due to a deficient autonomic central control of ventilation and a global autonomic dysfunction. Paired-like homeobox 2B (PHOX2B) mutations are found in most of the patients with CCHS. In recent years, the condition has evolved from a life-threatening neonatal onset disorder to include broader and milder clinical presentations, affecting children, adults and families. Genes other than PHOX2B have been found responsible for CCHS in rare cases and there are as yet other unknown genes that may account for the disease. At present, management relies on lifelong ventilatory support and close follow up of dysautonomic progression. BODY: This paper provides a state-of-the-art comprehensive description of CCHS and of the components of diagnostic evaluation and multi-disciplinary management, as well as considerations for future research. CONCLUSION Awareness and knowledge of the diagnosis and management of this rare disease should be brought to a large health community including adult physicians and health carers.
Collapse
Affiliation(s)
- Ha Trang
- Hôpital Universitaire Robert Debré, Centre de référence des maladies respiratoires rares, and Université de Paris, Paris, France
| | - Martin Samuels
- Staffordshire Children’s Hospital, Stoke-on-Trent, Staffs and Great Ormond Street Hospital, London, UK
| | - Isabella Ceccherini
- Istituto Giannina Gaslini, UOSD Laboratory of Genetics and Genomics of Rare Diseases, Genoa, Italy
| | - Matthias Frerick
- Department of Pediatrics, Klinikum Dritter Orden, Munich, Germany
| | | | - Jochen Peters
- Department of Pediatrics, Klinikum Dritter Orden, Munich, Germany
| | | | - Marek Migdal
- Department of Anaesthesiology and Intensive care, Children’s Memorial Health Institute, Warsaw, Poland
| | | | | | - Raffaele Piumelli
- Sleep Disordered Breathing and SIDS Center, Meyer Children’s Hospital, Florence, Italy
| | | | - Irena Senecic-Cala
- University Hospital Centre, Department of Pediatrics, Zagreb and School of Medicine, Zagreb, Croatia
| | - Barbara Gnidovec-Strazisar
- University Children’s Hospital, Department of child, adolescent & developmental neurology, University Clinical Centre Ljubljana, Ljubljana, Slovenia
| | - Andreas Pfleger
- Medical University of Graz, Paediatric Pulmonology and Allergology, Graz, Austria
| | | | | |
Collapse
|
15
|
Bachetti T, Ceccherini I. Causative and commonPHOX2Bvariants define a broad phenotypic spectrum. Clin Genet 2019; 97:103-113. [DOI: 10.1111/cge.13633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/15/2019] [Indexed: 11/25/2022]
Affiliation(s)
- Tiziana Bachetti
- Laboratorio Neurobiologia dello Sviluppo, Dipartimento di Scienze della Terra dell'Ambiente e della Vita (DISTAV)Università di Genova Genova Italy
| | | |
Collapse
|
16
|
Fisher M, Smeiles C, Jnah AJ, Ruiz ME, Difiore T, Sewell K. Congenital Central Hypoventilation Syndrome: A Case-Based Learning Opportunity for Neonatal Clinicians. Neonatal Netw 2019; 38:217-225. [PMID: 31470390 DOI: 10.1891/0730-0832.38.4.217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare and sporadic neurocristopathy characterized by alveolar hypoventilation and autonomic nervous system dysfunction. CCHS manifests quickly after birth, initially as respiratory distress. Mortality risk is estimated at 38 percent, with a median age of death of three months of age. A timely and accurate diagnosis is critical. Genetic testing for PHOX2B gene mutations is necessary to confirm the diagnosis; however, laboratory turnaround time often imposes an additional 7-14-day waiting period on an often anxious family. Neonatal clinicians should recognize that families require disease-specific education, emotional support, and time to rehearse daily caregiving in preparation for discharge. Therefore, this article presents the key clinical, pathophysiologic, and diagnostic factors, as well as a discussion of discharge needs. A case report of an infant, born to parents with no known history of CCHS, is included as a case-based learning opportunity for readers.
Collapse
|
17
|
Zhao J, Zhu Y, Xie X, Yao Y, Zhang J, Zhang R, Huang L, Cheng J, Xia H, He J, Zhang Y. Pleiotropic effect of common PHOX2B variants in Hirschsprung disease and neuroblastoma. Aging (Albany NY) 2019; 11:1252-1261. [PMID: 30799307 PMCID: PMC6402522 DOI: 10.18632/aging.101834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 02/17/2019] [Indexed: 02/07/2023]
Abstract
Hirschsprung disease (HSCR) is a heterogeneous congenital disorder that affects the enteric nervous system, while neuroblastoma is an embryonal tumor of the sympathetic nervous system. Familial cases of both HSCR and neuroblastoma appear to be functionally linked to PHOX2B, which plays a key role in the development of neural crest derivatives. However, the association between common PHOX2B variants and disease risk is contested. Additionally, large-scale examination for pleiotropy or shared genetic susceptibility in sporadic HSCR and neuroblastoma cases lacks theoretical support. Here, we report the first examination of PHOX2B in 1470 HSCR and 469 neuroblastoma patients with matched healthy controls. The PHOX2B rs28647582 polymorphism was found to be associated with HSCR (P = 2.21E-03, OR = 1.26), and each subtype of the ailment (3.22E-03 ≤ P ≤ 0.43, 1.11 ≤ OR ≤ 2.32). The association between rs28647582 and NB risk was consistent with HSCR in a recessive model, though the P value was marginal (P = 0.06). These new genetic findings indicate the potential pleiotropic effects of PHOX2B in both HSCR and neuroblastoma, which could guide the development of therapeutic targets for the treatment of related neurodevelopmental disorders.
Collapse
Affiliation(s)
- Jinglu Zhao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Yun Zhu
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Xiaoli Xie
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
- Equal contribution
| | - Yuxiao Yao
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiao Zhang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Ruizhong Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Lihua Huang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jiwen Cheng
- Department of Pediatric Surgery, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, Shaanxi, China
| | - Huimin Xia
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Jing He
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| | - Yan Zhang
- Department of Pediatric Surgery, Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, Guangdong, China
| |
Collapse
|
18
|
Bardanzellu F, Pintus MC, Fanos V, Marcialis MA. Neonatal Congenital Central Hypoventilation Syndrome: Why We Should not Sleep on it. Literature Review of Forty-two Neonatal Onset Cases. Curr Pediatr Rev 2019; 15:139-153. [PMID: 31223092 DOI: 10.2174/1573396315666190621103954] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 12/31/2022]
Abstract
Congenital Central Hypoventilation Syndrome (CCHS), also referred with the expression "Ondine's Curse", is a rare genetic life-long disease resulting from the mutation of PHOX2B gene on chromosome 4p12.3. CCHS represents an autonomic nervous system disorder; its more fearsome manifestation is central hypoventilation, due to a deficient response of chemoreceptors to hypercapnia and hypoxia. Several associated symptoms can occur, such as pupillary anomalies, arrhythmias, reduced heart rate variability, esophageal dysmotility, and structural comorbidities (Hirschsprung's Disease or neural crest tumours). CCHS typical onset is during the neonatal period, but cases of delayed diagnosis have been reported; moreover, both sporadic or familial cases can occur. In preterm newborns, asphyxia and typical prematurity-related findings may overlap CCHS clinical manifestations and make it harder to formulate a correct diagnosis. The early recognition of CCHS allows appropriate management, useful to reduce immediate and long- term consequences.
Collapse
Affiliation(s)
- Flaminia Bardanzellu
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | - Maria Cristina Pintus
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, AOU and University of Cagliari, SS 554 km 4,500, 09042 Monserrato, Italy
| | | |
Collapse
|
19
|
Bishara J, Keens TG, Perez IA. The genetics of congenital central hypoventilation syndrome: clinical implications. APPLICATION OF CLINICAL GENETICS 2018; 11:135-144. [PMID: 30532577 PMCID: PMC6241683 DOI: 10.2147/tacg.s140629] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS) is a rare genetic disorder of the autonomic nervous system (ANS) and respiratory control. This disorder, formerly referred to as Ondine’s curse, is due to a mutation in the PHOX2B gene that affects the development of the neural crest cells. CCHS has an autosomal dominant pattern of inheritance. Majority of the patients have a polyalanine repeat mutation (PARM) of the PHOX2B, while a small group has non-PARM (NPARM). Knowledge of the patient’s PHOX2B gene mutation helps predict a patient’s clinical presentation and outcome and aids in anticipatory management of the respiratory and ANS dysfunction.
Collapse
Affiliation(s)
- John Bishara
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA,
| | - Thomas G Keens
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA, .,Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, USA,
| | - Iris A Perez
- Division of Pediatric Pulmonology and Sleep Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA, .,Department of Pediatrics, Keck School of Medicine of USC, Los Angeles, CA, USA,
| |
Collapse
|
20
|
Di Lascio S, Benfante R, Cardani S, Fornasari D. Advances in the molecular biology and pathogenesis of congenital central hypoventilation syndrome—implications for new therapeutic targets. Expert Opin Orphan Drugs 2018. [DOI: 10.1080/21678707.2018.1540978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
- CNR- Neuroscience Institute, Milan, Italy
| | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
- CNR- Neuroscience Institute, Milan, Italy
| |
Collapse
|
21
|
Cardani S, Di Lascio S, Belperio D, Di Biase E, Ceccherini I, Benfante R, Fornasari D. Desogestrel down-regulates PHOX2B and its target genes in progesterone responsive neuroblastoma cells. Exp Cell Res 2018; 370:671-679. [PMID: 30036539 DOI: 10.1016/j.yexcr.2018.07.032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 10/28/2022]
Abstract
The paired-like homeobox 2B gene (PHOX2B) encodes a key transcription factor that plays a role in the development of the autonomic nervous system and the neural structures involved in controlling breathing. In humans, PHOX2B over-expression plays a role in the pathogenesis of tumours arising from the sympathetic nervous system such as neuroblastomas, and heterozygous PHOX2B mutations cause Congenital Central Hypoventilation Syndrome (CCHS), a life-threatening neurocristopathy characterised by the defective autonomic control of breathing and involving altered CO2/H+ chemosensitivity. The recovery of CO2/H+ chemosensitivity and increased ventilation have been observed in two CCHS patients using the potent contraceptive progestin desogestrel. Given the central role of PHOX2B in the pathogenesis of CCHS, and the progesterone-mediated effects observed in the disease, we generated progesterone-responsive neuroblastoma cells, and evaluated the effects of 3-Ketodesogestrel (3-KDG), the biologically active metabolite of desogestrel, on the expression of PHOX2B and its target genes. Our findings demonstrate that, through progesterone nuclear receptor PR-B, 3-KDG down-regulates PHOX2B gene expression, by a post-transcriptional mechanism, and its target genes and open up the possibility that this mechanism may contribute to the positive effects observed in some CCHS patients.
Collapse
Affiliation(s)
- Silvia Cardani
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy
| | - Simona Di Lascio
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy
| | - Debora Belperio
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy
| | - Erika Di Biase
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy
| | - Isabella Ceccherini
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Largo G. Gaslini 5, 16148 Genoa, Italy
| | - Roberta Benfante
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy.
| | - Diego Fornasari
- Dept. of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, via Vanvitelli 32, 2019 Milan, Italy; CNR -Neuroscience Institute, via Vanvitelli 32, 20129 Milan, Italy.
| |
Collapse
|
22
|
Maloney MA, Kun SS, Keens TG, Perez IA. Congenital central hypoventilation syndrome: diagnosis and management. Expert Rev Respir Med 2018; 12:283-292. [DOI: 10.1080/17476348.2018.1445970] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Melissa A. Maloney
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
| | - Sheila S. Kun
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
| | - Thomas G. Keens
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
- Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| | - Iris A. Perez
- Children’s Hospital Los Angeles, Division of Pediatric Pulmonology and Sleep Medicine, Los Angeles, USA
- Physiology and Biophysics, Keck School of Medicine of the University of Southern California, Los Angeles, USA
| |
Collapse
|
23
|
Di Lascio S, Benfante R, Di Zanni E, Cardani S, Adamo A, Fornasari D, Ceccherini I, Bachetti T. Structural and functional differences in PHOX2B frameshift mutations underlie isolated or syndromic congenital central hypoventilation syndrome. Hum Mutat 2017; 39:219-236. [PMID: 29098737 PMCID: PMC5846889 DOI: 10.1002/humu.23365] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/24/2017] [Accepted: 10/29/2017] [Indexed: 12/13/2022]
Abstract
Heterozygous mutations in the PHOX2B gene are causative of congenital central hypoventilation syndrome (CCHS), a neurocristopathy characterized by defective autonomic control of breathing due to the impaired differentiation of neural crest cells. Among PHOX2B mutations, polyalanine (polyAla) expansions are almost exclusively associated with isolated CCHS, whereas frameshift variants, although less frequent, are often more severe than polyAla expansions and identified in syndromic CCHS. This article provides a complete review of all the frameshift mutations identified in cases of isolated and syndromic CCHS reported in the literature as well as those identified by us and not yet published. These were considered in terms of both their structure, whether the underlying indels induced frameshifts of either 1 or 2 steps ("frame 2" and "frame 3" mutations respectively), and clinical associations. Furthermore, we evaluated the structural and functional effects of one "frame 3" mutation identified in a patient with isolated CCHS, and one "frame 2" mutation identified in a patient with syndromic CCHS, also affected with Hirschsprung's disease and neuroblastoma. The data thus obtained confirm that the type of translational frame affects the severity of the transcriptional dysfunction and the predisposition to isolated or syndromic CCHS.
Collapse
Affiliation(s)
- Simona Di Lascio
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Roberta Benfante
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | - Silvia Cardani
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, Genoa, Italy
| | - Diego Fornasari
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,CNR- Neuroscience Institute, Milan, Italy
| | | | | |
Collapse
|
24
|
Spanish patients with central hypoventilation syndrome included in the European Registry. The 2015 data. ANALES DE PEDIATRÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.anpede.2016.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Di Zanni E, Adamo A, Belligni E, Lerone M, Martucciello G, Mattioli G, Pini Prato A, Ravazzolo R, Silengo M, Bachetti T, Ceccherini I. Common PHOX2B poly-alanine contractions impair RET gene transcription, predisposing to Hirschsprung disease. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1770-1777. [PMID: 28433712 DOI: 10.1016/j.bbadis.2017.04.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Revised: 03/27/2017] [Accepted: 04/17/2017] [Indexed: 01/08/2023]
Abstract
HSCR is a congenital disorder of the enteric nervous system, characterized by the absence of neurons along a variable length of the gut resulting from loss-of-function RET mutations. Congenital Central Hypoventilation Syndrome (CCHS) is a rare neurocristopathy characterized by impaired response to hypercapnia and hypoxemia caused by heterozygous mutations of the PHOX2B gene, mostly polyalanine (polyA) expansions but also missense, nonsense, and frameshift mutations, while polyA contractions are common in the population and believed neutral. HSCR associated CCHS can present in patients carrying PHOX2B mutations. Indeed, RET expression is orchestrated by different transcriptional factors among which PHOX2B, thus suggesting its possible role in HSCR pathogenesis. Following the observation of HSCR patients carrying in frame trinucleotide deletions within the polyalanine stretch in exon 3 (polyA contractions), we have verified the hypothesis that these PHOX2B variants do reduce its transcriptional activity, likely resulting in a down-regulation of RET expression and, consequently, favouring the development of the HSCR phenotype. Using proper reporter constructs, we show here that the in vitro transactivation of the RET promoter by different HSCR-associated PHOX2B polyA variants has resulted significantly lower compared to the effect of PHOX2B wild type protein. In particular, polyA contractions do induce a reduced transactivation of the RET promoter, milder compared to the severe polyA expansions associated with CCHS+HSCR, and correlated with the length of the deleted trait, with a more pronounced effect when contractions are larger.
Collapse
Affiliation(s)
- Eleonora Di Zanni
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Annalisa Adamo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Elga Belligni
- Dipartimento Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Margherita Lerone
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | - Giuseppe Martucciello
- UOC Chirurgia, Istituto Giannina Gaslini, 16148 Genova, Italy; DiNOGMI, University of Genova, Genova, Italy
| | | | | | - Roberto Ravazzolo
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy; DiNOGMI, University of Genova, Genova, Italy
| | - Margherita Silengo
- Dipartimento Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italy
| | - Tiziana Bachetti
- UOC Genetica Medica, Istituto Giannina Gaslini, 16148, Genova, Italy
| | | |
Collapse
|
26
|
Cain JT, Kim DI, Quast M, Shivega WG, Patrick RJ, Moser C, Reuter S, Perez M, Myers A, Weimer JM, Roux KJ, Landsverk M. Nonsense pathogenic variants in exon 1 of PHOX2B lead to translational reinitiation in congenital central hypoventilation syndrome. Am J Med Genet A 2017; 173:1200-1207. [PMID: 28371199 DOI: 10.1002/ajmg.a.38162] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/15/2016] [Accepted: 01/09/2017] [Indexed: 11/06/2022]
Abstract
Pathogenic variants in PHOX2B lead to congenital central hypoventilation syndrome (CCHS), a rare disorder of the nervous system characterized by autonomic dysregulation and hypoventilation typically presenting in the neonatal period, although a milder late-onset (LO) presentation has been reported. More than 90% of cases are caused by polyalanine repeat mutations (PARMs) in the C-terminus of the protein; however non-polyalanine repeat mutations (NPARMs) have been reported. Most NPARMs are located in exon 3 of PHOX2B and result in a more severe clinical presentation including Hirschsprung disease (HSCR) and/or peripheral neuroblastic tumors (PNTs). A previously reported nonsense pathogenic variant in exon 1 of a patient with LO-CCHS and no HSCR or PNTs leads to translational reinitiation at a downstream AUG codon producing an N-terminally truncated protein. Here we report additional individuals with nonsense pathogenic variants in exon 1 of PHOX2B. In vitro analyses were used to determine if these and other reported nonsense variants in PHOX2B exon 1 produced N-terminally truncated proteins. We found that all tested nonsense variants in PHOX2B exon 1 produced a truncated protein of the same size. This truncated protein localized to the nucleus and transactivated a target promoter. These data suggest that nonsense pathogenic variants in the first exon of PHOX2B likely escape nonsense mediated decay (NMD) and produce N-terminally truncated proteins functionally distinct from those produced by the more common PARMs.
Collapse
Affiliation(s)
- Jacob T Cain
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Dae I Kim
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Megan Quast
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Winnie G Shivega
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Ryan J Patrick
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Chuanpit Moser
- Section of Pediatric Pulmonology, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Suzanne Reuter
- Section of Neonatal-Perinatal Medicine, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Myrza Perez
- Department of Pediatric Pulmonology, Kaiser Permanente, Roseville, California
| | - Angela Myers
- Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Jill M Weimer
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Kyle J Roux
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| | - Megan Landsverk
- Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota.,Department of Pediatrics, Sanford School of Medicine at the University of South Dakota, Sioux Falls, South Dakota
| |
Collapse
|
27
|
Congenital central hypoventilation syndrome: a bedside-to-bench success story for advancing early diagnosis and treatment and improved survival and quality of life. Pediatr Res 2017; 81:192-201. [PMID: 27673423 DOI: 10.1038/pr.2016.196] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/15/2016] [Indexed: 01/13/2023]
Abstract
The "bedside-to-bench" Congenital Central Hypoventilation Syndrome (CCHS) research journey has led to increased phenotypic-genotypic knowledge regarding autonomic nervous system (ANS) regulation, and improved clinical outcomes. CCHS is a neurocristopathy characterized by hypoventilation and ANS dysregulation. Initially described in 1970, timely diagnosis and treatment remained problematic until the first large cohort report (1992), delineating clinical presentation and treatment options. A central role of ANS dysregulation (2001) emerged, precipitating evaluation of genes critical to ANS development, and subsequent 2003 identification of Paired-Like Homeobox 2B (PHOX2B) as the disease-defining gene for CCHS. This breakthrough engendered clinical genetic testing, making diagnosis exact and early tracheostomy/artificial ventilation feasible. PHOX2B genotype-CCHS phenotype relationships were elucidated, informing early recognition and timely treatment for phenotypic manifestations including Hirschsprung disease, prolonged sinus pauses, and neural crest tumors. Simultaneously, cellular models of CCHS-causing PHOX2B mutations were developed to delineate molecular mechanisms. In addition to new insights regarding genetics and neurobiology of autonomic control overall, new knowledge gained has enabled physicians to anticipate and delineate the full clinical CCHS phenotype and initiate timely effective management. In summary, from an initial guarantee of early mortality or severe neurologic morbidity in survivors, CCHS children can now be diagnosed early and managed effectively, achieving dramatically improved quality of life as adults.
Collapse
|
28
|
[Spanish patients with central hypoventilation syndrome included in the European Registry. The 2015 data]. An Pediatr (Barc) 2016; 86:255-263. [PMID: 27377324 DOI: 10.1016/j.anpedi.2016.05.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022] Open
Abstract
INTRODUCTION Congenital Central Hypoventilation Syndrome (CCHS) is a very rare genetic disease. In 2012 the European Central Hypoventilation Syndrome (EuCHS) Consortium created an online patient registry in order to improve care. AIM To determine the characteristics and outcomes of Spanish patients with CCHS, and detect clinical areas for improvement. MATERIALS AND METHOD An assessment was made on the data from Spanish patients in the European Registry, updated on December 2015. RESULTS The Registry contained 38 patients, born between 1987 and 2013, in 18 hospitals. Thirteen (34.2%) were older than 18 years. Three patients had died. Genetic analysis identified PHOX2B mutations in 32 (86.5%) out of 37 patients assessed. The 20/25, 20/26 and 20/27 polyalanine repeat mutations (PARMs) represented 84.3% of all mutations. Longer PARMs had more, as well as more severe, autonomic dysfunctions. Eye diseases were present in 47%, with 16% having Hirschsprung disease, 13% with hypoglycaemia, and 5% with tumours. Thirty patients (79%) required ventilation from the neonatal period onwards, and 8 (21%) later on in life (late onset/presentation). Eight children (21%) were using mask ventilation at the first home discharge. Five of them were infants with neonatal onset, two of them, both having a severe mutation, were switched to tracheostomy after cardiorespiratory arrest at home. Approximately one-third (34.3%) of patients were de-cannulated and switched to mask ventilation at a mean age of 13.7 years. Educational reinforcement was required in 29.4% of children attending school. CONCLUSION The implementation of the EuCHS Registry in Spain has identified some relevant issues for optimising healthcare, such as the importance of genetic study for diagnosis and assessment of severity, the high frequency of eye disease and educational reinforcement, as well as some limitations in ventilatory techniques.
Collapse
|
29
|
Healy F, Marcus CL. Care of the Child with Congenital Central Hypoventilation Syndrome. Respir Med 2016. [DOI: 10.1007/978-1-4939-3749-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
Szymońska I, Borgenvik TL, Karlsvik TM, Halsen A, Malecki BK, Saetre SE, Jagła M, Kruczek P, Talowska AM, Drabik G, Zasada M, Malecki M. Novel mutation-deletion in the PHOX2B gene of the patient diagnosed with Neuroblastoma, Hirschsprung's Disease, and Congenital Central Hypoventilation Syndrome (NB-HSCR-CCHS) Cluster. ACTA ACUST UNITED AC 2015; 6. [PMID: 26798564 DOI: 10.4172/2157-7412.1000269] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Neuroblastoma (NB), Hirschsprung disease (HSCR), Congenital Central Hypoventilation Syndrome (CCHS), clinically referred as the NB-HSCR-CCHS cluster, are genetic disorders linked to mutations in the PHOX2B gene on chromosome 4p12. SPECIFIC AIM The specific aim of this project is to define the PHOX2B gene mutations as the genomic basis for the clinical manifestations of the NB-HSCR-CCHS cluster. PATIENT A one day old male patient presented to the Jagiellonian University Medical College (JUMC), American Children Hospital, neonatal Intensive Care Unit (ICU) due to abdominal distention, vomiting, and severe apneic episodes. With the preliminary diagnosis of the NB-HSCR-CCHS, the blood and tissue samples were acquired from the child, as well as from the child's parents. All procedures were pursued in accordance with the Declaration of Helsinki, with the patient's Guardian Informed Consent and the approval from the Institutional Review Board. GENETIC/GENOMIC METHODS Karyotyping was analyzed based upon Giemsa banding. The patient's genomic DNA was extracted from peripheral blood and amplified by polymerase chain reaction. Direct microfluidic Sanger sequencing was performed on the genomic DNA amplicons. These procedures were pursued in addition to the routine clinical examinations and tests. RESULTS G-banding showed the normal 46 XY karyotype. However, genomic sequencing revealed a novel, heterozygous deletion (8 nucleotides: c.699-706, del8) in exon 3 of the PHOX2B gene on chromosome 4. This led to the frame-shift mutation and malfunctioning gene expression product. CONCLUSION Herein, we report a novel PHOX2B gene mutation in the patient diagnosed with the NB-HSCR-CCHS cluster. The resulting gene expression product may be a contributor to the clinical manifestations of these genetic disorders. It adds to the library of the mutations linked to this syndrome. Consequently, we suggest that screening for the PHOX2B mutations becomes an integral part of genetic counseling, genomic sequencing of fetal circulating nucleic acids and / or genomes of circulating fetal cells prenatally, while preparing supportive therapy upon delivery, as well as on neonates' genomes of intubated infants, when breathing difficulties occur upon extubation. Further, we hypothesize that PHOX2B may be considered as a potential target for gene therapy.
Collapse
Affiliation(s)
- Izabela Szymońska
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland, EU
| | | | | | - Anders Halsen
- Jagiellonian University Medical College, Krakow, Poland, EU
| | - Bianka Kathryn Malecki
- Jagiellonian University Medical College, Krakow, Poland, EU; Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA
| | | | - Mateusz Jagła
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland, EU
| | - Piotr Kruczek
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland, EU
| | - Anna Madetko Talowska
- Department of Clinical Genetics, Jagiellonian University Medical College, Krakow, Poland, EU
| | - Grażyna Drabik
- Department of Pathology, Children's University Hospital, Kraków, Poland, EU
| | - Magdalena Zasada
- Department of Pediatrics, Jagiellonian University Medical College, Krakow, Poland, EU
| | - Marek Malecki
- Phoenix Biomolecular Engineering Foundation, San Francisco, CA, USA; NMRFM, National Institutes of Health, Madison, WI, USA; University of Wisconsin, Madison, WI, USA
| |
Collapse
|
31
|
Nobuta H, Cilio MR, Danhaive O, Tsai HH, Tupal S, Chang SM, Murnen A, Kreitzer F, Bravo V, Czeisler C, Gokozan HN, Gygli P, Bush S, Weese-Mayer DE, Conklin B, Yee SP, Huang EJ, Gray PA, Rowitch D, Otero JJ. Dysregulation of locus coeruleus development in congenital central hypoventilation syndrome. Acta Neuropathol 2015; 130:171-83. [PMID: 25975378 PMCID: PMC4503865 DOI: 10.1007/s00401-015-1441-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/01/2015] [Accepted: 05/02/2015] [Indexed: 12/29/2022]
Abstract
Human congenital central hypoventilation syndrome (CCHS), resulting from mutations in transcription factor PHOX2B, manifests with impaired responses to hypoxemia and hypercapnia especially during sleep. To identify brainstem structures developmentally affected in CCHS, we analyzed two postmortem neonatal-lethal cases with confirmed polyalanine repeat expansion (PARM) or Non-PARM (PHOX2B∆8) mutation of PHOX2B. Both human cases showed neuronal losses within the locus coeruleus (LC), which is important for central noradrenergic signaling. Using a conditionally active transgenic mouse model of the PHOX2B∆8 mutation, we found that early embryonic expression (<E10.5) caused failure of LC neuronal specification and perinatal respiratory lethality. In contrast, later onset (E11.5) of PHOX2B∆8 expression was not deleterious to LC development and perinatal respiratory lethality was rescued, despite failure of chemosensor retrotrapezoid nucleus formation. Our findings indicate that early-onset mutant PHOX2B expression inhibits LC neuronal development in CCHS. They further suggest that such mutations result in dysregulation of central noradrenergic signaling, and therefore, potential for early pharmacologic intervention in humans with CCHS.
Collapse
|
32
|
Herrera-Flores EH, Rodríguez-Tejada A, Reyes-Zúñiga MM, Torres-Fraga MG, Castorena-Maldonado A, Carrillo-Alduenda JL. [Congenital central alveolar hypoventilation syndrome]. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2015; 72:262-270. [PMID: 29421146 DOI: 10.1016/j.bmhimx.2015.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/25/2015] [Accepted: 07/02/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Congenital central alveolar hypoventilation syndrome (CCAHS) is a rare sleep-related breathing disorder. Although increasingly frequently diagnosed in sleep clinics and pediatric pulmonology services, its epidemiology is not known. There are about 300 reported cases reported in the literature with an incidence of 1 case per 200,000 live births. CCAHS is characterized by alveolar hypoventilation that occurs or worsens during sleep and is secondary to a reduction/absence of the ventilatory response to hypercapnia and/or hypoxemia. In 90% of the cases it is due to a PARM-type mutation of the PHOX2B gene. Treatment includes mechanical ventilation and diaphragmatic pacemaker. If therapy is not initiated promptly the patient can evolve to chronic respiratory failure, pulmonary hypertension, cor pulmonale and death. CASE REPORTS In this paper we present three cases of CCAHS diagnosed, treated and followed up at the Sleep Disorders Clinic of the National Institute of Respiratory Diseases in Mexico. CONCLUSIONS Early diagnosis is important to initiate ventilatory support so as to prevent any complications and to reduce mortality.
Collapse
Affiliation(s)
- Edwin Hernando Herrera-Flores
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - Alfredo Rodríguez-Tejada
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - Martha Margarita Reyes-Zúñiga
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - Martha Guadalupe Torres-Fraga
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - Armando Castorena-Maldonado
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México
| | - José Luis Carrillo-Alduenda
- Clínica de Trastornos Respiratorios del Dormir, Instituto Nacional de Enfermedades Respiratorias, México D.F., México.
| |
Collapse
|
33
|
Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc 2015; 11:1120-9. [PMID: 25102221 DOI: 10.1513/annalsats.201402-050as] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite significant advances in treatment strategies targeting the underlying defect in cystic fibrosis (CF), airway infection remains an important cause of lung disease. In this two-part series, we review recent evidence related to the complexity of CF airway infection, explore data suggesting the relevance of individual microbial species, and discuss current and future treatment options. In Part I, the evidence with respect to the spectrum of bacteria present in the CF airway, known as the lung microbiome is discussed. Subsequently, the current approach to treat methicillin-resistant Staphylococcus aureus, gram-negative bacteria, as well as multiple coinfections is reviewed. Newer molecular techniques have demonstrated that the airway microbiome consists of a large number of microbes, and the balance between microbes, rather than the mere presence of a single species, may be relevant for disease pathophysiology. A better understanding of this complex environment could help define optimal treatment regimens that target pathogens without affecting others. Although relevance of these organisms is unclear, the pathologic consequences of methicillin-resistant S. aureus infection in patients with CF have been recently determined. New strategies for eradication and treatment of both acute and chronic infections are discussed. Pseudomonas aeruginosa plays a prominent role in CF lung disease, but many other nonfermenting gram-negative bacteria are also found in the CF airway. Many new inhaled antibiotics specifically targeting P. aeruginosa have become available with the hope that they will improve the quality of life for patients. Part I concludes with a discussion of how best to treat patients with multiple coinfections.
Collapse
|
34
|
Trang H, Brunet JF, Rohrer H, Gallego J, Amiel J, Bachetti T, Fischbeck KH, Similowski T, Straus C, Ceccherini I, Weese-Mayer DE, Frerick M, Bieganowska K, Middleton L, Morandi F, Ottonello G. Proceedings of the fourth international conference on central hypoventilation. Orphanet J Rare Dis 2014; 9:194. [PMID: 25928806 PMCID: PMC4268904 DOI: 10.1186/s13023-014-0194-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/14/2014] [Indexed: 02/07/2023] Open
Abstract
Central hypoventilation syndromes (CHS) are rare diseases of central autonomic respiratory control associated with autonomous nervous dysfunction. Severe central hypoventilation is the hallmark and the most life-threatening feature. CHS is a group of not-fully defined disorders. Congenital CHS (CCHS) (ORPHA661) is clinically and genetically well-characterized, with the disease-causing gene identified in 2003. CCHS presents at birth in most cases, and associated with Hirschsprung's disease (ORPHA99803) and neural crest tumours in 20% and 5% of cases, respectively. The incidence of CCHS is estimated to be 1 of 200,000 live births in France, yet remains unknown for the rest of the world. In contrast, late-onset CHS includes a group of not yet fully delineated diseases. Overlap with CCHS is likely, as a subset of patients harbours PHOX2B mutations. Another subset of patients present with associated hypothalamic dysfunction. The number of these patients is unknown (less than 60 cases reported worldwide). Treatment of CHS is palliative using advanced techniques of ventilation support during lifetime. Research is ongoing to better understand physiopathological mechanisms and identify potential treatment pathways.The Fourth International Conference on Central Hypoventilation was organised in Warsaw, Poland, April 13-15, 2012, under the patronage of the European Agency for Health and Consumers and Public Health European Agency of European Community. The conference provided a state-of-the-art update of knowledge on all the genetic, molecular, cellular, and clinical aspects of these rare diseases.
Collapse
Affiliation(s)
- Ha Trang
- French Centre of Reference for Central Hypoventilation, Robert Debré University Hospital, EA 7334 REMES Paris-Diderot University, 48 boulevard Serurier, 75019, Paris, France.
| | | | - Hermann Rohrer
- Research Group Developmental Neurobiology, Department of Neurochemistry, Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| | - Jorge Gallego
- Inserm U676, Robert Debré University Hospital, Paris, France.
| | - Jeanne Amiel
- French Centre of Reference for Central Hypoventilation, Necker-Enfants Malades University Hospital, Paris, France.
| | | | - Kenneth H Fischbeck
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Missouri, USA.
| | - Thomas Similowski
- French Centre of Reference for Central Hypoventilation, La Pitié Salpêtrière University Hospital, Pierre et Maris Curie University, Paris, France.
| | - Christian Straus
- French Centre of Reference for Central Hypoventilation, La Pitié Salpêtrière University Hospital, Pierre et Maris Curie University, Paris, France.
| | - Isabella Ceccherini
- Laboratorio di Genetica Molecolare, Istituto Giannina Gaslini, Genova, Italy.
| | - Debra E Weese-Mayer
- Autonomic Medicine in Paediatrics (CAMP), Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Rand CM, Carroll MS, Weese-Mayer DE. Congenital Central Hypoventilation Syndrome. Clin Chest Med 2014; 35:535-45. [DOI: 10.1016/j.ccm.2014.06.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Saiyed R, Rand CM, Carroll MS, Weese-Mayer DE. Hypoventilation Syndromes of Infancy, Childhood, and Adulthood. Sleep Med Clin 2014. [DOI: 10.1016/j.jsmc.2014.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation: review and update. Curr Opin Pediatr 2014; 26:487-92. [PMID: 24914877 DOI: 10.1097/mop.0000000000000118] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The focus of this review is to compare and contrast two orphan disorders of late-onset hypoventilation. Specifically, rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) and congenital central hypoventilation syndrome (CCHS) are distinct in presentation, pathophysiology, and etiology. RECENT FINDINGS While limited new information is available, appreciation and understanding of rare disorders can be attained through case reports. Recent literature in ROHHAD has included case reports with new findings that may provide insight into pathophysiology involving possible aberrant immune process and dysregulation at the level of the orexinergic system. SUMMARY The etiology of ROHHAD continues to be elusive. The hope is that, with growing recognition, discussion, and investigation into the overlap of ROHHAD with disorders outside congenital central hypoventilation syndrome, further advancement will be made.
Collapse
|
38
|
Jennings MT, Boyle MP, Weaver D, Callahan KA, Dasenbrook EC. Eradication strategy for persistent methicillin-resistant Staphylococcus aureus infection in individuals with cystic fibrosis--the PMEP trial: study protocol for a randomized controlled trial. Trials 2014; 15:223. [PMID: 24925006 PMCID: PMC4068380 DOI: 10.1186/1745-6215-15-223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 05/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The prevalence of methicillin-resistant Staphylococcus aureus (MRSA) respiratory infection in cystic fibrosis (CF) has increased dramatically over the last decade, and is now affecting approximately 25% of patients. Epidemiologic evidence suggests that persistent infection with MRSA results in an increased rate of decline in FEV1 and shortened survival. Currently, there are no conclusive studies demonstrating an effective and safe treatment protocol for persistent MRSA respiratory infection in CF. METHODS/DESIGN The primary objective of this study is to evaluate the safety and efficacy of a 28-day course of vancomycin for inhalation in combination with oral antibiotics in eliminating MRSA from the respiratory tract of individuals with CF and persistent MRSA infection. This is a two-center, randomized, double-blind, comparator-controlled, parallel-group study with 1:1 assignment to either vancomycin for inhalation (250 mg twice a day) or taste-matched placebo for 28 days in individuals with cystic fibrosis. In addition, both groups will receive oral rifampin, a second oral antibiotic - trimethoprim/sulfamethoxazole (TMP/SMX) or doxycycline, protocol determined - mupirocin intranasal cream, and chlorhexidine body washes. Forty patients with persistent respiratory tract MRSA infection will be enrolled: 20 will be randomized to vancomycin for inhalation and 20 to a taste-matched placebo. The primary outcome will be the presence of MRSA in sputum respiratory tract cultures 1 month after the conclusion of treatment. Secondary outcomes include the efficacy of the intervention on: FEV1% predicted, patient reported outcomes, pulmonary exacerbations, and MRSA colony-forming units found in respiratory tract sample culture. DISCUSSION Results of this study will provide guidance to clinicians regarding the safety and effectiveness of a targeted eradication strategy for persistent MRSA infection in CF. TRIAL REGISTRATION This trial is registered at ClinicalTrials.gov (NCT01594827, received 05/07/2012) and is funded by the Cystic Fibrosis Foundation (Grants: PMEP10K1 and PMEP11K1).
Collapse
Affiliation(s)
- Mark T Jennings
- Johns Hopkins Medical Institutions, 1830 E, Monument Street, 5th floor, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
39
|
Magalhães J, Madureira N, Medeiros R, Fernandes PC, Oufadem M, Amiel J, Estêvão MH, Reis MG. Late-onset congenital central hypoventilation syndrome and a rare PHOX2B gene mutation. Sleep Breath 2014; 19:55-60. [DOI: 10.1007/s11325-014-0996-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 04/19/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
|
40
|
PHOX2B polyalanine repeat length is associated with sudden infant death syndrome and unclassified sudden infant death in the Dutch population. Int J Legal Med 2014; 128:621-9. [PMID: 24442913 DOI: 10.1007/s00414-013-0962-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
Unclassified sudden infant death (USID) is the sudden and unexpected death of an infant that remains unexplained after thorough case investigation including performance of a complete autopsy and review of the circumstances of death and the clinical history. When the infant is below 1 year of age and with onset of the fatal episode apparently occurring during sleep, this is referred to as sudden infant death syndrome (SIDS). USID and SIDS remain poorly understood despite the identification of several environmental and some genetic risk factors. In this study, we investigated genetic risk factors involved in the autonomous nervous system in 195 Dutch USID/SIDS cases and 846 Dutch, age-matched healthy controls. Twenty-five DNA variants from 11 genes previously implicated in the serotonin household or in the congenital central hypoventilation syndrome, of which some have been associated with SIDS before, were tested. Of all DNA variants considered, only the length variation of the polyalanine repeat in exon 3 of the PHOX2B gene was found to be statistically significantly associated with USID/SIDS in the Dutch population after multiple test correction. Interestingly, our data suggest that contraction of the PHOX2B exon 3 polyalanine repeat that we found in six of 160 SIDS and USID cases and in six of 814 controls serves as a probable genetic risk factor for USID/SIDS at least in the Dutch population. Future studies are needed to confirm this finding and to understand the functional effect of the polyalanine repeat length variation, in particular contraction, in exon 3 of the PHOX2B gene.
Collapse
|
41
|
Distinct neuroblastoma-associated alterations of PHOX2B impair sympathetic neuronal differentiation in zebrafish models. PLoS Genet 2013; 9:e1003533. [PMID: 23754957 PMCID: PMC3675015 DOI: 10.1371/journal.pgen.1003533] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/14/2013] [Indexed: 11/19/2022] Open
Abstract
Heterozygous germline mutations and deletions in PHOX2B, a key regulator of autonomic neuron development, predispose to neuroblastoma, a tumor of the peripheral sympathetic nervous system. To gain insight into the oncogenic mechanisms engaged by these changes, we used zebrafish models to study the functional consequences of aberrant PHOX2B expression in the cells of the developing sympathetic nervous system. Allelic deficiency, modeled by phox2b morpholino knockdown, led to a decrease in the terminal differentiation markers th and dbh in sympathetic ganglion cells. The same effect was seen on overexpression of two distinct neuroblastoma-associated frameshift mutations, 676delG and K155X - but not the R100L missense mutation - in the presence of endogenous Phox2b, pointing to their dominant-negative effects. We demonstrate that Phox2b is capable of regulating itself as well as ascl1, and that phox2b deficiency uncouples this autoregulatory mechanism, leading to inhibition of sympathetic neuron differentiation. This effect on terminal differentiation is associated with an increased number of phox2b+, ascl1+, elavl3− cells that respond poorly to retinoic acid. These findings suggest that a reduced dosage of PHOX2B during development, through either a heterozygous deletion or dominant-negative mutation, imposes a block in the differentiation of sympathetic neuronal precursors, resulting in a cell population that is likely to be susceptible to secondary transforming events. Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common cancer diagnosed in infancy. Although most cases arise sporadically, familial predisposition also occurs in association with mutations in a single copy of the PHOX2B gene, a “master regulator” of sympathetic neuronal development. The exact mechanisms by which these mutations increase susceptibility to neuroblastoma are unclear, primarily because of the paucity of optimal models in which to study very early development of the sympathetic nervous system. We took advantage of the ex vivo development and transparent nature of zebrafish embryos to study the roles of both normal and mutated PHOX2B in development of the sympathetic nervous system. We present data indicating that aberrant PHOX2B expression causes an arrest in the normal maturation of sympathetic neurons, leading to immature cells that are resistant to drug-induced differentiation. Indeed, we demonstrate that phox2b gene “dosage” is important for normal differentiation of sympathetic neurons in the zebrafish and suggest that the population of immature cells resulting from a decreased dosage of this pivotal factor may be susceptible to secondary mutations that could ultimately lead to neuroblastoma.
Collapse
|
42
|
Ramanantsoa N, Gallego J. Congenital central hypoventilation syndrome. Respir Physiol Neurobiol 2013; 189:272-9. [PMID: 23692929 DOI: 10.1016/j.resp.2013.05.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 05/03/2013] [Accepted: 05/14/2013] [Indexed: 10/26/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS) is characterized by hypoventilation during sleep and impaired ventilatory responses to hypercapnia and hypoxemia. Most cases are sporadic and caused by de novo PHOX2B gene mutations, which are usually polyalanine repeat expansions. Physiological and neuroanatomical studies of genetically engineered mice and analyses of cellular responses to mutated Phox2b have shed light on the pathophysiological mechanisms of CCHS. Findings in Phox2b(27Ala/+) knock-in mice consisted of unstable breathing with apneas, absence of the ventilatory response to hypercapnia, death within a few hours after birth, and absence of the retrotrapezoid nucleus (RTN). Conditional mouse mutants in which Phox2b(27Ala) was targeted to the RTN also lacked the ventilatory response to hypercapnia at birth but survived to adulthood and developed a partial hypercapnia response. The therapeutic effects of desogestrel are being evaluated in clinical trials, and recent analyses of cellular responses to polyAla Phox2b aggregates have suggested new pharmacological approaches designed to counteract the toxic effects of mutated Phox2b.
Collapse
Affiliation(s)
- N Ramanantsoa
- INSERM, U676, Hôpital Robert Debré, 75019 Paris, France; Université Paris Diderot, Paris, France
| | | |
Collapse
|
43
|
Rand CM, Patwari PP, Carroll MS, Weese-Mayer DE. Congenital central hypoventilation syndrome and sudden infant death syndrome: disorders of autonomic regulation. Semin Pediatr Neurol 2013; 20:44-55. [PMID: 23465774 DOI: 10.1016/j.spen.2013.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Long considered a rare and unique disorder of respiratory control, congenital central hypoventilation syndrome has recently been further distinguished as a disorder of autonomic regulation. Similarly, more recent evidence suggests that sudden infant death syndrome is also a disorder of autonomic regulation. Congenital central hypoventilation syndrome typically presents in the newborn period with alveolar hypoventilation, symptoms of autonomic dysregulation and, in a subset of cases, Hirschsprung disease or tumors of neural crest origin or both. Genetic investigation identified PHOX2B, a crucial gene during early autonomic development, as disease defining for congenital central hypoventilation syndrome. Although sudden infant death syndrome is most likely defined by complex multifactorial genetic and environmental interactions, it is also thought to result from central deficits in the control of breathing and autonomic regulation. The purpose of this article is to review the current understanding of these autonomic disorders and discuss the influence of this information on clinical practice and future research directions.
Collapse
Affiliation(s)
- Casey M Rand
- Center for Autonomic Medicine in Pediatrics, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, USA
| | | | | | | |
Collapse
|
44
|
Leviton A. Why the term neonatal encephalopathy should be preferred over neonatal hypoxic-ischemic encephalopathy. Am J Obstet Gynecol 2013; 208:176-80. [PMID: 22901708 DOI: 10.1016/j.ajog.2012.07.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 07/13/2012] [Accepted: 07/19/2012] [Indexed: 02/05/2023]
Abstract
The unresponsiveness of the full-term newborn is sometimes attributed to asphyxia, even when no severe physiologic disturbance occurred during labor and delivery. The controversy about whether to use the name "hypoxic-ischemic encephalopathy" or "newborn encephalopathy" has recently flared in publications directed toward pediatricians and neurologists. In this clinic opinion piece, I discuss the importance to obstetricians of this decision and explain why "newborn encephalopathy" should be the default term.
Collapse
|
45
|
Fernández RM, Mathieu Y, Luzón-Toro B, Núñez-Torres R, González-Meneses A, Antiñolo G, Amiel J, Borrego S. Contributions of PHOX2B in the pathogenesis of Hirschsprung disease. PLoS One 2013; 8:e54043. [PMID: 23342068 PMCID: PMC3544660 DOI: 10.1371/journal.pone.0054043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 12/05/2012] [Indexed: 11/25/2022] Open
Abstract
Hirschsprung disease (HSCR) is a congenital malformation of the hindgut resulting from a disruption of neural crest cell migration during embryonic development. It has a complex genetic aetiology with several genes involved in its pathogenesis. PHOX2B plays a key function in the development of neural crest derivatives, and heterozygous mutations cause a complex dysautonomia associating HSCR, Congenital Central Hypoventilation Syndrome (CCHS) and neuroblastoma (NB) in various combinations. In order to determine the role of PHOX2B in isolated HSCR, we performed a mutational screening in a cohort of 207 Spanish HSCR patients. Our most relevant finding has been the identification of a de novo and novel deletion (c.393_410del18) in a patient with HSCR. Results of in silico and functional assays support its pathogenic effect related to HSCR. Therefore our results support that PHOX2B loss-of-function is a rare cause of HSCR phenotype.
Collapse
Affiliation(s)
- Raquel María Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Yves Mathieu
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
| | - Berta Luzón-Toro
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Rocío Núñez-Torres
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | | | - Guillermo Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
| | - Jeanne Amiel
- INSERM U-781, AP-HP Hôpital Necker-Enfants Malades, Paris, France
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville, University Hospital Virgen del Rocío/Centro Superior de Investigaciones Científicas/University of Seville, Seville, Spain
- Centre for Biomedical Network Research on Rare Diseases, Seville, Spain
- * E-mail:
| |
Collapse
|
46
|
Rand CM, Yu M, Jennings LJ, Panesar K, Berry-Kravis EM, Zhou L, Weese-Mayer DE. Germline mosaicism of PHOX2B mutation accounts for familial recurrence of congenital central hypoventilation syndrome (CCHS). Am J Med Genet A 2012; 158A:2297-301. [PMID: 22821709 DOI: 10.1002/ajmg.a.35499] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 05/06/2012] [Indexed: 11/09/2022]
Abstract
Congenital central hypoventilation syndrome (CCHS), a rare disorder characterized by alveolar hypoventilation and autonomic dysregulation, is caused by mutations in the PHOX2B gene. Most mutations occur de novo, but recent evidence suggests that up to 25% are inherited from asymptomatic parents with somatic mosaicism for these mutations. However, to date, germline mosaicism has not been reported. This report describes a family with recurrence of PHOX2B mutation-confirmed CCHS due to germline mosaicism. The first occurrence was a baby girl, noted on day 2 of life to have multiple episodes of apnea, bradycardia, and cyanosis while breathing room air. PHOX2B gene testing confirmed the diagnosis of CCHS with a heterozygous polyalanine repeat expansion mutation (PARM); genotype 20/27 (normal 20/20). Both parents tested negative for this mutation using fragment analysis (limit of detection<1%). Upon subsequent pregnancy [paternity confirmed using short tandem repeat (STR) analysis], amniocentesis testing identified the PHOX2B 20/27 genotype, confirmed with repeat testing. Elective abortion was performed at 21.5 weeks gestation. Testing of abortus tissue confirmed amniocentesis testing. The PHOX2B 20/27 expansion was not observed in a paternal sperm sample. This case represents the first reported family with recurrence of PHOX2B mutation-confirmed CCHS without detection of a parental carrier state or mosaicism, confirming the previously hypothesized possibility of germline mosaicism for PHOX2B mutations. This is an important finding for genetic counseling of CCHS families, suggesting that even if somatic mosaicism is not detected in parental samples, there is still reason for careful genetic counseling and consideration of prenatal testing during subsequent pregnancies.
Collapse
Affiliation(s)
- Casey M Rand
- Center for Autonomic Medicine in Pediatrics, Ann and Robert H. Lurie Children's Hospital, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | |
Collapse
|