1
|
Wang S, Zhang W, Yang B, Zhang X, Fang J, Rui H, Chen Z, Gu J, Chen Z, Xu J. A case study of a bispecific antibody manufacturability assessment and optimization during discovery stage and its implications. Antib Ther 2024; 7:189-198. [PMID: 39036070 PMCID: PMC11259756 DOI: 10.1093/abt/tbae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/23/2024] Open
Abstract
The manufacturability assessment and optimization of bispecific antibodies (bsAbs) during the discovery stage are crucial for the success of the drug development process, impacting the speed and cost of advancing such therapeutics to the Investigational New Drug (IND) stage and ultimately to the market. The complexity of bsAbs creates challenges in employing effective evaluation methods to detect developability risks in early discovery stage, and poses difficulties in identifying the root causes and implementing subsequent engineering solutions. This study presents a case of engineering a bsAb that displayed a normal solution appearance during the discovery phase but underwent significant precipitation when subjected to agitation stress during 15 L Chemistry, Manufacturing, and Control (CMC) production Leveraging analytical tools, structural analysis, in silico prediction, and wet-lab validations, the key molecular origins responsible for the observed precipitation were identified and addressed. Sequence engineering to reduce protein surface hydrophobicity and enhance conformational stability proved effective in resolving agitation-induced aggregation. The refined bsAb sequences enabled successful mass production in CMC department. The findings of this case study contribute to the understanding of the fundamental mechanism of agitation-induced aggregation and offer a potential protein engineering procedure for addressing similar issues in bsAb. Furthermore, this case study emphasizes the significance of a close partnership between Discovery and CMC teams. Integrating CMC's rigorous evaluation methods with Discovery's engineering capability can facilitate a streamlined development process for bsAb molecules.
Collapse
Affiliation(s)
- Shuang Wang
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Weijie Zhang
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Baotian Yang
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Xudong Zhang
- Downstream Process Development (DSPD), WuXi Biologics, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai, 200131, China
| | - Jing Fang
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Haopeng Rui
- D3 Bio (Wuxi) Co., Ltd., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, 200120, China
| | - Zhijian Chen
- D3 Bio (Wuxi) Co., Ltd., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, 200120, China
| | - Jijie Gu
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| | - Zhiqiang Chen
- D3 Bio (Wuxi) Co., Ltd., 1101, 11/F, Building 1, No.6, Lane 38, Yuanshen Road, Pudong, Shanghai, 200120, China
| | - Jianqing Xu
- Biologics Innovation Discovery, WuXi Biologics, 1951 Huifeng West Road, Fengxian District, Shanghai, 201400, China
| |
Collapse
|
2
|
Izadi A, Karami Y, Bratanis E, Wrighton S, Khakzad H, Nyblom M, Olofsson B, Happonen L, Tang D, Sundwall M, Godzwon M, Chao Y, Toledo AG, Schmidt T, Ohlin M, Nilges M, Malmström J, Bahnan W, Shannon O, Malmström L, Nordenfelt P. The hinge-engineered IgG1-IgG3 hybrid subclass IgGh 47 potently enhances Fc-mediated function of anti-streptococcal and SARS-CoV-2 antibodies. Nat Commun 2024; 15:3600. [PMID: 38678029 PMCID: PMC11055898 DOI: 10.1038/s41467-024-47928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Yasaman Karami
- Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France
- Institut Pasteur, Université Paris cite, CNRS UMR3528, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, F-75015, Paris, France
| | - Eleni Bratanis
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sebastian Wrighton
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France
| | - Maria Nyblom
- Department of Biology & Lund Protein Production Platform (LP3), Lund University, Lund, Sweden
| | - Berit Olofsson
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lotta Happonen
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Di Tang
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Sundwall
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Magdalena Godzwon
- Department of Immunotechnology and SciLifeLab Drug Discovery and Development Platform, Lund University, Lund, Sweden
| | - Yashuan Chao
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alejandro Gomez Toledo
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Department of Clinical Sciences Lund, Division of Pediatrics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology and SciLifeLab Drug Discovery and Development Platform, Lund University, Lund, Sweden
| | - Michael Nilges
- Institut Pasteur, Université Paris cite, CNRS UMR3528, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, F-75015, Paris, France
| | - Johan Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Wael Bahnan
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Lars Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden.
| |
Collapse
|
3
|
Pang KT, Yang YS, Zhang W, Ho YS, Sormanni P, Michaels TCT, Walsh I, Chia S. Understanding and controlling the molecular mechanisms of protein aggregation in mAb therapeutics. Biotechnol Adv 2023; 67:108192. [PMID: 37290583 DOI: 10.1016/j.biotechadv.2023.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/09/2023] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
In antibody development and manufacturing, protein aggregation is a common challenge that can lead to serious efficacy and safety issues. To mitigate this problem, it is important to investigate its molecular origins. This review discusses (1) our current molecular understanding and theoretical models of antibody aggregation, (2) how various stress conditions related to antibody upstream and downstream bioprocesses can trigger aggregation, and (3) current mitigation strategies employed towards inhibiting aggregation. We discuss the relevance of the aggregation phenomenon in the context of novel antibody modalities and highlight how in silico approaches can be exploited to mitigate it.
Collapse
Affiliation(s)
- Kuin Tian Pang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore; School of Chemistry, Chemical Engineering, and Biotechnology, Nanyang Technology University, Singapore
| | - Yuan Sheng Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wei Zhang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ying Swan Ho
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Pietro Sormanni
- Chemistry of Health, Yusuf Hamied Department of Chemistry, University of Cambridge, United Kingdom
| | - Thomas C T Michaels
- Department of Biology, Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zurich, Switzerland; Bringing Materials to Life Initiative, ETH Zurich, Switzerland
| | - Ian Walsh
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Sean Chia
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), Singapore.
| |
Collapse
|
4
|
Warrender AK, Pan J, Pudney CR, Arcus VL, Kelton W. Constant domain polymorphisms influence monoclonal antibody stability and dynamics. Protein Sci 2023; 32:e4589. [PMID: 36759959 PMCID: PMC9951194 DOI: 10.1002/pro.4589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
The constant regions of clinical monoclonal antibodies are derived from a select number of allotypes found in IgG subclasses. Despite a long-term acknowledgment that this diversity may impact both antibody function and developability, there is a lack of data on the stability of variants carrying these mutations. Here, we generated a panel of IgG1, IgG2, and IgG3 antibodies with 32 unique constant region alleles and performed a systematic comparison of stability using red edge excitation shift (REES). This technique exploits the fluorescent properties of tryptophan residues to measure antibody structural dynamics which predict flexibility and the propensity to unfold. Our REES measurements revealed broad stability differences between subclasses with IgG3 possessing the poorest overall stability. Further interrogation of differences between variants within each subclass enabled the high-resolution profiling of individual allotype stabilities. Crucially, these observed differences were not found to be linked to N297-linked glycan heterogeneity. Our work demonstrates diverse stabilities (and dynamics) for a range of naturally occurring constant domain alleles and the utility of REES as a method for rapid and sensitive antibody stability profiling, requiring only laboratory spectrophotometry equipment.
Collapse
Affiliation(s)
- Annmaree K Warrender
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand
| | - Jolyn Pan
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - Chris R Pudney
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Vickery L Arcus
- Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| | - William Kelton
- Te Huataki Waiora School of Health, University of Waikato, Hamilton, New Zealand.,Te Aka Mātuatua School of Science, University of Waikato, Hamilton, New Zealand
| |
Collapse
|
5
|
Grace PS, Gunn BM, Lu LL. Engineering the supernatural: monoclonal antibodies for challenging infectious diseases. Curr Opin Biotechnol 2022; 78:102818. [PMID: 36242952 PMCID: PMC9612313 DOI: 10.1016/j.copbio.2022.102818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/31/2022] [Accepted: 09/04/2022] [Indexed: 12/14/2022]
Abstract
The COVID-19 pandemic demonstrated that monoclonal antibodies can be deployed faster than antimicrobials and vaccines. However, the majority of mAbs treat cancer and autoimmune diseases, whereas a minority treat infection. This is in part because targeting a single antigen by the antibody Fab domain is insufficient to stop the dynamic microbial life cycle. Thus, finding the 'right' antigens remains the focus of intense investigations. Equally important is the antibody-Fc domain that has the capacity to induce immune responses that enhance neutralization, and limit pathology and transmission. While Fc-effector functions have been less deeply studied, conceptual and technical advances reveal previously underappreciated antibody potential to combat diseases from microbes difficult to address with current diagnostics, therapeutics, and vaccines, including S. aureus, P. aeruginosa, P. falciparum, and M. tuberculosis. What is learned about engineering antibodies for these challenging organisms will enhance our approach to new and emerging infectious diseases.
Collapse
Affiliation(s)
- Patricia S Grace
- Harvard T.H. Chan School of Public Health, Boston, MA, United States; Ragon Institute of MGH, MIT and Harvard, Boston, MA, United States
| | - Bronwyn M Gunn
- Paul G. Allen School of Global Health, Washington State University, Pullman, WA, United States
| | - Lenette L Lu
- Division of Infectious Diseases and Geographic Medicine, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States; Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States; Parkland Health & Hospital System, United States.
| |
Collapse
|
6
|
Lara S, Heilig J, Virtanen A, Kleinau S. Exploring complement-dependent cytotoxicity by rituximab isotypes in 2D and 3D-cultured B-cell lymphoma. BMC Cancer 2022; 22:678. [PMID: 35725455 PMCID: PMC9210731 DOI: 10.1186/s12885-022-09772-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The therapeutic IgG1 anti-CD20 antibody, rituximab (RTX), has greatly improved prognosis of many B-cell malignancies. Despite its success, resistance has been reported and detailed knowledge of RTX mechanisms are lacking. Complement-dependent cytotoxicity (CDC) is one important mode of action of RTX. The aim of this study was to systematically evaluate factors influencing complement-mediated tumor cell killing by RTX. METHODS Different RTX isotypes, IgG1, IgG3, IgA1 and IgA2 were evaluated and administered on four human CD20+ B-cell lymphoma cell lines, displaying diverse expression of CD20 and complement-regulatory protein CD59. Complement activation was assessed on lymphoma cells grown in 2 and 3-dimensional (3D) culture systems by trypan blue exclusion. CDC in 3D spheroids was additionally analyzed by Annexin V and propidium iodide staining by flow cytometry, and confocal imaging. Anti-CD59 antibody was used to evaluate influence of CD59 in RTX-mediated CDC responses. Statistical differences were determined by one-way ANOVA and Tukey post hoc test. RESULTS We found that 3 out of 4 lymphomas were sensitive to RTX-mediated CDC when cultured in 2D, while 2 out of 4 when grown in 3D. RTX-IgG3 had the greatest CDC potential, followed by clinical standard RTX-IgG1 and RTX-IgA2, whereas RTX-IgA1 displayed no complement activation. Although the pattern of different RTX isotypes to induce CDC were similar in the sensitive lymphomas, the degree of cell killing differed. A greater CDC activity was seen in lymphoma cells with a higher CD20/CD59 expression ratio. These lymphomas were also sensitive to RTX when grown in 3D spheroids, although the CDC activity was substantially reduced compared to 2D cultures. Analysis of RTX-treated spheroids demonstrated apoptosis and necrosis essentially in the outer cell-layers. Neutralization of CD59 overcame resistance to RTX-mediated CDC in 2D-cultured lymphoma cells, but not in spheroids. CONCLUSIONS The results demonstrate that CDC outcome in CD20+ B-cell lymphoma is synergistically influenced by choice of RTX isotype, antigen density, tumor structure, and degree of CD59 expression. Assessment of tumor signatures, such as CD20/CD59 ratio, can be advantageous to predict CDC efficiency of RTX in vivo and may help to develop rational mAbs to raise response rates in patients.
Collapse
Affiliation(s)
- Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Juliane Heilig
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Alexander Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
7
|
Foss S, Jonsson A, Bottermann M, Watkinson R, Lode HE, McAdam MB, Michaelsen TE, Sandlie I, James LC, Andersen JT. Potent TRIM21 and complement-dependent intracellular antiviral immunity requires the IgG3 hinge. Sci Immunol 2022; 7:eabj1640. [PMID: 35486676 PMCID: PMC7614286 DOI: 10.1126/sciimmunol.abj1640] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Humans have four IgG antibody subclasses that selectively or differentially engage immune effector molecules to protect against infections. Although IgG1 has been studied in detail and is the subclass of most approved antibody therapeutics, increasing evidence indicates that IgG3 is associated with enhanced protection against pathogens. Here, we report that IgG3 has superior capacity to mediate intracellular antiviral immunity compared with the other subclasses due to its uniquely extended and flexible hinge region, which facilitates improved recruitment of the cytosolic Fc receptor TRIM21, independently of Fc binding affinity. TRIM21 may also synergize with complement C1/C4-mediated lysosomal degradation via capsid inactivation. We demonstrate that this process is potentiated by IgG3 in a hinge-dependent manner. Our findings reveal differences in how the four IgG subclasses mediate intracellular immunity, knowledge that may guide IgG subclass selection and engineering of antiviral antibodies for prophylaxis and therapy.
Collapse
Affiliation(s)
- Stian Foss
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, P.O. Box 4956, N-0424 Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Alexandra Jonsson
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, P.O. Box 4956, N-0424 Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Maria Bottermann
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2-0QH, UK
| | - Ruth Watkinson
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2-0QH, UK
| | - Heidrun E Lode
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, P.O. Box 4956, N-0424 Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Martin B McAdam
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, P.O. Box 4956, N-0424 Oslo, Norway
| | - Terje E Michaelsen
- Department of Chemical Pharmacy, School of Pharmacy, University of Oslo, N-0371 Oslo, Norway.,Infection Immunology, Norwegian Institute of Public Health, N-0213 Oslo, Norway
| | - Inger Sandlie
- Centre for Immune Regulation (CIR) and Department of Biosciences, University of Oslo, N-0371 Oslo, Norway.,CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, P.O. Box 4956, N-0424 Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council Laboratory of Molecular Biology, Cambridge CB2-0QH, UK
| | - Jan Terje Andersen
- CIR and Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, P.O. Box 4956, N-0424 Oslo, Norway.,Institute of Clinical Medicine and Department of Pharmacology, University of Oslo and Oslo University Hospital, N-0372 Oslo, Norway
| |
Collapse
|
8
|
Comprehensive Analysis of Nivolumab, A Therapeutic Anti-Pd-1 Monoclonal Antibody: Impact of Handling and Stress. Pharmaceutics 2022; 14:pharmaceutics14040692. [PMID: 35456527 PMCID: PMC9025134 DOI: 10.3390/pharmaceutics14040692] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Nivolumab, formulated in the medicine Opdivo® (10 mg/mL), is a therapeutic monoclonal antibody (mAb) used in the treatment of different types of cancer. Currently, there is insufficient knowledge about the behaviour of this protein with regards to the risk associated with its routine handling or unintentional mishandling, or when subjected to stress conditions in hospitals. These conditions can be simulated in forced degradation studies, which provide an in-depth understanding of the biophysical and biochemical properties of mAbs. In this study, we carried out a physicochemical and functional characterisation of nivolumab, which was subjected to various stress conditions: heat, freeze/thaw cycles, agitation, light exposure and high hypertonic solution. We used a wide range of analytical techniques: Far-UV CD, IT-FS, DLS, SE/UHPLC(UV)-[Native]MS, and ELISA. The results show that exposure to light was the stress test with the greatest impact on the samples, revelling the formation of non-natural dimers and a different isoform profile. In addition, nivolumab (Opdivo®) demonstrated stability up to 60 °C (1 h). As regards functionality all the nivolumab (Opdivo®) stressed samples were found to be stable except for those subjected to light and agitation, and to a lesser extent, those subjected to FTC 5 and NaCl stresses.
Collapse
|
9
|
Lee J, Cho K, Kook H, Kang S, Lee Y, Lee J. The Different Immune Responses by Age Are due to the Ability of the Fetal Immune System to Secrete Primal Immunoglobulins Responding to Unexperienced Antigens. Int J Biol Sci 2022; 18:617-636. [PMID: 35002513 PMCID: PMC8741860 DOI: 10.7150/ijbs.67203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/15/2021] [Indexed: 12/23/2022] Open
Abstract
Among numerous studies on coronavirus 2019 (COVID-19), we noted that the infection and mortality rates of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) increased with age and that fetuses known to be particularly susceptible to infection were better protected despite various mutations. Hence, we established the hypothesis that a new immune system exists that forms before birth and decreases with aging. Methods: To prove this hypothesis, we established new ex-vivo culture conditions simulating the critical environmental factors of fetal stem cells (FSCs) in early pregnancy. Then, we analyzed the components from FSCs cultivated newly developed ex-vivo culture conditions and compared them from FSCs cultured in a normal condition. Results: We demonstrated that immunoglobulin M (IgM), a natural antibody (NAb) produced only in early B-1 cells, immunoglobulins (Igs) including IgG3, which has a wide range of antigen-binding capacity and affinity, complement proteins, and antiviral proteins are induced in FSCs only cultured in newly developed ex-vivo culture conditions. Particularly we confirmed that their extracellular vesicles (EVs) contained NAbs, Igs, various complement proteins, and antiviral proteins, as well as human leukocyte antigen G (HLA-G), responsible for immune tolerance. Conclusion: Our results suggest that FSCs in early pregnancy can form an independent immune system responding to unlearned antigens as a self-defense mechanism before establishing mature immune systems. Moreover, we propose the possibility of new solutions to cope with various infectious diseases based on the factors in NAbs-containing EVs, especially not causing unnecessary immune reaction due to HLA-G.
Collapse
Affiliation(s)
- Jangho Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Kyoungshik Cho
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Hyejin Kook
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Suman Kang
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Yunsung Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| | - Jiwon Lee
- R&D Center of Stemmedicare Ltd, Seoul, 06095, Republic of Korea
| |
Collapse
|
10
|
Gunn BM, Bai S. Building a better antibody through the Fc: advances and challenges in harnessing antibody Fc effector functions for antiviral protection. Hum Vaccin Immunother 2021; 17:4328-4344. [PMID: 34613865 PMCID: PMC8827636 DOI: 10.1080/21645515.2021.1976580] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies can provide antiviral protection through neutralization and recruitment of innate effector functions through the Fc domain. While neutralization has long been appreciated for its role in antibody-mediated protection, a growing body of work indicates that the antibody Fc domain also significantly contributes to antiviral protection. Recruitment of innate immune cells such as natural killer cells, neutrophils, monocytes, macrophages, dendritic cells and the complement system by antibodies can lead to direct restriction of viral infection as well as promoting long-term antiviral immunity. Monoclonal antibody therapeutics against viruses are increasingly incorporating Fc-enhancing features to take advantage of the Fc domain, uncovering a surprising breadth of mechanisms through which antibodies can control viral infection. Here, we review the recent advances in our understanding of antibody-mediated innate immune effector functions in protection from viral infection and review the current approaches and challenges to effectively leverage innate immune cells via antibodies.
Collapse
Affiliation(s)
- Bronwyn M. Gunn
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Shuangyi Bai
- Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
11
|
Opdensteinen P, Meyer S, Buyel JF. Nicotiana spp. for the Expression and Purification of Functional IgG3 Antibodies Directed Against the Staphylococcus aureus Alpha Toxin. FRONTIERS IN CHEMICAL ENGINEERING 2021. [DOI: 10.3389/fceng.2021.737010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Immunoglobulin subclass IgG1 is bound and neutralized effectively by Staphylococcus aureus protein A, allowing the bacterium to evade the host’s adaptive immune response. In contrast, the IgG3 subclass is not bound by protein A and can be used to treat S. aureus infections, including drug-resistant strains such as methicillin-resistant Staphylococcus aureus (MRSA). However, the yields of recombinant IgG3 are generally low because this subclass is prone to degradation, and recovery is hindered by the inability to use protein A as an affinity ligand for antibody purification. Here, we investigated plants (Nicotiana spp.) as an alternative to microbes and mammalian cell cultures for the production of an IgG3 antibody specific for the S. aureus alpha toxin. We targeted recombinant IgG3 to different subcellular compartments and tested different chromatography conditions to improve recovery and purification. Finally, we tested the antigen-binding capacity of the purified antibodies. The highest IgG3 levels in planta (>130 mg kg−1 wet biomass) were achieved by targeting the endoplasmic reticulum or apoplast. Although the purity of IgG3 exceeded 95% following protein G chromatography, product recovery requires further improvement. Importantly, the binding affinity of the purified antibodies was in the nanomolar range and thus comparable to previous studies using murine hybridoma cells as the production system.
Collapse
|
12
|
Richardson SI, Ayres F, Manamela NP, Oosthuysen B, Makhado Z, Lambson BE, Morris L, Moore PL. HIV Broadly Neutralizing Antibodies Expressed as IgG3 Preserve Neutralization Potency and Show Improved Fc Effector Function. Front Immunol 2021; 12:733958. [PMID: 34566999 PMCID: PMC8462932 DOI: 10.3389/fimmu.2021.733958] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/19/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of several broadly neutralizing antibodies (bNAbs) to protect against HIV infection is enhanced through Fc receptor binding. Antibody isotype modulates this effect, with IgG3 associated with improved HIV control and vaccine efficacy. We recently showed that an IgG3 variant of bNAb CAP256-VRC26.25 exhibited more potent neutralization and phagocytosis than its IgG1 counterpart. Here, we expanded this analysis to include additional bNAbs targeting all major epitopes. A total of 15 bNAbs were expressed as IgG1 or IgG3, and pairs were assessed for neutralization potency against the multi-subtype global panel of 11 HIV strains. Binding to the neonatal Fc receptor (FcRn) and Fcγ receptors were measured using ELISA and antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis were measured using infectious viruses and global panel Env SOSIP trimers, respectively. IgG3 bNAbs generally showed similar or increased (up to 60 fold) neutralization potency than IgG1 versions, though the effect was virus-specific. This improvement was statistically significant for CAP256-VRC26.25, 35022, PGT135 and CAP255.G3. IgG3 bNAbs also showed significantly improved binding to FcγRIIa which correlated with enhanced phagocytosis of all trimeric Env antigens. Differences in ADCC were epitope-specific, with IgG3 bNAbs to the MPER, CD4 binding site and gp120-gp41 interface showing increased ADCC. We also explored the pH dependence of IgG1 and IgG3 variants for FcRn binding, as this determines the half-life of antibodies. We observed reduced pH dependence, associated with shorter half-lives for IgG3 bNAbs, with κ-light chains. However, IgG3 bNAbs that use λ-light chains showed similar pH dependence to their IgG1 counterparts. This study supports the manipulation of the constant region to improve both the neutralizing and Fc effector activity of bNAbs, and suggests that IgG3 versions of bNAbs may be preferable for passive immunity given their polyfunctionality.
Collapse
Affiliation(s)
- Simone I Richardson
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Frances Ayres
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Nelia P Manamela
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Brent Oosthuysen
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Zanele Makhado
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bronwen E Lambson
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Penny L Moore
- Centre for HIV and STI's, National Institute for Communicable Diseases, a Division of the National Health Laboratory Service, Johannesburg, South Africa.,Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Centre for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
13
|
Anti-inflammatory activity of CD44 antibodies in murine immune thrombocytopenia is mediated by Fcγ receptor inhibition. Blood 2021; 137:2114-2124. [PMID: 33662988 DOI: 10.1182/blood.2020009497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/11/2021] [Indexed: 02/03/2023] Open
Abstract
Monoclonal immunoglobulin G (IgG) antibodies to CD44 (anti-CD44) are anti-inflammatory in numerous murine autoimmune models, but the mechanisms are poorly understood. Anti-CD44 anti-inflammatory activity shows complete therapeutic concordance with IV immunoglobulin (IVIg) in treating autoimmune disease models, making anti-CD44 a potential IVIg alternative. In murine immune thrombocytopenia (ITP), there is no mechanistic explanation for anti-CD44 activity, although anti-CD44 ameliorates disease similarly to IVIg. Here, we demonstrate a novel anti-inflammatory mechanism of anti-CD44 that explains disease amelioration by anti-CD44 in murine ITP. Macrophages treated with anti-CD44 in vitro had dramatically suppressed phagocytosis through FcγRs in 2 separate systems of IgG-opsonized platelets and erythrocytes. Phagocytosis inhibition by anti-CD44 was mediated by blockade of the FcγR IgG binding site without changing surface FcγR expression. Anti-CD44 of different subclasses revealed that FcγR blockade was specific to receptors that could be engaged by the respective anti-CD44 subclass, and Fc-deactivated anti-CD44 variants lost all FcγR-inhibiting activity. In vivo, anti-CD44 functioned analogously in the murine passive ITP model and protected mice from ITP when thrombocytopenia was induced through an FcγR that could be engaged by the CD44 antibody's subclass. Consistent with FcγR blockade, Fc-deactivated variants of anti-CD44 were completely unable to ameliorate ITP. Together, anti-CD44 inhibits macrophage FcγR function and ameliorates ITP consistent with an FcγR blockade mechanism. Anti-CD44 is a potential IVIg alternative and may be of particular benefit in ITP because of the significant role that FcγRs play in human ITP pathophysiology.
Collapse
|
14
|
Lara S, Anania JC, Virtanen A, Stenhammar V, Kleinau S. Importance of antibody isotypes in antitumor immunity by monocytes and complement using human-immune tumor models. Eur J Immunol 2021; 51:1218-1233. [PMID: 33533020 DOI: 10.1002/eji.202048885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/31/2020] [Indexed: 02/01/2023]
Abstract
Monoclonal antibodies (mAbs) have revolutionized clinical medicine, especially in the field of cancer immunotherapy. The challenge now is to improve the response rates, as immunotherapy still fails for many patients. Strategies to enhance tumor cell death is a fundamental aim, but relevant model systems for human tumor immunology are lacking. Herein, we have developed a preclinical human immune - three-dimensional (3D) tumor model (spheroids) to map the efficiency of tumor-specific isotypes for improved tumor cell killing. Different anti-CD20 Rituximab (RTX) isotypes alone or in combination, were evaluated for mediating complement-dependent cytotoxicity and antibody-dependent phagocytosis by human monocytic cells in 3D spheroids, in parallel with monolayer cultures, of human CD20+ B-cell lymphomas. We demonstrate that the IgG3 variant of RTX has the greatest tumoricidal effect over other isotypes, and when combined with apoptosis-inducing RTX-IgG2 isotype the therapeutic effect can be substantially enhanced. The results show further that the treatment outcome by RTX isotypes is influenced by tumor morphology and expression of the complement inhibitor CD59. Hence, the human immune-3D tumor model is a clinical relevant and attractive ex vivo system to predict mAbs for best efficacy in cancer immunotherapy.
Collapse
Affiliation(s)
- Sandra Lara
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jessica C Anania
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Center for Cancer Immunology, University of Southampton, Southampton, UK
| | - Alexander Virtanen
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Viktoria Stenhammar
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sandra Kleinau
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
15
|
Ulitzka M, Carrara S, Grzeschik J, Kornmann H, Hock B, Kolmar H. Engineering therapeutic antibodies for patient safety: tackling the immunogenicity problem. Protein Eng Des Sel 2021; 33:5944198. [PMID: 33128053 DOI: 10.1093/protein/gzaa025] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/21/2022] Open
Abstract
Established monoclonal antibodies (mAbs) allow treatment of cancers, autoimmune diseases and other severe illnesses. Side effects either arise due to interaction with the target protein and its biology or result from of the patient's immune system reacting to the foreign protein. This immunogenic reaction against therapeutic antibodies is dependent on various factors. The presence of non-human sequences can trigger immune responses as well as chemical and post-translational modifications of the antibody. However, even fully human antibodies can induce immune response through T cell epitopes or aggregates. In this review, we briefly describe, how therapeutic antibodies can interact with the patient's immune system and summarize recent advancements in protein engineering and in silico methods to reduce immunogenicity of therapeutic monoclonal antibodies.
Collapse
Affiliation(s)
- Michael Ulitzka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Stefania Carrara
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.,Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Julius Grzeschik
- Ferring Darmstadt Labs, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Henri Kornmann
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Björn Hock
- Ferring International Center S.A., Chemin de la Vergognausaz 50, CH-1162 Saint-Prex, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| |
Collapse
|
16
|
Chu TH, Patz EF, Ackerman ME. Coming together at the hinges: Therapeutic prospects of IgG3. MAbs 2021; 13:1882028. [PMID: 33602056 PMCID: PMC7899677 DOI: 10.1080/19420862.2021.1882028] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/08/2021] [Accepted: 01/22/2021] [Indexed: 01/22/2023] Open
Abstract
The human IgG3 subclass is conspicuously absent among the formats for approved monoclonal antibody therapies and Fc fusion protein biologics. Concern about the potential for rapid degradation, reduced plasma half-life, and increased immunogenicity due to marked variation in allotypes has apparently outweighed the potential advantages of IgG3, which include high affinity for activating Fcγ receptors, effective complement fixation, and a long hinge that appears better suited for low abundance targets. This review aims to highlight distinguishing features of IgG3 and to explore its functional role in the immune response. We present studies of natural immunity and recombinant antibody therapies that elucidate key contributions of IgG3 and discuss historical roadblocks that no longer remain clearly relevant. Collectively, this body of evidence motivates thoughtful reconsideration of the clinical advancement of this distinctive antibody subclass for treatment of human diseases. Abbreviations: ADCC - Antibody-Dependent Cell-mediated CytotoxicityADE - Antibody-dependent enhancementAID - Activation-Induced Cytidine DeaminaseCH - Constant HeavyCHF - Complement factor HCSR - Class Switch RecombinationEM - Electron MicroscopyFab - Fragment, antigen bindingFc - Fragment, crystallizableFcRn - Neonatal Fc ReceptorFcγR - Fc gamma ReceptorHIV - Human Immunodeficiency VirusIg - ImmunoglobulinIgH - Immunoglobulin Heavy chain geneNHP - Non-Human Primate.
Collapse
Affiliation(s)
- Thach H. Chu
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Edward F. Patz
- Department of Radiology and Department of Pharmacology & Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
17
|
Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules 2020; 25:E4764. [PMID: 33081383 PMCID: PMC7587605 DOI: 10.3390/molecules25204764] [Citation(s) in RCA: 194] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/10/2020] [Accepted: 10/13/2020] [Indexed: 01/03/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are novel drugs that exploit the specificity of a monoclonal antibody (mAb) to reach target antigens expressed on cancer cells for the delivery of a potent cytotoxic payload. ADCs provide a unique opportunity to deliver drugs to tumor cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows and enhanced pharmacokinetic/pharmacodynamic properties. To date, nine ADCs have been approved by the FDA and more than 80 ADCs are under clinical development worldwide. In this paper, we provide an overview of the biology and chemistry of each component of ADC design. We briefly discuss the clinical experience with approved ADCs and the various pathways involved in ADC resistance. We conclude with perspectives about the future development of the next generations of ADCs, including the role of molecular imaging in drug development.
Collapse
Affiliation(s)
- Umbreen Hafeez
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Sagun Parakh
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
| | - Hui K Gan
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- Department of Medical Oncology, Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
| | - Andrew M Scott
- Tumour Targeting Laboratory, Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia, (U.H.)
- School of Cancer Medicine, La Trobe University, Melbourne, VIC 3084, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC 3084, Australia
- Department of Molecular Imaging and Therapy, Austin Health, Melbourne, VIC 3084, Australia
| |
Collapse
|
18
|
Warrender AK, Kelton W. Beyond Allotypes: The Influence of Allelic Diversity in Antibody Constant Domains. Front Immunol 2020; 11:2016. [PMID: 32973808 PMCID: PMC7461860 DOI: 10.3389/fimmu.2020.02016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023] Open
Abstract
Polymorphic diversity in antibody constant domains has long been defined by allotypic motifs that cross react with the sera of other individuals. Improvements in sequencing technologies have led to the discovery of a large number of new allelic sequences that underlie this diversity. Many of the point mutations lie outside traditional allotypic motifs suggesting they do not elicit immunogenic responses. As antibodies play an important role in immune defense and biotechnology, understanding how this newly resolved diversity influences the function of antibodies is important. This review investigates the current known diversity of antibody alleles at a protein level for each antibody isotype as well as the kappa and lambda light chains. We focus on evidence emerging for how these mutations perturb antibody interactions with antigens and Fc receptors that are critical for function, as well as the influence this might have on the use of antibodies as therapeutics and reagents.
Collapse
Affiliation(s)
| | - William Kelton
- Te Huataki Waiora School of Health, The University of Waikato, Hamilton, New Zealand
| |
Collapse
|
19
|
Chenoweth AM, Wines BD, Anania JC, Mark Hogarth P. Harnessing the immune system via FcγR function in immune therapy: a pathway to next-gen mAbs. Immunol Cell Biol 2020; 98:287-304. [PMID: 32157732 PMCID: PMC7228307 DOI: 10.1111/imcb.12326] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
The human fragment crystallizable (Fc)γ receptor (R) interacts with antigen‐complexed immunoglobulin (Ig)G ligands to both activate and modulate a powerful network of inflammatory host‐protective effector functions that are key to the normal physiology of immune resistance to pathogens. More than 100 therapeutic monoclonal antibodies (mAbs) are approved or in late stage clinical trials, many of which harness the potent FcγR‐mediated effector systems to varying degrees. This is most evident for antibodies targeting cancer cells inducing antibody‐dependent killing or phagocytosis but is also true to some degree for the mAbs that neutralize or remove small macromolecules such as cytokines or other Igs. The use of mAb therapeutics has also revealed a “scaffolding” role for FcγR which, in different contexts, may either underpin the therapeutic mAb action such as immune agonism or trigger catastrophic adverse effects. The still unmet therapeutic need in many cancers, inflammatory diseases or emerging infections such as severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) requires increased effort on the development of improved and novel mAbs. A more mature appreciation of the immunobiology of individual FcγR function and the complexity of the relationships between FcγRs and antibodies is fueling efforts to develop more potent “next‐gen” therapeutic antibodies. Such development strategies now include focused glycan or protein engineering of the Fc to increase affinity and/or tailor specificity for selective engagement of individual activating FcγRs or the inhibitory FcγRIIb or alternatively, for the ablation of FcγR interaction altogether. This review touches on recent aspects of FcγR and IgG immunobiology and its relationship with the present and future actions of therapeutic mAbs.
Collapse
Affiliation(s)
- Alicia M Chenoweth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,St John's Institute of Dermatology, King's College, London, UK
| | - Bruce D Wines
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| | - Jessica C Anania
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - P Mark Hogarth
- Immune Therapies Laboratory, Burnet Institute, Melbourne, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, Australia.,Department of Clinical Pathology, University of Melbourne, Parkville, Australia
| |
Collapse
|
20
|
R409K mutation prevents acid-induced aggregation of human IgG4. PLoS One 2020; 15:e0229027. [PMID: 32182240 PMCID: PMC7077836 DOI: 10.1371/journal.pone.0229027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/28/2020] [Indexed: 11/20/2022] Open
Abstract
Human immunoglobulin G isotype 4 (IgG4) antibodies are suitable for use in either the antagonist or agonist format because their low effector functions prevent target cytotoxicity or unwanted cytokine secretion. However, while manufacturing therapeutic antibodies, they are exposed to low pH during purification, and IgG4 is more susceptible to low-pH-induced aggregation than IgG1. Therefore, we investigated the underlying mechanisms of IgG4 aggregation at low pH and engineered an IgG4 with enhanced stability. By swapping the constant regions of IgG1 and IgG4, we determined that the constant heavy chain (CH3) domain is critical for aggregate formation, but a core-hinge-stabilizing S228P mutation in IgG4 is insufficient for preventing aggregation. To identify the aggregation-prone amino acid, we substituted the CH3 domain of IgG4 with that of IgG1, changing IgG4 Arg409 to a Lys, thereby preventing the aggregation of the IgG4 variant as effectively as in IgG1. A stabilizing effect was also recorded with other variable-region variants. Analysis of thermal stability using differential scanning calorimetry revealed that the R409K substitution increased the Tm value of CH3, suggesting that the R409K mutation contributed to the structural strengthening of the CH3-CH3 interaction. The R409K mutation did not influence the binding to antigens/human Fcγ receptors; whereas, the concurrent S228P and R409K mutations in IgG4 suppressed Fab-arm exchange drastically and as effectively as in IgG1, in both in vitro and in vivo in mice models. Our findings suggest that the IgG4 R409K variant represents a potential therapeutic IgG for use in low-effector-activity format that exhibits increased stability.
Collapse
|
21
|
Wälchli R, Ressurreição M, Vogg S, Feidl F, Angelo J, Xu X, Ghose S, Jian Li Z, Le Saoût X, Souquet J, Broly H, Morbidelli M. Understanding mAb aggregation during low pH viral inactivation and subsequent neutralization. Biotechnol Bioeng 2019; 117:687-700. [PMID: 31784982 DOI: 10.1002/bit.27237] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022]
Abstract
Monoclonal antibodies (mAbs) and related recombinant proteins continue to gain importance in the treatment of a great variety of diseases. Despite significant advances, their manufacturing can still present challenges owing to their molecular complexity and stringent regulations with respect to product purity, stability, safety, and so forth. In this context, protein aggregates are of particular concern due to their immunogenic potential. During manufacturing, mAbs routinely undergo acidic treatment to inactivate viral contamination, which can lead to their aggregation and thereby to product loss. To better understand the underlying mechanism so as to propose strategies to mitigate the issue, we systematically investigated the denaturation and aggregation of two mAbs at low pH as well as after neutralization. We observed that at low pH and low ionic strength, mAb surface hydrophobicity increased whereas molecular size remained constant. After neutralization of acidic mAb solutions, the fraction of monomeric mAb started to decrease accompanied by an increase on average mAb size. This indicates that electrostatic repulsion prevents denatured mAb molecules from aggregation under acidic pH and low ionic strength, whereas neutralization reduces this repulsion and coagulation initiates. Limiting denaturation at low pH by d-sorbitol addition or temperature reduction effectively improved monomer recovery after neutralization. Our findings might be used to develop innovative viral inactivation procedures during mAb manufacturing that result in higher product yields.
Collapse
Affiliation(s)
- Ruben Wälchli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Mariana Ressurreição
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Sebastian Vogg
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - Fabian Feidl
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| | - James Angelo
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Xuankuo Xu
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Sanchayita Ghose
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Zheng Jian Li
- Biologics Process Development, Global Product Development and Supply, Bristol-Myers Squibb Co., Devens, Massachusetts
| | - Xavier Le Saoût
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Jonathan Souquet
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Hervé Broly
- Biotech Process Sciences, Merck KGaA, Corsier-sur-Vevey, Vaud, Switzerland
| | - Massimo Morbidelli
- Department of Chemistry and Applied Biosciences, ETH Zurich, Institute for Chemical and Bioengineering, Zurich, Switzerland
| |
Collapse
|