1
|
Assaf Z, Wurster DE. Disagreements Between Calorimetric and Van't Hoff Enthalpies of Adsorption II: Effect of pH and pH Buffers on Phenobarbital Adsorption to Activated Carbon. J Pharm Sci 2023; 112:100-107. [PMID: 36372228 DOI: 10.1016/j.xphs.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/13/2022]
Abstract
The reported inconsistencies between the van't Hoff equation and calorimetry hinder the utility of thermodynamics in biochemical and pharmaceutical research. A novel thermodynamic approach is developed herein for ligand adsorption with a focus on the interpretation of calorimetric data in the presence of concurrent proton exchange reactions. Such exchange reactions typically result in a pH-dependence of calorimetric measurements that obscures intrinsic binding enthalpies. It is shown that for the adsorption of phenobarbital to activated carbon, the measured calorimetric enthalpy is a result of three linked acid/base equilibria. A model was established to predict the intrinsic binding enthalpy using 1) the adsorbate's pKa and 2) the adsorbate's enthalpy of protonation. The observed calorimetric enthalpy of binding exhibited both pH and buffer-dependence and was between -5 and -42 kJ/mol. Meanwhile, the predicted intrinsic enthalpy (-25.1 kJ/mol) of binding was in excellent agreement with the measured intrinsic enthalpy (-25.6 kJ/mol). Corrections to the observed calorimetric enthalpies allowed comparisons with enthalpies obtained from the van't Hoff method. It is shown that the predicted intrinsic calorimetric enthalpy agrees well with the van't Hoff enthalpies in instances where observed enthalpies significantly deviated. This treatment is general and is not specific to phenobarbital or activated carbon.
Collapse
Affiliation(s)
- Zaid Assaf
- AbbVie, North Chicago, IL, 60064, United States
| | | |
Collapse
|
2
|
Gindele MB, Malaszuk KK, Peter C, Gebauer D. On the Binding Mechanisms of Calcium Ions to Polycarboxylates: Effects of Molecular Weight, Side Chain, and Backbone Chemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14409-14421. [PMID: 36367750 DOI: 10.1021/acs.langmuir.2c01662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We experimentally determined the characteristics and Langmuir parameters of the binding of calcium ions to different polycarboxylates. By using potentiometric titrations and isothermal titration calorimetry, the effects of side chain chemistry, pH value, and chain length were systematically investigated using the linear polymers poly(aspartic acid), poly(glutamic acid), and poly(acrylic acid). We demonstrate that for polymers with high polymerization degrees, the binding process is governed by higher-order effects, such as the change of apparent pKa of carboxyl groups, and contributions arising from the whole polymer chain while the chemistry of the monomer unit constituting the polymer plays a subordinate role. In addition, primary binding sites need to be present in the polymer, thus rendering the abundance and sequential arrangement of protonated and deprotonated groups important. The detection of higher-order effects contradicts the assumptions posed by the Langmuir model of noninteracting binding sites and puts a question mark on whether ion binding to polycarboxylates can be described using solely a Langmuir binding model. No single uniform mechanism fits all investigated systems, and the whole polymer chain, including terminal groups, needs to be considered for the interpretation of binding data. Therefore, one needs to be careful when explaining ion binding to polymers solely based on studies on monomers or oligomers.
Collapse
Affiliation(s)
- Maxim B Gindele
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167Hannover, Germany
| | - Krzysztof K Malaszuk
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167Hannover, Germany
| | - Christine Peter
- Theoretical Chemistry, University of Konstanz, Universitätsstr. 10, 78457Konstanz, Germany
| | - Denis Gebauer
- Leibniz University Hannover, Institute of Inorganic Chemistry, Callinstr. 9, 30167Hannover, Germany
| |
Collapse
|
3
|
Livingstone MC, Bitzer AA, Giri A, Luo K, Sankhala RS, Choe M, Zou X, Dennison SM, Li Y, Washington W, Ngauy V, Tomaras GD, Joyce MG, Batchelor AH, Dutta S. In vitro and in vivo inhibition of malaria parasite infection by monoclonal antibodies against Plasmodium falciparum circumsporozoite protein (CSP). Sci Rep 2021; 11:5318. [PMID: 33674699 PMCID: PMC7970865 DOI: 10.1038/s41598-021-84622-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 02/11/2021] [Indexed: 01/23/2023] Open
Abstract
Plasmodium falciparum malaria contributes to a significant global disease burden. Circumsporozoite protein (CSP), the most abundant sporozoite stage antigen, is a prime vaccine candidate. Inhibitory monoclonal antibodies (mAbs) against CSP map to either a short junctional sequence or the central (NPNA)n repeat region. We compared in vitro and in vivo activities of six CSP-specific mAbs derived from human recipients of a recombinant CSP vaccine RTS,S/AS01 (mAbs 317 and 311); an irradiated whole sporozoite vaccine PfSPZ (mAbs CIS43 and MGG4); or individuals exposed to malaria (mAbs 580 and 663). RTS,S mAb 317 that specifically binds the (NPNA)n epitope, had the highest affinity and it elicited the best sterile protection in mice. The most potent inhibitor of sporozoite invasion in vitro was mAb CIS43 which shows dual-specific binding to the junctional sequence and (NPNA)n. In vivo mouse protection was associated with the mAb reactivity to the NANPx6 peptide, the in vitro inhibition of sporozoite invasion activity, and kinetic parameters measured using intact mAbs or their Fab fragments. Buried surface area between mAb and its target epitope was also associated with in vivo protection. Association and disconnects between in vitro and in vivo readouts has important implications for the design and down-selection of the next generation of CSP based interventions.
Collapse
Affiliation(s)
- Merricka C Livingstone
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alexis A Bitzer
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Alish Giri
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Kun Luo
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rajeshwer S Sankhala
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Misook Choe
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Xiaoyan Zou
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, USA
| | - S Moses Dennison
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Yuanzhang Li
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - William Washington
- Statistics and Epidemiology Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Viseth Ngauy
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
- Departments of Immunology, Duke University Medical Center, Durham, NC, USA
- Departments of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
| | - M Gordon Joyce
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Adrian H Batchelor
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sheetij Dutta
- Structural Vaccinology Lab, Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
4
|
Dalberto PF, de Souza EV, Abbadi BL, Neves CE, Rambo RS, Ramos AS, Macchi FS, Machado P, Bizarro CV, Basso LA. Handling the Hurdles on the Way to Anti-tuberculosis Drug Development. Front Chem 2020; 8:586294. [PMID: 33330374 PMCID: PMC7710551 DOI: 10.3389/fchem.2020.586294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
The global epidemic of tuberculosis (TB) imposes a sustained epidemiologic vigilance and investments in research by governments. Mycobacterium tuberculosis, the main causative agent of TB in human beings, is a very successful pathogen, being the main cause of death in the population among infectious agents. In 2018, ~10 million individuals were contaminated with this bacillus and became ill with TB, and about 1.2 million succumbed to the disease. Most of the success of the M. tuberculosis to linger in the population comes from its ability to persist in an asymptomatic latent state into the host and, in fact, the majority of the individuals are unaware of being contaminated. Even though TB is a treatable disease and is curable in most cases, the treatment is lengthy and laborious. In addition, the rise of resistance to first-line anti-TB drugs elicits a response from TB research groups to discover new chemical entities, preferably with novel mechanisms of action. The pathway to find a new TB drug, however, is arduous and has many barriers that are difficult to overcome. Fortunately, several approaches are available today to be pursued by scientists interested in anti-TB drug development, which goes from massively testing chemical compounds against mycobacteria, to discovering new molecular targets by genetic manipulation. This review presents some difficulties found along the TB drug development process and illustrates different approaches that might be used to try to identify new molecules or targets that are able to impair M. tuberculosis survival.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Luiz A. Basso
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF) and Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
5
|
Metcalfe RD, Aizel K, Zlatic CO, Nguyen PM, Morton CJ, Lio DSS, Cheng HC, Dobson RCJ, Parker MW, Gooley PR, Putoczki TL, Griffin MDW. The structure of the extracellular domains of human interleukin 11α receptor reveals mechanisms of cytokine engagement. J Biol Chem 2020; 295:8285-8301. [PMID: 32332100 DOI: 10.1074/jbc.ra119.012351] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/23/2020] [Indexed: 12/27/2022] Open
Abstract
Interleukin (IL) 11 activates multiple intracellular signaling pathways by forming a complex with its cell surface α-receptor, IL-11Rα, and the β-subunit receptor, gp130. Dysregulated IL-11 signaling has been implicated in several diseases, including some cancers and fibrosis. Mutations in IL-11Rα that reduce signaling are also associated with hereditary cranial malformations. Here we present the first crystal structure of the extracellular domains of human IL-11Rα and a structure of human IL-11 that reveals previously unresolved detail. Disease-associated mutations in IL-11Rα are generally distal to putative ligand-binding sites. Molecular dynamics simulations showed that specific mutations destabilize IL-11Rα and may have indirect effects on the cytokine-binding region. We show that IL-11 and IL-11Rα form a 1:1 complex with nanomolar affinity and present a model of the complex. Our results suggest that the thermodynamic and structural mechanisms of complex formation between IL-11 and IL-11Rα differ substantially from those previously reported for similar cytokines. This work reveals key determinants of the engagement of IL-11 by IL-11Rα that may be exploited in the development of strategies to modulate formation of the IL-11-IL-11Rα complex.
Collapse
Affiliation(s)
- Riley D Metcalfe
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Kaheina Aizel
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Courtney O Zlatic
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Paul M Nguyen
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Craig J Morton
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Daisy Sio-Seng Lio
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Structural Biology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Renwick C J Dobson
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Michael W Parker
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute.,Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Paul R Gooley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| | - Tracy L Putoczki
- Inflammation Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Personalised Oncology Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology and Department of Surgery, University of Melbourne, Parkville, Victoria, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute
| |
Collapse
|
6
|
Nithin C, Mukherjee S, Bahadur RP. A structure-based model for the prediction of protein-RNA binding affinity. RNA (NEW YORK, N.Y.) 2019; 25:1628-1645. [PMID: 31395671 PMCID: PMC6859855 DOI: 10.1261/rna.071779.119] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/05/2019] [Indexed: 05/28/2023]
Abstract
Protein-RNA recognition is highly affinity-driven and regulates a wide array of cellular functions. In this study, we have curated a binding affinity data set of 40 protein-RNA complexes, for which at least one unbound partner is available in the docking benchmark. The data set covers a wide affinity range of eight orders of magnitude as well as four different structural classes. On average, we find the complexes with single-stranded RNA have the highest affinity, whereas the complexes with the duplex RNA have the lowest. Nevertheless, free energy gain upon binding is the highest for the complexes with ribosomal proteins and the lowest for the complexes with tRNA with an average of -5.7 cal/mol/Å2 in the entire data set. We train regression models to predict the binding affinity from the structural and physicochemical parameters of protein-RNA interfaces. The best fit model with the lowest maximum error is provided with three interface parameters: relative hydrophobicity, conformational change upon binding and relative hydration pattern. This model has been used for predicting the binding affinity on a test data set, generated using mutated structures of yeast aspartyl-tRNA synthetase, for which experimentally determined ΔG values of 40 mutations are available. The predicted ΔGempirical values highly correlate with the experimental observations. The data set provided in this study should be useful for further development of the binding affinity prediction methods. Moreover, the model developed in this study enhances our understanding on the structural basis of protein-RNA binding affinity and provides a platform to engineer protein-RNA interfaces with desired affinity.
Collapse
Affiliation(s)
- Chandran Nithin
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sunandan Mukherjee
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
7
|
Singh KD, Unal H, Desnoyer R, Karnik SS. Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT 1R Initiated by van der Waals Attraction. J Chem Inf Model 2019; 59:373-385. [PMID: 30608150 DOI: 10.1021/acs.jcim.8b00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present a succession of structural changes involved in hormone peptide activation of a prototypical GPCR. Microsecond molecular dynamics simulation generated conformational ensembles reveal propagation of structural changes through key "microswitches" within human AT1R bound to native hormone. The endocrine octa-peptide angiotensin II (AngII) activates AT1R signaling in our bodies which maintains physiological blood pressure, electrolyte balance, and cardiovascular homeostasis. Excessive AT1R activation is associated with pathogenesis of hypertension and cardiovascular diseases which are treated by sartan drugs. The mechanism of AT1R inhibition by sartans has been elucidated by 2.8 Å X-ray structures, mutagenesis, and computational analyses. Yet, the mechanism of AT1R activation by AngII is unclear. The current study delineates an activation scheme initiated by AngII binding. A van der Waals "grasp" interaction between Phe8AngII with Ile2887.39 in AT1R induced mechanical strain pulling Tyr2927.43 and breakage of critical interhelical H-bonds, first between Tyr2927.43 and Val1083.32 and second between Asn1113.35 and Asn2957.46. Subsequently changes are observed in conserved microswitches DRYTM3, Yx7K(R)TM5, CWxPTM6, and NPxxYTM7 in AT1R. Activating the microswitches in the intracellular region of AT1R may trigger formation of the G-protein binding pocket as well as exposure of helix-8 to cytoplasm. Thus, the active-like conformation of AT1R is initiated by the van der Waals interaction of Phe8AngII with Ile2887.39, followed by systematic reorganization of critical interhelical H-bonds and activation of microswitches.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Russell Desnoyer
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| |
Collapse
|
8
|
Lv E, Ding J, Qin W. Potentiometric Detection of Listeria monocytogenes via a Short Antimicrobial Peptide Pair-Based Sandwich Assay. Anal Chem 2018; 90:13600-13606. [PMID: 30335975 DOI: 10.1021/acs.analchem.8b03809] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Peptide-based sandwich assays are promising tools in molecular detection, but may be restricted by the availability of "pairs" of affinity peptides. Herein, a new potentiometric sandwich assay for bacteria based on peptide pairs derived from an antimicrobial peptide (AMP) ligand is demonstrated. As a model, the original AMP with a well-defined structure for Listeria monocytogenes (LM) can be split into two fragments to serve as the peptide pairs for the sandwich assay. The recognition and binding of the short peptide pairs to the target can be verified by circular dichroism, flow cytometry, fluorometry, and optical microscopy. The potentiometric magnetic bead-based sandwich assay is designed by using horseradish peroxidase as a label. The enzyme can catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine with H2O2 to induce a potential change on a polymeric membrane ion-selective electrode. Under optimal conditions, the concentration of LM can be determined potentiometrically in a linear range of 1.0 × 102 to 1.0 × 106 CFU mL-1 with a detection limit of 10 CFU mL-1 (3σ). The proposed sensing strategy expands the applications of peptides in the field of bioassays.
Collapse
Affiliation(s)
- Enguang Lv
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,University of the Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiawang Ding
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , People's Republic of China
| | - Wei Qin
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Provincial Key Laboratory of Coastal Environmental Processes , Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS) , Yantai , Shandong 264003 , People's Republic of China.,Laboratory for Marine Biology and Biotechnology , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266200 , People's Republic of China
| |
Collapse
|
9
|
Serratos IN, Millán-Pacheco C, Garza-Ramos G, Pérez-Hernández G, Zubillaga RA. Exploring interfacial water trapping in protein-ligand complexes with multithermal titration calorimetry. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:488-495. [PMID: 29307720 DOI: 10.1016/j.bbapap.2018.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 12/02/2017] [Accepted: 01/03/2018] [Indexed: 11/18/2022]
Abstract
In this work, we examine the hypothesis about how trapped water molecules at the interface between triosephosphate isomerase (TIM) and either of two phosphorylated inhibitors, 2-phosphoglycolate (2PG) or phosphoglycolohydroxamate (PGH), can explain the anomalous highly negative binding heat capacities (ΔCp,b) of both complexes, TIM-2PG and TIM-PGH. We performed fluorimetric titrations of the enzyme with PGH inhibitor under osmotic stress conditions, using various concentrations of either osmolyte: sucrose, ethylene glycol or glycine betaine. We also analyze the binding processes under various stressor concentrations using a novel calorimetric methodology that allows ΔCp,b determinations in single experiments: Multithermal Titration Calorimetry. The binding constant of the TIM-PGH complex decreased gradually with the concentration of all osmolytes, but at diverse extents depending on the osmolyte nature. According to the osmotic stress theory, this decrease indicates that the number of water molecules associated with the enzyme increases with inhibitor binding, i.e. some solvent molecules became trapped. Additionally, the binding heat capacities became less negative at higher osmolyte concentrations, their final values depending on the osmolyte. These effects were also observed in the TIM-2PG complex using sucrose as stressor. Our results strongly suggest that some water molecules became immobilized when the TIM-inhibitor complexes were formed. A computational analysis of the hydration state of the binding site of TIM in both its free state and its complexed form with 2PG or PGH, based on molecular dynamics (MD) simulations in explicit solvent, showed that the binding site effectively immobilized additional water molecules after binding these inhibitors.
Collapse
Affiliation(s)
- Iris N Serratos
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, C.P. 09340, Mexico.
| | - Cesar Millán-Pacheco
- Facultad de Farmacia. Universidad Autónoma del Estado de Morelos, Cuernavaca Mor. C.P. 62209, Mexico.
| | - Georgina Garza-Ramos
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico.
| | - Gerardo Pérez-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana-Cuajimalpa, Ciudad de México, C.P. 05348, Mexico.
| | - Rafael A Zubillaga
- Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, C.P. 09340, Mexico.
| |
Collapse
|
10
|
Ghimire-Rijal S, Maynard EL. Comparative thermodynamic analysis of zinc binding to the His/Cys motif in virion infectivity factor. Inorg Chem 2014; 53:4295-302. [PMID: 24735396 DOI: 10.1021/ic402907g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
HIV-1 virion infectivity factor (Vif) is an accessory protein that induces the proteasomal degradation of the host restriction factor, apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G). Degradation of APOBEC3G requires the interaction of Vif with Cul5, the scaffold for an E3 ubiquitin ligase. A highly conserved region in HIV-1 Vif termed the HCCH motif binds zinc and is critical for recruitment of Cul5 and degradation of APOBEC3G. To gain thermodynamic and mechanistic insight into zinc binding to diverse Vif proteins, we have employed a combination of isothermal titration calorimetry, analytical ultracentrifugation, and Cul5 pull down assays. The proton linkage of zinc binding to HIV-1 Vif was analyzed under different buffer conditions and consistent with the release of two Cys-thiol protons upon zinc binding, supporting earlier EXAFS studies. Zinc binding to Vif proteins from HIV-1, SIVAgm, HIV-2, and SIVMac followed a trend in which the enthalpy of zinc binding became less favorable and the entropy of zinc binding became more favorable. Using AUC, we determined that zinc induced oligomerization of Vif proteins from HIV-1 and SIVAgm but had little or no effect on the oligomeric properties of Vif proteins from HIV-2 and SIVMac. The zinc dependence of Cul5 recruitment by Vif was investigated. All Vif proteins except HIV-2 Vif required zinc to stabilize the interaction with Cul5. The trends in enthalpy-entropy compensation, zinc-induced oligomerization, and Cul5 recruitment are discussed in terms of the apo conformation of the HCCH motif and the role of zinc in stabilizing the structure of Vif.
Collapse
Affiliation(s)
- Sudipa Ghimire-Rijal
- Department of Biochemistry and Molecular Biology Uniformed Services University of the Health Sciences 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799 United States
| | | |
Collapse
|
11
|
Bermejo IL, Arnulphi C, Ibáñez de Opakua A, Alonso-Mariño M, Goñi FM, Viguera AR. Membrane partitioning of the pore-forming domain of colicin A. Role of the hydrophobic helical hairpin. Biophys J 2014; 105:1432-43. [PMID: 24047995 DOI: 10.1016/j.bpj.2013.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022] Open
Abstract
The colicins are bacteriocins that target Escherichia coli and kill bacterial cells through different mechanisms. Colicin A forms ion channels in the inner membranes of nonimmune bacteria. This activity resides exclusively in its C-terminal fragment (residues 387-592). The soluble free form of this domain is a 10 α-helix bundle. The hydrophobic helical hairpin, H8-H9, is buried inside the structure and shielded by eight amphipathic surface helices. The interaction of the C-terminal colicin A domain and several chimeric variants with lipidic vesicles was examined here by isothermal titration calorimetry. In the mutant constructions, natural sequences of the hydrophobic helices H8 and H9 were either removed or substituted by polyalanine or polyleucine. All the constructions fully associated with DOPG liposomes including the mutant that lacked helices H8 and H9, indicating that amphipathic rather than hydrophobic helices were the major determinants of the exothermic binding reactions. Alanine is not specially favored in the lipid-bound form; the chimeric construct with polyalanine produced lower enthalpy gain. On the other hand, the large negative heat capacities associated with partitioning, a characteristic feature of the hydrophobic effect, were found to be dependent on the sequence hydrophobicity of helices H8 and H9.
Collapse
Affiliation(s)
- Ivan L Bermejo
- Unidad de Biofísica (CSIC, UPV/EHU), Barrio Sarriena s/n, Leioa, Spain
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Formation of protein-ligand complexes causes various changes in both the receptor and the ligand. This review focuses on changes in pK and protonation states of ionizable groups that accompany protein-ligand binding. Physical origins of these effects are outlined, followed by a brief overview of the computational methods to predict them and the associated corrections to receptor-ligand binding affinities. Statistical prevalence, magnitude and spatial distribution of the pK and protonation state changes in protein-ligand binding are discussed in detail, based on both experimental and theoretical studies. While there is no doubt that these changes occur, they do not occur all the time; the estimated prevalence varies, both between individual complexes and by method. The changes occur not only in the immediate vicinity of the interface but also sometimes far away. When receptor-ligand binding is associated with protonation state change at particular pH, the binding becomes pH dependent: we review the interplay between sub-cellular characteristic pH and optimum pH of receptor-ligand binding. It is pointed out that there is a tendency for protonation state changes upon binding to be minimal at physiologically relevant pH for each complex (no net proton uptake/release), suggesting that native receptor-ligand interactions have evolved to reduce the energy cost associated with ionization changes. As a result, previously reported statistical prevalence of these changes - typically computed at the same pH for all complexes - may be higher than what may be expected at optimum pH specific to each complex. We also discuss whether proper account of protonation state changes appears to improve practical docking and scoring outcomes relevant to structure-based drug design. An overview of some of the existing challenges in the field is provided in conclusion.
Collapse
Affiliation(s)
- Alexey V Onufriev
- Department of Computer Science and Physics, 2050 Torgersen Hall, Virginia Tech, Blacksburg, VA 24061, USA.
| | | |
Collapse
|
13
|
Caoili SEC. Antidotes, antibody-mediated immunity and the future of pharmaceutical product development. Hum Vaccin Immunother 2013; 9:294-9. [PMID: 23291934 PMCID: PMC3859750 DOI: 10.4161/hv.22858] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
If new scientific knowledge is to be more efficiently generated and applied toward the advancement of health, human safety must be more effectively addressed in the conduct of research. Given the present difficulties of accurately predicting biological outcomes of novel interventions in vivo, the imperative of human safety suggests the development of novel pharmaceutical products in tandem with their prospective antidotes in anticipation of possible adverse events, to render the risks of initial clinical trials more acceptable from a regulatory standpoint. Antibody-mediated immunity provides a generally applicable mechanistic basis for developing antidotes to both biologicals and small-molecule drugs (such that antibodies may serve as antidotes to pharmaceutical agents as a class including other antibodies) and also for the control and prevention of both infectious and noninfectious diseases via passive or active immunization. Accordingly, the development of prophylactic or therapeutic passive-immunization strategies using antipeptide antibodies is a plausible prelude to the development of corresponding active-immunization strategies using peptide-based vaccines. In line with this scheme, global proliferation of antibody- and vaccine-production technologies, especially those that obviate dependence on the cold chain for storage and transport of finished products, could provide geographically distributed breakout capability against emerging and future health challenges.
Collapse
Affiliation(s)
- Salvador Eugenio C Caoili
- Department of Biochemistry and Molecular Biology; College of Medicine; University of the Philippines Manila; Manila, Philippines
| |
Collapse
|
14
|
Ahmad MF, Dealwis CG. The structural basis for the allosteric regulation of ribonucleotide reductase. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:389-410. [PMID: 23663976 PMCID: PMC4059395 DOI: 10.1016/b978-0-12-386931-9.00014-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ribonucleotide reductases (RRs) catalyze a crucial step of de novo DNA synthesis by converting ribonucleoside diphosphates to deoxyribonucleoside diphosphates. Tight control of the dNTP pool is essential for cellular homeostasis. The activity of the enzyme is tightly regulated at the S-phase by allosteric regulation. Recent structural studies by our group and others provided the molecular basis for understanding how RR recognizes substrates, how it interacts with chemotherapeutic agents, and how it is regulated by its allosteric regulators ATP and dATP. This review discusses the molecular basis of allosteric regulation and substrate recognition of RR, and particularly the discovery that subunit oligomerization is an important prerequisite step in enzyme inhibition.
Collapse
Affiliation(s)
- Md Faiz Ahmad
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
15
|
Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R, Jha S, Prendergast J, Welin RM, Flodin S, Roos A, Nordlund P, Li Z, Walz T, Dealwis CG. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat Struct Mol Biol 2011; 18:316-22. [PMID: 21336276 PMCID: PMC3101628 DOI: 10.1038/nsmb.2007] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/30/2010] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RR) is an α(n)β(n) (RR1-RR2) complex that maintains balanced dNTP pools by reducing NDPs to dNDPs. RR1 is the catalytic subunit, and RR2 houses the free radical required for catalysis. RR is allosterically regulated by its activator ATP and its inhibitor dATP, which regulate RR activity by inducing oligomerization of RR1. Here, we report the first X-ray structures of human RR1 bound to TTP alone, dATP alone, TTP-GDP, TTP-ATP, and TTP-dATP. These structures provide insights into regulation of RR by ATP or dATP. At physiological dATP concentrations, RR1 forms inactive hexamers. We determined the first X-ray structure of the RR1-dATP hexamer and used single-particle electron microscopy to visualize the α(6)-ββ'-dATP holocomplex. Site-directed mutagenesis and functional assays confirm that hexamerization is a prerequisite for inhibition by dATP. Our data indicate a mechanism for regulating RR activity by dATP-induced oligomerization.
Collapse
|
16
|
Persaud SP, Donermeyer DL, Weber KS, Kranz DM, Allen PM. High-affinity T cell receptor differentiates cognate peptide-MHC and altered peptide ligands with distinct kinetics and thermodynamics. Mol Immunol 2010; 47:1793-801. [PMID: 20334923 DOI: 10.1016/j.molimm.2010.02.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 02/21/2010] [Indexed: 01/13/2023]
Abstract
Interactions between the T cell receptor and cognate peptide-MHC are crucial initiating events in the adaptive immune response. These binding events are highly specific yet occur with micromolar affinity. Even weaker interactions between TCR and self-pMHC complexes play critical regulatory roles in T cell development, maintenance and coagonist activity. Due to their low-affinity, the kinetics and thermodynamics of such weak interactions are difficult to study. In this work, we used M15, a high-affinity TCR engineered from the 3.L2 TCR system, to study the binding properties, thermodynamics, and specificity of two altered peptide ligands (APLs). Our affinity measurements of the high-affinity TCR support the view that the wild type TCR binds these APLs in the millimolar affinity range, and hence very low affinities can still elicit biological functions. Finally, single methylene differences among the APLs gave rise to strikingly different binding thermodynamics. These minor changes in the pMHC antigen were associated with significant and unpredictable changes in both the entropy and enthalpy of the reaction. As the identical TCR was analyzed with several structurally similar ligands, the distinct thermodynamic binding profiles provide a mechanistic perspective on how exquisite antigen specificity is achieved by the T cell receptor.
Collapse
Affiliation(s)
- Stephen P Persaud
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
17
|
Perozzo R, Folkers G, Scapozza L. Thermodynamics of Protein–Ligand Interactions: History, Presence, and Future Aspects. J Recept Signal Transduct Res 2009; 24:1-52. [PMID: 15344878 DOI: 10.1081/rrs-120037896] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The understanding of molecular recognition processes of small ligands and biological macromolecules requires a complete characterization of the binding energetics and correlation of thermodynamic data with interacting structures involved. A quantitative description of the forces that govern molecular associations requires determination of changes of all thermodynamic parameters, including free energy of binding (deltaG), enthalpy (deltaH), and entropy (deltaS) of binding and the heat capacity change (deltaCp). A close insight into the binding process is of significant and practical interest, since it provides the fundamental know-how for development of structure-based molecular design-strategies. The only direct method to measure the heat change during complex formation at constant temperature is provided by isothermal titration calorimetry (ITC). With this method one binding partner is titrated into a solution containing the interaction partner, thereby generating or absorbing heat. This heat is the direct observable that can be quantified by the calorimeter. The use of ITC has been limited due to the lack of sensitivity, but recent developments in instrument design permit to measure heat effects generated by nanomol (typically 10-100) amounts of reactants. ITC has emerged as the primary tool for characterizing interactions in terms of thermodynamic parameters. Because heat changes occur in almost all chemical and biochemical processes, ITC can be used for numerous applications, e.g., binding studies of antibody-antigen, protein-peptide, protein-protein, enzyme-inhibitor or enzyme-substrate, carbohydrate-protein, DNA-protein (and many more) interactions as well as enzyme kinetics. Under appropriate conditions data analysis from a single experiment yields deltaH, K(B), the stoichiometry (n), deltaG and deltaS of binding. Moreover, ITC experiments performed at different temperatures yield the heat capacity change (deltaCp). The informational content of thermodynamic data is large, and it has been shown that it plays an important role in the elucidation of binding mechanisms and, through the link to structural data, also in rational drug design. In this review we will present a comprehensive overview to ITC by giving some historical background to calorimetry, outline some critical experimental and data analysis aspects, discuss the latest developments, and give three recent examples of studies published with respect to macromolecule-ligand interactions that have utilized ITC technology.
Collapse
Affiliation(s)
- Remo Perozzo
- Department of Chemistry and Applied BioSciences, Swiss Federal Institute of Technology (ETH), Zurich, Switzerland.
| | | | | |
Collapse
|
18
|
Stegmann C, Seeliger D, Sheldrick G, de Groot B, Wahl M. The Thermodynamic Influence of Trapped Water Molecules on a Protein-Ligand Interaction. Angew Chem Int Ed Engl 2009; 48:5207-10. [DOI: 10.1002/anie.200900481] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Stegmann C, Seeliger D, Sheldrick G, de Groot B, Wahl M. Der thermodynamische Einfluss eingeschlossener Wassermoleküle auf eine Protein-Ligand-Wechselwirkung. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900481] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
20
|
Gardberg A, Dice L, Pridgen K, Ko J, Patterson P, Ou S, Wetzel R, Dealwis C. Structures of Abeta-related peptide--monoclonal antibody complexes. Biochemistry 2009; 48:5210-7. [PMID: 19385664 PMCID: PMC2720063 DOI: 10.1021/bi9001216] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Passive immunotherapy (PI) is being explored as a potential therapeutic against Alzheimer's disease. The most promising antibodies (Abs) used in PI target the EFRH motif of the Abeta N-terminus. The monoclonal anti-Abeta Ab PFA1 recognizes the EFRH epitope of Abeta. PFA1 has a high affinity for Abeta fibrils and protofibrils (0.1 nM), as well as good affinity for Abeta monomers (20 nM). However, PFA1 binds the toxic N-terminally modified pyroglutamate peptide pyro-Glu3-Abeta with a 77-fold loss in affinity compared to the WT Abeta(1-8). Furthermore, our earlier work illustrated PFA1's potential for cross-reactivity. The receptor tyrosine kinase Ror2, which plays a role in skeletal and bone formation, possesses the EFRH sequence. PFA1 Fab binds the Ror2(518-525) peptide sequence REEFRHEA with a 3-fold enhancement over WT Abeta(1-8). In this work, the crystal structures of the hybridoma-derived PFA1 Fab in complex with pyro-Glu3-Abeta peptide and with a cross-reacting peptide from Ror2 have been determined at resolutions of 1.95 and 2.7 A, respectively. As with wild-type Abeta, these peptides bind to the Fab via a combination of charge- and shape-complementarity, hydrogen-bonding, and hydrophobic interactions. Comparison of the structures of the four peptides Abeta(1-8), Grip1, pyro-Glu3-Abeta(3-8), and Ror2 in complex with PFA1 shows that the greatest conformational flexibility occurs at residues 2 to 3 and 8 of the peptide. These structures provide a molecular basis of the specificity tolerance of PFA1 and its ability to recognize Abeta N-terminal heterogeneity. The structures provide clues to improving mAb specificity and affinity for pyroglutamate Abeta.
Collapse
Affiliation(s)
- Anna Gardberg
- Department of Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Lezlee Dice
- Graduate School of Medicine, University of Tennessee, Knoxville, TN 37920
| | - Kathleen Pridgen
- Department of Biochemistry & Cellular & Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Jan Ko
- Division of Biology, California Institute of Technology, Pasadena, CA. 91125
| | - Paul Patterson
- Division of Biology, California Institute of Technology, Pasadena, CA. 91125
| | - Susan Ou
- Division of Biology, California Institute of Technology, Pasadena, CA. 91125
| | - Ronald Wetzel
- Structural Biology Department and Pittsburgh Institute for Neurodegenerative Diseases, Pittsburgh, PA 15260
| | - Chris Dealwis
- Department of Pharmacology and the Center for Proteomics, School of Medicine, Case Western Reserve University, 10900 Euclid Ave. Cleveland, OH 44106,Corresponding author: Chris Dealwis, Department of Pharmacology, School of Medicine, Case Western Reserve University, 10900 Euclid Ave.Cleveland, OH 44106-4965, USA, Phone: (216) 368-1652, Fax: (216) 368-1300, E-mail:
| |
Collapse
|
21
|
Wan G, Cheuk WK, Chan KM. Differential regulation of zebrafish metallothionein-II (zMT-II) gene transcription in ZFL and SJD cell lines by metal ions. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2009; 91:33-43. [PMID: 19019466 DOI: 10.1016/j.aquatox.2008.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/01/2008] [Accepted: 10/03/2008] [Indexed: 05/27/2023]
Abstract
Two alleles of a zebrafish metallothionein II gene (zMT-II) promoter (zMT-IIA and zMT-IIB) containing 10 MREs in the 5'-flanking region (1514bp) were identified in zebrafish. These putative MREs were confirmed via electrophoretic mobility shift assay (EMSA) to have binding activities from the cellular and nuclear extracts of a zebrafish cell line, ZFL. Transient gene expression studies using zebrafish liver (ZFL) and caudal fin (SJD) cell lines also confirmed that the most distal cluster of MREs contributed to the maximal induction of zMT-IIA activity by Zn(2+) and that this Zn(2+) induction was dose-dependent. Further transient gene expression assay of the zMT-IIA gene promoter was carried out to study the effects of various metal ions (Zn(2+), Cd(2+), Cu(2+), Hg(+), As(3+), As(5+), Cr(3+) and Cr(6+)), and Zn(2+) and Cd(2+) were found to be the most efficient MT gene inducers of zMT-II. As(3+) was a weak inducer of zMT-II in the two cell lines, and Hg(+) caused significant induction only in the SJD cells. No significant induction was found in the other metal ion exposures. EMSA also identified transcription factor(s) of two different sizes from the cytoplasmic and nuclear extracts of the ZFL cells that were able to bind with the MREs, but no increase in MRE binding was detected in the extracts of these cells after Zn(2+) or Cd(2+) treatment, compared with untreated control cells. The mechanisms of MT gene transcription induction via metal ions are discussed herein.
Collapse
Affiliation(s)
- Guohui Wan
- Department of Biochemistry, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong SAR, China
| | | | | |
Collapse
|
22
|
Wang J, Palzkill T, Chow DC. Structural insight into the kinetics and DeltaCp of interactions between TEM-1 beta-lactamase and beta-lactamase inhibitory protein (BLIP). J Biol Chem 2009; 284:595-609. [PMID: 18840610 PMCID: PMC2610523 DOI: 10.1074/jbc.m804089200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 09/05/2008] [Indexed: 11/06/2022] Open
Abstract
In a previous study, we examined thermodynamic parameters for 20 alanine mutants in beta-lactamase inhibitory protein (BLIP) for binding to TEM-1 beta-lactamase. Here we have determined the structures of two thermodynamically distinctive complexes of BLIP mutants with TEM-1 beta-lactamase. The complex BLIP Y51A-TEM-1 is a tight binding complex with the most negative binding heat capacity change (DeltaG = approximately -13 kcal mol(-1) and DeltaCp = approximately -0.8 kcal mol(-1) K(-1)) among all of the mutants, whereas BLIP W150A-TEM-1 is a weak complex with one of the least negative binding heat capacity changes (DeltaG = approximately -8.5 kcal mol(-1) and DeltaCp = approximately -0.27 kcal mol(-1) K(-1)). We previously determined that BLIP Tyr51 is a canonical and Trp150 an anti-canonical TEM-1-contact residue, where canonical refers to the alanine substitution resulting in a matched change in the hydrophobicity of binding free energy. Structure determination indicates a rearrangement of the interactions between Asp49 of the W150A BLIP mutant and the catalytic pocket of TEM-1. The Asp49 of W150A moves more than 4 angstroms to form two new hydrogen bonds while losing four original hydrogen bonds. This explains the anti-canonical nature of the Trp150 to alanine substitution, and also reveals a strong long distance coupling between Trp150 and Asp49 of BLIP, because these two residues are more than 25 angstroms apart. Kinetic measurements indicate that the mutations influence the dissociation rate but not the association rate. Further analysis of the structures indicates that an increased number of interface-trapped water molecules correlate with poor interface packing in a mutant. It appears that the increase of interface-trapped water molecules is inversely correlated with negative binding heat capacity changes.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003 and the Department of Pharmacology and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Timothy Palzkill
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003 and the Department of Pharmacology and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030; Department of Chemistry, University of Houston, Houston, Texas 77204-5003 and the Department of Pharmacology and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
| | - Dar-Chone Chow
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003 and the Department of Pharmacology and Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
23
|
Nolan T, Singh N, McCurdy CR. Ligand macromolecule interactions: theoretical principles of molecular recognition. Methods Mol Biol 2009; 572:13-29. [PMID: 20694683 DOI: 10.1007/978-1-60761-244-5_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular recognition is mediated by three main factors: surface complementarity, thermodynamics, and associated physicochemical properties. These principles are responsible for ligand-target binding and therefore serve as the foundation for the design of new biologically relevant chemical entities. As these principles are involved in nearly all biological processes, a firm understanding of the details involved in binding is necessary for drug design. The consideration of these factors individually has proven useful; however, the combined effect of these governing principles is most important. And despite extensive studies, there are still many gaps in our understanding of this recognition process. The aim of this chapter is to introduce the basic concepts of ligand binding to set the stage for the following chapters, while briefly discussing fundamental techniques of drug design, including the indispensable tools of molecular modeling.
Collapse
Affiliation(s)
- Tammy Nolan
- Department of Medicinal Chemistry, University of Mississippi, Jackson, MS, USA
| | | | | |
Collapse
|
24
|
Krauss N, Wessner H, Welfle K, Welfle H, Scholz C, Seifert M, Zubow K, Aÿ J, Hahn M, Scheerer P, Skerra A, Höhne W. The structure of the anti-c-myc antibody 9E10 Fab fragment/epitope peptide complex reveals a novel binding mode dominated by the heavy chain hypervariable loops. Proteins 2008; 73:552-65. [PMID: 18473392 DOI: 10.1002/prot.22080] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The X-ray structure of the Fab fragment from the anti-c-myc antibody 9E10 was determined both as complex with its epitope peptide and for the free Fab. In the complex, two Fab molecules adopt an unusual head to head orientation with the epitope peptide arranged between them. In contrast, the free Fab forms a dimer with different orientation. In the Fab/peptide complex the peptide is bound to one of the two Fabs at the "back" of its extended CDR H3, in a cleft with CDR H1, thus forming a short, three-stranded antiparallel beta-sheet. The N- and C-terminal parts of the peptide are also in contact with the neighboring Fab fragment. Comparison between the CDR H3s of the two Fab molecules in complex with the peptide and those from the free Fab reveals high flexibility of this loop. This structural feature is in line with thermodynamic data from isothermic titration calorimetry.
Collapse
Affiliation(s)
- Norbert Krauss
- Institut für Biochemie, Charité, Universitätsmedizin Berlin, Monbijoustr. 2, D-10117 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Anderka O, Boyken J, Aschenbach U, Batzer A, Boscheinen O, Schmoll D. Biophysical characterization of the interaction between hepatic glucokinase and its regulatory protein: impact of physiological and pharmacological effectors. J Biol Chem 2008; 283:31333-40. [PMID: 18809676 DOI: 10.1074/jbc.m805434200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glucokinase (GK) is a key enzyme of glucose metabolism in liver and pancreatic beta-cells, and small molecule activators of GK (GKAs) are under evaluation for the treatment of type 2 diabetes. In liver, GK activity is controlled by the GK regulatory protein (GKRP), which forms an inhibitory complex with the enzyme. Here, we performed isothermal titration calorimetry and surface plasmon resonance experiments to characterize GK-GKRP binding and to study the influence that physiological and pharmacological effectors of GK have on the protein-protein interaction. In the presence of fructose-6-phosphate, GK-GKRP complex formation displayed a strong entropic driving force opposed by a large positive enthalpy; a negative change in heat capacity was observed (Kd = 45 nm, DeltaH = 15.6 kcal/mol, TDeltaS = 25.7 kcal/mol, DeltaCp = -354 cal mol(-1) K(-1)). With k(off) = 1.3 x 10(-2) s(-1), the complex dissociated quickly. The thermodynamic profile suggested a largely hydrophobic interaction. In addition, effects of pH and buffer demonstrated the coupled uptake of one proton and indicated an ionic contribution to binding. Glucose decreased the binding affinity between GK and GKRP. This decrease was potentiated by an ATP analogue. Prototypical GKAs of the amino-heteroaryl-amide type bound to GK in a glucose-dependent manner and impaired the association of GK with GKRP. This mechanism might contribute to the antidiabetic effects of GKAs.
Collapse
Affiliation(s)
- Oliver Anderka
- Sanofi Aventis Deutschland GmbH, Research and Development, D-65926 Frankfurt am Main, Germany.
| | | | | | | | | | | |
Collapse
|
26
|
Nominé Y, Botuyan MV, Bajzer Z, Owen WG, Caride AJ, Wasielewski E, Mer G. Kinetic analysis of interaction of BRCA1 tandem breast cancer c-terminal domains with phosphorylated peptides reveals two binding conformations. Biochemistry 2008; 47:9866-79. [PMID: 18717574 DOI: 10.1021/bi702247d] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Tandem breast cancer C-terminal (BRCT) domains, present in many DNA repair and cell cycle checkpoint signaling proteins, are phosphoprotein binding modules. The best-characterized tandem BRCT domains to date are from the protein BRCA1 (BRCA1-BRCT), an E3 ubiquitin ligase that has been linked to breast and ovarian cancer. While X-ray crystallography and NMR spectroscopy studies have uncovered the structural determinants of specificity of BRCA1-BRCT for phosphorylated peptides, a detailed kinetic and thermodynamic characterization of the interaction is also required to understand how structure and dynamics are connected and therefore better probe the mechanism of phosphopeptide recognition by BRCT domains. Through a global analysis of binding kinetics data obtained from surface plasmon resonance (SPR) and stopped-flow fluorescence spectroscopy, we show that the recognition mechanism is complex and best modeled by two equilibrium conformations of BRCA1-BRCT in the free state that both interact with a phosphopeptide, with dissociation constants ( K d) in the micromolar range. We show that the apparent global dissociation constant derived from this kinetic analysis is similar to the K d values measured using steady-state SPR, isothermal titration calorimetry, and fluorescence anisotropy. The dynamic nature of BRCA1-BRCT may facilitate the binding of BRCA1 to different phosphorylated protein targets.
Collapse
Affiliation(s)
- Yves Nominé
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First Street Southwest, Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Isothermal titration calorimetry (ITC) is perhaps the most rigorous commercially available method for characterizing protein-ligand interactions. In this method, interactions are detected by the intrinsic heat (binding enthalpy) change of the reaction. The technique is applicable to native, unmodified proteins in solution. This is important for proteins that lose or change their functional behavior when chemically modified or attached to a surface. ITC is also useful for evaluating qualitative questions such whether a proposed binding interaction occurs at all, or for quantitatively measuring the concentration of functionally active protein. Finally, if executed with proper control experiments, ITC can be a rich source of thermodynamic information about the molecular binding mechanism.
Collapse
Affiliation(s)
- M L Doyle
- SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania, USA
| |
Collapse
|
28
|
Anderka O, Loenze P, Klabunde T, Dreyer MK, Defossa E, Wendt KU, Schmoll D. Thermodynamic Characterization of Allosteric Glycogen Phosphorylase Inhibitors. Biochemistry 2008; 47:4683-91. [DOI: 10.1021/bi702397d] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Anderka
- Research and Development, Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt am Main, Germany
| | - Petra Loenze
- Research and Development, Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt am Main, Germany
| | - Thomas Klabunde
- Research and Development, Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt am Main, Germany
| | - Matthias K. Dreyer
- Research and Development, Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt am Main, Germany
| | - Elisabeth Defossa
- Research and Development, Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt am Main, Germany
| | - K. Ulrich Wendt
- Research and Development, Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt am Main, Germany
| | - Dieter Schmoll
- Research and Development, Sanofi Aventis Deutschland GmbH, D-65926 Frankfurt am Main, Germany
| |
Collapse
|
29
|
Acierno JP, Braden BC, Klinke S, Goldbaum FA, Cauerhff A. Affinity Maturation Increases the Stability and Plasticity of the Fv Domain of Anti-protein Antibodies. J Mol Biol 2007; 374:130-46. [DOI: 10.1016/j.jmb.2007.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2007] [Revised: 08/13/2007] [Accepted: 09/05/2007] [Indexed: 11/26/2022]
|
30
|
Laity JH, Andrews GK. Understanding the mechanisms of zinc-sensing by metal-response element binding transcription factor-1 (MTF-1). Arch Biochem Biophys 2007; 463:201-10. [PMID: 17462582 DOI: 10.1016/j.abb.2007.03.019] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Revised: 03/16/2007] [Accepted: 03/16/2007] [Indexed: 11/17/2022]
Abstract
The regulation of divalent zinc has been observed in a wide range of organisms. Since this metal is an essential nutrient, but also toxic in excess, zinc homeostasis is crucial for normal cellular functioning. The metal-responsive-element-binding transcription factor-1 (MTF-1) is a key regulator of zinc in higher eukaryotes ranging from insects to mammals. MTF-1 controls the expression of metallothioneins (MTs) and a number of other genes directly involved in the intracellular sequestration and transport of zinc. Although the diverse functions of MTF-1 extend well beyond zinc homeostasis to include stress-responses to heavy metal toxicity, oxidative stress, and selected chemical agents, in this review we focus on the recent advances in understanding the mechanisms whereby MTF-1 regulates MT gene expression to protect the cell from fluctuations in environmental zinc. Particular emphasis is devoted to recent studies involving the Cys2His2 zinc finger DNA-binding domain of MTF-1, which is an important contributor to the zinc-sensing and metal-dependent transcriptional activation functions of this protein.
Collapse
Affiliation(s)
- John H Laity
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA.
| | | |
Collapse
|
31
|
Fernando H, Nagle GT, Rajarathnam K. Thermodynamic characterization of interleukin-8 monomer binding to CXCR1 receptor N-terminal domain. FEBS J 2007; 274:241-51. [PMID: 17222184 PMCID: PMC2671026 DOI: 10.1111/j.1742-4658.2006.05579.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Chemokines elicit their function by binding receptors of the G-protein-coupled receptor class, and the N-terminal domain (N-domain) of the receptor is one of the two critical ligand-binding sites. In this study, the thermodynamic basis for binding of the chemokine interleukin-8 (IL-8) to the N-domain of its receptor CXCR1 was characterized using isothermal titration calorimetry. We have shown previously that only the monomer of IL-8, and not the dimer, functions as a high-affinity ligand, so in this study we used the IL-8(1-66) deletion mutant which exists as a monomer. Calorimetry data indicate that the binding is enthalpically favored and entropically disfavored, and a negative heat capacity change indicates burial of hydrophobic residues in the complex. A characteristic feature of chemokine receptor N-domains is the large number of acidic residues, and experiments using different buffers show no net proton transfer, indicating that the CXCR1 N-domain acidic residues are not protonated in the binding process. CXCR1 N-domain peptide is unstructured in the free form but adopts a more defined structure in the bound form, and so binding is coupled to induction of the structure of the N-domain. Measurements in the presence of the osmolyte, trimethylamine N-oxide, which induces the structure of unfolded proteins, show that formation of the coupled N-domain structure involves only small DeltaH and DeltaS changes. These results together indicate that the binding is driven by packing interactions in the complex that are enthalpically favored, and are consistent with the observation that the N-domain binds in an extended form and interacts with multiple IL-8 N-loop residues over a large surface area.
Collapse
Affiliation(s)
- Harshica Fernando
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | | |
Collapse
|
32
|
Houtman JCD, Brown PH, Bowden B, Yamaguchi H, Appella E, Samelson LE, Schuck P. Studying multisite binary and ternary protein interactions by global analysis of isothermal titration calorimetry data in SEDPHAT: application to adaptor protein complexes in cell signaling. Protein Sci 2007; 16:30-42. [PMID: 17192587 PMCID: PMC1794685 DOI: 10.1110/ps.062558507] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Multisite interactions and the formation of ternary or higher-order protein complexes are ubiquitous features of protein interactions. Cooperativity between different ligands is a hallmark for information transfer, and is frequently critical for the biological function. We describe a new computational platform for the global analysis of isothermal titration calorimetry (ITC) data for the study of binary and ternary multisite interactions, implemented as part of the public domain multimethod analysis software SEDPHAT. The global analysis of titrations performed in different orientations was explored, and the potential for unraveling cooperativity parameters in multisite interactions was assessed in theory and experiment. To demonstrate the practical potential and limitations of global analyses of ITC titrations for the study of cooperative multiprotein interactions, we have examined the interactions of three proteins that are critical for signal transduction after T-cell activation, LAT, Grb2, and Sos1. We have shown previously that multivalent interactions between these three molecules promote the assembly of large multiprotein complexes important for T-cell receptor activation. By global analysis of the heats of binding observed in sets of ITC injections in different orientations, which allowed us to follow the formation of binary and ternary complexes, we observed negative and positive cooperativity that may be important to control the pathway of assembly and disassembly of adaptor protein particles.
Collapse
Affiliation(s)
- Jon C D Houtman
- Department of Microbiology, University of Iowa, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Lipscomb WN. Aspartate transcarbamylase from Escherichia coli: activity and regulation. ADVANCES IN ENZYMOLOGY AND RELATED AREAS OF MOLECULAR BIOLOGY 2006; 68:67-151. [PMID: 8154326 DOI: 10.1002/9780470123140.ch3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- W N Lipscomb
- Department of Chemistry, Harvard University, Cambridge, MA
| |
Collapse
|
34
|
Wang Z, Feng LS, Matskevich V, Venkataraman K, Parasuram P, Laity JH. Solution Structure of a Zap1 Zinc-responsive Domain Provides Insights into Metalloregulatory Transcriptional Repression in Saccharomyces cerevisiae. J Mol Biol 2006; 357:1167-83. [PMID: 16483601 DOI: 10.1016/j.jmb.2006.01.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 12/21/2005] [Accepted: 01/03/2006] [Indexed: 10/25/2022]
Abstract
The Zap1 transcription factor controls expression of genes that regulate zinc homeostasis in Saccharomyces cerevisiae. The solution structure of two zinc fingers (zf1-2(CA3)) derived from a zinc-responsive domain of Zap1 (zf1-2) has been determined. Under zinc-limiting conditions, zinc finger 2 (zf2) from this domain has been shown to be a constitutive transcriptional activator. Moreover, repression of zf2 function in zinc-replete cells required zinc coordination to both canonical finger 1 (zf1) and zf2 metal sites, suggesting zf1-zf2 cooperativity underlies Zap1 metalloregulation. A structural basis for this cooperativity is identified here. Favorable inter-helical contacts in zf1-2(CA3) extend the individual finger hydrophobic cores through the zf1-zf2 interface. Tryptophan residues at position 5 in each finger provide numerous non-helical inter-finger contacts reminiscent of those observed in GLI1 zinc fingers 1 and 2. The molecular mechanism for zf1-dependent repression of zf2 transcriptional activation is explored further using NMR and CD titration studies. While zf1 independently forms a betabetaalpha solution structure, the majority of zf2 ensemble solution states do not adopt the canonical betabetaalpha zinc finger fold without zf1-zf2 interactions. Cooperative effects on Zn(II) affinities stemming from these finger-finger interactions are observed also in calorimetric studies, in which the 160(+/-20)nM (zf1) and 250(+/-40)nM (zf2) K(d) values for each individual finger increased substantially in the context of the zf1-2 protein (apparent K(dzf1-2WT)=4.6(+/-1.2)nM). On the basis of the above observations, we propose a mechanism for Zap1 transcriptional regulation in which zf1-zf2 interactions stabilize the betabetaalpha folded "repressed state" of the zf2 activation domain in the presence of cellular Zn(II) excess. Moreover, in contrast to earlier reports of <<1 labile zinc ion/Escherichia coli cell, the zf1-zf2 zinc affinities determined calorimetrically are consistent with Zn(II) levels >>1 labile zinc ion/eukaryotic cell.
Collapse
Affiliation(s)
- Zhonghua Wang
- Division of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110-2499, USA
| | | | | | | | | | | |
Collapse
|
35
|
Terán W, Krell T, Ramos JL, Gallegos MT. Effector-Repressor Interactions, Binding of a Single Effector Molecule to the Operator-bound TtgR Homodimer Mediates Derepression. J Biol Chem 2006; 281:7102-9. [PMID: 16407274 DOI: 10.1074/jbc.m511095200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The RND family transporter TtgABC and its cognate repressor TtgR from Pseudomonas putida DOT-T1E were both shown to possess multidrug recognition properties. Structurally unrelated molecules such as chloramphenicol, butyl paraben, 1,3-dihydroxynaphthalene, and several flavonoids are substrates of TtgABC and activate pump expression by binding to the TtgR-operator complex. Isothermal titration calorimetry was employed to determine the thermodynamic parameters for the binding of these molecules to TtgR. Dissociation constants were in the range from 1 to 150 microm, the binding stoichiometry was one effector molecule per dimer of TtgR, and the process was driven by favorable enthalpy changes. Although TtgR exhibits a large multidrug binding profile, the plant-derived compounds phloretin and quercetin were shown to bind with the highest affinity (K(D) of around 1 microm), in contrast to other effectors (chloramphenicol and aromatic solvents) for which exhibited a more reduced affinity. Structure-function studies of effectors indicate that the presence of aromatic rings as well as hydroxyl groups are determinants for TtgR binding. The binding of TtgR to its operator DNA does not alter the protein effector profile nor the effector binding stoichiometry. Moreover, we demonstrate here for the first time that the binding of a single effector molecule to the DNA-bound TtgR homodimer induces the dissociation of the repressor-operator complex. This provides important insight into the molecular mechanism of effector-mediated derepression.
Collapse
Affiliation(s)
- Wilson Terán
- Department of Biochemistry, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Apartado de Correos 419, E-18008 Granada, Spain
| | | | | | | |
Collapse
|
36
|
Mayhood TW, Windsor WT. Ligand binding affinity determined by temperature-dependent circular dichroism: cyclin-dependent kinase 2 inhibitors. Anal Biochem 2006; 345:187-97. [PMID: 16140252 DOI: 10.1016/j.ab.2005.07.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/29/2022]
Abstract
To support drug discovery efforts for cyclin-dependent kinase 2 (CDK2), a moderate-throughput binding assay that can rank order or estimate the affinity of lead inhibitors has been developed. The method referred to as temperature-dependent circular dichroism (TdCD) uses the classical temperature-dependent unfolding of proteins by circular dichroism (CD) to measure the degree of protein unfolding in the absence and presence of potential inhibitors. The midpoint of unfolding is the Tm value. Rank ordering the affinity and predictions of the dissociation constant of compounds is obtained by measuring the increase in Tm for different protein-inhibitor complexes. This is the first time an extensive characterization of the TdCD method has been described for characterizing lead inhibitors in a drug discovery mode. The method has several favorable properties. Using the new six-cell Peltier temperature controller for the Jasco 810 spectropolarimeter, one can determine the affinity of 12-18 compounds per day. The method also requires only 20-40 microg protein per sample and can be used to estimate the affinity of compounds with dissociation constants of picomolar to micromolar. An important property of the method for lead discovery is that dissociation constants of approximately 5 microM can be estimated from a single experiment using a low concentration of compound such as 20 microM, which is generally low enough for most small molecules to be soluble for testing. In addition, the method does not require labeling the compound or protein. Although other methods such as isothermal titration calorimetry (ITC) can provide a full thermodynamic characterization of binding, ITC requires 1-2 mg protein per sample, cannot readily determine binding constants below nanomolar values, is most versatile with soluble compounds, and has a throughput of two to three experiments per day. The ITC method is not usually used in a high-throughput drug discovery mode; however, using the thermodynamic information from several ITC experiments can make the TdCD method very robust in determining reliable binding constants. Using the kinase inhibitors BMS-250595, purvalanol B, AG-12275, flavopiridol, and several other compounds, it is demonstrated that one can obtain excellent comparisons between the Kd values of binding to CDK2 obtained by TdCD and ITC.
Collapse
Affiliation(s)
- Todd W Mayhood
- Schering-Plough Research Institute, Kenilworth, NJ 07033, USA
| | | |
Collapse
|
37
|
Kouadio JLK, Horn JR, Pal G, Kossiakoff AA. Shotgun alanine scanning shows that growth hormone can bind productively to its receptor through a drastically minimized interface. J Biol Chem 2005; 280:25524-32. [PMID: 15857837 DOI: 10.1074/jbc.m502167200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity binding site (Site1) of the human growth hormone (hGH) binds to its cognate receptor (hGHR) via a concave surface patch containing about 35 residues. Using 167 sequences from a shotgun alanine scanning analysis of Site1, we have determined that over half of these residues can be simultaneously changed to an alanine or a non-isosteric amino acid while still retaining a high affinity interaction. Among these hGH variants the distribution of the mutation is highly variable throughout the interface, although helix 4 is more conserved than the other binding elements. Kinetic and thermodynamic analyses were performed on 11 representative hGH Site1 variants that contained 14-20 mutations. Generally, the tightest binding variants showed similar associated rate constants (k(on)) as the wild-type (wt) hormone, indicating that their binding proceeds through a similar transition state intermediate. However, calorimetric analyses indicate very different thermodynamic partitioning: wt-hGH binding exhibits favorable enthalpy and entropy contributions, whereas the variants display highly favorable enthalpy and highly unfavorable entropy contributions. The heat capacities (DeltaCp) on binding measured for wt-hGH and its variants are significantly larger than normally seen for typical protein-protein interactions, suggesting large conformational or solvation effects. The multiple Site1 mutations are shown to indirectly affect binding of the second receptor at Site2 through an allosteric mechanism. We show that the stability of the ternary hormone-receptor complex reflects the affinity of the Site2 binding and is surprisingly exempt from changes in Site1 affinity, directly demonstrating that dissociation of the active signaling complex is a stepwise process.
Collapse
Affiliation(s)
- Jean-Louis K Kouadio
- Department of Biochemistry and Molecular Biology the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
38
|
Cooper A. Heat capacity effects in protein folding and ligand binding: a re-evaluation of the role of water in biomolecular thermodynamics. Biophys Chem 2005; 115:89-97. [PMID: 15752588 DOI: 10.1016/j.bpc.2004.12.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2004] [Revised: 11/08/2004] [Accepted: 12/10/2004] [Indexed: 11/28/2022]
Abstract
Large "anomalous" heat capacity (DeltaC(p)) effects are a common feature of the thermodynamics of biomolecular interactions in aqueous solution and, as a result of the improved facility for direct calorimetric measurements, there is a growing body of experimental data for such effects in protein folding, protein-protein and protein-ligand interactions. Conventionally such heat capacity effects have been ascribed to hydrophobic interactions, and there are some remarkably convincing demonstrations of the usefulness of this concept. Nonetheless, there is also increasing evidence that hydrophobic interactions are not the only possible source of such effects. Here we re-evaluate the possible contributions of other interactions to the heat capacity changes to be expected for cooperative biomolecular folding and binding processes, with particular reference to the role of hydrogen bonding and solvent water interactions. Simple models based on the hydrogen-bonding propensity of water as a function of temperature give quantitative estimates of DeltaC(p) that compare well with experimental observations for both protein folding and ligand binding. The thermodynamic contribution of bound waters in protein complexes is also estimated. The prediction from simple lattice models is that trapping of water in a complex should give more exothermic binding (DeltaDeltaH-6 to -12 kJ mol(-1)) with lower entropy (DeltaDeltaS(0) approximately -11 J mol(-1) K(-1)) and more negative DeltaC(p) (by about -75 J mol(-1) K(-1)) per water molecule. More generally, it is clear that significant DeltaC(p) effects are to be expected for any macromolecular process involving a multiplicity of cooperative weak interactions of whatever kind.
Collapse
Affiliation(s)
- Alan Cooper
- Chemistry Department, Glasgow University, Joseph Black Building, Glasgow G12 8QQ, Scotland, UK.
| |
Collapse
|
39
|
Fleming PJ, Fitzkee NC, Mezei M, Srinivasan R, Rose GD. A novel method reveals that solvent water favors polyproline II over beta-strand conformation in peptides and unfolded proteins: conditional hydrophobic accessible surface area (CHASA). Protein Sci 2004; 14:111-8. [PMID: 15576559 PMCID: PMC2253334 DOI: 10.1110/ps.041047005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In aqueous solution, the ensemble of conformations sampled by peptides and unfolded proteins is largely determined by their interaction with water. It has been a long-standing goal to capture these solute-water energetics accurately and efficiently in calculations. Historically, accessible surface area (ASA) has been used to estimate these energies, but this method breaks down when applied to amphipathic peptides and proteins. Here we introduce a novel method in which hydrophobic ASA is determined after first positioning water oxygens in hydrogen-bonded orientations proximate to all accessible peptide/protein backbone N and O atoms. This conditional hydrophobic accessible surface area is termed CHASA. The CHASA method was validated by predicting the polyproline-II (P(II)) and beta-strand conformational preferences of non-proline residues in the coil library (i.e., non-alpha-helix, non-beta-strand, non-beta-turn library derived from X-ray elucidated structures). Further, the method successfully rationalizes the previously unexplained solvation energies in polyalanyl peptides and compares favorably with published experimentally determined P(II) residue propensities. We dedicate this paper to Frederic M. Richards.
Collapse
Affiliation(s)
- Patrick J Fleming
- Jenkins Department of Biophysics, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | | | | | | | |
Collapse
|
40
|
Yang ZW, Tendian SW, Carson WM, Brouillette WJ, Delucas LJ, Brouillette CG. Dimethyl sulfoxide at 2.5% (v/v) alters the structural cooperativity and unfolding mechanism of dimeric bacterial NAD+ synthetase. Protein Sci 2004; 13:830-41. [PMID: 14978314 PMCID: PMC2286739 DOI: 10.1110/ps.03330104] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dimethyl sulfoxide (DMSO) is commonly used as a cosolvent to improve the aqueous solubility of small organic compounds. Its use in a screen to identify novel inhibitors of the enzyme NAD(+) synthetase led to this investigation of its potential effects on the structure and stability of this 60-kD homodimeric enzyme. Although no effects are observed on the enzyme's catalytic activity, as low as 2.5% (v/v) DMSO led to demonstrable changes in the stability of the dimer and its unfolding mechanism. In the absence of DMSO, the dimer behaves hydrodynamically as a single ideal species, as determined by equilibrium analytical ultracentrifugation, and thermally unfolds according to a two-state dissociative mechanism, based on analysis by differential scanning calorimetry (DSC). In the presence of 2.5% (v/v) DMSO, an equilibrium between the dimer and monomer is now detectable with a measured dimer association constant, K(a), equal to 5.6 x 10(6)/M. DSC curve analysis is consistent with this finding. The data are best fit to a three-state sequential unfolding mechanism, most likely representing folded dimer <==> folded monomer <==> unfolded monomer. The unusually large change in the relative stabilities of dimer and monomer, e.g., the association equilibrium shifts from an infinitely large K(a) down to approximately 10(6)/M, in the presence of relatively low cosolvent concentration is surprising in view of the significant buried surface area at the dimer interface, roughly 20% of the surface area of each monomer is buried. A hypothetical structural mechanism to explain this effect is presented.
Collapse
Affiliation(s)
- Zhengrong W Yang
- Center for Biophysical Sciences and Engineering, University of Alabama at Birmingham, 35294-4400, USA
| | | | | | | | | | | |
Collapse
|
41
|
Velázquez‐Campoy A, Ohtaka H, Nezami A, Muzammil S, Freire E. Isothermal Titration Calorimetry. ACTA ACUST UNITED AC 2004; Chapter 17:Unit 17.8. [DOI: 10.1002/0471143030.cb1708s23] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Baerga-Ortiz A, Bergqvist S, Mandell JG, Komives EA. Two different proteins that compete for binding to thrombin have opposite kinetic and thermodynamic profiles. Protein Sci 2004; 13:166-76. [PMID: 14691232 PMCID: PMC2286536 DOI: 10.1110/ps.03120604] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Thrombin binds thrombomodulin (TM) at anion binding exosite 1, an allosteric site far from the thrombin active site. A monoclonal antibody (mAb) has been isolated that competes with TM for binding to thrombin. Complete binding kinetic and thermodynamic profiles for these two protein-protein interactions have been generated. Binding kinetics were measured by Biacore. Although both interactions have similar K(D)s, TM binding is rapid and reversible while binding of the mAb is slow and nearly irreversible. The enthalpic contribution to the DeltaG(bind) was measured by isothermal titration calorimetry and van't Hoff analysis. The contribution to the DeltaG(bind) from electrostatic steering was assessed from the dependence of the k(a) on ionic strength. Release of solvent H(2)O molecules from the interface was assessed by monitoring the decrease in amide solvent accessibility at the interface upon protein-protein binding. The mAb binding is enthalpy driven and has a slow k(d). TM binding appears to be entropy driven and has a fast k(a). The favorable entropy of the thrombin-TM interaction seems to be derived from electrostatic steering and a contribution from solvent release. The two interactions have remarkably different thermodynamic driving forces for competing reactions. The possibility that optimization of binding kinetics for a particular function may be reflected in different thermodynamic driving forces is discussed.
Collapse
|
43
|
Cachia PJ, Hodges RS. Synthetic peptide vaccine and antibody therapeutic development: prevention and treatment of Pseudomonas aeruginosa. Biopolymers 2004; 71:141-68. [PMID: 12767116 DOI: 10.1002/bip.10395] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pseudomonas aeruginosa and Pseudomonas maltophilia account for 80% of opportunistic infections by pseudomonads. Pseudomonas aeruginosa is an opportunistic pathogen that causes urinary tract infections, respiratory system infections, dermatitis, soft tissue infections, bacteremia, and a variety of systemic infections, particularly in patients with severe burns, and in cancer and AIDS patients who are immunosuppressed. Pseudomonas aeruginosa is notable for its resistance to antibiotics, and is therefore a particularly dangerous pathogen. Only a few antibiotics are effective against Pseudomonas, including fluoroquinolones, gentamicin, and imipenem, and even these antibiotics are not effective against all strains. The difficulty treating Pseudomonas infections with antibiotics is most dramatically illustrated in cystic fibrosis patients, virtually all of whom eventually become infected with a strain that is so resistant that it cannot be treated. Since antibiotic therapy has proved so ineffective as a treatment, we embarked on a research program to investigate the development of a synthetic peptide consensus sequence vaccine for this pathogen. In this review article we will describe our work over the last 15 years to develop a synthetic peptide consensus sequence anti-adhesin vaccine and a related therapeutic monoclonal antibody (cross-reactive to multiple strains) to be used in the prevention and treatment of P. aeruginosa infections. Further, we describe the identification and isolation of a small peptide structural element found in P. aeruginosa strain K (PAK) bacterial pili, which has been proven to function as a host epithelial cell-surface receptor binding domain. Heterologous peptides are found in the pili of all strains of P. aeruginosa that have been sequenced to date. Several of these peptide sequences have been used in the development of an consensus sequence anti-adhesin vaccine targeted at the prevention of host cell attachment and further for the generation of a monoclonal antibody capable of prevention and treatment of existing infections.
Collapse
Affiliation(s)
- Paul J Cachia
- Department of Biochemistry and Molecular Genetics, University of Colorado Health Sciences Center, 4200 East 9th Avenue, Denver, CO 80262-0001, USA
| | | |
Collapse
|
44
|
Krogsgaard M, Prado N, Adams EJ, He XL, Chow DC, Wilson DB, Garcia KC, Davis MM. Evidence that structural rearrangements and/or flexibility during TCR binding can contribute to T cell activation. Mol Cell 2004; 12:1367-78. [PMID: 14690592 DOI: 10.1016/s1097-2765(03)00474-x] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
While in many cases the half-life of T cell receptor (TCR) binding to a particular ligand is a good predictor of activation potential, numerous exceptions suggest that other physical parameter(s) must also play a role. Accordingly, we analyzed the thermodynamics of TCR binding to a series of peptide-MHC ligands, three of which are more stimulatory than their stability of binding would predict. Strikingly, we find that during TCR binding these outliers show anomalously large changes in heat capacity, an indicator of conformational change or flexibility in a binding interaction. By combining the values for heat capacity (DeltaCp) and the half-life of TCR binding (t(1/2)), we find that we can accurately predict the degree of T cell stimulation. Structural analysis shows significant changes in the central TCR contact residue of the peptide-MHC, indicating that structural rearrangements within the TCR-peptide-MHC interface can contribute to T cell activation.
Collapse
Affiliation(s)
- Michelle Krogsgaard
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fanghänel J, Fischer G. Thermodynamic characterization of the interaction of human cyclophilin 18 with cyclosporin A. Biophys Chem 2003; 100:351-66. [PMID: 12646377 DOI: 10.1016/s0301-4622(02)00292-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Isothermal titration calorimetry (ITC) was used to investigate thermodynamic parameters of the cyclosporin A (CsA)-cyclophilin 18 (hCyp18) association reaction. We have calculated the thermodynamic parameters (enthalpy, entropy, heat capacity, and free energy of binding) of the CsA/hCyp18 complexation. All but two methods described in the literature underestimate the affinity to hCyp18 of CsA. We found that the association constant (1.1.10(8) M(-1) at 10 degrees C) of CsA to hCyp18 is in close agreement with the reciprocal of the reported inhibitory constant of the peptidylprolyl cis/trans isomerase activity of hCyp18. Interpretation of the thermodynamic parameters in buffered solution of water, 30% glycerol and D(2)O leads to the conclusion that the highly specific binding of CsA to hCyp18 is mainly mediated through hydrogen bonding and to a lesser degree through hydrophobic interaction. Furthermore, the pH dependence of the association constant was determined and analyzed according to a single proton linkage model, resulting in a pK(a) value of 5.7 in free hCyp18 and below 4.5 in the CsA complexed form. Titration experiments using different single component buffers possessing different heats of ionization allowed us to estimate that statistically half a proton is transferred upon CsA binding from the binding interface of hCyp18 to the buffer at pH 5.5. No proton transfer was detected at pH 7.5. The thermodynamic results are discussed in relation to the published X-ray and NMR structure of the free and CsA complexed hCyp18.
Collapse
Affiliation(s)
- Jörg Fanghänel
- Max Planck Research Unit for Enzymology of Protein Folding, Weinbergweg 22, D-06120 Halle (Saale), Germany
| | | |
Collapse
|
46
|
Rungsardthong U, Ehtezazi T, Bailey L, Armes SP, Garnett MC, Stolnik S. Effect of polymer ionization on the interaction with DNA in nonviral gene delivery systems. Biomacromolecules 2003; 4:683-90. [PMID: 12741785 DOI: 10.1021/bm025736y] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The optimization of DNA-cationic polymer complexation is crucial for nonviral gene delivery. Although physicochemical characterization of the interaction between DNA and cationic polymers has recently attracted more attention in the nonviral DNA delivery field, the literature on the effect of varying polycation charge density on DNA-cationic polymer complexation is still scarce. Thus, the aim of this study was to systematically assess the influence of the degree of ionization of a weak cationic polyelectrolyte (poly[2-(dimethylamino)ethyl methacrylate] or DMAEMA homopolymer) on its ability to form complexes with DNA. This was achieved by varying the solution pH from 4.0 to 8.0 and analyzing the resulting effects on the binding affinity, thermodynamic properties, complex size, and morphology. Lowering the solution pH led to higher degrees of ionization for the cationic polymer and hence greater binding affinities with DNA, as judged by the increased propensity of the former to displace ethidium bromide from DNA and also by relatively low monomer:nucleotide molar ratio (0.8:1) required to retard the migration of free DNA. Isothermal titration microcalorimetry studies further confirmed that a stronger interaction occurred at low pH than at high pH. By decreasing the pH from 8.0 to 6.6, K(obs) increased from 7.8 x 10(5) to 20.4 x 10(5) M(-1). More efficient condensation at low pH was demonstrated by the reduction of ethidium bromide fluorescence in the loading wells from gel electrophoresis, decreased complex sizes without agglomeration occurring at high polymer/DNA ratios, together with discrete and dense spherical complexes observed in TEM studies. This may be attributed to the presence of electrostatic stabilization from excess cationic polymer chains, which provide a repulsive shell around the polymer/DNA complex. The physicochemical data indicate that the increased degree of ionization for the DMAEMA homopolymer at lower pH results in higher binding affinity, smaller and more compact complexes, and more efficient condensation. These findings therefore highlight the importance of the degree of ionization on DNA complex formation for weak cationic polyelectrolytes.
Collapse
Affiliation(s)
- Uracha Rungsardthong
- School of Pharmaceutical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | | | | | | | | | | |
Collapse
|
47
|
Krell T, Renauld-Mongénie G, Nicolaï MC, Fraysse S, Chevalier M, Bérard Y, Oakhill J, Evans RW, Gorringe A, Lissolo L. Insight into the structure and function of the transferrin receptor from Neisseria meningitidis using microcalorimetric techniques. J Biol Chem 2003; 278:14712-22. [PMID: 12571247 DOI: 10.1074/jbc.m204461200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transferrin receptor of Neisseria meningitidis is composed of the transmembrane protein TbpA and the outer membrane protein TbpB. Both receptor proteins have the capacity to independently bind their ligand human transferrin (htf). To elucidate the specific role of these proteins in receptor function, isothermal titration calorimetry was used to study the interaction between purified TbpA, TbpB or the entire receptor (TbpA + TbpB) with holo- and apo-htf. The entire receptor was shown to contain a single high affinity htf-binding site on TbpA and approximately two lower affinity binding sites on TbpB. The binding sites appear to be independent. Purified TbpA was shown to have strong ligand preference for apo-htf, whereas TbpA in the receptor complex with TbpB preferentially binds the holo form of htf. The orientation of the ligand specificity of TbpA toward holo-htf is proposed to be the physiological function of TbpB. Furthermore, the thermodynamic mode of htf binding by TbpB of isotypes I and II was shown to be different. A protocol for the generation of active, histidine-tagged TbpB as well as its individual N- and C-terminal domains is presented. Both domains are shown to strongly interact with each other, and isothermal titration calorimetry and circular dichroism experiments provide clear evidence for this interaction causing conformational changes. The N-terminal domain of TbpB was shown to be the site of htf binding, whereas the C-terminal domain is not involved in binding. Furthermore, the interactions between TbpA and the different domains of TbpB have been demonstrated.
Collapse
Affiliation(s)
- Tino Krell
- Aventis Pasteur, 1541 avenue Marcel Mérieux, 69280 Marcy l'Etoile, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Lah J, Marianovsky I, Glaser G, Engelberg-Kulka H, Kinne J, Wyns L, Loris R. Recognition of the intrinsically flexible addiction antidote MazE by a dromedary single domain antibody fragment. Structure, thermodynamics of binding, stability, and influence on interactions with DNA. J Biol Chem 2003; 278:14101-11. [PMID: 12533537 DOI: 10.1074/jbc.m209855200] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Escherichia coli mazEF operon defines a chromosomal addiction module that programs cell death under various stress conditions. It encodes the toxic and long-lived MazF and the labile antidote MazE. The denaturation of MazE is a two-state reversible dimer-monomer transition. At lower concentrations the denatured state is significantly populated. This leads to a new aspect of the regulation of MazE concentration, which may decide about the life and death of the cell. Interactions of MazE with a dromedary antibody domain, cAbMaz1 (previously used as a crystallization aid), as well as with promoter DNA were studied using microcalorimetric and spectroscopic techniques. Unique features of cAbMaz1 enable a specific enthalpy-driven recognition of MazE and, thus, a significant stabilization of its dimeric native conformation. The MazE dimer and the MazE dimer-cAbMaz1 complex show very similar binding characteristics with promoter DNA, i.e. three binding sites with apparent affinities in micromolar range and highly exothermic binding accompanied by large negative entropy contributions. A working model for the MazE-DNA assembly is proposed on the basis of the structural and binding data. Both binding and stability studies lead to a picture of MazE solution structure that is significantly more unfolded than the structure observed in a crystal of the MazE-cAbMaz1 complex.
Collapse
Affiliation(s)
- Jurij Lah
- Department of Ultrastructure, Vrije Universiteit Brussel, Paardenstraat 65, B-1640 St. Genesius Rode, Belgium.
| | | | | | | | | | | | | |
Collapse
|
49
|
Tzakos AG, Bonvin AMJJ, Troganis A, Cordopatis P, Amzel ML, Gerothanassis IP, van Nuland NAJ. On the molecular basis of the recognition of angiotensin II (AII). NMR structure of AII in solution compared with the X-ray structure of AII bound to the mAb Fab131. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:849-60. [PMID: 12603318 DOI: 10.1046/j.1432-1033.2003.03441.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The high-resolution 3D structure of the octapeptide hormone angiotensin II (AII) in aqueous solution has been obtained by simulated annealing calculations, using high-resolution NMR-derived restraints. After final refinement in explicit water, a family of 13 structures was obtained with a backbone RMSD of 0.73 +/- 0.23 A. AII adopts a fairly compact folded structure, with its C-terminus and N-terminus approaching to within approximately 7.2 A of each other. The side chains of Arg2, Tyr4, Ile5 and His6 are oriented on one side of a plane defined by the peptide backbone, and the Val3 and Pro7 are pointing in opposite directions. The stabilization of the folded conformation can be explained by the stacking of the Val3 side chain with the Pro7 ring and by a hydrophobic cluster formed by the Tyr4, Ile5 and His6 side chains. Comparison between the NMR-derived structure of AII in aqueous solution and the refined crystal structure of the complex of AII with a high-affinity mAb (Fab131) [Garcia, K.C., Ronco, P.M., Verroust, P.J., Brunger, A.T., Amzel, L.M. (1992) Science257, 502-507] provides important quantitative information on two common structural features: (a) a U-shaped structure of the Tyr4-Ile5-His6-Pro7 sequence, which is the most immunogenic epitope of the peptide, with the Asp1 side chain oriented towards the interior of the turn approaching the C-terminus; (b) an Asx-turn-like motif with the side chain aspartate carboxyl group hydrogen-bonded to the main chain NH group of Arg2. It can be concluded that small rearrangements of the epitope 4-7 in the solution structure of AII are required by a mean value of 0.76 +/- 0.03 A for structure alignment and approximately 1.27 +/- 0.02 A for sequence alignment with the X-ray structure of AII bound to the mAb Fab131. These data are interpreted in terms of a biological "nucleus" conformation of the hormone in solution, which requires a limited number of structural rearrangements for receptor-antigen recognition and binding.
Collapse
Affiliation(s)
- Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, GR-45110 Greece.
| | | | | | | | | | | | | |
Collapse
|
50
|
Yu YB. Comment on “Computational Studies of Enzyme-Catalyzed Reactions: Where Are We in Predicting Mechanisms and in Understanding the Nature of Enzyme Catalysis”. J Phys Chem B 2003. [DOI: 10.1021/jp0216777] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Bruce Yu
- Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, Utah 84112
| |
Collapse
|