1
|
Sisterson MS, Uchima SY. Effects of soil-applied imidacloprid on behavior of Planococcus ficus. JOURNAL OF ECONOMIC ENTOMOLOGY 2025:toaf077. [PMID: 40220277 DOI: 10.1093/jee/toaf077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 04/14/2025]
Abstract
Planococcus ficus threatens grapevine production worldwide. Because mealybugs are protected from contact insecticides by residing under bark, systemic insecticides including the neonicotinoid imidacloprid are frequently used for control. The response of mealybugs to vines treated with soil-applied imidacloprid was assessed in a series of no-choice and choice tests. No-choice tests indicated that crawlers could initially establish on plants treated at all imidacloprid concentrations tested. While all mealybugs on plants treated with the 2 highest concentrations of imidacloprid died prior to maturation, mealybugs completed development and produced viable offspring on plants treated with the lowest concentration. To evaluate the effects of imidacloprid on mature mealybugs, no-choice tests were conducted using mealybug cohorts aged 3 or 4 wk. A single mealybug was allowed to establish on an untreated grapevine. After the mealybug was established, the vine was treated with one of 4 concentrations of soil-applied imidacloprid, and the response was evaluated after 6 d. Treatment concentration had minor effects on the survival of mature mealybugs, with the fecundity of females exposed to the highest concentrations of imidacloprid reduced compared to controls. Choice tests using mealybugs from cohorts aged 3 and 4 wk indicated no preference for treated versus untreated plants. Results indicated that crawlers are more susceptible to imidacloprid than mature mealybugs. Because imidacloprid must be consumed to kill insects, mature mealybugs appear to respond to treatment by feeding less and relying on stored energetic resources.
Collapse
Affiliation(s)
- Mark S Sisterson
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| | - Sean Y Uchima
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA, USA
| |
Collapse
|
2
|
Deng J, Yi M, Liang M, Tan D, Bai W, Wang C, Liu G, Xu Y, Qi Y, Lu Y, Wang L. Preference and Toxicity of Sulfoxaflor, Flupyradifurone, and Triflumezopyrim Bait against the Fire Ant Solenopsis invicta (Hymenoptera: Formicidae) and Their Efficacy under Field Conditions. INSECTS 2024; 15:813. [PMID: 39452389 PMCID: PMC11508729 DOI: 10.3390/insects15100813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/05/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
The red imported fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) is native to South America; however, its introduction to other countries has caused serious biodiversity, agricultural, and public health problems. As toxic bait is an effective method to control fire ant populations, the aim of this study was to determine the most effective concentration of sulfoxaflor, flupyradifurone, and triflumezopyrim as ingredients for baits against S. invicta under laboratory and field conditions. Sulfoxaflor, flupyradifurone, and triflumezopyrim had no effect on the feeding behavior of the fire ants. However, they significantly reduced the climbing, walking, and arrest abilities of the fire ant workers after 10 days of treatment, and insecticides were horizontally transferred from workers to alates or larvae. Specifically, sulfoxaflor and triflumezopyrim at 0.05% concentration were the most effective in exterminating fire ants. Sulfoxaflor and triflumezopyrim are nonrepellent and effective insecticides against S. invicta.
Collapse
Affiliation(s)
- Jiefu Deng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| | - Mei Yi
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| | - Mingrong Liang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| | - Delong Tan
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China;
| | - Weihui Bai
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China;
| | - Guiying Liu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| | - Yijuan Xu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| | - Yixiang Qi
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| | - Yongyue Lu
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| | - Lei Wang
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (J.D.); (M.Y.); (M.L.); (W.B.); (G.L.); (Y.X.); (Y.Q.)
| |
Collapse
|
3
|
Kishk A, Stelinski LL, Gowda S, Killiny N. Citrus-mediated gene silencing of cytochrome P 450 suppresses insecticide resistance and increases mortality in Diaphorina citri. PEST MANAGEMENT SCIENCE 2024; 80:4980-4992. [PMID: 38843443 DOI: 10.1002/ps.8218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/08/2024] [Accepted: 05/20/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Asian citrus psyllid, Diaphorina citri, is a hemipteran that vectors the causal pathogen of citrus greening disease, or huanglongbing (HLB). HLB is a tree killing disease that has severely limited citrus production globally. Unfortunately, there is no cure for this disease, and mitigation depends on multiple insecticide applications to reduce vector populations. Silencing of cytochrome P450 expression associated with detoxification enzymes by RNA interference is known to increase susceptibility of D. citri to insecticides. However, dsRNA was previously introduced into psyllids by topical applications. The possible application of this technology for pest management will require effective field delivery of the dsRNA. Therefore, we evaluated a virus vector (Citrus tristeza virus; 'mild strain' T36) to deliver gene silencing directly to this sap-sucking insect via plant phloem. Citrus macrophylla plants inoculated with CTV expressing a truncated consensus sequence of CYP450 (CTV-tCYP450) constantly produced small interfering RNA in the plant phloem that targeted five cytochrome p540 (CYP450) genes in D. citri. RESULTS Insecticide susceptible D. citri reared on citrus infected with CTV-tCYP450 were subsequently more susceptible to imidacloprid, fenpropathrin, carbaryl, and chlorpyrifos than those reared on citrus infected with wildtype CTV or non-infected negative controls. Additionally, nymph survival and adult lifespan were significantly reduced when psyllids were reared on CTV-tCYP450 citrus plants compared with controls. Interestingly, similar results were obtained after one and two generations of rearing. Finally, field-collected psyllids from areas with known broad-spectrum insecticide resistance were rendered more susceptible to imidacloprid and fenpropathrin after feeding on CTV-tCYP450 citrus trees as compared with those reared on controls. CONCLUSION The integration of citrus-mediated RNA inference targeting psyllid detoxification enzymes could function as a resistance management tool and reduce insecticide input in an integrated pest management program for HLB. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Abdelaziz Kishk
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
- Department of Plant Protection, Faculty of Agriculture, Tanta University, Tanta, Egypt
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Siddarame Gowda
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Nabil Killiny
- Department of Plant Pathology, Citrus Research and Education Center, IFAS, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
4
|
Zhang Q, Wang F, Haq IU, Li C, Gou Y, Zhang K, Liu H, Liu C. Comparative toxicity and enzymatic detoxification responses in Spodoptera frugiperda (Lepidoptera: Noctuidae) to two insecticides. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116917. [PMID: 39182280 DOI: 10.1016/j.ecoenv.2024.116917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
The fall armyworm (FAW), Spodoptera frugiperda Smith (Lepidoptera: Noctuidae), poses a significant threat to food security, necessitating effective management strategies. While chemical control remains a primary approach, understanding the toxicity and detoxification mechanisms of different insecticides is crucial. In this study, we conducted leaf-dipping bioassays to assess the toxicity of quinalphos and beta-cypermethrin·emamectin benzoate (β-cyp·EMB) on S. frugiperda larvae. Additionally, we assessed the response of alterations in CarE, GST, MFO, and AChE activities to sublethal concentrations of these insecticides over various treatment durations. Results indicated that β-cyp·EMB exhibited higher toxicity than quinalphos in S. frugiperda. Interestingly, the highest activities of GST, CarE, MFO, and AChE were observed at 6 h exposure to LC10 and LC25 of β-cyp·EMB, surpassing equivalent sublethal concentrations of quinalphos. Subsequently, GST and CarE activities exposure to β-cyp·EMB steadily decreased, while MFO and AChE activities exposure to both insecticides was initially decreased then increased. Conversely, two sublethal concentrations of quinalphos notably enhanced GST activity across all exposure durations, with significantly higher than β-cyp·EMB at 12-48 h. Similarly, CarE activity was also increased at various durations. Our research has exhibited significant alterations in enzyme activities exposure to both concentration and duration. Furthermore, Pearson correlation analysis showed significant correlations among these enzyme activities at different treatment durations. These findings contribute to a better understanding of detoxification mechanisms across different insecticides, providing valuable insights for the rational management of S. frugiperda populations.
Collapse
Affiliation(s)
- Qiangyan Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Fawu Wang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Inzamam Ul Haq
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunchun Li
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuping Gou
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Kexin Zhang
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Huiping Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China
| | - Changzhong Liu
- Biocontrol Engineering Laboratory of Crop Diseases and Pests of Gansu Province, College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
5
|
Chen XD, George J, Diepenbrock LM, Gossett H, Liu G, Qureshi JA, Stelinski LL. Feeding behavior and hormoligosis associated with imidacloprid resistance in Asian citrus psyllid, Diaphorina citri. INSECT SCIENCE 2024; 31:1211-1221. [PMID: 37969015 DOI: 10.1111/1744-7917.13293] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 09/13/2023] [Accepted: 10/10/2023] [Indexed: 11/17/2023]
Abstract
Imidacloprid is a neonicotinoid insecticide used for managing the Asian citrus psyllid, Diaphorina citri Kuwayama, which serves as vector of phytopathogens causing citrus greening. However, development of resistance to neonicotinoids among populations of D. citri has coincided with occasional control failures in the field. The objectives of this research were to (1) survey current levels of imidacloprid resistance in Florida citrus; (2) compare feeding behavior between imidacloprid-resistant and susceptible D. citri using electrical penetration graph recordings, and (3) investigate the possible amplification of insecticide hormoligosis associated with resistance. Field surveys confirmed that the susceptibility of D. citri populations to imidacloprid has decreased in commercial Florida citrus groves compared with a laboratory-susceptible population. Following 12 generations of selection, resistance to imidacloprid increased by 438 fold compared with the susceptible strain. Imidacloprid-susceptible D. citri feeding on citrus exhibited significantly more bouts associated with intercellular pathway (C), phloem penetration (D), phloem salivation (E1), and nonprobing (Np) activities than imidacloprid-resistant counterparts. However, there were no differences observed in the frequency or duration of phloem ingestion or xylem feeding between susceptible and resistant D. citri. There was no statistical difference in fecundity between resistant and susceptible strains. However, the fecundity of imidacloprid-susceptible female D. citri treated with a sublethal concentration of imidacloprid (LC25) increased significantly compared with controls, while such hormoligosis was less pronounced among imidacloprid-resistant psyllids. Our results suggest that imidacloprid-resistant psyllids may cease feeding sooner than susceptible counterparts following sublethal exposure to this insecticide, indicative of a behavioral resistance mechanism.
Collapse
Affiliation(s)
- Xue Dong Chen
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, Lake Alfred, Florida, USA
- Entomology and Nematology Department, University of Florida, Southwest Florida Research and Education Center, Immokalee, Florida, USA
| | - Justin George
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, Mississippi, USA
| | - Lauren M Diepenbrock
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, Lake Alfred, Florida, USA
| | - Hunter Gossett
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, Lake Alfred, Florida, USA
| | - Guoping Liu
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, Lake Alfred, Florida, USA
| | - Jawwad A Qureshi
- Entomology and Nematology Department, University of Florida, Southwest Florida Research and Education Center, Immokalee, Florida, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, University of Florida, Citrus Research and Education Center, Lake Alfred, Florida, USA
| |
Collapse
|
6
|
Khurshid A, Inayat R, Basit A, Mobarak SH, Gui SH, Liu TX. Effects of thiamethoxam on physiological and molecular responses to potato plant (Solanum tuberosum), green peach aphid (Myzus persicae), and parasitoid (Aphidius gifuensis). PEST MANAGEMENT SCIENCE 2024; 80:3000-3009. [PMID: 38312101 DOI: 10.1002/ps.8006] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
BACKGROUND To improve integrated pest management (IPM) performance it is essential to assess pesticide side effects on host plants, insect pests, and natural enemies. The green peach aphid (Myzus persicae Sulzer) is a major insect pest that attacks various crops. Aphidius gifuensis is an essential natural enemy of M. persicae that has been applied effectively in controlling M. persicae. Thiamethoxam is a neonicotinoid pesticide widely used against insect pests. RESULTS The current study showed the effect of thiamethoxam against Solanum tuberosum, M. persicae, and A. gefiuensis and the physiological and molecular response of the plants, aphids, and parasitoids after thiamethoxam application. Thiamethoxam affected the physical parameters of S. tuberosum and generated a variety of sublethal effects on M. persicae and A. gefiuensis, including nymph development time, adult longevity, and fertility. Our results showed that different thiamethoxam concentrations [0.1, 0.5, and 0.9 μm active ingredient (a.i.)/L] on different time durations (2, 6, and 10 days) increased the antioxidant enzyme activities SOD, POD, and CAT of S. tuberosum, M. persicae, and A. gefiuensis significantly compared with the control. Our results also showed that different thiamethoxam concentrations (0.1, 0.5, and 0.9 μm a.i./L) on different time durations (2, 6, and 10 days) increased the expression of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), acetylcholinesterase (AChE), carboxylesterase (CarE) and glutathione-S-transferase (GST) genes of S. tuberosum, M. persicae, and A. gefiuensis compared with the control. CONCLUSION Our findings reveal that using thiamethoxam at suitable concentrations and time durations for host plants and natural enemies may enhance natural control through the conservation of natural enemies by overcoming any fitness disadvantages. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Rehan Inayat
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Abdul Basit
- Institute of Entomology, Guizhou University, Guiyang, China
| | | | - Shun-Hua Gui
- Institute of Entomology, Guizhou University, Guiyang, China
| | - Tong-Xian Liu
- Institute of Entomology, Guizhou University, Guiyang, China
| |
Collapse
|
7
|
Zhang Y, Wang B, Zhou Y, Liao M, Sheng C, Cao H, Gao Q. Identification and characterization of odorant receptors in Plutella xylostella antenna response to 2,3-dimethyl-6-(1-hydroxy)-pyrazine. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105523. [PMID: 37532335 DOI: 10.1016/j.pestbp.2023.105523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023]
Abstract
Diamondback moth (Plutella xylostella), a worldwide migratory pest that is developing strong resistance to various chemical insecticides. It has been determined that four natural pyrazines isolated from Allium tuberosum showed significant repellent activity to P. xylostella, but the molecular target still unknown. In the present study, a novel synthetic route for 2,3-dimethyl-6-(1-hydroxy)-pyrazine which has the most significant repellent activity with a purity of 90.60% was established. Simultaneously, the bioassay result declared that the repellent grade was IV at a dosage of 0.01 mg which was the same as to the published data. Transcriptomics analysis detected 1643 upregulated and 3837 downregulated genes in P. xylostella antennae following this pyrazine exposure. Then, 2142 differentially expressed genes were annotated using Gene Ontology and 2757 genes were annotated by Kyoto Encyclopedia of Genes and Genomes. Moreover, this procedure identified 84 odour perception-related genes, 58 odorant receptor (OR) genes including 57 conventional ORs and the odorant receptor co-receptor (Orco, atypical odorant receptor) gene, and 26 odorant-binding protein (OBP) genes. Based on quantitative real time PCR (RT-qPCR) and differential expression results, 9 OR genes including the Orco were cloned and characterised. In summary, this study provides important basis for the utilization of pyrazines as the main active ingredients or lead compounds to developing new botanical pesticides, which will reduce application of chemical pesticides and postpone the development of resistance.
Collapse
Affiliation(s)
- Yongjie Zhang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China
| | - Buguo Wang
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China
| | - Yeping Zhou
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China
| | - Min Liao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China
| | - Chengwang Sheng
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China
| | - Haiqun Cao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China
| | - Quan Gao
- Anhui Province Engineering Laboratory for Green Pesticide Development and Application, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China; Anhui Province Key Laboratory of Crop Integrated Pest Management, School of Plant Protection, Anhui Agricultural University, 230036 Hefei, China.
| |
Collapse
|
8
|
Vieira JGA, Santana EDR, Thiesen LV, Matioli TF, Yamamoto PT. Effect of Systemic Insecticides Applied via Drench on the Mortality of Diaphorina citri on Curry Leaf. INSECTS 2023; 14:insects14050422. [PMID: 37233050 DOI: 10.3390/insects14050422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/27/2023]
Abstract
Huanglongbing (HLB), the most serious disease in citriculture, is caused by the bacteria Candidatus Liberibacter spp., which is transmitted by the Asian citrus psyllid (ACP) Diaphorina citri. HLB is mainly controlled with insecticides, necessitating the development of alternative methods, e.g., the use of trap plants such as curry leaf Bergera koenigii, which is highly attractive to the ACP. We evaluated the effects of the main systemic insecticides used by citrus growers, applied via drench to adults of D. citri on the curry leaf tree. We tested the persistence of three pesticides: thiamethoxam, thiamethoxam + chlorantraniliprole, and imidacloprid in protected cultivation and the field condition at 7, 14, 28, 42, 56, 70, 98, and 154 days after the application. Different concentrations of insecticides containing the active ingredient thiamethoxam were tested on adults to determine the LC10 and LC50. Finally, we assessed the sublethal effects on the oviposition and development of D. citri. The insecticides controlled the adults for long periods. However, in the field experiment, from 42 days after application there was a decrease in mortality caused by pesticides applied via drench, while in the protected cultivation, mortality did not decline until the last day of evaluation. The median lethal concentration (LC50) for thiamethoxam was 0.031 g of active ingredient per plant, and for thiamethoxam in a mixture, the LC50 was 0.028 g a.i. per plant. In the experiment with sublethal doses, D. citri did not oviposit on the treated plants. Our findings suggest that the attract-and-kill system using the curry leaf tree and systemic insecticides is effective for the control of D. citri and contributes to the integrated management of HLB.
Collapse
Affiliation(s)
- Julia Gabriela Aleixo Vieira
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Emile Dayara Rabelo Santana
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Leonardo Vinicius Thiesen
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Thaís Fagundes Matioli
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| | - Pedro Takao Yamamoto
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo (ESALQ/USP), Piracicaba 13418-900, Brazil
| |
Collapse
|
9
|
Sisterson MS, Uchima SY, Wallis CM, Krugner R. Glassy-Winged Sharpshooters Cease Feeding and Avoid Plants Treated With Sub-Lethal Doses of the Neonicotinoid Insecticide Imidacloprid. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:240-248. [PMID: 36545822 DOI: 10.1093/jee/toac201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 06/17/2023]
Abstract
Insecticides are a primary means for suppressing populations of insects that transmit plant pathogens. Application of insecticides for limiting the spread of insect-transmitted plant pathogens is often most effective when applied on an area-wide scale. The glassy-winged sharpshooter is a vector of the bacterial pathogen Xylella fastidiosa, which causes numerous plant diseases including Pierce's disease of grapevine. The glassy-winged sharpshooter has been the subject of an area-wide suppression program in California for nearly two decades. Overreliance on a limited number of active ingredients including the neonicotinoid imidacloprid has resulted in increased levels of resistance to commonly applied products. In California, glassy-winged sharpshooters move between citrus, an important overwintering host, and vineyards. Accordingly, imidacloprid is routinely applied via the irrigation system in vineyards and citrus orchards. For soil applied applications, it may take days to weeks for concentrations in plants to increase to lethal doses. Further, as the dose of imidacloprid required to kill sharpshooters increases due to resistance, so too does the period that sharpshooters are exposed to sub-lethal doses. Response of glassy-winged sharpshooter to cowpea plants treated with sub-lethal doses of imidacloprid was evaluated by conducting no-choice and choice tests. In no-choice feeding assays, glassy-winged sharpshooters caged on plants treated with sub-lethal doses of imidacloprid ceased feeding and produced little excreta. Further, sub-lethal exposure to a range of doses over a 4-d period did not affect viability over a 9-wk post-exposure holding period on untreated plants. In choice-tests, glassy-winged sharpshooters avoided treated plants and were observed predominately on untreated plants. Results suggest that application of imidacloprid to vineyards and citrus orchards may push glassy-winged sharpshooters out of treated habitats rather than kill them.
Collapse
Affiliation(s)
- Mark S Sisterson
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Sean Y Uchima
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Christopher M Wallis
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Rodrigo Krugner
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| |
Collapse
|
10
|
Zhu G, Ding W, Zhao Y, Xue M, Zhao H, Liu S. Biological and physiological responses of two Bradysia pests, Bradysia odoriphaga and Bradysia difformis, to Dinotefuran and Lufenuron. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 190:105338. [PMID: 36740337 DOI: 10.1016/j.pestbp.2023.105338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/19/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
Bradysia odoriphaga and Bradysia difformis are destructive root maggots that cause severe losses to vegetables, flowers and edible fungi. Due to the long-term dependence on single pesticides, Bradysia resistance to insecticides has increased, and field control efficacy has decreased obviously. To screen alternative insecticides, and compare the insecticide susceptibility of these two species, we tested the toxicity of eight insecticides to B. odoriphaga and B. difformis, and measured the sublethal effects of Dinotefuran and Lufenuron on life-history parameters and detoxification enzyme activities. Bioassay results indicated that Dinotefuran and Lufenuron had relatively higher toxicity to B. odoriphaga and B. difformis compared to other neonicotinoid and insect growth regulator insecticides, respectively. Significant adverse impacts caused by sublethal concentrations (LC20) of Dinotefuran and Lufenuron on the life-history parameters of F0 and F1 generations of B. odoriphaga and B. difformis were observed. These included reduced survival, prolonged larval development and reduced adult longevity and fecundity. B. odoriphaga had greater resistance and adaptation to insecticides than B. difformis, and an LC20 concentration of Dinotefuran stimulated the reproduction of B. odoriphaga F1 generation and increased the life table parameters. Detoxifying enzymes (CarE and GSTs) and P450 activities fluctuated after a sublethal concentration (Dinotefuran and Lufenuron) treatment, and at the peak value of enzyme activities, the enhancement of detoxifying enzymes of B. odoriphaga was significantly higher than that of B. difformis. These results indicated that Dinotefuran and Lufenuron should be considered as alternatives to other insecticides for control of root maggots. B. odoriphaga exhibited stronger adaptation to insecticides than B. difformis. These data provide guidance for control of root maggots, and the basic information presented here can help reveal the differences in adaptive mechanisms between B. odoriphaga and B. difformis.
Collapse
Affiliation(s)
- Guodong Zhu
- College of Agronomy, Liaocheng University, Shandong Province 252000, China; College of Plant Protection, Shandong Agricultural University, Shandong Province 271018, China.
| | - Wenjuan Ding
- College of Plant Protection, Shandong Agricultural University, Shandong Province 271018, China
| | - Yongfei Zhao
- Liaocheng Academy of Agricultural Sciences, Liaocheng 252000, China
| | - Ming Xue
- College of Plant Protection, Shandong Agricultural University, Shandong Province 271018, China.
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Shandong Province 271018, China
| | - Shouzhu Liu
- College of Agronomy, Liaocheng University, Shandong Province 252000, China
| |
Collapse
|
11
|
Kang Y, Koo HN, Kim HK, Kim GH. Analysis of the Feeding Behavior and Life Table of Nilaparvata lugens and Sogatella furcifera (Hemiptera: Delphacidae) under Sublethal Concentrations of Imidacloprid and Sulfoxaflor. INSECTS 2022; 13:1130. [PMID: 36555040 PMCID: PMC9786143 DOI: 10.3390/insects13121130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The brown planthopper (BPH) Nilaparvata lugens and white-backed planthopper (WBPH) Sogatella furcifera are serious rice insect pests that cannot overwinter in Korea and migrate from southeast Asian countries and China. In this study, we investigated the sublethal effects of imidacloprid and sulfoxaflor on the biological parameters and feeding behavior of planthoppers. These sublethal concentrations significantly decreased the net reproduction rate (R0), the intrinsic rate of increase (rm), and the mean generation time (T). For BPHs, the total durations of nonpenetration (NP) waveform by imidacloprid (LC10 = 164.74 and LC30 = 176.48 min) and sulfoxaflor (LC10 = 235.57 and LC30 = 226.93 min) were significantly different from those in the control group (52.73 min). In addition, on WBPHs, the total durations of NP waveform by imidacloprid (LC10 = 203.69 and LC30 = 169.9 min) and sulfoxaflor (LC10 = 134.02 and LC30 = 252.14 min) were significantly different from those in the control group (45.18 min). Moreover, the LC10 and LC30 of these insecticides significantly decreased the phloem feeding time. In conclusion, imidacloprid had a better effect on the inhibition of feeding of the WBPH, and sulfoxaflor showed a better effect on the inhibition of feeding of the BPH. Therefore, it is suggested that treatment with sublethal concentrations of the above insecticides will reduce the feeding of BPHs and WBPHs on rice phloem.
Collapse
|
12
|
Functional Characterization of the Ryanodine Receptor Gene in Diaphorina citri. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122005. [PMID: 36556370 PMCID: PMC9785964 DOI: 10.3390/life12122005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/03/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
The Asian citrus psyllid Diaphorina citri (Hemiptera: Liviidae) is a major citrus pest spread around the world. It is also a vector of the bacterium 'Candidatus Liberibacter asiaticus', considered the cause of the fatal citrus disease huanglongbing (HLB). Insect ryanodine receptors (RyRs) are the primary target sites of diamide insecticides. In this study, full-length RyR cDNA from D. citri (named DcRyR) was isolated and identified. The 15,393 bp long open reading frame of DcRyR encoded a 5130 amino acid protein with a calculated molecular weight of 580,830 kDa. This protein had a high sequence identity (76-79%) with other insect homologs and a low sequence identity (43-46%) with mammals. An MIR domain, two RIH domains, three SPRY domains, four RyR repeat domains, an RIH-associated domain at the N-terminus, two consensus calcium-binding EF-hands, and six transmembrane domains were among the characteristics that DcRyR shared with insect and vertebrate RyRs. In expression analysis, the DcRyR gene displayed transcript abundance in all tissues and developmental stages as well as gene-differential and stage-specific patterns. In addition, diagnostic PCR experiments revealed that DcRyR had three potential alternative splice variants and that splicing events might have contributed to the various functions of DcRyR. However, diamide resistance-related amino acid residue mutations I4790M/K and G4946E were not found in DcRyR. These results can serve as the basis for further investigation into the target-based diamide pesticide resistance of D. citri.
Collapse
|
13
|
Lago C, Cornara D, Minutillo SA, Moreno A, Fereres A. Feeding behaviour and mortality of Philaenus spumarius exposed to insecticides and their impact on Xylella fastidiosa transmission. PEST MANAGEMENT SCIENCE 2022; 78:4841-4849. [PMID: 35908181 PMCID: PMC9804339 DOI: 10.1002/ps.7105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/26/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Insecticides are essential, though controversial tools in modern pest management. Insecticides can slow the spread of key vector-borne plant pathogens, but often lead to inconsistent results given that insecticide use is generally focused on acute toxicity under no-choice conditions. Here, we analysed the lethal (survival) and sublethal (feeding behaviour) effects of six commercial products (acetamiprid, deltamethrin, spinosad, sulfoxaflor, pyrethrin and kaolin) on Philaenus spumarius, vector of the bacterium Xylella fastidiosa. Furthermore, we assessed the impact of insecticides displaying different degrees of acute toxicity against spittlebugs (highest to lowest: acetamiprid, pyrethrin and kaolin) on the transmission of X. fastidiosa by P. spumarius under both free-choice and no-choice conditions. RESULTS Deltamethrin, acetamiprid and to a limited extent pyrethrin significantly altered the feeding behaviour of P. spumarius. Deltamethrin and acetamiprid were highly toxic against P. spumarius, but the mortality induced by exposure to pyrethrin was limited overall. By contrast, spinosad, sulfoxaflor and kaolin did not significantly impact P. spumarius feeding behaviour or survival. Under no-choice conditions, both pyrethrin and acetamiprid reduced the X. fastidiosa inoculation rate compared with kaolin and the control. On the other hand, pyrethrin reduced transmission, but acetamiprid failed to significantly affect bacterial inoculation under free-choice conditions. CONCLUSION Pyrethrin was the only compound able to reduce X. fastidiosa transmission under both free-choice and no-choice conditions. Xylella fastidiosa management strategy based exclusively on the evaluation of insecticide acute toxicity under no-choice conditions would most likely fail to prevent, or slow, bacterial spread. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Clara Lago
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Departamento de Producción AgrariaEscuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas (ETSIAAB), Universidad Politécnica de Madrid (UPM)MadridSpain
| | - Daniele Cornara
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Department of Soil, Plant and Food SciencesEntomological and Zoological Section, University of Bari Aldo MoroBariItaly
- International Centre for Advanced Mediterranean Agronomic Studies ‐ Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
| | - Serena Anna Minutillo
- International Centre for Advanced Mediterranean Agronomic Studies ‐ Institute of Bari (CIHEAM‐Bari)ValenzanoItaly
| | - Aránzazu Moreno
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Associate Unit IVAS (CSIC‐UPM)Control of Insect Vectors of Viruses in Horticultural Sustainable SystemsMadridSpain
| | - Alberto Fereres
- Instituto de Ciencias Agrarias (ICA). Consejo Superior de Investigaciones Científicas (CSIC). Calle Serrano 115dpdoMadridSpain
- Associate Unit IVAS (CSIC‐UPM)Control of Insect Vectors of Viruses in Horticultural Sustainable SystemsMadridSpain
| |
Collapse
|
14
|
Identification of a Cordyceps fumosorosea Fungus Isolate and Its Pathogenicity against Asian Citrus Psyllid, Diaphorina citri (Hemiptera: Liviidae). INSECTS 2022; 13:insects13040374. [PMID: 35447816 PMCID: PMC9031585 DOI: 10.3390/insects13040374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 12/10/2022]
Abstract
Simple Summary Some entomopathogenic fungi are highly pathogenic to Diaphorina citri, which is the mainly transmitting vector of CLas. In our study, we isolated an entomopathogenic fungus strain from an adult cadaver of D. citri. The isolate was identified as Cordyceps fumosorosea, based on morphology and ITS sequence analysis, and named C. fumosorosea SCAU-CFDC01. We further evaluated its pathogenicity against D. citri nymphs and adults under laboratory and greenhouse conditions. The laboratory results showed that C. fumosorosea SCAU-CFDC01 was most pathogenic to young nymphs, followed by old nymphs and adults. Furthermore, the results on greenhouse experiments revealed that C. fumosorosea SCAU-CFDC01 not only had high pathogenicity against nymphs, but also had serious negative effects on adults from nymphs treated, including emergence rate of adults and female longevity. Our results showed C. fumosorosea SCAU-CFDC01 was highly pathogenic to D. citri, and these findings will facilitate mycoparasite development for biological control of D. citri. Abstract Diaphorina citri is the mainly transmitting vector of the citrus huanglongbing pathogen, which causes severe losses in in the citrus industry. In this study, we isolated a new entomopathogenic fungus, identified as member of Cordyceps fumosorosea based on morphology and ITS sequence analysis. We named C. fumosorosea SCAU-CFDC01 and evaluated its pathogenicity against D. citri nymphs and adults by immersion under laboratory and greenhouse conditions. Results showed that SCAU-CFDC01 was most pathogenic to young nymphs, followed by old nymphs and adults. The LC50 values of the fungus on nymphs and adults showed a declining trend over a 2–7-day period after inoculation. The LT50 (lethal time for a certain concentration to cause 50% mortality) values also presented a decreasing trend along with increasing conidia concentrations. For the results on greenhouse experiments, when 3rd and 5th instar nymphs were inoculated with 1 × 105 conidia mL−1, the survival rate of nymphs were lower, and the emergence rate of adults and female longevity was significantly reduced compared with the control. However, there were no significant effects on sex ratio of adults and male longevity. Our results showed SCAU-CFDC01 was highly pathogenic to D. citri, and may promote mycoparasite development for biological control of D. citri.
Collapse
|
15
|
Sunamura E, Tamura S, Taki H, Sato H, Shoda-Kagaya E, Urano T. Efficacy of Two Neonicotinoid Insecticides against Invasive Wood Borer Aromia bungii Larvae in Dietary Toxicity Test. INSECTS 2021; 12:insects12070592. [PMID: 34209802 PMCID: PMC8303763 DOI: 10.3390/insects12070592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/24/2021] [Accepted: 06/26/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary This study investigated the effects of two neonicotinoid insecticides (thiamethoxam and dinotefuran) on alien wood borer Aromia bungii, which invaded Japan recently. Small neonates and large larvae were fed artificial diet with different insecticide concentrations and then reared for 3 (neonates) or 12 (large larvae) weeks in the laboratory. Diet excavation immediately dropped in larvae exposed to high concentrations of both insecticides (≥1 ppm in neonates and ≥10 ppm in large larvae). Their growth was significantly suppressed, and the survival rate gradually declined over time (≥87% decline over 12 weeks in large larvae). These effects were similar between neonates and large larvae, but neonates were affected more by lower insecticide concentrations than large larvae. The two insecticides gradually debilitate A. bungii larvae. In practical use, rapid suppression of A. bungii wood boring damage can be expected by injecting these insecticides into infested trees. However, a relatively long–term retention of the insecticides may be required to kill the larvae in the trees, especially large larvae. Neonates may be controlled with less insecticides and shorter exposure than large larvae. Abstract In recent years, insecticide trunk injection was put into practical use for controlling wood boring pests. However, few studies have investigated the dose–response relationships between insecticides and wood–boring pests in detail. This study used two commercial formulations of the neonicotinoid insecticides thiamethoxam and dinotefuran and investigated their dose–response relationships with invasive wood borer Aromia bungii (Coleoptera: Cerambycidae) larvae. Neonates and late instar larvae were reared with an artificial diet containing different insecticide concentrations (0.01–100 ppm) in the laboratory, and their diet excavation activity, survival rate, and weight change were recorded. Diet excavation immediately dropped in larvae exposed to high concentrations of thiamethoxam or dinotefuran (≥1 ppm in neonates and ≥10 ppm in late instar larvae). The weight and survival rate gradually declined over 12 weeks in late instar larvae. These results suggest that the two neonicotinoids intoxicate and debilitate A. bungii larvae gradually to death. In practical use, rapid suppression of A. bungii wood boring damage can be expected by trunk injection of neonicotinoid insecticides. However, a relatively long-term retention of the insecticides may be required to kill large larvae. Neonates may be controlled with lower insecticide dosage and shorter exposure than larger larvae.
Collapse
Affiliation(s)
- Eiriki Sunamura
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan; (S.T.); (H.T.); (H.S.); (E.S.-K.)
- Correspondence: ; Tel.: +81-29-829-8254
| | - Shigeaki Tamura
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan; (S.T.); (H.T.); (H.S.); (E.S.-K.)
| | - Hisatomo Taki
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan; (S.T.); (H.T.); (H.S.); (E.S.-K.)
| | - Hiroki Sato
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan; (S.T.); (H.T.); (H.S.); (E.S.-K.)
| | - Etsuko Shoda-Kagaya
- Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki 305-8687, Japan; (S.T.); (H.T.); (H.S.); (E.S.-K.)
| | - Tadahisa Urano
- Kansai Research Center, Forestry and Forest Products Research Institute, Nagaikyutaroh 68, Momoyama-cho, Fushimi-ku, Kyoto 612-0855, Japan;
| |
Collapse
|
16
|
Byrne FJ, Redak RA. Insecticide resistance in California populations of the glassy-winged sharpshooter Homalodisca vitripennis. PEST MANAGEMENT SCIENCE 2021; 77:2315-2323. [PMID: 33423343 DOI: 10.1002/ps.6258] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 12/15/2020] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND The glassy-winged sharpshooter, Homalodisca vitripennis (Germar), is a primary vector of Pierce's disease of grapes in California. Systemic imidacloprid treatments have been the mainstay of area-wide treatment programs that were established in the Central Valley (Kern and Tulare Counties) and Southern California (Riverside County) during the 1990s to combat the pest. The programs helped to suppress populations on citrus, a major sharpshooter host, to levels that significantly reduced migration into adjacent vineyards. However, beginning in 2012, there has been a resurgence of glassy-winged sharpshooter populations in Kern and Tulare counties, and hitherto successful treatment strategies have not been as effective. This study investigated the possibility that insecticide resistance was a contributing factor to the population resurgence. RESULTS Topical application bioassays detected high levels of resistance to imidacloprid in Kern and Tulare populations, and lower levels of resistance (perhaps due to cross-resistance) to the foliar neonicotinoid acetamiprid (20-fold), the pyrethroid fenpropathrin (7.4-fold), and the butenolide flupyradifurone (4-fold). Samples of glassy-winged sharpshooters from citrus groves under organic management also exhibited high levels of imidacloprid resistance. CONCLUSION The long-term use of imidacloprid has selected for resistance in glassy-winged sharpshooters. The most resistant populations also exhibited resistance to the foliar neonicotinoid acetamiprid, the pyrethroid fenpropathrin, and the butenolide flupyradifurone. High levels of imidacloprid resistance in insects sampled from organic groves indicate that resistant insects are migrating from nearby conventional groves, which could compromise the control of sharpshooters in organic systems with insecticides affected by cross-resistance. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Frank J Byrne
- Department of Entomology, University of California, Riverside, CA, USA
| | - Rick A Redak
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
17
|
Castellanos NL, Ferreira-Filho NA, Rodrigues HS, Martínez LC, Serrão JE, Oliveira EE. Imidacloprid-mediated alterations on the salivary glands of the Neotropical brown stink bug, Euschistus heros. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:678-688. [PMID: 33788078 DOI: 10.1007/s10646-021-02388-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The management of the Neotropical brown stinkbug Euschistus heros (Hemiptera: Pentatomidae) in soybean fields has been heavily dependent on the application of neonicotinoid insecticides. Neonicotinoids act primarily by impairing the function of the nicotinic acetylcholine receptors of the nervous system. These compounds also target specific organs (e.g., salivary glands), which may potentiate their insecticidal efficacy. Here, we evaluated whether the exposure to the neonicotinoid imidacloprid would cause cytomorphological changes in the salivary glands of E. heros. First, we determined the lethal concentrations (LCs) of imidacloprid through contact and ingestion. Subsequently, the cytomorphology of the salivary glands were evaluated in insect groups that survived exposure to the LC5 (3.75 mg a.i./L), LC50 (112.5 mg a.i./L), or LC75 (375.0 mg a.i./L, equivalent to the recommended field rate) doses. Imidacloprid induced apoptosis and necrosis in the salivary gland cells according to the insecticide concentration and salivary gland region. All concentrations increased apoptosis and injured cells (e.g., vacuolization, chromatin condensation, swelling of organelles, and plasma membrane rupture) in the principal and accessory salivary glands. Individuals that survived exposure to the highest concentrations (i.e., LC5 and LC50) were more affected, and exhibited several necrotic cells on their main principal salivary glands. Collectively, our results indicate that imidacloprid exerts toxic effects on the non-target organs, such as the salivary glands, which increases the efficacy of this compound in the management of stink bug infestations.
Collapse
Affiliation(s)
- Nathaly L Castellanos
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil.
| | | | - Higor S Rodrigues
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - José E Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil
| | - Eugenio E Oliveira
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brasil.
| |
Collapse
|
18
|
Lv N, Ma K, Li R, Liang P, Liang P, Gao X. Sublethal and lethal effects of the imidacloprid on the metabolic characteristics based on high-throughput non-targeted metabolomics in Aphis gossypii Glover. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 212:111969. [PMID: 33561773 DOI: 10.1016/j.ecoenv.2021.111969] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Sublethal effect considered as an emerging factor to assess the environmental risk of insecticides, which can impact the insects on both physiology and behavior. Lethal exposure can be causing near immediate mortality. Pests are inevitably exposed to sublethal and lethal dose in the agroecosystem following application of pesticides. Insecticides, widely used for the control of insect pests, are irreplaceable in insect pest management. The effects of imidacloprid by the method of high-throughput non-targeted metabolomics was investigated in Aphis gossypii Glover exposed to LC10 and LC90 doses of the imidacloprid, and the control group was treated with the same condition without imidacloprid. Pairwise comparisons showed that 111 metabolites changed significantly, 60 in the LC10 group, and 66 in the LC90 group compared to the control group, while only 16 changes in the LC10 were same with that in LC90 group. Among the changed metabolites, a total of 16 metabolites were identified as potential biomarkers, which represented the most influential pathways including glycolysis and gluconeogenesis, alanine, aspartate, and glutamate metabolism, ascorbate and aldarate metabolism, glutathione metabolism, phenylalanine metabolism, tyrosine metabolism, caffeine metabolism and parkinson's disease (PD), which could account for the sublethal and lethal effects on A. gossypii. These modified metabolic pathways demonstrated that high energy consumption, excitotoxicity and oxidative stress (OS) were appeared in both LC10 and LC90 groups, while PD was detected only in the LC90 group. The results of non-targeted metabolomics revealed the effects of neonicotinoid pesticide exposure on A. gossypii successfully, and provided a deep insight into the influenced physiology by the stress of neonicotinoid pesticide in the insect.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Kangsheng Ma
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
19
|
Alves GR, Diniz AJF, Vieira JM, Silveira CH, Parra JRP. Practical and Simple Systems for Food Intake Studies on Phloem-Sucking Insects. NEOTROPICAL ENTOMOLOGY 2021; 50:156-160. [PMID: 32712943 DOI: 10.1007/s13744-020-00803-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Studies of insect feeding behavior are useful in different areas of entomology such as plant resistance, biology, and insecticide efficacy. For chewing insects, this kind of technique is well established, but for sap-sucking insects, especially tiny ones such as whiteflies, aphids, and psyllids, these tests can be laborious. Manipulation is difficult and can damage the plant, affecting the results. We describe here three types of cages for tests with small insects, one for seedlings in pots, a second for larger plants or plants in the field, and a third for caging insects on part of a leaf. These cages have been useful for different types of studies in addition to feeding behavior and can facilitate research with small phytophagous sucking insects.
Collapse
Affiliation(s)
- G R Alves
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brasil.
| | - A J F Diniz
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brasil
| | - J M Vieira
- Koppert Biological Systems, Piracicaba, SP, Brasil
| | - C H Silveira
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brasil
| | - J R P Parra
- Dept of Entomology and Acarology, Luiz de Queiroz College of Agriculture, Univ of São Paulo, Piracicaba, SP, Brasil
| |
Collapse
|
20
|
Dai C, Ricupero M, Puglisi R, Lu Y, Desneux N, Biondi A, Zappalà L. Can contamination by major systemic insecticides affect the voracity of the harlequin ladybird? CHEMOSPHERE 2020; 256:126986. [PMID: 32445995 DOI: 10.1016/j.chemosphere.2020.126986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 06/11/2023]
Abstract
Systemic neurotoxic insecticides are widely used to control aphid pests worldwide and their potential non-target effects on aphid predators are often unknown. Behavioral responses linked to biological control services are crucial when assessing the compatibility of chemicals with biocontrol organisms. This is particularly relevant for insecticides at low and sublethal concentrations. We studied the acute toxicity and the sublethal effect on the voracity of the generalist predator Harmonia axyridis (Coleoptera: Coccinellidae) caused by the exposure to three systemic insecticides routinely used against aphids. The tested insecticide concentrations were the Lethal Concentration 50% (LC50), 20% (LC20) and 1% (LC1) estimated for the target pest Aphis gossypii (Hemiptera: Aphididae) in a companion study. The survival and the voracity differed among the tested chemicals and concentrations, but only thiamethoxam at LC50 caused a significant predator mortality, and individuals that survived showed a reduced predation rate. The predators showed a density independent functional response after the exposure to most of the insecticide-concentration combinations, while an inverse density dependence of the prey consumption rate was observed for coccinellids exposed to sulfoxaflor and thiamethoxam at their lowest tested concentration. The estimated parameters, i.e., the attack rate and the prey handling time, were affected at higher concentrations by both imidacloprid and sulfoxaflor. These findings stress the importance of carefully evaluating side effects of insecticides at very low concentrations on beneficial arthropods in the risk assessment schemes for sustainable pest control programmes.
Collapse
Affiliation(s)
- Changchun Dai
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy; Chinese Academy of Agricultural Sciences, Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China; Northeast Agricultural University, College of Agriculture, Department of Plant Protection, Harbin, 150030, China
| | - Michele Ricupero
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy
| | - Roberto Puglisi
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy
| | - Yanhui Lu
- Chinese Academy of Agricultural Sciences, Institute of Plant Protection, State Key Laboratory for Biology of Plant Diseases and Insect Pests, Beijing, 100193, China
| | - Nicolas Desneux
- Université Côte d'Azur, INRAE, CNRS, UMR ISA, 06000, Nice, France
| | - Antonio Biondi
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy.
| | - Lucia Zappalà
- University of Catania, Department of Agriculture Food and Environment, Catania, Italy
| |
Collapse
|
21
|
Quesada-Romero L, Fernández-Galleguillos C, Bergmann J, Amorós ME, Jiménez-Aspee F, González A, Simirgiotis M, Rossini C. Phenolic Fingerprinting, Antioxidant, and Deterrent Potentials of Persicaria maculosa Extracts. Molecules 2020; 25:molecules25133054. [PMID: 32635342 PMCID: PMC7411858 DOI: 10.3390/molecules25133054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 02/02/2023] Open
Abstract
Persicaria maculosa (Polygonaceae) (known as lady’s thumb) is an annual morphologically variable weed that is widely distributed in Chile. The purpose of this study was to investigate the antifeedant potential of methanolic (MeOH), ethanolic (EtOH), and dichloromethane (DCM) extracts from the aerial parts of this plant collected in the Valparaíso and Curicó provinces (Chile) and relate this activity to the antioxidant capacity and the presence of phenolic compounds in the extracts. A phenolic profile based on HPLC-ESI-MS/MS allowed the identification of 26 phenolic compounds, most of them glycosyl derivatives of isorhamnetin, quercetin, and kaempferol. In addition, the total phenolic content (TP), total flavonoids (TF), and antioxidant activity measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH), superoxide anion scavenging (O2−), ferric-reducing antioxidant power (FRAP), and cupric-reducing antioxidant capacity (CUPRAC) of the extracts are reported. The antifeedant potentials of the plant extracts were tested against Epilachna paenulata, Pseudaletia adultera, Macrosiphum euphorbiae, and Diaphorina citri insects for the first time. The activity against the aphid M. euphorbiae was significant for the DCM extracts of plants from Valparaíso and Curicó (settling % = 23% ± 4% and 23% ± 5%, respectively). The antifeedant activities against the beetle E. paenulata and the lepidoptera P. adultera were significant for Valparaíso extracts, especially when tested against E. Paenulata (IFP = 1.0 ± 0.0). Finally, the MeOH and EtOH extracts from Valparaíso plants reduced the diet consumption of the psilid D. citri (p < 0.05). The results showed that P. maculosa is a good source of flavonoids with some antioxidant capacities and has potential interest as botanical eco-friendly alternative with deterrent activity.
Collapse
Affiliation(s)
- Luisa Quesada-Romero
- Laboratorio de Ecología Química, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330. Curauma, Valparaíso 2340000, Chile; (L.Q.-R.); (J.B.)
- Facultad de Ciencias para el cuidado de la Salud, Universidad San Sebastián, General Lagos 1163, Valdivia 5090000, Chile
| | | | - Jan Bergmann
- Laboratorio de Ecología Química, Instituto de Química, Pontificia Universidad Católica de Valparaíso, Avda. Universidad 330. Curauma, Valparaíso 2340000, Chile; (L.Q.-R.); (J.B.)
| | - María-Eugenia Amorós
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República, Gral. Flores 2124 CP 11800, Montevideo 11800, Uruguay; (M.-E.A.); (A.G.)
| | - Felipe Jiménez-Aspee
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Avenida Lircay S/N, Talca 3460000, Chile;
| | - Andrés González
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República, Gral. Flores 2124 CP 11800, Montevideo 11800, Uruguay; (M.-E.A.); (A.G.)
| | - Mario Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia 5090000, Chile;
- Center for Interdisciplinary Studies on the Nervous System, Universidad Austral de Chile, Campus Isla Teja, Valdivia 5090000, Chile
- Correspondence: (M.S.); (C.R.); Tel.: +056-632244369 (M.S.)
| | - Carmen Rossini
- Laboratorio de Ecología Química, Facultad de Química, Universidad de la República, Gral. Flores 2124 CP 11800, Montevideo 11800, Uruguay; (M.-E.A.); (A.G.)
- Correspondence: (M.S.); (C.R.); Tel.: +056-632244369 (M.S.)
| |
Collapse
|
22
|
Wang Z, Gao C, Liu J, Zhou W, Zeng X. Host plant odours and their recognition by the odourant-binding proteins of Diaphorina citri Kuwayama (Hemiptera: Psyllidae). PEST MANAGEMENT SCIENCE 2020; 76:2453-2464. [PMID: 32058655 DOI: 10.1002/ps.5786] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/04/2020] [Accepted: 02/14/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND The Asian citrus psyllid (ACP), Diaphorina citri, is one of the major pests in citrus production because it transmits huanglongbing, a devastating disease of citrus plants. Odourant-binding proteins (OBPs) play an important role in the olfactory perception of insects. Revealing the function of DcitOBPs is beneficial to the development of new ACP management strategies. RESULTS An analysis of the components of volatiles from the new shoots of six host plant species showed that β-caryophyllene was the characteristic volatile compound in flushing shoots and the most abundant volatile compound in three of the six tested ACP host plant species. The tissue expression profiles of nine known DcitOBPs were analyzed based on a transcriptome database, and DcitOBP3 and DcitOBP6 exhibited high expression in the antennae of both sexes and the ovipositor of females. The binding ability of two recombinant proteins with eight ligands was studied through competitive binding analysis; the results showed that DcitOBP6 exhibited stronger binding to β-caryophyllene. Behavioural trials indicated that sexually mature female adults of D. citri were significantly attracted to β-caryophyllene at concentrations of 0.1 μL mL-1 and 10 μL mL-1 . RNAi analysis in female D. citri showed that the reduction of DcitOBP6 transcript abundance led to a decrease in antennae EAG activity and behavioural responses to β-caryophyllene. CONCLUSION The results demonstrate that DcitOBP6 is involved in the perception of an important host plant volatile, β-caryophyllene, in the ACP, and provide a theoretical foundation for behavioural interference in ACP management.
Collapse
Affiliation(s)
- Zhengbing Wang
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Chuanhe Gao
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiali Liu
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Wenwu Zhou
- State Key Laboratory of Rice Biology; Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinnian Zeng
- Guangdong Engineering Research Center for Insect Behavior Regulation; Key Laboratory of Bio-Pesticide Innovation and Application, College of Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
23
|
Quesada CR, Scharf ME, Sadof CS. Excretion of non-metabolized insecticides in honeydew of striped pine scale. CHEMOSPHERE 2020; 249:126167. [PMID: 32062203 DOI: 10.1016/j.chemosphere.2020.126167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 02/01/2020] [Accepted: 02/09/2020] [Indexed: 06/10/2023]
Abstract
Honeydew production is a characteristic of soft scales and other hemipteran insects. Honeydew has the capacity to alter the ecology of predators and parasitoids because it is used as a food resource and can contain insecticidal proteins from hemipteran host plants. We examined honeydew excreted by the striped pine scale (Hemiptera: Coccidae), Toumeyella pini (King), after feeding on pine trees treated with systemic insecticides to determine whether they could eliminate insecticidal compounds in honeydew. Imidacloprid and spirotetramat were applied at labeled rates to soil or foliage. Water sensitive paper was used to measure honeydew production and liquid chromatography coupled to mass spectrometry (LC-MS) to analyze excreted insecticide concentrations. Foliar and soil applications of imidacloprid caused a 25-fold reduction honeydew produced by scales six days after treatment (DAT). In contrast, spirotetramat treatments did not affect honeydew production. Parent compounds of both insecticides were detected in honeydew. However, on imidacloprid treated plants, these compounds were detected at similar concentrations in honeydew collected at 4 DAT from soil and foliar treatments. Imidacloprid was only detected from soil treatments at 8 DAT. Similarly, the spirotetramat parent compound was found 4 DAT after soil and foliar treatments, but only at 8 DAT in foliar treatments. At this time the concentration of spirotetramat in honeydew was six-fold higher than at 4 DAT. We conclude that striped pine scales excrete insecticides in honeydew even when the toxicant greatly reduces honeydew production. Honeydew excretion is thus a mechanism of bioaccumulation and has the potential to harm honeydew-feeding organisms.
Collapse
Affiliation(s)
- Carlos R Quesada
- Department of Entomology, Purdue University, 901 W State Street, West Lafayette, IN, 47907, USA.
| | - Michael E Scharf
- Department of Entomology, Purdue University, 901 W State Street, West Lafayette, IN, 47907, USA
| | - Clifford S Sadof
- Department of Entomology, Purdue University, 901 W State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
24
|
Lu Z, Dong S, Li C, Li L, Yu Y, Yin S, Men X. Sublethal and transgenerational effects of sulfoxaflor on the demography and feeding behaviour of the mirid bug Apolygus lucorum. PLoS One 2020; 15:e0232812. [PMID: 32407334 PMCID: PMC7224452 DOI: 10.1371/journal.pone.0232812] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/22/2020] [Indexed: 11/24/2022] Open
Abstract
Sulfoxaflor, the first commercially available sulfoximine insecticide, has been used for the control of sap-feeding insect pests such as plant bugs and aphids on a variety of crops. However, its sublethal effects on the mirid bug Apolygus lucorum, one of the key insect pests of Bt cotton and fruit trees in China, have not been fully examined. Here, we evaluated the demography and feeding behaviour of A. lucorum exposed to sulfoxaflor. The leaf-dipping bioassay showed that the LC10 and LC30 of sulfoxaflor against 3rd-instar nymphs of this insect were 1.23 and 8.37 mg L-1, respectively. The LC10 significantly extended the nymphal duration and decreased the oviposition period by 5.29 days and female fecundity by 56.99% in the parent generation (F0). The longer duration of egg, 5th-instar nymphs, preadult, and male adult longevity were observed in the F1 generation (F1) at LC10. At the LC30, the duration of egg and 1st-instar nymph, female adult longevity, and oviposition period of the F1 were significantly shorter, while the nymphal duration in the F0 and duration of 5th-instar nymphs, preadult survival rate, and male adult longevity in the F1 significantly increased. The net reproductive rate (R0), intrinsic rate of increase (r), and finite rate of increase (λ) in the F1 were not significantly affected by these two concentrations, whereas the mean generation time (T) was lower at the LC30. Additionally, the probe counts and cells mixture feeding time were markedly lengthened by the LC10 and LC30, respectively, when A. lucorum nymphs exposed to sulfoxaflor fed on Bt cotton plants without insecticides. These results clearly indicate that sulfoxaflor causes sublethal effects on A. lucorum and the transgenerational effects depend on the tested concentrations.
Collapse
Affiliation(s)
- Zengbin Lu
- Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture and Rural Affairs, Jinan, China
| | - Song Dong
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Chao Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lili Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Shuyan Yin
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, China
- * E-mail:
| |
Collapse
|
25
|
Yu HZ, Li NY, Zeng XD, Song JC, Yu XD, Su HN, Chen CX, Yi L, Lu ZJ. Transcriptome Analyses of Diaphorina citri Midgut Responses to Candidatus Liberibacter Asiaticus Infection. INSECTS 2020; 11:insects11030171. [PMID: 32156093 PMCID: PMC7143376 DOI: 10.3390/insects11030171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/29/2020] [Accepted: 03/05/2020] [Indexed: 11/13/2022]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama (Hemiptera: Liviidae), is an important transmission vector of the citrus greening disease Candidatus Liberibacter asiaticus (CLas). The D. citri midgut exhibits an important tissue barrier against CLas infection. However, the molecular mechanism of the midgut response to CLas infection has not been comprehensively elucidated. In this study, we identified 778 differentially expressed genes (DEGs) in the midgut upon CLas infection, by comparative transcriptome analyses, including 499 upregulated DEGs and 279 downregulated DEGs. Functional annotation analysis showed that these DEGs were associated with ubiquitination, the immune response, the ribosome, endocytosis, the cytoskeleton and insecticide resistance. KEGG enrichment analysis revealed that most of the DEGs were primarily involved in endocytosis and the ribosome. A total of fourteen DEG functions were further validated by reverse transcription quantitative PCR (RT-qPCR). This study will contribute to our understanding of the molecular interaction between CLas and D. citri.
Collapse
Affiliation(s)
- Hai-Zhong Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (H.-Z.Y.); (N.-Y.L.); (X.-D.Z.); (J.-C.S.); (X.-D.Y.); (H.-N.S.); (L.Y.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Ning-Yan Li
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (H.-Z.Y.); (N.-Y.L.); (X.-D.Z.); (J.-C.S.); (X.-D.Y.); (H.-N.S.); (L.Y.)
| | - Xiang-Dong Zeng
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (H.-Z.Y.); (N.-Y.L.); (X.-D.Z.); (J.-C.S.); (X.-D.Y.); (H.-N.S.); (L.Y.)
| | - Jian-Chun Song
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (H.-Z.Y.); (N.-Y.L.); (X.-D.Z.); (J.-C.S.); (X.-D.Y.); (H.-N.S.); (L.Y.)
| | - Xiu-Dao Yu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (H.-Z.Y.); (N.-Y.L.); (X.-D.Z.); (J.-C.S.); (X.-D.Y.); (H.-N.S.); (L.Y.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Hua-Nan Su
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (H.-Z.Y.); (N.-Y.L.); (X.-D.Z.); (J.-C.S.); (X.-D.Y.); (H.-N.S.); (L.Y.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | | | - Long Yi
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (H.-Z.Y.); (N.-Y.L.); (X.-D.Z.); (J.-C.S.); (X.-D.Y.); (H.-N.S.); (L.Y.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
| | - Zhan-Jun Lu
- College of Life Sciences, Gannan Normal University, Ganzhou 341000, China; (H.-Z.Y.); (N.-Y.L.); (X.-D.Z.); (J.-C.S.); (X.-D.Y.); (H.-N.S.); (L.Y.)
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou 341000, China
- Correspondence:
| |
Collapse
|
26
|
Resende-Silva GA, Joseph DA, Guedes RNC, Cutler GC. Impact of Imidacloprid Soil Drenching on Survival, Longevity, and Reproduction of the Zoophytophagous Predator Podisus maculiventris (Hemiptera: Pentatomidae: Asopinae). JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:108-114. [PMID: 31675095 DOI: 10.1093/jee/toz283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Systemic insecticides when applied as seed treatments or soil drenches are often more toxicologically selective for natural enemies than target pests. This may not be the case, however, for omnivorous predators, which are at risk of extended exposure to systemically applied pesticides through ingestion while feeding on treated plants for nutrients or water. Such exposure may kill or have sublethal consequences for these natural enemies, compromising their role as biocontrol agents of agricultural pest species. The spined soldier bug, Podisus maculiventris (Say) (Hemiptera: Pentatomidae: Asopinae), is an important zoophytophagous biocontrol agent (i.e., able to substitute zoophagy by phytophagy for survival) that may be exposed to systemic insecticides in many agricultural systems. We, therefore, examined effects on P. maculiventris following exposure to cabbage plants subject to soil-drench treatments with imidacloprid, a systemic neonicotinoid insecticide. Predator survival, development, body weight, and reproduction were recorded. Imidacloprid significantly affected nymph survival and adult emergence, but not duration of the nymphal period or adult body weight. At one-twentieth the recommended field rate for whitefly and aphid management, imidacloprid treatments reduced longevity, fecundity, and fertility of female predators. These findings demonstrate that soil treatments with systemic insecticide can negatively impact zoophytophagous natural enemies.
Collapse
Affiliation(s)
- Geverson A Resende-Silva
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Deney A Joseph
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| | | | - G Christopher Cutler
- Department of Plant, Food and Environmental Sciences, Faculty of Agriculture, Dalhousie University, Truro, NS, Canada
| |
Collapse
|
27
|
Lu Z, Dong S, Li C, Li L, Yu Y, Men X, Yin S. Sublethal and transgenerational effects of dinotefuran on biological parameters and behavioural traits of the mirid bug Apolygus lucorum. Sci Rep 2020; 10:226. [PMID: 31937822 PMCID: PMC6959236 DOI: 10.1038/s41598-019-57098-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 12/16/2019] [Indexed: 11/17/2022] Open
Abstract
The mirid bug, Apolygus lucorum, has become a major pest of many crops and fruit trees since the widespread adoption of Bt cotton in northern China. Neonicotinoid insecticides, such as dinotefuran, applied to control this pest may show sublethal effects, but evidence for such effects is lacking. Here, we investigated the sublethal and transgenerational effects of dinotefuran on biological parameters and feeding behavioural traits of A. lucorum using the age-stage, two-sex life table and electrical penetration graphs (EPGs), respectively. The LC10 and LC30 of dinotefuran against 3rd-instar nymphs of A. lucorum were 14.72 and 62.95 mg L−1, respectively. These two concentrations significantly extended the development duration from 3rd-instar nymph to adult in parent generation (F0). LC30 also increased the oviposition period and male adult longevity and reduced nymphal survival rate in the F0. For offspring generation (F1), the egg duration, preadult duration, and total preoviposition period were significantly lower at LC10 than in the control, and the egg duration, duration of 4th-instar nymphs, preadult duration, oviposition period, and fecundity were also decreased at LC30. However, the four demographic parameters of F1 generation, namely, net reproductive rate (R0), intrinsic rate of increase (r), finite rate of increase (λ), and mean generation time (T), were not affected by dinotefuran. The significant differences in the number of probes and duration of each of four feeding waveforms failed to be detected when A. lucorum nymphs treated by dinotefuran feed on Bt cotton plants without insecticide exposure. Overall, the dinotefuran concentrations tested here have sublethal, but no transgenerational impacts on A. lucorum.
Collapse
Affiliation(s)
- Zengbin Lu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.,Maize Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory of Wheat and Maize/Key Laboratory of Biology and Genetic Improvement of Maize in Northern Yellow-Huai River Plain, Ministry of Agriculture and Rural Affairs, China, Jinan, 250100, China
| | - Song Dong
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Chao Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Lili Li
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yi Yu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xingyuan Men
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China.
| | - Shuyan Yin
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
28
|
Immune Functional Analysis of Chitin Deacetylase 3 from the Asian Citrus Psyllid Diaphorina citri. Int J Mol Sci 2019; 21:ijms21010064. [PMID: 31861829 PMCID: PMC6981819 DOI: 10.3390/ijms21010064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 11/17/2022] Open
Abstract
Chitin deacetylase (CDA) is a chitin degradation enzyme that strictly catalyzes the deacetylation of chitin to form chitosan, which plays an important role in regulating growth and development, as well as the immune response. In this study, a chitin deacetylase 3 gene (CDA3) was identified with a complete open reading frame (ORF) of 1362 bp from the genome database of Diaphorina citri, encoding a protein of 453 amino acids. Spatiotemporal expression analysis suggested that D. citri CDA3 (DcCDA3) had the highest expression level in the integument and third-instar nymph stage. Furthermore, DcCDA3 expression level can be induced by 20-hydroxyecdysone (20E). Injection of Escherichia coli and Staphylococcus aureus induced the upregulation of DcCDA3 in the midgut, while DcCDA3 was downregulated in the fat body. After silencing DcCDA3 by RNA interference, there was no influence on the D. citri phenotype. In addition, bactericidal tests showed that recombinant DcCDA3 inhibited gram-positive bacteria, including S. aureus and Bacillus subtilis (B. subtilis). In conclusion, our results suggest that DcCDA3 might play an important role in the immune response of D. citri.
Collapse
|
29
|
Deng D, Duan W, Wang H, Zhang K, Guo J, Yuan L, Wang L, Wu S. Assessment of the effects of lethal and sublethal exposure to dinotefuran on the wheat aphid Rhopalosiphum padi (Linnaeus). ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:825-833. [PMID: 31325006 DOI: 10.1007/s10646-019-02080-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
The wheat aphid Rhopalosiphum padi (Linnaeus) (Hemiptera: Aphididae) is a devastating pest of wheat crops worldwide. Dinotefuran, a novel neonicotinoid insecticide, has been used to prevent piercing-sucking agricultural insects, such as R. padi. This research showed that the dinotefuran not only caused direct mortality but also affected the physiology of R. padi via sublethal effects. In this study, residual film bioassay results indicated that there were no significant differences in the toxicity of dinotefuran between field in 2017 and laboratory strains. However, the longevity, fecundity and female preoviposition of the F0 generation were significantly decreased by exposure to different sublethal doses (L10, L20 and L30) of dinotefuran. In contrast, the fecundity and female preoviposition of the F1 generation were significantly increased by the sublethal treatment L20, although this dose reduced net reproductive rate, intrinsic rate of increase and finite rate of increase. These findings are the first laboratory evidence of hormesis attributable to low dinotefuran doses. Developmental duration of nymphs was significantly increased by the sublethal doses L20 and L30 but not L10. Sublethal exposure to dinotefuran can increase the transgenerational population growth of R. padi and affected demographic parameters of the target insect. This study provides useful data for developing management strategies for R. padi involving the use of dinotefuran.
Collapse
Affiliation(s)
- Denghui Deng
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou, 570228, Hainan, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Wenbo Duan
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou, 570228, Hainan, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Hao Wang
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou, 570228, Hainan, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Kun Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Jianglong Guo
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Linlin Yuan
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou, 570228, Hainan, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Likui Wang
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou, 570228, Hainan, China
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China
| | - Shaoying Wu
- College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, Hainan University, Haikou, 570228, Hainan, China.
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
30
|
Impact of low lethal concentrations of buprofezin on biological traits and expression profile of chitin synthase 1 gene (CHS1) in melon aphid, Aphis gossypii. Sci Rep 2019; 9:12291. [PMID: 31444364 PMCID: PMC6707215 DOI: 10.1038/s41598-019-48199-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/30/2019] [Indexed: 02/06/2023] Open
Abstract
Buprofezin, a chitin synthesis inhibitor that can be used for the control of hemipteran pests, especially melon aphid, Aphis gossypii. The impact of low lethal concentrations of buprofezin on the biological parameters and expression profile of CHS1 gene were estimated for two successive generations of A. gossypii. The present result shows that the LC15 and LC30 of buprofezin significantly decreased the fecundity and longevity of both generations. Exposure of F0 individuals to both concentrations delay the developmental period in F1. Furthermore, the survival rate, intrinsic rate of increase (r), finite rate of increase (λ), and net reproductive rate (R0) were reduced significantly in progeny generation at both concentrations. However, the reduction in gross reproductive rate (GRR) was observed only at LC30. Although, the mean generation time (T) prolonged substantially at LC30. Additionally, expression of the CHS1 gene was significantly increased in F0 adults. Significant increase in the relative abundance of CHS1 mRNA transcript was also observed at the juvenile and adult stages of F1 generation following exposure to LC15 and LC30. Therefore, our results show that buprofezin could affect the biological traits by diminishing the chitin contents owing to the inhibition of chitin synthase activity in the succeeding generation of melon aphid.
Collapse
|
31
|
He F, Sun S, Tan H, Sun X, Qin C, Ji S, Li X, Zhang J, Jiang X. Chlorantraniliprole against the black cutworm Agrotis ipsilon (Lepidoptera: Noctuidae): From biochemical/physiological to demographic responses. Sci Rep 2019; 9:10328. [PMID: 31316142 PMCID: PMC6637144 DOI: 10.1038/s41598-019-46915-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/01/2019] [Indexed: 11/09/2022] Open
Abstract
Agrotis ipsilon (Lepidoptera: Noctuidae) is a major underground pest that damages many agricultural crops in China and other countries. A diet-incorporation-based bioassay was conducted to evaluate the sublethal effects of the novel anthranilic diamide chlorantraniliprole on the nutritional physiology, enzymatic properties and population parameters of this cutworm. Chlorantraniliprole exhibited signs of active toxicity against third instar larvae of A. ipsilon, and the LC50 was 0.187 μg.g-1 of artificial diet after treatment for 72 h. The development time of the larval, pupal and adult stages was significantly affected after chlorantraniliprole exposure, compared to the control treatment. Relative to the control treatment, chlorantraniliprole decreased pupal and adult emergence rates, fecundity and fertility and increased the proportions of developmental deformities, the adult preoviposition period (APOP) and the total preoviposition period (TPOP). Furthermore, compared to those treated with the control, A. ipsilon larvae treated with low doses of chlorantraniliprole decreased food utilization and nutrient content (protein, lipid, carbohydrate, trehalose), showed lower pupal weights and growth rates. Compared with the control treatment, chlorantraniliprole significantly reduced digestive enzyme activities and observably increased detoxifying and protective enzyme activities and hormone titers. Importantly, these chlorantraniliprole-induced changes affected life table parameters of the cutworm. These results suggest that chlorantraniliprole at low concentrations can impair A. ipsilon development duration, normal food consumption and digestion process, enzymatic properties, hormone levels, fecundity and population levels. Chlorantraniliprole exhibit the potential to be exploited as a control strategy for this cutworm.
Collapse
Affiliation(s)
- Falin He
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shiang Sun
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Haili Tan
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiao Sun
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chao Qin
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Shoumin Ji
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xiangdong Li
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology and Application Technique, College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
- Research Center of Pesticide Environmental Toxicology, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
32
|
Feng WB, Bong LJ, Dai SM, Neoh KB. Effect of imidacloprid exposure on life history traits in the agricultural generalist predator Paederus beetle: Lack of fitness cost but strong hormetic effect and skewed sex ratio. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:390-400. [PMID: 30849660 DOI: 10.1016/j.ecoenv.2019.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/21/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
A trade-off between life history traits in the evolution of insecticide resistance is common in insects because energy acquisition is mainly channeled for detoxification enzyme production. In addition, sublethal exposure to insecticides may have an effect on the physiology and behaviors of surviving insects. Similar to other agricultural pests, pesticide use may have led to insecticide resistance in populations of Paederus fuscipes Curtis. In this study, we determined the median lethal time of 10 field-collected strains in Taiwan for three insecticides that are commonly employed to manage agricultural pests. We determined that the susceptibility of these strains to cyhalothrin and fenitrothion were similar, with resistance ratios (RRs) ranging from 1 to 4; however, significantly different to imidacloprid (RRs: 1-16). The effect of imidacloprid resistance on the life history traits studied of Paederus beetles was limited; only a prolonged egg incubation period, and adult longevity decreased as imidacloprid resistance increased. Regarding sublethal exposure to imidacloprid, adult sex ratios were female biased in most combinations, though nonsignificant. The quality of offspring, particularly the length of eggs significantly decreased. In addition, a hormetic effect was apparent when the individual was exposed to LT25 and LT50; mean fecundity per female increased from 12.80 ± 8.95 (± standard error [SE]) to 42.70 ± 13.77 eggs compared with that of the control (7.10 ± 1.32). However, the hormetic effect was inconsistent among the tested strains, possibly because of the difference in insecticide resistance levels given that reproductive compensation was absent among the resistant population.
Collapse
Affiliation(s)
- Wen-Bin Feng
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan
| | - Lee-Jin Bong
- National Mosquito-borne Diseases Control Research Center, National Health Research Institute, Zhunan, Miaoli County, Taiwan, ROC
| | - Shu-Mei Dai
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan.
| |
Collapse
|
33
|
Waqas MS, Qian L, Shoaib AAZ, Cheng X, Zhang Q, Elabasy ASS, Shi Z. Lethal and Sublethal Effects of Neonicotinoid Insecticides on the Adults of Phenacoccus solenopsis (Hemiptera: Pseudococcidae) on Tomato Plants. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1314-1321. [PMID: 30753639 DOI: 10.1093/jee/toy427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Indexed: 06/09/2023]
Abstract
Acetamiprid and imidacloprid are two important neonicotinoid insecticides that are widely utilized under field conditions for the management of sucking insect pests, including the solenopsis mealybug Phenacoccus solenopsis Tinsley (Hemiptera: Pseudococcidae). Although some information is available regarding their lethal effects, nothing is currently known about the sublethal effects of these insecticides. We, therefore, performed a series of experiments to test the lethal and sublethal effects of these chemicals on oviposition duration and fecundity. We also assessed sublethal effects on feeding behavior using the electrical penetration graph (EPG) technique. The results of this study reveal that acetamiprid toxicity is higher than imidacloprid and that both insecticides have negative effects on the oviposition, fecundity, and feeding behavior of P. solenopsis when applied at sublethal dosages. These chemicals also significantly reduce oviposition duration and fecundity and significantly prolong nonprobing duration, increase penetration problems, and reduce phloem and xylem feeding activities when compared with adults exposed to just water. No significant differences were detected in all waveform durations and events when adults previously exposed to foliage treated with each of these two insecticides were compared. The results of this study, therefore, suggest that both insecticides are capable of protecting crops from mealybug damage by not only killing these pests directly but also reducing their fecundity and inhibiting feeding behaviors when applied at sublethal dosages.
Collapse
Affiliation(s)
- Muhammad Saad Waqas
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lixin Qian
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Ali Ahmed Zaky Shoaib
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Plant Protection Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Xinlai Cheng
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qianqian Zhang
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Asem Saad Saad Elabasy
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- Plant Protection Research Institute, Agricultural Research Centre, Cairo, Egypt
| | - Zuhua Shi
- Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Ministry of Agriculture, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
34
|
Hu W, Kuang F, Chun J, Lu Z, Li X, Zhao Q, Zhong B, Su H, Zhang Z, Zhang N. Uptake of soil-applied thiamethoxam in orange and its effect against Asian citrus psyllid in different seasons. PEST MANAGEMENT SCIENCE 2019; 75:1339-1345. [PMID: 30367747 DOI: 10.1002/ps.5248] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/18/2018] [Accepted: 10/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is an important pest of citrus worldwide because it transmits the bacteria causing huanglongbing (HLB). We investigated the effects and persistence of two soil application rates of thiamethoxam on ACP populations in two flushing seasons in the field. Thiamethoxam and clothianidin residues in the fruit were detected to evaluate food safety. RESULTS Soil application of 50% thiamethoxam water-dispersible granules at concentrations of 4 and 10 g tree-1 significantly decreased ACP populations, and there was a positive correlation between control efficacy and the persistence of thiamethoxam and clothianidin in leaves, providing longer-term protection for up to 90 days in the fall compared with 60 days in the spring. Higher thiamethoxam and clothianidin amounts were observed in new leaves than in old leaves. Thiamethoxam and clothianidin residues at a high rate in fruit were 0.012 and 0.010 mg kg-1 at harvest, respectively, and neither insecticides was detectable at low rates. CONCLUSIONS These results demonstrate that soil-applied thiamethoxam plays a role in defending ACP, and provides an extended period of control efficacy. This knowledge could provide a reference for the control of ACP by soil application of thiamethoxam to reduce HLB spread. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Hu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Fan Kuang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Jiong Chun
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Zhanjun Lu
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Xingtao Li
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Qiyang Zhao
- CAAS, Citrus Research Institute, Chongqing, China
| | - Balian Zhong
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Huanan Su
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Zhixiang Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ning Zhang
- National Navel Orange Engineering Research Center, College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
35
|
Lu ZJ, Zhou CH, Yu HZ, Huang YL, Liu YX, Xie YX, Wang J, Hu W, Huang AJ, Su HN, Yang C. Potential roles of insect Tropomyosin1-X1 isoform in the process of Candidatus Liberibacter asiaticus infection of Diaphorina citri. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:125-135. [PMID: 30817914 DOI: 10.1016/j.jinsphys.2019.02.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
The Asian citrus psyllid (ACP), Diaphorina citri Kuwayama, is the transmitting vector of Candidatus Liberibacter asiaticus (CLas), which causes citrus disease Huanglongbing (HLB). In recent years, control of HLB has been achieved by reducing the vector population. In the present study, we identified an isoform of D. citri tropomyosin (herein designated as DcTm1-X1). DcTm1-X1 was down-regulated in CLas-infected ACPs compared with uninfected ACPs. Bioinformatics analysis revealed that the full-length DcTm1-X1 is 2955 bp and encodes a protein of 284 amino acids with a deduced molecular weight of 32.15 kDa. Phylogenetic tree analysis suggested that DcTm1-X1 shares a high amino acid identity with its homolog in Acyrthosiphon pisum. Higher DcTm1-X1 expression levels were found in the leg of the psyllid by reverse transcription quantitative PCR (RT-qPCR). According to Blue Native PAGE analysis and mass spectrometric analysis, DcTm1-X1 interacts with citrate synthase (CS) and V-type proton ATPase subunit B-like (VAT). In addition, knockdown of DcTm1-X1 by RNA interference (RNAi) significantly increased the mortality rate of nymphs and the infection rate of CLas at different time points. Taken together, our results show that DcTm1-X1 might play an important role in response to CLas, but also lay a foundation for further research on the functions of DcTm1-X1.
Collapse
Affiliation(s)
- Zhan-Jun Lu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Cheng-Hua Zhou
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Hai-Zhong Yu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China.
| | - Yu-Ling Huang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Ying-Xue Liu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China; Dayu Middle School, Ganzhou, China
| | - Yan-Xin Xie
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Jie Wang
- Anhui Agricultural University, Hefei, China
| | - Wei Hu
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Ai-Jun Huang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Hua-Nan Su
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| | - Chao Yang
- National Navel Orange Engineering and Technology Research Center, Gannan Normal University, Ganzhou, China
| |
Collapse
|
36
|
Liang PZ, Ma KS, Chen XW, Tang CY, Xia J, Chi H, Gao XW. Toxicity and Sublethal Effects of Flupyradifurone, a Novel Butenolide Insecticide, on the Development and Fecundity of Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:852-858. [PMID: 30590572 DOI: 10.1093/jee/toy381] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Indexed: 06/09/2023]
Abstract
The cosmopolitan pest Aphis gossypii (Glover) causes considerable economic losses on various crops by its feeding damage and transmitting diseases around the world. Flupyradifurone is a novel butenolide pesticide; its toxicity on A. gossypii parent generation (F0) was estimated following treatment with LC25 concentration for 48 h. The adult longevity and fecundity of the F0 individuals treated by flupyradifurone showed no significant decrease in comparison with the control. Life table method was used to evaluate the sublethal effects on progeny population (F1). Results showed that the development time of the fourth instar and the preadult as well as the total pre-reproductive period were significantly prolonged, while their fecundity was significantly decreased compared with the control. Additionally, the intrinsic rate of increase (r), the finite rate of increase (λ), and the net reproductive rate (R0) of F1 were all significantly lower in the group treated by LC25 than in the control group. These results reveal that the sublethal concentration of flupyradifurone could suppress the population growth of A. gossypii and indicate that this novel insecticide may be as a useful tool in pest management.
Collapse
Affiliation(s)
- Ping-Zhuo Liang
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Kang-Sheng Ma
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Xue-Wei Chen
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Chun-Yan Tang
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Jin Xia
- Department of Entomology, China Agricultural University, Beijing, PR China
| | - Hsin Chi
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing, PR China
| |
Collapse
|
37
|
Langdon KW, Ebert TA, Rogers ME. Evaluating the Effect of Imidacloprid Administered in Artificial Diet on Feeding Behavior of Diaphorina citri (Hemiptera: Liviidae) Using Electropenetrography. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:644-652. [PMID: 30602019 PMCID: PMC6427034 DOI: 10.1093/jee/toy400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 06/09/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the vector of Candidatus Liberibacter asiaticus (CLas), the presumed cause of Huanglongbing (HLB) in citrus. Management strategies were developed in Florida that used soil-applied neonicotinoids to protect young trees. Despite the implementation of intense management programs, infection spread among the most intensively managed groves. We used electopenetrography to test five imidacloprid doses (0.55, 5.5, 55, 550, and 5,500 ppm) administered in artificial diet to approximate the dosage required to reduce feeding activity and prevent salivation/ingestion activity. We failed to detect a significant effect of 0.55 ppm imidacloprid on probing behavior, pathway, or salivation/ingestion activity when compared with the untreated control. We observed a significant reduction in the number of probes and the number of pathway with both 5.5 and 55 ppm imidacloprid. We detected a significant reduction in the number of salivation/ingestion events at both 5.5 ppm and 55 ppm imidacloprid (57 and 54 percent, respectively) compared with the untreated control, and a reduction in number of sustained (>600 s) salivation/ingestion at 55 ppm. While reductions in feeding activity were apparent at dosages of at least 5.5 ppm, we were unable to prevent salivation/ingestion with dosages as high as 5,500 ppm, which is greater than what is known to occur following application in the field. While soil-applied imidacloprid may slow the spread of CLas, our findings suggest that prevention of CLas inoculation in the field is unlikely. Management strategies must be refined to prevent the spread of HLB in Florida.
Collapse
Affiliation(s)
| | - T A Ebert
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| | - M E Rogers
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL
| |
Collapse
|
38
|
Martínez LC, Plata-Rueda A, Gonçalves WG, Freire AFPA, Zanuncio JC, Bozdoğan H, Serrão JE. Toxicity and cytotoxicity of the insecticide imidacloprid in the midgut of the predatory bug, Podisus nigrispinus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:69-75. [PMID: 30296698 DOI: 10.1016/j.ecoenv.2018.09.124] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/11/2018] [Accepted: 09/28/2018] [Indexed: 06/08/2023]
Abstract
The selectivity of insecticides on natural enemies in pest control are an important strategy for Integrated Pest Management. However, insecticides can have side effects on non-target organisms such as natural enemies. This study evaluated the histological and cytological changes mediated by the sublethal concentration of the imidacloprid insecticide on the midgut of non-target predator Podisus nigrispinus (Heteroptera: Pentatomidae), used in the biological control of pests. Imidacloprid was toxic for P. nigrispinus with LC50 = 3.75 mg L-1 and survival of 51.8%. This sublethal concentration of imidacloprid causes histological alterations in the midgut epithelium and cytotoxic features were irregular border epithelium, cytoplasmic vacuolation, and apocrine secretions in the first 6 h after exposure with the insecticide. Apoptosis in the digestive cells occurs after 12 h of exposure in the midgut. These results suggest that imidacloprid may affect the digestive physiology of P. nigrispinus and compromise the effective predation of this insect a biological control agent. The associated use of this insecticide with the predator in pest control should be carefully evaluated.
Collapse
Affiliation(s)
- Luis Carlos Martínez
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil.
| | - Angelica Plata-Rueda
- Instituto de Ciências Agrárias, Universidade Federal de Viçosa, 38810-000 Rio Paranaíba, Minas Gerais, Brazil.
| | - Wagner Gonzaga Gonçalves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil.
| | | | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil.
| | | | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-000 Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
39
|
Hakeem A, Grant JF, Lambdin PL, Hale FA, Rhea JR, Wiggins GJ, Coots C. Influence of Imidacloprid and Horticultural Oil on Spider Abundance on Eastern Hemlock in the Southern Appalachians. ENVIRONMENTAL ENTOMOLOGY 2018; 47:951-959. [PMID: 29741606 DOI: 10.1093/ee/nvy065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Hemlock woolly adelgid, Adelges tsugae Annand (Hemiptera: Adelgidae), is an exotic pest of eastern hemlock, Tsuga canadensis (L.) Carrière (Pinales: Pinaceae), in the eastern United States. Two commonly used insecticides to manage adelgid are imidacloprid, a systemic neonicotinoid insecticide, and horticultural oil, a refined petroleum oil foliar spray. We have investigated the influence of imidacloprid and horticultural oil on spider abundance at different canopy strata in eastern hemlock. In total, 2,084 spiders representing 11 families were collected from the canopies of eastern hemlock. In beat-sheet and direct observation samples, the families Theridiidae, Araneidae, Salticidae, and Anyphaenidae were the most abundant. Significantly higher numbers of spiders were recorded on untreated control trees compared with trees treated with imidacloprid using soil drench and soil injection applications. Spider abundance in trees injected with imidacloprid and horticultural oil applications did not significantly differ from control trees. Spider abundance was significantly greater in the top and middle strata of the canopy than in the bottom stratum, where imidacloprid concentrations were the highest. Regression analysis showed that spider abundance was inversely associated with imidacloprid concentration. This research demonstrates that imidacloprid, when applied with selected methods, has the potential to result in reductions of spider densities at different strata. However, slight reductions in spider abundance may be an acceptable short-term ecological impact compared with the loss of an untreated hemlock and all the associated ecological benefits that it provides. Future studies should include investigations of long-term impact of imidacloprid on spiders associated with eastern hemlock.
Collapse
Affiliation(s)
- A Hakeem
- Texas A&M AgriLife Research and Extension Center, Lubbock, TX
| | - J F Grant
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN
| | - P L Lambdin
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN
| | - F A Hale
- Department of Entomology and Plant Pathology, Ellington Plant Sciences Center, The University of Tennessee, Nashville, TN
| | - J R Rhea
- USDA Forest Service, Forest Health Protection, Weaver Boulevard, Asheville, NC
| | - G J Wiggins
- National Institute for Mathematical and Biological Synthesis, The University of Tennessee, Volunteer Boulevard, Suite, Knoxville, TN
| | - C Coots
- Department of Entomology and Plant Pathology, The University of Tennessee, Knoxville, TN
| |
Collapse
|
40
|
Langdon KW, Schumann R, Stelinski LL, Rogers ME. Spatial and Temporal Distribution of Soil-Applied Neonicotinoids in Citrus Tree Foliage. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:1788-1798. [PMID: 29688422 PMCID: PMC6075369 DOI: 10.1093/jee/toy114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Diaphorina citri Kuwayama (Hemiptera: Liviidae) is the insect vector of Candidatus Liberibacter asiaticus (CLas), the presumed cause of huanglongbing (HLB) in citrus (Rutaceae). Soil-applied neonicotinoids are used to manage vector populations and thus reduce the spread of HLB in Florida citrus. Studies were conducted in the greenhouse and field to quantify the spatial and temporal distribution of three neonicotinoid insecticides within individually sampled leaves and throughout the tree canopy. Following field application, no difference in parent material titer was observed between leaf middles versus leaf margins following application of Platinum 75SG or Belay 2.13SC; however, imidacloprid titer was higher in leaf margins than leaf middle following application of Admire Pro. The bottom region of trees contained more imidacloprid than other regions, but was not different from the spherical center region. In the greenhouse, imidacloprid and clothianidin titers peaked 5 wk following application of Admire and Belay, respectively, and thiamethoxam titer peaked 3 wk after application of Platinum. There was no effect of leaf age on uptakes of any insecticides tested. Titers of soil-applied neonicotinoids quantified in the field failed to reach known levels required to kill D. citri. Exposure of D. citri to sublethal dosages of neonicotinoids is of concern for HLB management because of possible failure to protect treated plants from D. citri and selection pressure for development of neonicotinoid resistance. Our results suggest that current soil-based use patterns of neonicotinoids for D. citri management may be suboptimal and require reevaluation to maintain the utility of this chemical class in citrus.
Collapse
Affiliation(s)
- Kevin W Langdon
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Rhonda Schumann
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Lukasz L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - Michael E Rogers
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
41
|
Langdon KW, Schumann R, Stelinski LL, Rogers ME. Influence of Tree Size and Application Rate on Expression of Thiamethoxam in Citrus and Its Efficacy Against Diaphorina citri (Hemiptera: Liviidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:770-779. [PMID: 29471401 PMCID: PMC6019049 DOI: 10.1093/jee/toy001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Neonicotinoids are a key group of insecticides used to manage Diaphorina citri Kuwayama (Hemiptera: Liviidae), in Florida citrus. Diaphorina citri is the vector of Candidatus Liberibacter asiaticus, the presumed causal agent of huanglongbing, a worldwide disease of citrus. A two-season field study was conducted to evaluate the effect of tree size and application rate on the expression of thiamethoxam in young citrus following application to the soil. D. citri adult and nymph abundance was also correlated with thiamethoxam titer in leaves. Tree size and application rate each significantly affected thiamethoxam titer in leaf tissue. The highest mean thiamethoxam titer observed (33.39 ppm) in small trees (mean canopy volume = 0.08 m3) occurred after application of the high rate (0.74 g Platinum 75SG per tree) tested. There was a negative correlation between both nymph and adult abundance with increasing thiamethoxam titer in leaves. A concentration of 64.63 ppm thiamethoxam was required to reach a 1% probability of encountering a flush shoot with at least one adult D. citri, while 19.05 ppm was required for the same probability of encountering nymphs. The LC90 for the field population was 7.62 ppm thiamethoxam when administered through ingestion. Exposure to dosages as low as 7.62 ppm would likely result in sublethal exposure of some proportion of the population, which could exacerbate resistance development. Based on our results, subsequent work should investigate the use of neonicotinoids by foliar rather than soil application to maintain the chemical class in future insecticide management programs in Florida citrus.
Collapse
Affiliation(s)
- K W Langdon
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - R Schumann
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - L L Stelinski
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| | - M E Rogers
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|
42
|
Nyoka NWK, Kanyile SN, Bredenhand E, Prinsloo GJ, Voua Otomo P. Biochar alleviates the toxicity of imidacloprid and silver nanoparticles (AgNPs) to Enchytraeus albidus (Oligochaeta). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:10937-10945. [PMID: 29397515 DOI: 10.1007/s11356-018-1383-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/24/2018] [Indexed: 05/24/2023]
Abstract
The present study investigated the use of biochar for the alleviation of the toxic effects of a nanosilver colloidal dispersion and a chloronicotinyl insecticide. The survival and reproduction of the potworm Enchytraeus albidus were assessed after exposure to imidacloprid and silver nanoparticles (AgNPs). E. albidus was exposed to 0, 25, 50, 100, 200, and 400 mg imidacloprid/kg and 0, 5, 25, 125, and 625 mg Ag/kg for 21 days in 10% biochar amended and non-biochar amended OECD artificial soil. In both exposure substrates, the effects of imidacloprid on survival were significant in the two highest treatments (p < 0.01). No biochar effect was observed as survival was statistically similar in both soils after exposure to imidacloprid. In the case of AgNPs, significant mortality was only observed in the highest AgNP treatments in both the amended and non-amended soils (p < 0.05). Nevertheless, statistically greater survival occurred in the biochar-amended treatment (p < 0.05). Reproduction results showed a more pronounced biochar effect with an EC50 = 22.27 mg imidacloprid/kg in the non-amended soil and a higher EC50 = 46.23 mg imidacloprid/kg in the biochar-amended soil. This indicated a 2-fold decrease in imidacloprid toxicity due to biochar amendment. A similar observation was made in the case of AgNPs where a reproduction EC50 = 166.70 mg Ag/kg soil in the non-amended soil increased to an EC50 > 625 mg Ag/kg soil (the highest AgNP treatment) in the amended soil. This indicated at least a 3.7-fold decrease in AgNPs toxicity due to biochar amendment. Although more studies may be needed to optimize the easing effects of biochar on the toxicity of these chemicals, the present results show that biochar could be useful for the alleviation of the toxic effects of imidacloprid and silver nanoparticles in the soil.
Collapse
Affiliation(s)
- Ngitheni Winnie-Kate Nyoka
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Sthandiwe Nomthandazo Kanyile
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Emile Bredenhand
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa
| | - Godfried Jacob Prinsloo
- Department of Crop Protection, Agriculture Research Council-Small Grain Institute, Private Bag x29, Bethlehem, 9700, Republic of South Africa
| | - Patricks Voua Otomo
- Department of Zoology and Entomology, University of the Free State, Private Bag x13, Phuthaditjhaba, 9866, Republic of South Africa.
| |
Collapse
|
43
|
Langdon KW, Rogers ME. Neonicotinoid-Induced Mortality of Diaphorina Citri (Hemiptera: Liviidae) is Affected by Route of Exposure. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2229-2234. [PMID: 28961723 DOI: 10.1093/jee/tox231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Indexed: 06/07/2023]
Abstract
The use of neonicotinoids in citrus (Rutaceae) has increased substantially to help manage the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae), a vector of the devastating citrus disease, huanglongbing (HLB). In citrus pest management programs, neonicotinoids are most often applied to the soil as a drench and move through xylem channels from the roots into the foliage. We developed a novel assay to quantify the dose required to kill D. citri following ingestion and compare it with the dose required to kill by contact. The LC50 of the laboratory strain for ingestion of imidacloprid, thiamethoxam, and clothianidin were each approximately 10-fold greater than the respective LC50 by contact exposure. Four field populations were tested to validate comparative exposure of the laboratory strain to imidacloprid and determine the relative susceptibility of field populations to imidacloprid by exposure through ingestion and contact. The contact assay exhibited low (<10) RR50 values for the Vero Beach and Labelle populations when compared to the ingestion assay method. High (>10) RR50 values were observed for the Lake Placid and Lake Alfred populations using the contact and the ingestion method. This research demonstrates that the ingestion assay method described herein is more sensitive in detection of low-level resistance and should be the standard methodology used in monitoring for resistance to systemic insecticides for this global pest. We found D. citri populations with a lower than expected susceptibility to neonicotinoids in the field, which warrants the implementation of resistance management practices to preserve the utility of soil-applied neonicotinoids in citrus.
Collapse
Affiliation(s)
- Kevin W Langdon
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| | - Michael E Rogers
- Department of Entomology and Nematology, Citrus Research and Education Center, University of Florida, 700 Experiment Station Road, Lake Alfred, FL 33850
| |
Collapse
|
44
|
Chen XD, Stelinski LL. Resistance Management for Asian Citrus Psyllid, Diaphorina citri Kuwayama, in Florida. INSECTS 2017; 8:insects8030103. [PMID: 28930170 PMCID: PMC5620723 DOI: 10.3390/insects8030103] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/10/2023]
Abstract
The Asian citrus psyllid, Diaphorina citri Kuwayma, is one of the most important pests in citrus production. The objective of this study was to evaluate D. citri resistance management with three insecticide rotations and compare them with no rotation and an untreated check. The different insecticides (modes of action) tested were: dimethoate, imidacloprid, diflubenzuron, abamectin 3% + thiamethoxam 13.9%, and fenpropathrin. Eggs, nymph, and adult psyllids were counted weekly. Five insecticide applications were made in 2016. Insecticide susceptibility was determined by direct comparison with a laboratory susceptible population and field populations before and after all treatments were applied. Rankings of eggs, nymphs, and adults counted in treated plots were significantly lower than in the untreated control plots after each application. Initially, the resistance ratio (RR50) for each rotation model, as compared with laboratory susceptible strain and the field population before application, was less than 5.76 and 4.31, respectively. However, after five applications with dimethoate, the RR50 using the laboratory and pre-treatment field populations was 42.34 and 34.74, respectively. Our results indicate that effectively rotating modes of action can delay and/or prevent development of insecticide resistance in populations of D. citri.
Collapse
Affiliation(s)
- Xue Dong Chen
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA.
| | - Lukasz L Stelinski
- Citrus Research and Education Center, Department of Entomology and Nematology, University of Florida, 700 Experiment Station Rd., Lake Alfred, FL 33850, USA.
| |
Collapse
|
45
|
Crossthwaite AJ, Bigot A, Camblin P, Goodchild J, Lind RJ, Slater R, Maienfisch P. The invertebrate pharmacology of insecticides acting at nicotinic acetylcholine receptors. JOURNAL OF PESTICIDE SCIENCE 2017; 42:67-83. [PMID: 30363948 PMCID: PMC6183333 DOI: 10.1584/jpestics.d17-019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/19/2017] [Indexed: 05/20/2023]
Abstract
The nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel composed of 5 protein subunits arranged around a central cation selective pore. Several classes of natural and synthetic insecticides mediate their effect through interacting at nAChRs. This review examines the basic pharmacology of the neonicotinoids and related chemistry, with an emphasis on sap-feeding insects from the order Hemiptera, the principle pest target for such insecticides. Although the receptor subunit stoichiometry for endogenous invertebrate nAChRs is unknown, there is clear evidence for the existence of distinct neonicotinoid binding sites in native insect preparations, which reflects the predicted wide repertoire of nAChRs and differing pharmacology within this insecticide class. The spinosyns are principally used to control chewing pests such as Lepidoptera, whilst nereistoxin analogues are used on pests of rice and vegetables through contact and systemic action, the pharmacology of both these insecticides is unique and different to that of the neonicotinoids.
Collapse
Affiliation(s)
- Andrew J. Crossthwaite
- Syngenta Crop Protection, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Aurelien Bigot
- Syngenta Crop Protection AG, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | - Philippe Camblin
- Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Jim Goodchild
- Syngenta Crop Protection, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Robert J. Lind
- Syngenta Crop Protection, Jealott’s Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Russell Slater
- Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| | - Peter Maienfisch
- Syngenta Crop Protection AG, Schwarzwaldallee 215, CH-4002 Basel, Switzerland
| |
Collapse
|
46
|
Pan F, Lu Y, Wang L. Toxicity and sublethal effects of sulfoxaflor on the red imported fire ant, Solenopsis invicta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 139:377-383. [PMID: 28189779 DOI: 10.1016/j.ecoenv.2017.02.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 02/08/2017] [Indexed: 06/06/2023]
Abstract
To understand whether sulfoxaflor, a novel neonicotinoid, poses unacceptable risks to the environment, it is important to assess its effects on nontarget insects. Therefore, the effects of short-term exposure (28 days) of free-feeding sublethal concentrations (1-2μg/ml) of sulfoxaflor to the red imported fire ant, Solenopsis invicta, were investigated. The following parameters were evaluated to determine the impact of exposure: colony growth, food consumption (sugar water and locusts), and interspecific interactions. Sulfoxaflor exposure produced significant negative effects on S. invicta colony growth, with cumulative colony weight losses of 83.36% and 100.00% after treatment with 1μg/ml and 2μg/ml, respectively. The consumption of sugar water (containing sulfoxaflor) of surviving colonies decreased with increasing sulfoxaflor concentration. Moreover, the consumption of locusts decreased after treatment with 2μg/ml, but not 1μg/ml, sulfoxaflor. Sulfoxaflor treatment for 14 days led to reduced aggressiveness of S. invicta workers in interspecific confrontations (S. invicta vs. unexposed Pheidole fervida), and their probability of survival of aggressive encounters was reduced significantly to 48% of that of control ants. Our results indicate that sublethal concentrations of sulfoxaflor are likely to have a negative impact on ants.
Collapse
Affiliation(s)
- Fengxiang Pan
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, China 510642
| | - Yongyue Lu
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, China 510642.
| | - Lei Wang
- Red Imported Fire Ant Research Centre, South China Agricultural University, Guangzhou, China 510642.
| |
Collapse
|
47
|
Byrne FJ, Daugherty MP, Grafton-Cardwell EE, Bethke JA, Morse JG. Evaluation of systemic neonicotinoid insecticides for the management of the Asian citrus psyllid Diaphorina citri on containerized citrus. PEST MANAGEMENT SCIENCE 2017; 73:506-514. [PMID: 27714916 DOI: 10.1002/ps.4451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/19/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Studies were conducted to evaluate uptake and retention of three systemic neonicotinoid insecticides, dinotefuran, imidacloprid and thiamethoxam, in potted citrus nursery plants treated at standard label rates. Infestation of these plants placed at a field site with moderate levels of Asian citrus psyllid (ACP) was monitored for 14 weeks following treatments, and insecticide residues in leaf tissue were quantified using enzyme-linked immunosorbent assay (ELISA). Bioassays were conducted using leaves harvested on various dates post-treatment to compare the efficacies of residues against adult ACP. RESULTS Residues of the three neonicotinoids were detected in leaf tissues within 1 week after treatment. Peak concentrations established at 1 week for imidacloprid and dinotefuran and at 2 weeks for thiamethoxam. Imidacloprid and thiamethoxam outperformed the control and dinotefuran treatments at protecting trees from infestations by ACP eggs and nymphs. For a given insecticide concentration in leaf tissue, thiamethoxam induced the highest mortality of the three insecticides, and dinotefuran was the least toxic. CONCLUSION If the time needed to achieve effective thresholds of a systemic neonicotinoid is known, treatments at production facilities could be scheduled that would minimize unnecessary post-treatment holding periods and ensure maximum retention of effective concentrations after the plants have shipped to retail outlets. The rapid uptake of the insecticides and retention at effective concentrations in containerized citrus suggest that the current 30 day post-treatment shipping restriction from production facilities to retail outlets outside of quarantine could be shortened to 14 days. Thiamethoxam should be added to the list of approved nursery treatments. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Frank J Byrne
- Department of Entomology, University of California, Riverside, CA, USA
| | | | | | - James A Bethke
- University of California Cooperative Extension, San Diego County, CA, USA
| | - Joseph G Morse
- Department of Entomology, University of California, Riverside, CA, USA
| |
Collapse
|
48
|
Poland TM, Ciaramitaro TM, McCullough DG. Laboratory Evaluation of the Toxicity of Systemic Insecticides to Emerald Ash Borer Larvae. JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:705-716. [PMID: 26721288 DOI: 10.1093/jee/tov381] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Emerald ash borer (Agrilus planipennis Fairmaire) (Coleoptera: Buprestidae), an invasive phloem-feeding insect native to Asia, threatens at least 16 North American ash (Fraxinus) species and has killed hundreds of millions of ash trees in landscapes and forests. We conducted laboratory bioassays to assess the relative efficacy of systemic insecticides to control emerald ash borer larvae in winter 2009 and 2010. Second- and third-instar larvae were reared on artificial diet treated with varying doses of emamectin benzoate (TREE-äge, Arborjet, Inc., Woburn, MA), imidacloprid (Imicide, J. J Mauget Co., Arcadia, CA), dinotefuran (Safari, Valent Professional Products, Walnut Creek, CA), and azadirachtin (TreeAzin, BioForest Technologies, Inc., Sault Ste. Marie, Ontario, and Azasol, Arborjet, Inc., Woburn, MA). All of the insecticides were toxic to emerald ash borer larvae, but lethal concentrations needed to kill 50% of the larvae (LC50), standardized by larval weight, varied with insecticide and time. On the earliest date with a significant fit of the probit model, LC50 values were 0.024 ppm/g at day 29 for TREE-äge, 0.015 ppm/g at day 63 for Imicide, 0.030 ppm/g at day 46 for Safari, 0.025 ppm/g at day 24 for TreeAzin, and 0.027 ppm/g at day 27 for Azasol. The median lethal time to kill 50% (LT50) of the tested larvae also varied with insecticide product and dose, and was longer for Imicide and Safari than for TREE-äge or the azadirachtin products. Insecticide efficacy in the field will depend on adult and larval mortality as well as leaf and phloem insecticide residues.
Collapse
|
49
|
Ferrara TFDS, Schneider VK, Kishi LT, Carmona AK, Alves MFM, Belasque-Júnior J, Rosa JC, Hunter WB, Henrique-Silva F, Soares-Costa A. Characterization of a Recombinant Cathepsin B-Like Cysteine Peptidase from Diaphorina citri Kuwayama (Hemiptera: Liviidae): A Putative Target for Control of Citrus Huanglongbing. PLoS One 2015; 10:e0145132. [PMID: 26717484 PMCID: PMC4696824 DOI: 10.1371/journal.pone.0145132] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/26/2015] [Indexed: 01/05/2023] Open
Abstract
Huanglonbing (HLB) is one of the most destructive disease affecting citrus plants. The causal agent is associated with the phloem-limited bacterium Candidatus Liberibacter asiaticus (CLas) and the psyllid Diaphorina citri, vector of disease, that transmits the bacterium associated with HLB. The control of disease can be achieved by suppressing either the bacterium or the vector. Among the control strategies for HLB disease, one of the widely used consists in controlling the enzymes of the disease vector, Diaphorina citri. The insect Diaphorina citri belongs to the order Hemiptera, which frequently have cysteine peptidases in the gut. The importance of this class of enzymes led us to search for enzymes in the D. citri transcriptome for the establishment of alternatives strategies for HLB control. In this study, we reported the identification and characterization of a cathepsin B-like cysteine peptidase from D. citri (DCcathB). DCcathB was recombinantly expressed in Pichia pastoris, presenting a molecular mass of approximately 50 kDa. The enzyme hydrolyzed the fluorogenic substrate Z-F-R-AMC (Km = 23.5 μM) and the selective substrate for cathepsin B, Z-R-R-AMC (Km = 6.13 μM). The recombinant enzyme was inhibited by the cysteine protease inhibitors E64 (IC50 = 0.014 μM) and CaneCPI-4 (Ki = 0.05 nM) and by the selective cathepsin B inhibitor CA-074 (IC50 = 0.095 nM). RT-qPCR analysis revealed that the expression of the DCcathB in nymph and adult was approximately 9-fold greater than in egg. Moreover, the expression of this enzyme in the gut was 175-fold and 3333-fold higher than in the remaining tissues and in the head, respectively, suggesting that DCcathB can be a target for HLB control.
Collapse
Affiliation(s)
- Taíse Fernanda da Silva Ferrara
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Vanessa Karine Schneider
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Luciano Takeshi Kishi
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Jose Belasque-Júnior
- Department of Phytopathology and Nematology, University of São Paulo, Piracicaba, São Paulo, SP, Brazil
| | - José César Rosa
- USDA, ARS, 2001 South Rock Road, Fort Pierce, Florida, United States of America
| | - Wayne Brian Hunter
- Protein Chemistry Center and Department of Molecular and Cellular Biology and Pathogenic Bioagents, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Flávio Henrique-Silva
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | - Andrea Soares-Costa
- Laboratory of Molecular Biology, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
50
|
Brar GS, Meyer W, Stelinski LL. Effects of methoprene, a juvenile hormone analog, on survival of various developmental stages, adult emergence, reproduction and behavior of Asian citrus psyllid, Diaphorina citri Kuwayama. PEST MANAGEMENT SCIENCE 2015; 71:1657-1665. [PMID: 25583143 DOI: 10.1002/ps.3975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 12/12/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND The Asian citrus citrus psyllid, Diaphorina citri Kuwayama, transmits a bacterium that causes huanglongbing in citrus. Frequent and repeated use of neurotoxic insecticides against D. citri has resulted in the development of insecticide resistance. We evaluated the effects of the juvenile hormone analog methoprene on egg hatch, nymphal development, adult emergence, reproduction and behavior of D. citri. RESULTS Methoprene significantly reduced the viability of eggs that were between 0 and 4 days old. Egg hatch of 0-48-h-old and 49-96-h-old eggs was 8 and 9%, respectively, when treated with 320 µg mL(-1) of methoprene. Methoprene caused significant mortality of first-, third- and fifth-instar D. citri nymphs and reduced adult emergence as compared with controls. Methoprene caused less than 5% adult emergence when first- and third-instar stages were treated, respectively, and less than 40% adult emergence when fifth instars were treated. Reduced fertility of females was observed when they emerged from methoprene-treated fifth instars. CONCLUSION Methoprene was effective in reducing egg hatch, suppressing nymphal development and decreasing adult emergence of D. citri under laboratory conditions. Treatment of fifth instars reduced the fertility of females. Methoprene might be a possible tool for integrated management of D. citri.
Collapse
Affiliation(s)
- Gurpreet S Brar
- Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Wendy Meyer
- Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| | - Lukasz L Stelinski
- Entomology and Nematology Department, University of Florida, Lake Alfred, FL, USA
| |
Collapse
|