1
|
Brooks SJ, Gomes T, Almeida AC, Christou M, Zheng C, Shaposhnikov S, Popa DG, Georgescu F, Oancea F. An ecotoxicological assessment of a strigolactone mimic used as the active ingredient in a plant biostimulant formulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116244. [PMID: 38537480 DOI: 10.1016/j.ecoenv.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/12/2024]
Abstract
A risk assessment on the aquatic toxicity of the plant biostimulant strigolactone mimic (2-(4-methyl-5-oxo-2,5-dihydro-furan-2-yloxy)-benzo[de]isoquinoline-1,3-dione (SL-6) was performed using a suite of standardised bioassays representing different trophic groups and acute and chronic endpoints. In freshwater, three trophic groups of algae, crustacea and fish were used. Whilst in seawater, algae (unicellular and macroalgae), Crustacea and Mollusca were employed. In addition, the genotoxicity of SL-6 was determined with the comet assessment performed on unicellular marine algae, oysters, and fish embryos. This was the first time ecotoxicity tests have been performed on SL-6. In freshwater, the lowest LOEC was measured in the unicellular algae at 0.31 mg/L SL-6. Although, similar LOEC values were found for embryo malformations and impacts on hatching rate in zebrafish (LOEC 0.31-0.33 mg/L). Consistent malformations of pericardial and yolk sac oedemas were identified in the zebrafish embryos at 0.31 mg/L. In marine species, the lowest LOEC was found for both Tisbe battagliai mortality and microalgae growth at an SL-6 concentration of 1.0 mg/L. Significant genotoxicity was observed above control levels at 0.0031 mg/L SL-6 in the unicellular algae and 0.001 mg/L SL-6 in the oyster and zebrafish larvae. When applying the simple risk assessment, based on the lowest NOECs and appropriate assessment factors, the calculated predicted no effect concentration (PNEC), for the ecotoxicity and the genotoxicity tests were 1.0 µg/L and 0.01 µg/L respectively.
Collapse
Affiliation(s)
- Steven J Brooks
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway.
| | - Tânia Gomes
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| | | | - Maria Christou
- Norwegian Institute for Water Research (NIVA), Økernveien 94, Oslo 0579, Norway
| | | | | | - Daria G Popa
- ICECHIM, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei No. 202, Sector 6, Bucharest 060021, Romania
| | | | - Florin Oancea
- ICECHIM, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Splaiul Independentei No. 202, Sector 6, Bucharest 060021, Romania
| |
Collapse
|
2
|
Mitra D, Panneerselvam P, Chidambaranathan P, Nayak AK, Priyadarshini A, Senapati A, Mohapatra PKD. Strigolactone GR24-mediated mitigation of phosphorus deficiency through mycorrhization in aerobic rice. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100229. [PMID: 38525307 PMCID: PMC10958977 DOI: 10.1016/j.crmicr.2024.100229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
Strigolactones (SLs) are a new class of plant hormones that play a significant role in regulating various aspects of plant growth promotion, stress tolerance and influence the rhizospheric microbiome. GR24 is a synthetic SL analog used in scientific research to understand the effects of SL on plants and to act as a plant growth promoter. This study aimed to conduct hormonal seed priming at different concentrations of GR24 (0.1, 0.5, 1.0, 5.0 and 10.0 µM with and without arbuscular mycorrhizal fungi (AMF) inoculation in selected aerobic rice varieties (CR Dhan 201, CR Dhan 204, CR Dhan 205, and CR Dhan 207), Kasalath-IC459373 (P-tolerant check), and IR-36 (P-susceptible check) under phosphorus (P)-deficient conditions to understand the enhancement of growth and priming effects in mycorrhization. Our findings showed that seed priming with 5.0 µM SL GR24 enhanced the performance of mycorrhization in CR Dhan 205 (88.91 %), followed by CR Dhan 204 and 207, and AMF sporulation in CR Dhan 201 (31.98 spores / 10 gm soil) and CR Dhan 207 (30.29 spores / 10 g soil), as well as rice growth. The study showed that the highly responsive variety CR Dhan 207 followed by CR Dhan 204, 205, 201, and Kasalath IC459373 showed higher P uptake than the control, and AMF treated with 5.0 µM SL GR24 varieties CR Dhan 205 followed by CR Dhan 207 and 204 showed the best performance in plant growth, chlorophyll content, and soil functional properties, such as acid and alkaline phosphatase activity, soil microbial biomass carbon (MBC), dehydrogenase activity (DHA), and fluorescein diacetate activity (FDA). Overall, AMF intervention with SL GR24 significantly increased plant growth, soil enzyme activity, and uptake of P compared to the control. Under P-deficient conditions, seed priming with 5.0 µM strigolactone GR24 and AMF inoculum significantly increased selected aerobic rice growth, P uptake, and soil enzyme activities. Application of SLs formulations with AMF inoculum in selected aerobic rice varieties, CR Dhan 207, CR Dhan 204, and CR Dhan 205, will play an important role in mycorrhization, growth, and enhancement of P utilization under P- nutrient deficient conditions.
Collapse
Affiliation(s)
- Debasis Mitra
- Department of Microbiology, Raiganj University, Raiganj, Uttar Dinajpur, 733134 West Bengal, India
- ICAR – National Rice Research Institute, Cuttack, 753006 Odisha, India
| | | | | | | | | | - Ansuman Senapati
- ICAR – National Rice Research Institute, Cuttack, 753006 Odisha, India
| | | |
Collapse
|
3
|
Mansoor S, Mir MA, Karunathilake EMBM, Rasool A, Ştefănescu DM, Chung YS, Sun HJ. Strigolactones as promising biomolecule for oxidative stress management: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108282. [PMID: 38147706 DOI: 10.1016/j.plaphy.2023.108282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/22/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
Strigolactones, which are a group of plant hormones, have emerged as promising biomolecules for effectively managing oxidative stress in plants. Oxidative stress occurs when the production of reactive oxygen species (ROS) exceeds the plant's ability to detoxify or scavenge these harmful molecules. An elevation in reactive oxygen species (ROS) levels often occurs in response to a range of stressors in plants. These stressors encompass both biotic factors, such as fungal, viral, or nematode attacks, as well as abiotic challenges like intense light exposure, drought, salinity, and pathogenic assaults. This ROS surge can ultimately lead to cellular harm and damage. One of the key ways in which strigolactones help mitigate oxidative stress is by stimulating the synthesis and accumulation of antioxidants. These antioxidants act as scavengers of ROS, neutralizing their harmful effects. Additionally, strigolactones also regulate stomatal closure, which reduces water loss and helps alleviate oxidative stress during conditions of drought stress or water deficiencies. By understanding and harnessing the capabilities of strigolactones, it becomes possible to enhance crop productivity and enable plants to withstand environmental stresses in the face of a changing climate. This comprehensive review provides an in-depth exploration of the various roles of strigolactones in plant growth, development, and response to various stresses, with a specific emphasis on their involvement in managing oxidative stress. Strigolactones also play a critical role in detoxifying ROS while regulating the expression of genes related to antioxidant defense pathways, striking a balance between ROS detoxification and production.
Collapse
Affiliation(s)
- Sheikh Mansoor
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Mudasir A Mir
- Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - E M B M Karunathilake
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Aatifa Rasool
- Department of Fruit Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology Kashmir (SKUAST-K), Shalimar, Srinagar, J&K, 190025, India
| | - Dragoş Mihail Ştefănescu
- Department of Biology and Environmental Engineering, University of Craiova, A.I.Cuza 13, 200585, Craiova, Romania
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, 63243, Republic of Korea.
| |
Collapse
|
4
|
Kleman J, Matusova R. Strigolactones: Current research progress in the response of plants to abiotic stress. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Yata A, Nosaki S, Yoda A, Nomura T, Miura K. Production and stably maintenance of strigolactone by transient expression of biosynthetic enzymes in Nicotiana benthamiana. FRONTIERS IN PLANT SCIENCE 2022; 13:1027004. [PMID: 36388605 PMCID: PMC9650523 DOI: 10.3389/fpls.2022.1027004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones (SLs) are phytohormones that play an essential role in plant-microbe interactions. The instability of SLs makes it challenging to use them for application to agriculture. In this study, we successfully produced a large amount of the 4-deoxyorobanchol (4DO), one of SLs, in the leaves of Nicotiana benthamiana, using a transient expression system to express SL biosynthetic enzymes. Using this system, the yield of 4DO was 2.1 ± 0.3 μg/gFM (fresh mass). Treatment of leaves at 80°C for 16 h killed Agrobacterium and approximately half amount of 4DO was left in the leaves (1.0 μg/gFM (calculated based on the original FM) ± 0.3). Interestingly, incubation of dried leaves at room temperature for 1 month maintained an almost equal amount of 4DO (0.9 ± 0.2 μg/gFM) in the leaves. These results suggest that high accumulation of 4DO with stability for long periods can be achieved in plant leaves.
Collapse
Affiliation(s)
- Akira Yata
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shohei Nosaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Japan
| | - Akiyoshi Yoda
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Takahito Nomura
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
6
|
Wu S, Ma X, Zhou A, Valenzuela A, Zhou K, Li Y. Establishment of strigolactone-producing bacterium-yeast consortium. SCIENCE ADVANCES 2021; 7:eabh4048. [PMID: 34533983 PMCID: PMC8448452 DOI: 10.1126/sciadv.abh4048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/27/2021] [Indexed: 05/28/2023]
Abstract
Strigolactones (SLs) are a class of phytohormones playing diverse roles in plant growth and development, yet the limited access to SLs is largely impeding SL-based foundational investigations and applications. Here, we developed Escherichia coli–Saccharomyces cerevisiae consortia to establish a microbial biosynthetic platform for the synthesis of various SLs, including carlactone, carlactonoic acid, 5-deoxystrigol (5DS; 6.65 ± 1.71 μg/liter), 4-deoxyorobanchol (3.46 ± 0.28 μg/liter), and orobanchol (OB; 19.36 ± 5.20 μg/liter). The SL-producing platform enabled us to conduct functional identification of CYP722Cs from various plants as either OB or 5DS synthase. It also allowed us to quantitatively compare known variants of plant SL biosynthetic enzymes in the microbial system. The titer of 5DS was further enhanced through pathway engineering to 47.3 μg/liter. This work provides a unique platform for investigating SL biosynthesis and evolution and lays the foundation for developing SL microbial production process.
Collapse
Affiliation(s)
- Sheng Wu
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Xiaoqiang Ma
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Anqi Zhou
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Alex Valenzuela
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Kang Zhou
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yanran Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
7
|
de Saint Germain A, Jacobs A, Brun G, Pouvreau JB, Braem L, Cornu D, Clavé G, Baudu E, Steinmetz V, Servajean V, Wicke S, Gevaert K, Simier P, Goormachtig S, Delavault P, Boyer FD. A Phelipanche ramosa KAI2 protein perceives strigolactones and isothiocyanates enzymatically. PLANT COMMUNICATIONS 2021; 2:100166. [PMID: 34746757 PMCID: PMC8553955 DOI: 10.1016/j.xplc.2021.100166] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 05/18/2023]
Abstract
Phelipanche ramosa is an obligate root-parasitic weed that threatens major crops in central Europe. In order to germinate, it must perceive various structurally divergent host-exuded signals, including isothiocyanates (ITCs) and strigolactones (SLs). However, the receptors involved are still uncharacterized. Here, we identify five putative SL receptors in P. ramosa and show that PrKAI2d3 is involved in the stimulation of seed germination. We demonstrate the high plasticity of PrKAI2d3, which allows it to interact with different chemicals, including ITCs. The SL perception mechanism of PrKAI2d3 is similar to that of endogenous SLs in non-parasitic plants. We provide evidence that PrKAI2d3 enzymatic activity confers hypersensitivity to SLs. Additionally, we demonstrate that methylbutenolide-OH binds PrKAI2d3 and stimulates P. ramosa germination with bioactivity comparable to that of ITCs. This study demonstrates that P. ramosa has extended its signal perception system during evolution, a fact that should be considered for the development of specific and efficient biocontrol methods.
Collapse
Affiliation(s)
| | - Anse Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
| | - Guillaume Brun
- Laboratoire de Biologie et Pathologie Végétales (LBPV), Equipe d’Accueil 1157, Université de Nantes, 44000 Nantes, France
- Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Jean-Bernard Pouvreau
- Laboratoire de Biologie et Pathologie Végétales (LBPV), Equipe d’Accueil 1157, Université de Nantes, 44000 Nantes, France
| | - Lukas Braem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Guillaume Clavé
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Emmanuelle Baudu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France
| | - Vincent Steinmetz
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Vincent Servajean
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - Susann Wicke
- Institute for Biology, Humboldt-Universität zu Berlin, 10115 Berlin, Germany
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
| | - Philippe Simier
- Laboratoire de Biologie et Pathologie Végétales (LBPV), Equipe d’Accueil 1157, Université de Nantes, 44000 Nantes, France
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Gent, Belgium
| | - Philippe Delavault
- Laboratoire de Biologie et Pathologie Végétales (LBPV), Equipe d’Accueil 1157, Université de Nantes, 44000 Nantes, France
| | - François-Didier Boyer
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
- Corresponding author
| |
Collapse
|
8
|
Prandi C, Kapulnik Y, Koltai H. Strigolactones: Phytohormones with Promising Biomedical Applications. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cristina Prandi
- Department of Chemistry University of Turin via P.Giuria 7 10125 Torino Italy
| | - Yoram Kapulnik
- BARD (Israel Binational Agricultural Research and Development Fund) Rishon LeZion 7505101 Israel
| | - Hinanit Koltai
- Agriculture Research Organization, Volcani Center Rishon Lezion Israel
| |
Collapse
|
9
|
Strigolactones, from Plants to Human Health: Achievements and Challenges. Molecules 2021; 26:molecules26154579. [PMID: 34361731 PMCID: PMC8348160 DOI: 10.3390/molecules26154579] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Strigolactones (SLs) are a class of sesquiterpenoid plant hormones that play a role in the response of plants to various biotic and abiotic stresses. When released into the rhizosphere, they are perceived by both beneficial symbiotic mycorrhizal fungi and parasitic plants. Due to their multiple roles, SLs are potentially interesting agricultural targets. Indeed, the use of SLs as agrochemicals can favor sustainable agriculture via multiple mechanisms, including shaping root architecture, promoting ideal branching, stimulating nutrient assimilation, controlling parasitic weeds, mitigating drought and enhancing mycorrhization. Moreover, over the last few years, a number of studies have shed light onto the effects exerted by SLs on human cells and on their possible applications in medicine. For example, SLs have been demonstrated to play a key role in the control of pathways related to apoptosis and inflammation. The elucidation of the molecular mechanisms behind their action has inspired further investigations into their effects on human cells and their possible uses as anti-cancer and antimicrobial agents.
Collapse
|
10
|
Sedaghat M, Emam Y, Mokhtassi-Bidgoli A, Hazrati S, Lovisolo C, Visentin I, Cardinale F, Tahmasebi-Sarvestani Z. The Potential of the Synthetic Strigolactone Analogue GR24 for the Maintenance of Photosynthesis and Yield in Winter Wheat under Drought: Investigations on the Mechanisms of Action and Delivery Modes. PLANTS 2021; 10:plants10061223. [PMID: 34208497 PMCID: PMC8233996 DOI: 10.3390/plants10061223] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/11/2021] [Accepted: 06/12/2021] [Indexed: 12/21/2022]
Abstract
Strigolactones (SLs) have been implicated in many plant biological and physiological processes, including the responses to abiotic stresses such as drought, in concert with other phytohormones. While it is now clear that exogenous SLs may help plants to survive in harsh environmental condition, the best, most effective protocols for treatment have not been defined yet, and the mechanisms of action are far from being fully understood. In the set of experiments reported here, we contrasted two application methods for treatment with a synthetic analog of SL, GR24. A number of morphometric, physiological and biochemical parameters were measured following foliar application of GR24 or application in the residual irrigation water in winter wheat plants under irrigated and drought stress conditions. Depending on the concentration and the method of GR24 application, differentiated photosynthesis and transpiration rate, stomatal conductance, leaf water potential, antioxidant enzyme activities and yield in drought conditions were observed. We present evidence that different methods of GR24 application led to increased photosynthesis and yield under stress by a combination of drought tolerance and escape factors, which should be considered for future research exploring the potential of this new family of bioactive molecules for practical applications.
Collapse
Affiliation(s)
- Mojde Sedaghat
- Department of Environmental and Plant Biology, Ohio University, Athens, OH 45701, USA
- Correspondence:
| | - Yahya Emam
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz 7144165186, Iran;
| | - Ali Mokhtassi-Bidgoli
- Department of Agronomy, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115111, Iran; (A.M.-B.); (Z.T.-S.)
| | - Saeid Hazrati
- Department of Agronomy, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53714161, Iran;
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | - Ivan Visentin
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | - Francesca Cardinale
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, 10095 Grugliasco, Italy; (C.L.); (I.V.); (F.C.)
| | | |
Collapse
|
11
|
Jamil M, Kountche BA, Al-Babili S. Current progress in Striga management. PLANT PHYSIOLOGY 2021; 185:1339-1352. [PMID: 33793943 PMCID: PMC8133620 DOI: 10.1093/plphys/kiab040] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 05/20/2023]
Abstract
The Striga, particularly S. he rmonthica, problem has become a major threat to food security, exacerbating hunger and poverty in many African countries. A number of Striga control strategies have been proposed and tested during the past decade, however, further research efforts are still needed to provide sustainable and effective solutions to the Striga problem. In this paper, we provide an update on the recent progress and the approaches used in Striga management, and highlight emerging opportunities for developing new technologies to control this enigmatic parasite.
Collapse
Affiliation(s)
- Muhammad Jamil
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Boubacar A Kountche
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Author for communication:
| |
Collapse
|
12
|
Wang JY, Jamil M, Lin PY, Ota T, Fiorilli V, Novero M, Zarban RA, Kountche BA, Takahashi I, Martínez C, Lanfranco L, Bonfante P, de Lera AR, Asami T, Al-Babili S. Efficient Mimics for Elucidating Zaxinone Biology and Promoting Agricultural Applications. MOLECULAR PLANT 2020; 13:1654-1661. [PMID: 32835886 PMCID: PMC7656291 DOI: 10.1016/j.molp.2020.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 07/07/2020] [Accepted: 08/19/2020] [Indexed: 05/04/2023]
Abstract
Zaxinone is an apocarotenoid regulatory metabolite required for normal rice growth and development. In addition, zaxinone has a large application potential in agriculture, due to its growth-promoting activity and capability to alleviate infestation by the root parasitic plant Striga through decreasing strigolactone (SL) production. However, zaxinone is poorly accessible to the scientific community because of its laborious organic synthesis that impedes its further investigation and utilization. In this study, we developed easy-to-synthesize and highly efficient mimics of zaxinone (MiZax). We performed a structure-activity relationship study using a series of apocarotenoids distinguished from zaxinone by different structural features. Using the obtained results, we designed several phenyl-based compounds synthesized with a high-yield through a simple method. Activity tests showed that MiZax3 and MiZax5 exert zaxinone activity in rescuing root growth of a zaxinone-deficient rice mutant, promoting growth, and reducing SL content in roots and root exudates of wild-type plants. Moreover, these compounds were at least as efficient as zaxinone in suppressing transcript level of SL biosynthesis genes and in alleviating Striga infestation under greenhouse conditions, and did not negatively impact mycorrhization. Taken together, MiZax are a promising tool for elucidating zaxinone biology and investigating rice development, and suitable candidates for combating Striga and increasing crop growth.
Collapse
Affiliation(s)
- Jian You Wang
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Muhammad Jamil
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Pei-Yu Lin
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Tsuyoshi Ota
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Randa A Zarban
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Boubacar A Kountche
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia
| | - Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Claudio Martínez
- Universidade de Vigo, Facultade de Química and CINBIO, Vigo, Spain
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Angel R de Lera
- Universidade de Vigo, Facultade de Química and CINBIO, Vigo, Spain
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | - Salim Al-Babili
- King Abdullah University of Science and Technology, Division of Biological and Environmental Science and Engineering, the BioActives Lab, Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
13
|
Chesterfield RJ, Vickers CE, Beveridge CA. Translation of Strigolactones from Plant Hormone to Agriculture: Achievements, Future Perspectives, and Challenges. TRENDS IN PLANT SCIENCE 2020; 25:1087-1106. [PMID: 32660772 DOI: 10.1016/j.tplants.2020.06.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 05/21/2023]
Abstract
Strigolactones (SLs) control plant development, enhance symbioses, and act as germination stimulants for some of the most destructive species of parasitic weeds, making SLs a potential tool to improve crop productivity and resilience. Field trials demonstrate the potential use of SLs as agrochemicals or genetic targets in breeding programs, with applications in improving drought tolerance, increasing yields, and controlling parasitic weeds. However, for effective translation of SLs into agriculture, understanding and exploiting SL diversity and the development of economically viable sources of SL analogs will be critical. Here we review how manipulation of SL signaling can be used when developing new tools and crop varieties to address some critical challenges, such as nutrient acquisition, resource allocation, stress tolerance, and plant-parasite interactions.
Collapse
Affiliation(s)
- Rebecca J Chesterfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Synthetic Biology Future Science Platform, CSIRO, Australia
| | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia; Synthetic Biology Future Science Platform, CSIRO, Australia.
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| |
Collapse
|
14
|
Chesterfield RJ, Whitfield JH, Pouvreau B, Cao D, Alexandrov K, Beveridge CA, Vickers CE. Rational Design of Novel Fluorescent Enzyme Biosensors for Direct Detection of Strigolactones. ACS Synth Biol 2020; 9:2107-2118. [PMID: 32786922 DOI: 10.1021/acssynbio.0c00192] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Strigolactones are plant hormones and rhizosphere signaling molecules with key roles in plant development, mycorrhizal fungal symbioses, and plant parasitism. Currently, sensitive, specific, and high-throughput methods of detecting strigolactones are limited. Here, we developed genetically encoded fluorescent strigolactone biosensors based on the strigolactone receptors DAD2 from Petunia hybrida, and HTL7 from Striga hermonthica. The biosensors were constructed via domain insertion of circularly permuted GFP. The biosensors exhibited loss of cpGFP fluorescence in vitro upon treatment with the strigolactones 5-deoxystrigol and orobanchol, or the strigolactone analogue rac-GR24, and the ShHTL7 biosensor also responded to a specific antagonist. To overcome biosensor sensitivity to changes in expression level and protein degradation, an additional strigolactone-insensitive fluorophore, LSSmOrange, was included as an internal normalization control. Other plant hormones and karrikins resulted in no fluorescence change, demonstrating that the biosensors report on compounds that specifically bind the SL receptors. The DAD2 biosensor likewise responded to strigolactones in an in vivo protoplast system, and retained strigolactone hydrolysis activity. These biosensors have applications in high-throughput screening for agrochemical compounds, and may also have utility in understanding strigolactone mediated signaling in plants.
Collapse
Affiliation(s)
- Rebecca J. Chesterfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Black Mountain, ACT 2601, Australia
| | - Jason H. Whitfield
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
| | - Benjamin Pouvreau
- Synthetic Biology Future Science Platform, CSIRO, Black Mountain, ACT 2601, Australia
| | - Da Cao
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Kirill Alexandrov
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Institute of Health and Biomedical Innovation, Institute for Future Environments, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Christine A. Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Claudia E. Vickers
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
- Synthetic Biology Future Science Platform, CSIRO, Dutton Park, QLD 4001, Australia
| |
Collapse
|
15
|
Aliche EB, Screpanti C, De Mesmaeker A, Munnik T, Bouwmeester HJ. Science and application of strigolactones. THE NEW PHYTOLOGIST 2020; 227:1001-1011. [PMID: 32067235 PMCID: PMC7384091 DOI: 10.1111/nph.16489] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/11/2020] [Indexed: 05/16/2023]
Abstract
Strigolactones (SLs) represent a class of plant hormones that regulate developmental processes and play a role in the response of plants to various biotic and abiotic stresses. Both in planta hormonal roles and ex planta signalling effects of SLs are potentially interesting agricultural targets. In this review, we explore various aspects of SL function and highlight distinct areas of agriculture that may benefit from the use of synthetic SL analogues, and we identify possible bottlenecks. Our objective is to identify where the contributions of science and stakeholders are still needed to achieve harnessing the benefits of SLs for a sustainable agriculture of the near future.
Collapse
Affiliation(s)
- Ernest B. Aliche
- Plant Hormone BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| | - Claudio Screpanti
- Chemical ResearchSyngenta Crop Protection AGSchaffhausenstrasse 101CH‐4332SteinSwitzerland
| | - Alain De Mesmaeker
- Chemical ResearchSyngenta Crop Protection AGSchaffhausenstrasse 101CH‐4332SteinSwitzerland
| | - Teun Munnik
- Plant Cell BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| | - Harro J. Bouwmeester
- Plant Hormone BiologySwammerdam Institute for Life SciencesUniversity of AmsterdamScience Park 904Amsterdam1098 XHthe Netherlands
| |
Collapse
|
16
|
Oláh D, Feigl G, Molnár Á, Ördög A, Kolbert Z. Strigolactones Interact With Nitric Oxide in Regulating Root System Architecture of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1019. [PMID: 32719710 PMCID: PMC7350899 DOI: 10.3389/fpls.2020.01019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/22/2020] [Indexed: 05/04/2023]
Abstract
Both nitric oxide (NO) and strigolactone (SL) are growth regulating signal components in plants; however, regarding their possible interplay our knowledge is limited. Therefore, this study aims to provide new evidence for the signal interplay between NO and SL in the formation of root system architecture using complementary pharmacological and molecular biological approaches in the model Arabidopsis thaliana grown under stress-free conditions. Deficiency of SL synthesis or signaling (max1-1 and max2-1) resulted in elevated NO and S-nitrosothiol (SNO) levels due to decreased S-nitrosoglutathione (GSNO) reductase (GSNOR) protein abundance and activity indicating that there is a signal interaction between SLs and GSNOR-regulated levels of NO/SNO. This was further supported by the down-regulation of SL biosynthetic genes (CCD7, CCD8 and MAX1) in GSNOR-deficient gsnor1-3. Based on the more pronounced sensitivity of gsnor1-3 to exogenous SL (rac-GR24, 2 µM), we suspected that functional GSNOR is needed to control NO/SNO levels during SL-induced primary root (PR) elongation. Additionally, SLs may be involved in GSNO-regulated PR shortening as suggested by the relative insensitivity of max1-1 and max2-1 mutants to exogenous GSNO (250 µM). Collectively, our results indicate a connection between SL and GSNOR-regulated NO/SNO signals in roots of A. thaliana grown in stress-free environment. As this work used max2-1 mutant and rac-GR24 exerting unspecific effects to both SL and karrikin signaling, it cannot be ruled out that karrikins are partly responsible for the observed effects, and this issue needs further clarification in the future.
Collapse
|
17
|
Ashida K, Hoshimoto Y, Tohnai N, Scott DE, Ohashi M, Imaizumi H, Tsuchiya Y, Ogoshi S. Enantioselective Synthesis of Polycyclic γ-Lactams with Multiple Chiral Carbon Centers via Ni(0)-Catalyzed Asymmetric Carbonylative Cycloadditions without Stirring. J Am Chem Soc 2019; 142:1594-1602. [DOI: 10.1021/jacs.9b12493] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Keita Ashida
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Norimitsu Tohnai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - David E. Scott
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Masato Ohashi
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
| | - Hanae Imaizumi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuichiro Tsuchiya
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
18
|
Prandi C, Occhiato EG. From synthetic control to natural products: a focus on N-heterocycles. PEST MANAGEMENT SCIENCE 2019; 75:2385-2402. [PMID: 30624033 DOI: 10.1002/ps.5322] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/04/2019] [Accepted: 01/04/2019] [Indexed: 06/09/2023]
Abstract
Natural products containing a N-heterocycle motif are widespread in nature and medicinal plants, in particular, have proved to be a source of almost unlimited N-derived structures with high molecular diversity. Because of their intrinsic potential for use in both biomedical and agricultural applications, there is a general need for new compounds and for the synthesis of 'natural-inspired' analogues. Importantly, transition of a natural product from discovery to a 'market lead' is associated with an increasingly challenging demand for more of the compound, which cannot be met by isolation from natural plant sources, often due to low extraction yields and uneven availability of the plant source itself. Synthesis remains the most reliable approach to provide valuable products for the market. In this review, a comprehensive overview of our contribution to synthetic access to N-derived natural products is given. Major strengths of the proposed methodologies are discussed critically. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Ernesto G Occhiato
- Department of Chemistry 'U. Schiff', Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
19
|
Bouwmeester HJ, Fonne‐Pfister R, Screpanti C, De Mesmaeker A. Strigolactone: Pflanzenhormone mit vielversprechenden Eigenschaften. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201901626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Harro J. Bouwmeester
- Plant Hormone Biology group Swammerdam Institute for Life Sciences University of Amsterdam Science Park 904 1098 XH Amsterdam Niederlande
| | | | | | | |
Collapse
|
20
|
Bouwmeester HJ, Fonne-Pfister R, Screpanti C, De Mesmaeker A. Strigolactones: Plant Hormones with Promising Features. Angew Chem Int Ed Engl 2019; 58:12778-12786. [PMID: 31282086 DOI: 10.1002/anie.201901626] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Indexed: 12/24/2022]
Abstract
Almost 80 years after the discovery of the first plant hormone, auxin, a few years ago a new class of plant hormones, the strigolactones, was discovered. These molecules have unprecedented biological activity in a number of highly important biological processes in plants but also outside the plant in the rhizosphere, the layer of soil surrounding the roots of plants and teeming with life. The exploitation of this amazing biological activity is not without challenges: the synthesis of strigolactones is complicated and designing the desired activity a difficult task. This minireview describes the current state of knowledge about the strigolactones and how synthetic analogs can be developed that can potentially contribute to the development of a sustainable agriculture.
Collapse
Affiliation(s)
- Harro J Bouwmeester
- Plant Hormone Biology group, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
21
|
|
22
|
Kolbert Z. Strigolactone-nitric oxide interplay in plants: The story has just begun. PHYSIOLOGIA PLANTARUM 2019; 165:487-497. [PMID: 29479710 DOI: 10.1111/ppl.12712] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 05/07/2023]
Abstract
Both strigolactones (SLs) and nitric oxide (NO) are regulatory signals with diverse roles during plant development and stress responses. This review aims to discuss the so far available data regarding SLs-NO interplay in plant systems. The majority of the few articles dealing with SL-NO interplay focuses on the root system and it seems that NO can be an upstream negative regulator of SL biosynthesis or an upstream positive regulator of SL signaling depending on the nutrient supply. From the so far published results it is clear that NO modifies the activity of target proteins involved in SL biosynthesis or signaling which may be a physiologically relevant interaction. Therefore, in silico analysis of NO-dependent posttranslational modifications in SL-related proteins was performed using computational prediction tools and putative NO-target proteins were specified. The picture is presumably more complicated, since also SL is able to modify NO levels. As a confirmation, author detected NO levels in different organs of max1-1 and max2-1 Arabidopsis and compared to the wild-type these mutants showed enhanced NO levels in their root tips indicating the negative effect of endogenous SLs on NO metabolism. Exogenous SL analogue-triggered NO production seems to contradict the results of the genetic study, which is an inconsistency should be taken into consideration in the future. In the coming years, the link between SL and NO signaling in further physiological processes should be examined and the possibilities of NO-dependent posttranslational modifications of SL biosynthetic and signaling proteins should be looked more closely.
Collapse
|
23
|
Sanchez E, Artuso E, Lombardi C, Visentin I, Lace B, Saeed W, Lolli ML, Kobauri P, Ali Z, spyrakis F, Cubas P, Cardinale F, Prandi C. Structure-activity relationships of strigolactones via a novel, quantitative in planta bioassay. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2333-2343. [PMID: 29554337 PMCID: PMC5913603 DOI: 10.1093/jxb/ery092] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 02/27/2018] [Indexed: 06/01/2023]
Abstract
Strigolactones (SLs) are plant hormones with various functions in development, responses to stress, and interactions with (micro)organisms in the rhizosphere, including with seeds of parasitic plants. Their perception for hormonal functions requires an α,β-hydrolase belonging to the D14 clade in higher plants; perception of host-produced SLs by parasitic seeds relies on similar but phylogenetically distinct proteins (D14-like). D14 and D14-like proteins are peculiar receptors, because they cleave SLs before undergoing a conformational change that elicits downstream events. Structure-activity relationship data show that the butenolide D-ring is crucial for bioactivity. We applied a bioisosteric approach to the structure of SLs by synthetizing analogues and mimics of natural SLs in which the D-ring was changed from a butenolide to a lactam and then evaluating their bioactivity. This was done by using a novel bioassay based on Arabidopsis transgenic lines expressing AtD14 fused to firefly luciferase, in parallel with the quantification of germination-inducing activity on parasitic seeds. The results obtained showed that the in planta bioassay is robust and quantitative, and thus can be confidently added to the SL-survey toolbox. The results also showed that modification of the butenolide ring into a lactam one significantly hampers the biological activity exhibited by SLs possessing a canonical lactonic D-ring.
Collapse
Affiliation(s)
- Elena Sanchez
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Emma Artuso
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Chiara Lombardi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| | - Ivan Visentin
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Beatrice Lace
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
- University of Freiburg, Faculty of Biology, Cell Biology, Schänzlestr., Freiburg, Germany
| | - Wajeeha Saeed
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Marco L Lolli
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Piermichele Kobauri
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Zahid Ali
- Department of Biosciences, COMSATS Institute of Information Technology, Islamabad, Pakistan
| | - Francesca spyrakis
- Department of Drug Science and Technology, University of Turin, via P. Giuria Turin, Italy
| | - Pilar Cubas
- Department of Chemistry, University of Turin, via P. Giuria Turin, Italy
| | - Francesca Cardinale
- Department of Agricultural, Forestry and Food Science, Largo P. Braccini, Grugliasco (TO), Italy
| | - Cristina Prandi
- Centro Nacional de Biotecnología-CSIC, Plant Molecular Genetics Department, C/ Darwin, Campus UAM, Madrid, Spain
| |
Collapse
|
24
|
Takahashi I, Asami T. Target-based selectivity of strigolactone agonists and antagonists in plants and their potential use in agriculture. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2241-2254. [PMID: 29635308 DOI: 10.1093/jxb/ery126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 03/29/2018] [Indexed: 05/08/2023]
Abstract
Strigolactones (SLs) are small carotenoid-derived molecules that possess a wide spectrum of functions, including plant hormonal activities and chemical mediation of rhizosphere communication with both root parasitic plants and symbiotic arbuscular mycorrhizal fungi. Chemicals that regulate the functions of SLs may therefore have the potential to become widely used in agricultural applications. For example, various SL analogs and mimics have been developed to reduce the seed banks of root parasites in the field. Other analogs and mimics act selectively to suppress branching, with weak, or no stimulation, of germination in root parasites. In addition, some antagonists for SL receptors have been developed based on the mechanisms of SL perception. A better understanding of the modes of action of SL perception by various receptors will help to support the design of SL analogs, mimics, and antagonists with high activity and selectivity. Here, we review the compounds reported so far from the viewpoint of their selectivity to their targets, and the possibilities for their use in agriculture.
Collapse
Affiliation(s)
- Ikuo Takahashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biochemistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Bioactive Natural Products Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Zwanenburg B, Blanco-Ania D. Strigolactones: new plant hormones in the spotlight. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2205-2218. [PMID: 29385517 DOI: 10.1093/jxb/erx487] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/12/2017] [Indexed: 05/20/2023]
Abstract
The development and growth of plants are regulated by interplay of a plethora of complex chemical reactions in which plant hormones play a pivotal role. In recent years, a group of new plant hormones, namely strigolactones (SLs), was discovered and identified. The first SL, strigol, was isolated in 1966, but it took almost 20 years before the details of its structure were fully elucidated. At present, two families of SLs are known, one having the stereochemistry of (+)-strigol and the other that of (-)-orobanchol, the most abundant naturally occurring SL. The most well-known bioproperty of SLs is the germination of seeds of the parasitic weeds Striga and Orobanche. It is evident that SLs are going to play a prominent role in modern molecular botany. In this review, relevant molecular and bioproperties of SLs are discussed. Items of importance are the effect of stereochemistry, structure-activity relationships, design and synthesis of analogues with a simple structure, but with retention of bioactivity, introduction of fluorescent labels into SLs, biosynthetic origin of SLs, mode of action in plants, application in agriculture for the control of parasitic weeds, stimulation of the branching of arbuscular mycorrhizal (AM) fungi, and the control of plant architecture. The future potential of SLs in molecular botany is highlighted.
Collapse
Affiliation(s)
- Binne Zwanenburg
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, The Netherlands
| | - Daniel Blanco-Ania
- Radboud University, Institute for Molecules and Materials, Cluster of Organic Chemistry, The Netherlands
| |
Collapse
|
26
|
Verzeaux J, Hirel B, Dubois F, Lea PJ, Tétu T. Agricultural practices to improve nitrogen use efficiency through the use of arbuscular mycorrhizae: Basic and agronomic aspects. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:48-56. [PMID: 28969802 DOI: 10.1016/j.plantsci.2017.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 05/21/2023]
Abstract
Nitrogen cycling in agroecosystems is heavily dependent upon arbuscular mycorrhizal fungi (AMF) present in the soil microbiome. These fungi develop obligate symbioses with various host plant species, thus increasing their ability to acquire nutrients. However, AMF are particularly sensitive to physical, chemical and biological disturbances caused by human actions that limit their establishment. For a more sustainable agriculture, it will be necessary to further investigate which agricultural practices could be favorable to maximize the benefits of AMF to improve crop nitrogen use efficiency (NUE), thus reducing nitrogen (N) fertilizer usage. Direct seeding, mulch-based cropping systems prevent soil mycelium disruption and increase AMF propagule abundance. Such cropping systems lead to more efficient root colonization by AMF and thus a better establishment of the plant/fungal symbiosis. In addition, the use of continuous cover cropping systems can also enhance the formation of more efficient interconnected hyphal networks between mycorrhizae colonized plants. Taking into account both fundamental and agronomic aspects of mineral nutrition by plant/AMF symbioses, we have critically described, how improving fungal colonization through the reduction of soil perturbation and maintenance of an ecological balance could be helpful for increasing crop NUE.
Collapse
Affiliation(s)
- Julien Verzeaux
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| | - Bertrand Hirel
- Intitut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, RD10, F-78026 Versailles Cedex, France.
| | - Frédéric Dubois
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Thierry Tétu
- Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN, FRE 3498 CNRS UPJV), Laboratoire d'Agroécologie, Ecophysiologie et Biologie intégrative, Université de Picardie Jules Verne, 33 rue St Leu, 80039 Amiens Cedex, France
| |
Collapse
|
27
|
De Cuyper C, Goormachtig S. Strigolactones in the Rhizosphere: Friend or Foe? MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:683-690. [PMID: 28598262 DOI: 10.1094/mpmi-02-17-0051-cr] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Strigolactones are well-known endogenous plant hormones that play a major role in planta by influencing different physiological processes. Moreover, ex planta, strigolactones are important signaling molecules in root exudates and function as host detection cues to launch mutualistic interactions with arbuscular mycorrhizal fungi in the rhizosphere. However, parasitic plants belonging to the Orobanchaceae family hijacked this communication system to stimulate their seed germination when in close proximity to the roots of a suitable host. As a result, the secretion of strigolactones by the plant can have both favorable and detrimental outcomes. Here, we discuss these dual positive and negative effects of strigolactones and we provide a detailed overview on the role of these molecules in the complex dialogs between plants and different organisms in the rhizosphere.
Collapse
Affiliation(s)
- Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
28
|
Hoshimoto Y, Ashida K, Sasaoka Y, Kumar R, Kamikawa K, Verdaguer X, Riera A, Ohashi M, Ogoshi S. Efficient Synthesis of Polycyclic γ-Lactams by Catalytic Carbonylation of Ene-Imines via Nickelacycle Intermediates. Angew Chem Int Ed Engl 2017; 56:8206-8210. [PMID: 28603882 DOI: 10.1002/anie.201703187] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Indexed: 12/12/2022]
Abstract
The nickel(0)-catalyzed carbonylative cycloaddition of 1,5- and 1,6-ene-imines with carbon monoxide (CO) is reported. Key to this reaction is the efficient regeneration of the catalytically active nickel(0) species from nickel carbonyl complexes such as [Ni(CO)3 L]. A variety of tri- and tetracyclic γ-lactams were thus prepared in excellent yields with 100 % atom efficiency. Preliminary results on asymmetric derivatives promise potential in the synthesis of enantioenriched polycyclic γ-lactams.
Collapse
Affiliation(s)
- Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.,Frontier Research Base for Global Young Researchers, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Keita Ashida
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yukari Sasaoka
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ravindra Kumar
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Ken Kamikawa
- Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain.,Departament de Química Inorgànica i Orgànica, Secció Orgànica, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, 08028, Spain.,Departament de Química Inorgànica i Orgànica, Secció Orgànica, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Masato Ohashi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
29
|
Hoshimoto Y, Ashida K, Sasaoka Y, Kumar R, Kamikawa K, Verdaguer X, Riera A, Ohashi M, Ogoshi S. Efficient Synthesis of Polycyclic γ-Lactams by Catalytic Carbonylation of Ene-Imines via Nickelacycle Intermediates. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703187] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yoichi Hoshimoto
- Department of Applied Chemistry; Faculty of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
- Frontier Research Base for Global Young Researchers; Graduate School of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Keita Ashida
- Department of Applied Chemistry; Faculty of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Yukari Sasaoka
- Department of Applied Chemistry; Faculty of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Ravindra Kumar
- Department of Applied Chemistry; Faculty of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Ken Kamikawa
- Department of Chemistry; Graduate School of Science; Osaka Prefecture University, Sakai; Osaka 599-8531 Japan
| | - Xavier Verdaguer
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
- Departament de Química Inorgànica i Orgànica, Secció Orgànica; Universitat de Barcelona; Barcelona 08028 Spain
| | - Antoni Riera
- Institute for Research in Biomedicine (IRB Barcelona); The Barcelona Institute of Science and Technology; Barcelona 08028 Spain
- Departament de Química Inorgànica i Orgànica, Secció Orgànica; Universitat de Barcelona; Barcelona 08028 Spain
| | - Masato Ohashi
- Department of Applied Chemistry; Faculty of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry; Faculty of Engineering; Osaka University, Suita; Osaka 565-0871 Japan
| |
Collapse
|
30
|
Oancea F, Georgescu E, Matusova R, Georgescu F, Nicolescu A, Raut I, Jecu ML, Vladulescu MC, Vladulescu L, Deleanu C. New Strigolactone Mimics as Exogenous Signals for Rhizosphere Organisms. Molecules 2017; 22:E961. [PMID: 28598371 PMCID: PMC6152683 DOI: 10.3390/molecules22060961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/06/2017] [Accepted: 06/07/2017] [Indexed: 11/16/2022] Open
Abstract
The importance of strigolactones in plant biology prompted us to synthesize simplified strigolactone mimics effective as exogenous signals for rhizosphere organisms. New strigolactone mimics easily derived from simple and available starting materials in significant amounts were prepared and fully characterized. These compounds contain an aromatic or heterocyclic ring, usually present in various bioactive molecules, connected by an ether link to a furan-2-one moiety. The new synthesized strigolactone mimics were confirmed to be active on plant pathogenic fungi and parasitic weed seeds.
Collapse
Affiliation(s)
- Florin Oancea
- National Research & Development Institute for Chemistry & Petrochemistry-ICECHIM, Spl. Independentei 202, RO-060021 Bucharest, Romania.
| | - Emilian Georgescu
- Research Center Oltchim, St. Uzinei 1, RO-240050 Ramnicu Valcea, Romania.
| | - Radoslava Matusova
- Plant Science and Biodiversity Center SAS, Institute of Plant Genetics and Biotechnology, PO Box 39A, 95007 Nitra, Slovakia.
| | - Florentina Georgescu
- Research Department Teso Spec S. R. L., Str. Muncii 53, RO-915200 Fundulea, Romania.
| | - Alina Nicolescu
- Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202B, RO-060023 Bucharest, Romania.
- Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41-A, 700487 Iasi, Romania.
| | - Iuliana Raut
- National Research & Development Institute for Chemistry & Petrochemistry-ICECHIM, Spl. Independentei 202, RO-060021 Bucharest, Romania.
| | - Maria-Luiza Jecu
- National Research & Development Institute for Chemistry & Petrochemistry-ICECHIM, Spl. Independentei 202, RO-060021 Bucharest, Romania.
| | | | - Lucian Vladulescu
- Research Department Teso Spec S. R. L., Str. Muncii 53, RO-915200 Fundulea, Romania.
| | - Calin Deleanu
- Centre of Organic Chemistry, Romanian Academy, Spl. Independentei 202B, RO-060023 Bucharest, Romania.
- Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Voda 41-A, 700487 Iasi, Romania.
| |
Collapse
|
31
|
Duke SO. Summing up the past year for Pest Management Science. PEST MANAGEMENT SCIENCE 2017; 73:7-8. [PMID: 27910293 DOI: 10.1002/ps.4466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
|
32
|
Screpanti C, Yoneyama K, Bouwmeester HJ. Strigolactones and parasitic weed management 50 years after the discovery of the first natural strigolactone strigol: status and outlook. PEST MANAGEMENT SCIENCE 2016; 72:2013-2015. [PMID: 27700003 DOI: 10.1002/ps.4436] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Affiliation(s)
- Claudio Screpanti
- Syngenta Crop Protection AG, Chemical Research Schaffhausenstrasse 101, CH-4332, Switzerland
| | - Koichi Yoneyama
- Center for Bioscience Research & Education, Utsunomiya University, 350 Mine-machi, Utsunomiya, 321-8505, Japan
| | - Harro J Bouwmeester
- Wageningen University, Laboratory of Plant Physiology, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
33
|
Cala A, Ghooray K, Fernández-Aparicio M, Molinillo JM, Galindo JC, Rubiales D, Macías FA. Phthalimide-derived strigolactone mimics as germinating agents for seeds of parasitic weeds. PEST MANAGEMENT SCIENCE 2016; 72:2069-2081. [PMID: 27218223 DOI: 10.1002/ps.4323] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 05/03/2016] [Accepted: 05/12/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Broomrapes attack important crops, cause severe yield losses and are difficult to eliminate because their seed bank is virtually indestructible. In the absence of a host, the induction of seed germination leads to inevitable death due to nutrient starvation. Synthetic analogues of germination-inducing factors may constitute a cheap and feasible strategy to control the seed bank. These compounds should be easy and cheap to synthesise, as this will allow their mass production. The aim of this work is to obtain new synthethic germinating agents. RESULTS Nineteen N-substituted phthalimides containing a butenolide ring and different substituents in the aromatic ring were synthesised. The synthesis started with commercially available phthalimides. The complete collection was assayed against the parasitic weeds Orobanche minor, O. cumana, Phelipanche ramosa and P. aegyptiaca, with the synthetic strigolactone analogue GR24 used as a positive control. These compounds offered low EC50 values: O. cumana 38.3 μM, O. minor 3.77 μM, P. aegyptiaca 1.35 μM and P. ramosa 1.49 μM. CONCLUSIONS The synthesis was carried out in a few steps and provided the target compounds in good yields. The compounds tested showed great selectivity, and low EC50 values were obtained for structures that were simpler than GR24. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Antonio Cala
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain
| | - Kala Ghooray
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain
| | | | - José Mg Molinillo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain
| | - Juan Cg Galindo
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain
| | - Diego Rubiales
- Institute for Sustainable Agriculture, CSIC, Córdoba, Spain
| | - Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, Institute of Biomolecules, School of Science, University of Cadiz, Puerto Real, Cádiz, Spain.
| |
Collapse
|