1
|
Clarke JD, Judson SM, Tian D, Kirby TO, Tanna RS, Matula‐Péntek A, Horváth M, Layton ME, White JR, Cech NB, Thummel KE, McCune JS, Shen DD, Paine MF. Co-consuming green tea with raloxifene decreases raloxifene systemic exposure in healthy adult participants. Clin Transl Sci 2023; 16:1779-1790. [PMID: 37639334 PMCID: PMC10582660 DOI: 10.1111/cts.13578] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 08/31/2023] Open
Abstract
Green tea is a popular beverage worldwide. The abundant green tea catechin (-)-epigallocatechin gallate (EGCG) is a potent in vitro inhibitor of intestinal UDP-glucuronosyltransferase (UGT) activity (Ki ~2 μM). Co-consuming green tea with intestinal UGT drug substrates, including raloxifene, could increase systemic drug exposure. The effects of a well-characterized green tea on the pharmacokinetics of raloxifene, raloxifene 4'-glucuronide, and raloxifene 6-glucuronide were evaluated in 16 healthy adults via a three-arm crossover, fixed-sequence study. Raloxifene (60 mg) was administered orally with water (baseline), with green tea for 1 day (acute), and on the fifth day after daily green tea administration for 4 days (chronic). Unexpectedly, green tea decreased the geometric mean green tea/baseline raloxifene AUC0-96h ratio to ~0.60 after both acute and chronic administration, which is below the predefined no-effect range (0.75-1.33). Lack of change in terminal half-life and glucuronide-to-raloxifene ratios indicated the predominant mechanism was not inhibition of intestinal UGT. One potential mechanism includes inhibition of intestinal transport. Using established transfected cell systems, a green tea extract normalized to EGCG inhibited 10 of 16 transporters tested (IC50 , 0.37-12 μM). Another potential mechanism, interruption by green tea of gut microbe-mediated raloxifene reabsorption, prompted a follow-up exploratory clinical study to evaluate the potential for a green tea-gut microbiota-drug interaction. No clear mechanisms were identified. Overall, results highlight that improvements in current models and methods used to predict UGT-mediated drug interactions are needed. Informing patients about the risk of co-consuming green tea with raloxifene may be considered.
Collapse
Affiliation(s)
- John D. Clarke
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
- Center of Excellence for Natural Product Drug Interaction ResearchSpokaneWashingtonUSA
| | - Sabrina M. Judson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
| | - Dan‐Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
- Present address:
Drug DispositionEli Lilly and CompanyIndianapolisIndianaUSA
| | - Trevor O. Kirby
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
| | - Rakshit S. Tanna
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
| | | | | | - Matthew E. Layton
- Elson S. Floyd College of MedicineWashington State UniversitySpokaneWashingtonUSA
| | - John R. White
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
| | - Nadja B. Cech
- Department of Chemistry and BiochemistryUniversity of North Carolina GreensboroGreensboroNorth CarolinaUSA
| | - Kenneth E. Thummel
- Center of Excellence for Natural Product Drug Interaction ResearchSpokaneWashingtonUSA
- Department of Pharmaceutics, School of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Jeannine S. McCune
- Center of Excellence for Natural Product Drug Interaction ResearchSpokaneWashingtonUSA
- Department of Hematologic Malignancies Translational SciencesCity of HopeDuarteCaliforniaUSA
| | - Danny D. Shen
- Center of Excellence for Natural Product Drug Interaction ResearchSpokaneWashingtonUSA
- Department of Pharmaceutics, School of PharmacyUniversity of WashingtonSeattleWashingtonUSA
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical SciencesWashington State UniversitySpokaneWashingtonUSA
- Center of Excellence for Natural Product Drug Interaction ResearchSpokaneWashingtonUSA
| |
Collapse
|
2
|
Kumar P, Mehta D, Bissler JJ. Physiologically Based Pharmacokinetic Modeling of Extracellular Vesicles. BIOLOGY 2023; 12:1178. [PMID: 37759578 PMCID: PMC10525702 DOI: 10.3390/biology12091178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/13/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Extracellular vesicles (EVs) are lipid membrane bound-cell-derived structures that are a key player in intercellular communication and facilitate numerous cellular functions such as tumor growth, metastasis, immunosuppression, and angiogenesis. They can be used as a drug delivery platform because they can protect drugs from degradation and target specific cells or tissues. With the advancement in the technologies and methods in EV research, EV-therapeutics are one of the fast-growing domains in the human health sector. Therapeutic translation of EVs in clinics requires assessing the quality, safety, and efficacy of the EVs, in which pharmacokinetics is very crucial. We report here the application of physiologically based pharmacokinetic (PBPK) modeling as a principal tool for the prediction of absorption, distribution, metabolism, and excretion of EVs. To create a PBPK model of EVs, researchers would need to gather data on the size, shape, and composition of the EVs, as well as the physiological processes that affect their behavior in the body. The PBPK model would then be used to predict the pharmacokinetics of drugs delivered via EVs, such as the rate at which the drug is absorbed and distributed throughout the body, the rate at which it is metabolized and eliminated, and the maximum concentration of the drug in the body. This information can be used to optimize the design of EV-based drug delivery systems, including the size and composition of the EVs, the route of administration, and the dose of the drug. There has not been any dedicated review article that describes the PBPK modeling of EV. This review provides an overview of the absorption, distribution, metabolism, and excretion (ADME) phenomena of EVs. In addition, we will briefly describe the different computer-based modeling approaches that may help in the future of EV-based therapeutic research.
Collapse
Affiliation(s)
- Prashant Kumar
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA;
| | - Darshan Mehta
- Division of Biochemical Toxicology, National Center for Toxicological Research, United States Food and Drug Administration, Jefferson, AR 72079, USA;
| | - John J. Bissler
- Department of Pediatrics, Division of Pediatrics Nephrology, University of Tennessee Health Science Center, Memphis, TN 38103, USA;
| |
Collapse
|
3
|
Jia Q, He Q, Yao L, Li M, Lin J, Tang Z, Zhu X, Xiang X. Utilization of Physiologically Based Pharmacokinetic Modeling in Pharmacokinetic Study of Natural Medicine: An Overview. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248670. [PMID: 36557804 PMCID: PMC9782767 DOI: 10.3390/molecules27248670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Natural medicine has been widely used for clinical treatment and health care in many countries and regions. Additionally, extracting active ingredients from traditional Chinese medicine and other natural plants, defining their chemical structure and pharmacological effects, and screening potential druggable candidates are also uprising directions in new drug research and development. Physiologically based pharmacokinetic (PBPK) modeling is a mathematical modeling technique that simulates the absorption, distribution, metabolism, and elimination of drugs in various tissues and organs in vivo based on physiological and anatomical characteristics and physicochemical properties. PBPK modeling in drug research and development has gradually been recognized by regulatory authorities in recent years, including the U.S. Food and Drug Administration. This review summarizes the general situation and shortcomings of the current research on the pharmacokinetics of natural medicine and introduces the concept and the advantages of the PBPK model in the study of pharmacokinetics of natural medicine. Finally, the pharmacokinetic studies of natural medicine using the PBPK models are summed up, followed by discussions on the applications of PBPK modeling to the enzyme-mediated pharmacokinetic changes, special populations, new drug research and development, and new indication adding for natural medicine. This paper aims to provide a novel strategy for the preclinical research and clinical use of natural medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xiao Zhu
- Correspondence: (X.Z.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| | - Xiaoqiang Xiang
- Correspondence: (X.Z.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| |
Collapse
|
4
|
He Q, Bu F, Wang Q, Li M, Lin J, Tang Z, Mak WY, Zhuang X, Zhu X, Lin HS, Xiang X. Examination of the Impact of CYP3A4/5 on Drug-Drug Interaction between Schizandrol A/Schizandrol B and Tacrolimus (FK-506): A Physiologically Based Pharmacokinetic Modeling Approach. Int J Mol Sci 2022; 23:ijms23094485. [PMID: 35562875 PMCID: PMC9103789 DOI: 10.3390/ijms23094485] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
Schizandrol A (SZA) and schizandrol B (SZB) are two active ingredients of Wuzhi capsule (WZC), a Chinese proprietary medicine commonly prescribed to alleviate tacrolimus (FK-506)-induced hepatoxicity in China. Due to their inhibitory effects on cytochrome P450 (CYP) 3A enzymes, SZA/SZB may display drug–drug interaction (DDI) with tacrolimus. To identify the extent of this DDI, the enzymes’ inhibitory profiles, including a 50% inhibitory concentration (IC50) shift, reversible inhibition (RI) and time-dependent inhibition (TDI) were examined with pooled human-liver microsomes (HLMs) and CYP3A5-genotyped HLMs. Subsequently, the acquired parameters were integrated into a physiologically based pharmacokinetic (PBPK) model to quantify the interactions between the SZA/SZB and the tacrolimus. The metabolic studies indicated that the SZB displayed both RI and TDI on CYP3A4 and CYP3A5, while the SZA only exhibited TDI on CYP3A4 to a limited extent. Moreover, our PBPK model predicted that multiple doses of SZB would increase tacrolimus exposure by 26% and 57% in CYP3A5 expressers and non-expressers, respectively. Clearly, PBPK modeling has emerged as a powerful approach to examine herb-involved DDI, and special attention should be paid to the combined use of WZC and tacrolimus in clinical practice.
Collapse
Affiliation(s)
- Qingfeng He
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Fengjiao Bu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Qizhen Wang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Min Li
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Jiaying Lin
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Zhijia Tang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Wen Yao Mak
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
- Clinical Research Centre, Hospital Pulau Pinang, Pinang 10450, Malaysia
- Institute for Clinical Research, National Institute of Health, Shah Alam 40170, Malaysia
| | - Xiaomei Zhuang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China;
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
| | - Hai-Shu Lin
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
- Correspondence: (H.-S.L.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai 201203, China; (Q.H.); (F.B.); (Q.W.); (M.L.); (J.L.); (Z.T.); (W.Y.M.); (X.Z.)
- Correspondence: (H.-S.L.); (X.X.); Tel.: +86-21-51980024 (X.X.)
| |
Collapse
|
5
|
Cox EJ, Tian DD, Clarke JD, Rettie AE, Unadkat JD, Thummel KE, McCune JS, Paine MF. Modeling Pharmacokinetic Natural Product-Drug Interactions for Decision-Making: A NaPDI Center Recommended Approach. Pharmacol Rev 2021; 73:847-859. [PMID: 33712517 PMCID: PMC7956993 DOI: 10.1124/pharmrev.120.000106] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The popularity of botanical and other purported medicinal natural products (NPs) continues to grow, especially among patients with chronic illnesses and patients managed on complex prescription drug regimens. With few exceptions, the risk of a given NP to precipitate a clinically significant pharmacokinetic NP-drug interaction (NPDI) remains understudied or unknown. Application of static or dynamic mathematical models to predict and/or simulate NPDIs can provide critical information about the potential clinical significance of these complex interactions. However, methods used to conduct such predictions or simulations are highly variable. Additionally, published reports using mathematical models to interrogate NPDIs are not always sufficiently detailed to ensure reproducibility. Consequently, guidelines are needed to inform the conduct and reporting of these modeling efforts. This recommended approach from the Center of Excellence for Natural Product Drug Interaction Research describes a systematic method for using mathematical models to interpret the interaction risk of NPs as precipitants of potential clinically significant pharmacokinetic NPDIs. A framework for developing and applying pharmacokinetic NPDI models is presented with the aim of promoting accuracy, reproducibility, and generalizability in the literature. SIGNIFICANCE STATEMENT: Many natural products (NPs) contain phytoconstituents that can increase or decrease systemic or tissue exposure to, and potentially the efficacy of, a pharmaceutical drug; however, no regulatory agency guidelines exist to assist in predicting the risk of these complex interactions. This recommended approach from a multi-institutional consortium designated by National Institutes of Health as the Center of Excellence for Natural Product Drug Interaction Research provides a framework for modeling pharmacokinetic NP-drug interactions.
Collapse
Affiliation(s)
- Emily J Cox
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Dan-Dan Tian
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - John D Clarke
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Allan E Rettie
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jashvant D Unadkat
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Kenneth E Thummel
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jeannine S McCune
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Mary F Paine
- Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (J.D.C., A.E.R., J.D.U., K.E.T., J.S.M., M.F.P.); Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (E.J.C., D.-D.T., J.D.C., M.F.P.); Departments of Medicinal Chemistry (A.E.R.) and Pharmaceutics (J.D.U., K.E.T.), University of Washington, Seattle, Washington; and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| |
Collapse
|
6
|
Adiwidjaja J, Boddy AV, McLachlan AJ. Potential for pharmacokinetic interactions between Schisandra sphenanthera and bosutinib, but not imatinib: in vitro metabolism study combined with a physiologically-based pharmacokinetic modelling approach. Br J Clin Pharmacol 2020; 86:2080-2094. [PMID: 32250458 DOI: 10.1111/bcp.14303] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/17/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022] Open
Abstract
AIMS This study aimed to investigate the potential interaction between Schisandra sphenanthera, imatinib and bosutinib combining in vitro and in silico methods. METHODS In vitro metabolism of imatinib and bosutinib using recombinant enzymes and human liver microsomes were investigated in the presence and absence of Schisandra lignans. Physiologically-based pharmacokinetic (PBPK) models for the lignans accounting for reversible and mechanism-based inhibitions and induction of CYP3A enzymes were built in the Simcyp Simulator (version 17) and evaluated for their capability to predict interactions with midazolam and tacrolimus. Their potential effect on systemic exposures of imatinib and bosutinib were predicted using PBPK in silico simulations. RESULTS Schisantherin A and schisandrol B, but not schisandrin A, potently inhibited CYP3A4-mediated metabolism of imatinib and bosutinib. All three compounds showed a strong reversible inhibition on CYP2C8 enzyme with ki of less than 0.5 μmol L-1 . The verified PBPK models were able to describe the increase in systemic exposure of midazolam and tacrolimus due to co-administration of S. sphenanthera, consistent with the reported changes in the corresponding clinical interaction study (AUC ratio of 2.0 vs 2.1 and 2.4 vs 2.1, respectively). The PBPK simulation predicted that at recommended dosing regimens of S. sphenanthera, co-administration would result in an increase in bosutinib exposure (AUC ratio 3.0) but not in imatinib exposure. CONCLUSION PBPK models for Schisandra lignans were successfully developed. Interaction between imatinib and Schisandra lignans was unlikely to be of clinical importance. Conversely, S. sphenanthera at a clinically-relevant dose results in a predicted three-fold increase in bosutinib systemic exposure.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| | - Alan V Boddy
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA, Australia.,University of South Australia Cancer Research Institute, University of South Australia, Adelaide, SA, Australia
| | - Andrew J McLachlan
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
7
|
Gaston TE, Mendrick DL, Paine MF, Roe AL, Yeung CK. "Natural" is not synonymous with "Safe": Toxicity of natural products alone and in combination with pharmaceutical agents. Regul Toxicol Pharmacol 2020; 113:104642. [PMID: 32197968 DOI: 10.1016/j.yrtph.2020.104642] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
During the 25 years since the US Congress passed the Dietary Supplement Health and Education Act (DSHEA), the law that transformed the US Food and Drug Administration's (FDA's) authority to regulate dietary supplements, the dietary supplement market has grown exponentially. Retail sales of herbal products, a subcategory of dietary supplements, have increased 83% from 2008 to 2018 ($4.8 to $8.8 billion USD). Although consumers often equate "natural" with "safe", it is well recognized by scientists that constituents in these natural products (NPs) can result in toxicity. Additionally, when NPs are co-consumed with pharmaceutical agents, the precipitant NP can alter drug disposition and drug delivery, thereby enhancing or reducing the therapeutic effect of the object drug(s). With the widespread use of NPs, these effects can be underappreciated. We present a summary of a symposium presented at the Annual Meeting of the Society of Toxicology 2019 (12 March 2019) that discussed potential toxicities of NPs alone and in combination with drugs.
Collapse
Affiliation(s)
- Tyler E Gaston
- Department of Neurology, University of Alabama at Birmingham, United States
| | - Donna L Mendrick
- National Center for Toxicological Research, United States Food and Drug Administration, United States
| | - Mary F Paine
- Department of Pharmaceutical Sciences, Washington State University, United States
| | - Amy L Roe
- The Procter & Gamble Company, United States
| | | |
Collapse
|
8
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
9
|
Kellogg JJ, Paine MF, McCune JS, Oberlies NH, Cech NB. Selection and characterization of botanical natural products for research studies: a NaPDI center recommended approach. Nat Prod Rep 2019; 36:1196-1221. [PMID: 30681109 PMCID: PMC6658353 DOI: 10.1039/c8np00065d] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Covering: up to the end of 2018 Dietary supplements, which include botanical (plant-based) natural products, constitute a multi-billion-dollar industry in the US. Regulation and quality control for this industry is an ongoing challenge. While there is general agreement that rigorous scientific studies are needed to evaluate the safety and efficacy of botanical natural products used by consumers, researchers conducting such studies face a unique set of challenges. Botanical natural products are inherently complex mixtures, with composition that differs depending on myriad factors including variability in genetics, cultivation conditions, and processing methods. Unfortunately, many studies of botanical natural products are carried out with poorly characterized study material, such that the results are irreproducible and difficult to interpret. This review provides recommended approaches for addressing the critical questions that researchers must address prior to in vitro or in vivo (including clinical) evaluation of botanical natural products. We describe selection and authentication of botanical material and identification of key biologically active compounds, and compare state-of-the-art methodologies such as untargeted metabolomics with more traditional targeted methods of characterization. The topics are chosen to be of maximal relevance to researchers, and are reviewed critically with commentary as to which approaches are most practical and useful and what common pitfalls should be avoided.
Collapse
Affiliation(s)
- Joshua J. Kellogg
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Mary F. Paine
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington, USA
| | - Jeannine S. McCune
- Department of Population Sciences, City of Hope, Duarte, California, USA
| | - Nicholas H. Oberlies
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| | - Nadja B. Cech
- Department of Chemistry & Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina, USA.
| |
Collapse
|
10
|
Ziemann J, Lendeckel A, Müller S, Horneber M, Ritter CA. Herb-drug interactions: a novel algorithm-assisted information system for pharmacokinetic drug interactions with herbal supplements in cancer treatment. Eur J Clin Pharmacol 2019; 75:1237-1248. [PMID: 31154477 DOI: 10.1007/s00228-019-02700-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/23/2019] [Indexed: 12/16/2022]
Abstract
PURPOSE To develop a system to estimate the risk of herb-drug interactions that includes the available evidence from clinical and laboratory studies, transparently delineates the algorithm for the risk estimation, could be used in practice settings and allows for adaptation and update. METHODS We systematically searched Drugbank, Transformer, Drug Information Handbook, European and German Pharmacopoeia and MEDLINE for studies on herb-drug interactions of five common medicinal plants (coneflower, ginseng, milk thistle, mistletoe and St. John's wort). A diverse set of data were independently extracted by two researchers and subsequently analysed by a newly developed algorithm. Results are displayed in the form of interaction risk categories. The development of the algorithm was guided by an expert panel consensus process. RESULTS From 882 publications retrieved by the search, 154 studies were eligible and provided 529 data sets on herbal interactions. The developed algorithm prioritises results from clinical trials over case reports over in vitro investigations and considers type of study, consistency of study results and study outcome for clinical trials as well as identification, permeability, bioavailability, and interaction potency of an identified herbal perpetrator for in vitro investigations. Risk categories were assigned to and dynamically visualised in a colour-coded matrix format. CONCLUSIONS The novel algorithm allows to transparently generate and dynamically display herb-drug interaction risks based on the available evidence from clinical and laboratory pharmacologic studies. It provides health professionals with readily available and easy updatable information about the risk of pharmacokinetic interactions between herbs and oncologic drugs.
Collapse
Affiliation(s)
- Janine Ziemann
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Annette Lendeckel
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Susann Müller
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Markus Horneber
- Department of Internal Medicine, Division of Oncology/Hematology and Pneumology, Paracelsus Medical University, Klinikum Nuernberg, Nuernberg, Germany
| | - Christoph A Ritter
- Department of Clinical Pharmacy, Institute of Pharmacy, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany.
| |
Collapse
|
11
|
Liu SN, Lu JBL, Watson CJW, Lazarus P, Desta Z, Gufford BT. Mechanistic Assessment of Extrahepatic Contributions to Glucuronidation of Integrase Strand Transfer Inhibitors. Drug Metab Dispos 2019; 47:535-544. [PMID: 30804050 DOI: 10.1124/dmd.118.085035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 02/21/2019] [Indexed: 12/24/2022] Open
Abstract
Integrase strand transfer inhibitor (INSTI)-based regimens dominate initial human immunodeficiency virus treatment. Most INSTIs are metabolized predominantly via UDP-glucuronosyltransferases (UGTs). For drugs predominantly metabolized by UGTs, including INSTIs, in vitro data recovered from human liver microsomes (HLMs) alone often underpredict human oral clearance. While several factors may contribute, extrahepatic glucuronidation may contribute to this underprediction. Thus, we comprehensively characterized the kinetics for the glucuronidation of INSTIs (cabotegravir, dolutegravir, and raltegravir) using pooled human microsomal preparations from liver (HLMs), intestine (HIMs), and kidney (HKMs) tissues; human embryonic kidney 293 cells expressing individual UGTs; and recombinant UGTs. In vitro glucuronidation of cabotegravir (HLMs≈HKMs>>>HIMs), dolutegravir (HLMs>HIMs>>HKMs), and raltegravir (HLMs>HKMs>> HIMs) occurred in hepatic and extrahepatic tissues. The kinetic data from expression systems suggested the major enzymes in each tissue: hepatic UGT1A9 > UGT1A1 (dolutegravir and raltegravir) and UGT1A1 (cabotegravir), intestinal UGT1A3 > UGT1A8 > UGT1A1 (dolutegravir) and UGT1A8 > UGT1A1 (raltegravir), and renal UGT1A9 (dolutegravir and raltegravir). Enzymes catalyzing cabotegravir glucuronidation in the kidney and intestine could not be identified unequivocally. Using data from dolutegravir glucuronidation as a prototype, a "bottom-up" physiologically based pharmacokinetic model was developed in a stepwise approach and predicted dolutegravir oral clearance within 4.5-fold (hepatic data only), 2-fold (hepatic and intestinal data), and 32% (hepatic, intestinal, and renal data). These results suggest clinically meaningful glucuronidation of dolutegravir in tissues other than the liver. Incorporation of additional novel mechanistic and physiologic underpinnings of dolutegravir metabolism along with in silico approaches appears to be a powerful tool to accurately predict the clearance of dolutegravir from in vitro data.
Collapse
Affiliation(s)
- Stephanie N Liu
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana (S.N.L., J.B.L.L., Z.D., B.T.G.) and Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (C.J.W.W., P.L.)
| | - Jessica Bo Li Lu
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana (S.N.L., J.B.L.L., Z.D., B.T.G.) and Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (C.J.W.W., P.L.)
| | - Christy J W Watson
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana (S.N.L., J.B.L.L., Z.D., B.T.G.) and Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (C.J.W.W., P.L.)
| | - Philip Lazarus
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana (S.N.L., J.B.L.L., Z.D., B.T.G.) and Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (C.J.W.W., P.L.)
| | - Zeruesenay Desta
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana (S.N.L., J.B.L.L., Z.D., B.T.G.) and Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (C.J.W.W., P.L.)
| | - Brandon T Gufford
- Division of Clinical Pharmacology, Department of Medicine, School of Medicine, Indiana University, Indianapolis, Indiana (S.N.L., J.B.L.L., Z.D., B.T.G.) and Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (C.J.W.W., P.L.)
| |
Collapse
|
12
|
Li XX, Jiang ZH, Zhou B, Chen C, Zhang XY. Hepatoprotective effect of gastrodin against alcohol-induced liver injury in mice. J Physiol Biochem 2018; 75:29-37. [PMID: 30242628 DOI: 10.1007/s13105-018-0647-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 09/02/2018] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is a common and serious threat to human health worldwide. In this study, the hepatoprotective effect of gastrodin against alcohol-induced liver injury in mice was examined. Mice with alcohol-induced hepatotoxicity were treated intragastrically with gastrodin (50, 80, or 100 mg/kg). The mice treated with gastrodin experienced better outcomes than those who received only one dose of alcohol (50%, 10 mL/kg b.w.). Gastrodin treatment reduced the activities of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), decreased hepatic malondialdehyde (MDA) content, and increased hepatic superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities in a dose-dependent manner. Gastrodin also alleviated histopathological changes induced by alcohol. Gastrodin protected against alcohol-induced increases in expression levels of the cytochrome P450 2E1 (CYP2E1) and mRNA levels of chemokine (C-X-C motif) ligand 1 (CXCL-1), interferon-γ (IFN-γ), interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), vascular cell adhesion molecule 1 (VCAM-1), nuclear factor-kappa B (NF-κB), Toll-like receptor 4 (TLR-4), and activator of transcription 3 (STAT-3). Moreover, gastrodin-increased nuclear transcription factor 2 (Nrf2) translocates to the nucleus and enhanced the activity of anti-oxidant enzymes, and could thereby ameliorate alcohol-induced liver injury in mice. This study demonstrated that gastrodin may be an effective therapeutic agent against alcohol-induced liver injury.
Collapse
Affiliation(s)
- Xin-Xin Li
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China
| | - Zhi-Hui Jiang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China
| | - Bo Zhou
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China
| | - Chen Chen
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China.
| | - Xiao-Ying Zhang
- Chinese-German Joint Laboratory for Natural Product Research, College of Biological Science and Engineering, Qingling-Bashan Mountains Bioresources Comprehensive Development C.I.C, Shaanxi University of Technology, East on the 1st Ring Road, Hanzhong, 723000, Shaanxi Province, China. .,College of Veterinary Medicine, Northwest A&F University (North Campus), Xinong Rd. 22, Post Box 19, Yangling, 712100, Shaanxi Province, China. .,Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
13
|
Waidyanatha S, Ryan K, Roe AL, Jia W, Paine MF, Ferguson S, Gurley BJ, Welch K, Chow MSS, Devito M, Rider C. Follow that botanical: Challenges and recommendations for assessing absorption, distribution, metabolism and excretion of botanical dietary supplements. Food Chem Toxicol 2018; 121:194-202. [PMID: 30170118 DOI: 10.1016/j.fct.2018.08.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 08/10/2018] [Accepted: 08/24/2018] [Indexed: 12/01/2022]
Abstract
Botanical dietary supplements are complex mixtures containing one or more botanical ingredient(s), each containing numerous constituents potentially responsible for its purported biological activity. Absorption, distribution, metabolism, and excretion (ADME) data are critical to understand the safety of botanical dietary supplements, including their potential for pharmacokinetic botanical-drug or botanical-botanical interactions. However, ADME data for botanical dietary supplements are rarely available and frequently inadequate to characterize their fate in vivo. Based on an assessment of the current status of botanical dietary supplements ADME research, the following key areas are identified that require robust data for human safety assessment: 1) phytochemical characterization including contaminant analysis and botanical authentication; 2) in vitro and/or in vivo data for identifying potential botanical-botanical or botanical-drug interactions and active/marker constituents; 3) robust ADME study design to include systemic exposure data on active/marker constituents using traditional or novel analytical chemistry and statistical approaches such as poly-pharmacokinetics; and 4) investigation of human relevance. A case study with Ginkgo biloba extract is used to highlight the challenges and proposed approaches in using ADME data for human safety assessment of botanical dietary supplements.
Collapse
Affiliation(s)
- Suramya Waidyanatha
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Amy L Roe
- The Procter & Gamble Company, Cincinnati, OH, USA
| | - Wei Jia
- University of Hawaii, Manoa, HI, USA
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Stephen Ferguson
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Bill J Gurley
- University of Arkansas for Medical Sciences, College of Pharmacy, Little Rock, AR, USA
| | - Kevin Welch
- United States Department of Agriculture, Logan, UT, USA
| | - Moses S S Chow
- Western University of Health Sciences, College of Pharmacy, Pomona, CA, USA
| | - Michael Devito
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Cynthia Rider
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| |
Collapse
|
14
|
Gurley BJ, Yates CR, Markowitz JS. “…Not Intended to Diagnose, Treat, Cure or Prevent Any Disease.” 25 Years of Botanical Dietary Supplement Research and the Lessons Learned. Clin Pharmacol Ther 2018; 104:470-483. [DOI: 10.1002/cpt.1131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/23/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Bill J. Gurley
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Arkansas for Medical Sciences; Little Rock Arkansas USA
| | - Charles R. Yates
- Department of Pharmaceutical Sciences; College of Pharmacy; University of Tennessee Health Science Center; Memphis Tennessee USA
| | - John S. Markowitz
- Department of Pharmacotherapy and Translational Research; College of Pharmacy; University of Florida; Gainesville Florida USA
| |
Collapse
|
15
|
Saeheng T, Na-Bangchang K, Karbwang J. Utility of physiologically based pharmacokinetic (PBPK) modeling in oncology drug development and its accuracy: a systematic review. Eur J Clin Pharmacol 2018; 74:1365-1376. [PMID: 29978293 DOI: 10.1007/s00228-018-2513-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 06/22/2018] [Indexed: 01/18/2023]
Abstract
PURPOSE Physiologically based pharmacokinetic (PBPK) modeling, a mathematical modeling approach which uses a pharmacokinetic model to mimick human physiology to predict drug concentration-time profiles, has been used for the discover and development of drugs in various fields, including oncology, since 2000. There have been a few general review articles on the utilization of PBPK in the development of oncology drugs, but these do not include an evaluation of model prediction accuracy. We therefore conducted a systematic review to define the accuracy of PBPK model prediction and its utility throughout all the developmental phases of oncology drugs. METHODS A systematic search was performed in the PubMed, PubMed Central and Cochrane Library databases from 1980 to February 2017 for articles (1) written in English, (2) focused on oncology or antineoplastic or anticancer drugs, tumor or cancer or anticancer drugs listed in the U.S. National Institutes of Health and (3) involving a PBPK model. The absolute-average-folding-errors (AAFEs) of the area under the curve (AUC) between predicted and observed values in each article were calculated to assess model prediction accuracy. RESULTS Of the 2341 articles initially identified by our search of the databases, 40 were included in the review analysis. These articles reported on six types of studies, i.e. in vivo (n = 4), first-in-human (n = 5), phase II/III clinical trials (n = 9), organ impairment (n = 3), pediatrics (n = 4) and drug-drug interactions (n = 15). AAFEs of the predicted AUC for all groups of studies were within 1.3-fold of each other despite variations in experimental methodologies. CONCLUSION PBPK modeling is a potential tool which can be effectively applied throughout all phases of oncology drug development. The number of experimental animals and human participants enrolled in the studies can be reduced using PBPK modeling and PBPK-population-PK modeling. The limited number of publications of unsuccessful model application to date may contribute to bias toward the usefulness of modeling.
Collapse
Affiliation(s)
- Teerachat Saeheng
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.,Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kesara Na-Bangchang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12121, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, 12121, Thailand
| | - Juntra Karbwang
- Department of Clinical Product Development, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
16
|
Tian DD, Kellogg JJ, Okut N, Oberlies NH, Cech NB, Shen DD, McCune JS, Paine MF. Identification of Intestinal UDP-Glucuronosyltransferase Inhibitors in Green Tea ( Camellia sinensis) Using a Biochemometric Approach: Application to Raloxifene as a Test Drug via In Vitro to In Vivo Extrapolation. Drug Metab Dispos 2018; 46:552-560. [PMID: 29467215 DOI: 10.1124/dmd.117.079491] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 02/14/2018] [Indexed: 11/22/2022] Open
Abstract
Green tea (Camellia sinensis) is a popular beverage worldwide, raising concern for adverse interactions when co-consumed with conventional drugs. Like many botanical natural products, green tea contains numerous polyphenolic constituents that undergo extensive glucuronidation. As such, the UDP-glucuronosyltransferases (UGTs), particularly intestinal UGTs, represent potential first-pass targets for green tea-drug interactions. Candidate intestinal UGT inhibitors were identified using a biochemometrics approach, which combines bioassay and chemometric data. Extracts and fractions prepared from four widely consumed teas were screened (20-180 μg/ml) as inhibitors of UGT activity (4-methylumbelliferone glucuronidation) in human intestinal microsomes; all demonstrated concentration-dependent inhibition. A biochemometrics-identified fraction rich in UGT inhibitors from a representative tea was purified further and subjected to second-stage biochemometric analysis. Five catechins were identified as major constituents in the bioactive subfractions and prioritized for further evaluation. Of these catechins, (-)-epicatechin gallate and (-)-epigallocatechin gallate showed concentration-dependent inhibition, with IC50 values (105 and 59 μM, respectively) near or below concentrations measured in a cup (240 ml) of tea (66 and 240 μM, respectively). Using the clinical intestinal UGT substrate raloxifene, the Ki values were ∼1.0 and 2.0 μM, respectively. Using estimated intestinal lumen and enterocyte inhibitor concentrations, a mechanistic static model predicted green tea to increase the raloxifene plasma area under the curve up to 6.1- and 1.3-fold, respectively. Application of this novel approach, which combines biochemometrics with in vitro-in vivo extrapolation, to other natural product-drug combinations will refine these procedures, informing the need for further evaluation via dynamic modeling and clinical testing.
Collapse
Affiliation(s)
- Dan-Dan Tian
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Joshua J Kellogg
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Neşe Okut
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Nicholas H Oberlies
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Nadja B Cech
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Danny D Shen
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Jeannine S McCune
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| | - Mary F Paine
- Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, Washington (D.-D.T., M.F.P.); Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, North Carolina (J.J.K., N.O., N.H.O., N.B.C.); Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (D.D.S.); and Department of Population Sciences, City of Hope, Duarte, California (J.S.M.)
| |
Collapse
|
17
|
Grimstein M, Huang SM. A regulatory science viewpoint on botanical-drug interactions. J Food Drug Anal 2018; 26:S12-S25. [PMID: 29703380 PMCID: PMC9326881 DOI: 10.1016/j.jfda.2018.01.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/28/2022] Open
Abstract
There is a continued predisposition of concurrent use of drugs and botanical products. Consumers often self-administer botanical products without informing their health care providers. The perceived safety of botanical products with lack of knowledge of the interaction potential poses a challenge for providers and both efficacy and safety concerns for patients. Botanical–drug combinations can produce untoward effects when botanical constituents modulate drug metabolizing enzymes and/or transporters impacting the systemic or tissue exposure of concomitant drugs. Examples of pertinent scientific literature evaluating the interaction potential of commonly used botanicals in the US are discussed. Current methodologies that can be applied to advance our efforts in predicting drug interaction liability is presented. This review also highlights the regulatory science viewpoint on botanical–drug interactions and labeling implications.
Collapse
Affiliation(s)
- Manuela Grimstein
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA.
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
18
|
Assessing Herb–Drug Interactions of Herbal Products With Therapeutic Agents for Metabolic Diseases: Analytical and Regulatory Perspectives. STUDIES IN NATURAL PRODUCTS CHEMISTRY 2018. [DOI: 10.1016/b978-0-444-64179-3.00009-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Prediction of drug–drug interaction potential using physiologically based pharmacokinetic modeling. Arch Pharm Res 2017; 40:1356-1379. [DOI: 10.1007/s12272-017-0976-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 10/19/2017] [Indexed: 12/22/2022]
|
20
|
Practical considerations when designing and conducting clinical pharmacokinetic herb–drug interaction studies. ACTA ACUST UNITED AC 2017. [DOI: 10.4155/ipk-2016-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Pharmacokinetic herb–drug interaction (HDI) research has been ongoing for almost two decades and a significant body of information has been published on the subject, yet much of it is contradictory. Some of this disparity stems from the botanical dosage form itself, as product quality and dosage form performance can vary significantly among brands. Unless products are adequately characterized, HDI study results can be misleading. The purpose of this report is to identify several common weaknesses inherent in many prospective clinical HDI studies and to provide guidance in addressing these shortcomings. Topics such as study design, pharmacokinetic end points, product quality, dosage form performance, gauging clinical relevance, and efforts to minimize dietary influences while improving compliance are discussed.
Collapse
|
21
|
Ezuruike U, Prieto JM. Assessment of Potential Herb-Drug Interactions among Nigerian Adults with Type-2 Diabetes. Front Pharmacol 2016; 7:248. [PMID: 27559312 PMCID: PMC4978708 DOI: 10.3389/fphar.2016.00248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 07/27/2016] [Indexed: 11/29/2022] Open
Abstract
It is becoming increasingly evident that patients with diabetes do not rely only on prescription drugs for their disease management. The use of herbal medicines is one of the self-management practices adopted by these patients, often without the knowledge of their healthcare practitioners. This study assessed the potential for pharmacokinetic herb-drug interactions (HDIs) amongst Nigerian adult diabetic patients. This was done through a literature analysis of the pharmacokinetic profile of their herbal medicines and prescription drugs, based on information obtained from 112 patients with type-2 diabetes attending two secondary health care facilities in Nigeria. Fifty percent of the informants used herbal medicines alongside their prescription drugs. Worryingly, 60% of the patients taking herbal medicines did not know their identity, thus increasing the risk of unidentified HDIs. By comparing the pharmacokinetic profile of eight identified herbs taken by the patients for the management of diabetes against those of the prescription drugs, several scenarios of potential HDIs were identified and their clinical relevance is discussed. The lack of clinical predictors points toward cultural factors as the influence for herb use, making it more difficult to identify these patients and in turn monitor potential HDIs. In identifying these possible interactions, we have highlighted the need for healthcare professionals to promote a proactive monitoring of patients' use of herbal medicines.
Collapse
Affiliation(s)
- Udoamaka Ezuruike
- Department of Pharmaceutical and Biological Chemistry, Centre for Pharmacognosy and Phytotherapy, University College London School of Pharmacy London, UK
| | - Jose M Prieto
- Department of Pharmaceutical and Biological Chemistry, Centre for Pharmacognosy and Phytotherapy, University College London School of Pharmacy London, UK
| |
Collapse
|