1
|
Mokhtari I, Shahat AA, Noman OM, Milenkovic D, Amrani S, Harnafi H. Effects of Cynara scolymus L. Bract Extract on Lipid Metabolism Disorders Through Modulation of HMG-CoA Reductase, Apo A-1, PCSK-9, p-AMPK, SREBP-2, and CYP2E1 Expression. Metabolites 2024; 14:728. [PMID: 39728509 DOI: 10.3390/metabo14120728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/05/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Hyperlipidemia is a major contributor to metabolic complications and tissue damage, leading to conditions such as liver steatosis, atherosclerosis, and obesity. This study aimed to investigate the effects of aqueous artichoke bract extract (AE) on lipid metabolism, liver antioxidative defense, and liver steatosis in mice fed a high-fat, high-sucrose diet while elucidating the underlying mechanisms. Methods: An 8-week study used hyperlipidemic mice treated with AE at daily doses of 100 and 200 mg/kg bw, compared to fenofibrate. Plasma, liver, fecal, and biliary lipids, as well as blood glucose, were analyzed enzymatically. The liver antioxidative defense was assessed by measuring reduced glutathione, malondialdehyde (MDA), and antioxidant enzyme activities, while liver steatosis was evaluated through transaminase and alkaline phosphatase activities and histological monitoring of lipid droplets. Polyphenol profiling and quantification were performed using HPLC-DAD, and potential mechanisms were predicted by molecular docking and confirmed in HepG2 cells. Results: At 200 mg/kg, AE significantly improved plasma lipid profiles by reducing total cholesterol, triglycerides, and LDL-cholesterol while increasing HDL-cholesterol. It facilitated cholesterol reduction in the liver and its excretion, indicating activation of reverse cholesterol transport, which led to reduced body weight and liver steatosis. AE lowered MDA levels and enhanced antioxidant enzyme activities. AE was found to be safe (LD50 > 5000 mg/kg) and modulated gene expression in HepG2 cells. Conclusions: Based on our results, the artichoke bract extract could be considered a natural resource of bioactive compounds to treat hyperlipidemia and related cardiometabolic diseases.
Collapse
Affiliation(s)
- Imane Mokhtari
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| | - Abdelaaty A Shahat
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Dragan Milenkovic
- Plants for Human Health Institute, Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Kannapolis, NC 28081, USA
| | - Souliman Amrani
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| | - Hicham Harnafi
- Laboratory of Bioresources, Biotechnologies, Ethnopharmacology and Health, Faculty of Sciences, University Mohamed I, Oujda 60000, Morocco
| |
Collapse
|
2
|
El Sohafy SM, Shams Eldin SM, Sallam SM, Bakry R, Nassra RA, Dawood HM. Exploring the ethnopharmacological significance of Cynara scolymus bracts: Integrating metabolomics, in-Vitro cytotoxic studies and network pharmacology for liver and breast anticancer activity assessment. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118583. [PMID: 39013541 DOI: 10.1016/j.jep.2024.118583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/18/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Liver and breast cancers are the most dominant cancer types with high occurrence rates. Artichoke (Cynara scolymus L.) has been reputed for its traditional use in alleviating many liver and gallbladder ailments beside its anticancer activity against various types of cancer cells. AIM OF THE STUDY To demonstrate detailed chemical matrices of the different plant parts and evaluate their cytotoxic activities aiming to unveil the relationship between these activities and the intrinsic metabolites using metabolomic studies, in-vitro experiments and network pharmacology. MATERIALS AND METHODS Chemical profiling of extracts from the different plant parts (stems, leaves, bracts and receptacles) was performed using HPLC/QqQ/MS followed by unsupervised chemometric studies. In-vitro cytotoxic potentials of the extracts were evaluated on breast and liver cancer cell line then an OPLS study using linear regression was conducted. Consequently, a network pharmacology analysis on the most bioactive plant organ was applied. RESULTS Unsupervised chemometric analysis revealed that kaempferol-3-O-α-L-rhamnopyranoside-7-O-β-D-galacturonopyranoside, chrysoeriol-7-rutinoside and 1-caffeoylquinic acid were responsible for the segregation of the bract (CSB) segregated from the rest of the plant organs. Interestingly, CSB extract possessed the highest potential in-vitro cytotoxic activity against both liver and breast cancer cells (IC50 = 1.65 and 1.77 μg/mL). As expected, the aforementioned biomarkers were observed to be the discriminatory cytotoxic metabolites in the constructed supervised chemometric model. Network pharmacology analysis on CSB revealed 27 liver cancer-related metabolites of which, 1-caffeoylquinic acid was the most enriched one contributing to 13% of the total interactions. Furthermore, 38 target genes were involved, the most enriched of which were Aldo-keto reductase family 1 member B1 (AKR1B10) and interleukin-2 (IL-2). KEGG pathway analysis unveiled 23 significantly related pathways including metabolic pathways that possessed the lowest p-value (1.6E-5). CONCLUSION The findings demonstrated that CSB is a significant source of cytotoxic metabolites against breast cancer and liver cancer cell lines, hence, drawing attention to the pharmaceutical and medicinal value of this negligible plant organ and paving the route for insightful research into its exact pharmacological cytotoxic mechanisms.
Collapse
Affiliation(s)
- Samah M El Sohafy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Safa M Shams Eldin
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Shaimaa M Sallam
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| | - Rania Bakry
- Institute of Analytical Chemistry and Radiopharmacy, University of Innsbruck, Austria
| | - Rasha A Nassra
- Medical Biochemistry department, faculty of medicine, Alexandria University, Egypt
| | - Hend M Dawood
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
3
|
Ashour EA, Aldhalmi AK, Kamal M, Salem SS, Mahgoub SA, Alqhtani AH, Madkour M, Elolimy AA, Abd El-Hack ME, Swelum AA. The efficacy of Artichoke leaf extract conjugated with organic zinc nanoparticles on growth, carcass traits and blood biochemical parameters of broilers. Poult Sci 2024; 104:104521. [PMID: 39693956 DOI: 10.1016/j.psj.2024.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/03/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024] Open
Abstract
This study aimed to discover how using nano artichoke leaf extract Stabilized with zinc Nanoparticles (ZnO-Nano-ALPE) as an alternative to antibiotics and an antioxidant in broiler feed affected their growth, meat quality, and blood. In a completely randomized design experiment, 210 1-day-old chicks (Arbor Acres) were assigned to three trial groups. Each group was subdivided into seven replicates, each with ten unsexed chicks. The groups formed were as follows: the control group received a basal diet without additives. In contrast, the ZnO-Nano-ALPE1 and ZnO-Nano-ALPE2 groups received a basal diet plus 1.0 and 2.0 cm3 of nano artichoke leaf extract ZnO-Nano-ALPE /kg diet, respectively. The results showed significant changes in LBW on days 28 and 31 of their lives, with the ZnO-Nano-ALPE groups showing the greatest changes. Variation analysis revealed no discernible changes between the treatment groups; however, there were notable variations in the calculated feed intake (FI) on days 29 and 31. There were no notable variations in carcass features between treatments, except for the percentage of carcass, dressing, thigh, heart, and intestine cecum in the control group. In addition, we found significant differences in total protein, albumin, and globulin levels between treatments, with the control group showing higher levels compared to the other two groups. The diet increased alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and elevated cholesterol levels. The study revealed significant differences in immunoglobulins, Superoxide dismutase (SOD) and Malondialdehyde (MDA) levels among the treatments, with the 1.0 cm3 treatment group exhibiting the highest levels. Thus, adding ZnO-Nano-ALPE to growing chick feeds at 1.0 and 2.0 cm3 rates could improve productivity, some carcass characteristics, and blood parameters.
Collapse
Affiliation(s)
- Elwy A Ashour
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Ahmed K Aldhalmi
- College of Pharmacy, Al- Mustaqbal University, 51001 Babylon, Iraq
| | - Mahmoud Kamal
- Laboratory of Gastrointestinal Microbiology, National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Salem S Salem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Cairo, 11884, Egypt
| | - Samir A Mahgoub
- Agricultural Microbiology Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Abdulmohsen H Alqhtani
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mahmoud Madkour
- Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt
| | - Ahmed A Elolimy
- Animal Production Department, National Research Centre, Dokki, 12622, Giza, Egypt; Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 15551, Abu Dhabi, United Arab Emirates.
| | | | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
4
|
Haghighat Lari MM, Bakhoda MR, Shabani M, Taghizadeh M, Bahmani F, Hamidi G, Aghighi F, Talaei SA. Artichoke leaf hydroethanolic extract reduces neuropathic pain in a rat model of chronic constriction injury via attenuating the sciatic nerve oxidative stress. Arch Physiol Biochem 2024:1-7. [PMID: 39320929 DOI: 10.1080/13813455.2024.2406898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Neuropathic pain, a nerve damage consequence, presents symptoms such as dysesthesia, hyperalgesia, and allodynia. This study aimed to evaluate the alleviating potential of artichoke leaf extract in neuropathic pain induced by chronic constriction injury (CCI) of the sciatic nerve in male rats. The hydroethanolic extract of artichoke leaf was administered via gavage at doses of 200, 400, and 800 mg/kg for 21 days. Behavioural tests were conducted on days 1, 4, 7, 14, and 21 post-surgeries. Only the dose of 800 mg/kg significantly reduced thermal hyperalgesia and allodynia from day 14 and mechanical allodynia from day 7, and the other doses did not affect behaviours. Biochemical analysis showed that artichoke extract decreased lipid peroxidation and restored antioxidant enzyme activities (SOD and GPx) in the sciatic nerve tissue. In conclusion, artichoke leaf extract administration diminishes neuropathic pain-related behaviours by enhancing antioxidant capacity and reducing oxidative stress in the rats' sciatic nerve.
Collapse
Affiliation(s)
- Mohammad Mehdi Haghighat Lari
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammad Reza Bakhoda
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Shabani
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fereshteh Bahmani
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Gholamali Hamidi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Fatemeh Aghighi
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Sayyed Alireza Talaei
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
5
|
Liu T, Asif IM, Bai C, Huang Y, Li B, Wang L. The effectiveness and safety of natural food and food-derived extract supplements for treating functional gastrointestinal disorders-current perspectives. Nutr Rev 2024:nuae047. [PMID: 38908001 DOI: 10.1093/nutrit/nuae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) were highly prevalent and involve gastrointestinal discomfort characterized by non-organic abnormalities in the morphology and physiology of the gastrointestinal tract. According to the Rome IV criteria, irritable bowel syndrome and functional dyspepsia are the most common FGIDs. Complementary and alternative medicines are employed by increasing numbers of individuals around the world, and they include herbal and dietary supplements, acupuncture, and hypnosis. Of these, herbal and dietary supplements seem to have the greatest potential for relieving FGIDs, through multiple modes of action. However, despite the extensive application of natural extracts in alternative treatments for FGIDs, the safety and effectiveness of food and orally ingested food-derived extracts remain uncertain. Many randomized controlled trials have provided compelling evidence supporting their potential, as detailed in this review. The consumption of certain foods (eg, kiwifruit, mentha, ginger, etc) and food ingredients may contribute to the alleviation of symptoms associated with FGID,. However, it is crucial to emphasize that the short-term consumption of these components may not yield satisfactory efficacy. Physicians are advised to share both the benefits and potential risks of these alternative therapies with patients. Furthermore, larger randomized clinical trials with appropriate comparators are imperative.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Chengmei Bai
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Yutian Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, Hubei 430070, China
| |
Collapse
|
6
|
Olas B. An Overview of the Versatility of the Parts of the Globe Artichoke ( Cynara scolymus L.), Its By-Products and Dietary Supplements. Nutrients 2024; 16:599. [PMID: 38474726 DOI: 10.3390/nu16050599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/15/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Cynara scolymus, also known as the globe artichoke or artichoke, is grown as a food, mainly in the Mediterranean, Canary Islands, and Egypt, as well as in Asia and South America. It has also been associated with various health benefits and is used in plant-based dietary supplements and herbal infusions. Its edible parts, consisting of the head or capitula, flower, and leaves, have shown various biological activities, including anti-cancer, hepatoprotective and antimicrobial potential. The leaves are mainly used in infusions and extracts for their health-promoting properties, although all their edible parts may also be consumed as fresh, frozen, or canned foods. However, its primary health-promoting activity is associated with its antioxidant potential, which has been linked to its chemical composition, particularly its phenolic compounds (representing 96 mg of gallic acid equivalent per 100 g of raw plant material) and dietary fiber. The main phenolic compounds in the heads and leaves are caffeic acid derivatives, while the flavonoids luteolin and apigenin (both present as glucosides and rutinosides) have also been identified. In addition, heat-treated artichokes (i.e., boiled, steamed or fried), their extracts, and waste from artichoke processing also have antioxidant activity. The present paper reviews the current literature concerning the biological properties of different parts of C. scolymus, its by-products and dietary supplements, as well as their chemical content and toxicity. The literature was obtained by a search of PubMed/Medline, Google Scholar, Web of Knowledge, ScienceDirect, and Scopus, with extra papers being identified by manually reviewing the references.
Collapse
Affiliation(s)
- Beata Olas
- Department of General Biochemistry, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
7
|
Siddique R, Mehmood MH, Shehzad MA. Current antioxidant medicinal regime and treatments used to alleviate oxidative stress in infertility issues. FUNDAMENTAL PRINCIPLES OF OXIDATIVE STRESS IN METABOLISM AND REPRODUCTION 2024:287-315. [DOI: 10.1016/b978-0-443-18807-7.00018-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
8
|
Zhang P, Rong K, Guo J, Cui L, Kong K, Zhao C, Yang H, Xu H, Qin A, Ma P, Yang X, Zhao J. Cynarin alleviates intervertebral disc degeneration via protecting nucleus pulposus cells from ferroptosis. Biomed Pharmacother 2023; 165:115252. [PMID: 37536034 DOI: 10.1016/j.biopha.2023.115252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) leads to a series of degenerative spine diseases. Clinical treatment of IVDD is mainly surgery, lacking effective drugs to alleviate intervertebral disc degeneration. In this study, we analysed the mRNA sequencing dataset of human degenerative intervertebral disc tissues and revealed the participation of ferroptosis in IVDD. Furthermore, we confirmed that TNF-α, an important cytokine in IVDD, induces ferroptosis in nucleus pulposus cells. Subsequently, a ferroptosis inhibitors screening strategy using multiple ferroptosis indicators was developed. Through the screen of various natural compounds, cynarin, a natural product enriched in Artichoke, was discovered to inhibit ferroptosis of nucleus pulposus cells. Cynarin can dose-dependently inhibit the catabolism of nucleus pulposus cells, increase the expression of key ferroptosis-inhibiting genes (GPX4 and NRF2), inhibit the increment of cellular Fe2+, lipid peroxides, and reactive oxygen species. It can also prevent mitochondria shrinkage, reduce mitochondria cristae density in ferroptosis, and prevent IVDD in the rat model. In conclusion, cynarin is a potential candidate for the drug development for IVDD.
Collapse
Affiliation(s)
- Pu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Kewei Rong
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jiadong Guo
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Lei Cui
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530000, China
| | - Keyu Kong
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Chen Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Huan Yang
- The Second Clinical Medical College of Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Hongtao Xu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China
| | - An Qin
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Peixiang Ma
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Xiao Yang
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| | - Jie Zhao
- Department of Orthopaedics, Shanghai Key Laboratory of Orthopaedic Implant, Shanghai Frontiers Science Center of Degeneration and Regeneration in Skeletal System, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China.
| |
Collapse
|
9
|
Mathew AM, Deng Z, Nelson CJ, Mayberry TG, Bai Q, Lequio M, Fajardo E, Xiao H, Wakefield MR, Fang Y. Artichoke as a melanoma growth inhibitor. Med Oncol 2023; 40:262. [PMID: 37544953 DOI: 10.1007/s12032-023-02077-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/08/2023] [Indexed: 08/08/2023]
Abstract
Melanoma is the most lethal malignancy in skin cancers. About 97,610 new cases of melanoma are projected to occur in the United States (US) in 2023. Artichoke is a very popular plant widely consumed in the US due to its nutrition. In recent years, it has been shown that artichoke shows powerful anti-cancer effects on cancers such as breast cancer, colon cancer, liver cancer, and leukemia. However, there is little known about its effect on melanoma. This study was designed to investigate if artichoke extract (AE) has any direct effect on the growth of melanoma. Clonogenic survival assay, cell proliferation, and caspase-3 activity kits were used to evaluate the effects AE has on cell survival, proliferation, and apoptosis of the widely studied melanoma cell line HTB-72. We further investigated the possible molecular mechanisms using RT-PCR and immunohistochemical staining. The percentage of colonies of HTB-72 melanoma cells decreased significantly after treated with AE. This was paralleled with the decrease in the optic density (OD) value of cancer cells after treatment with AE. This was further supported by the decreased expression of PCNA mRNA after treated with AE. Furthermore, the cellular caspase-3 activity increased after treated with AE. The anti-proliferative effect of AE on melanoma cells correlated with increased p21, p27, and decreased CDK4. The pro-apoptotic effect of AE on melanoma cells correlated with decreased survivin. Artichoke inhibits growth of melanoma by inhibition of proliferation and promotion of apoptosis. Such a study might be helpful to develop a new promising treatment for melanoma.
Collapse
Affiliation(s)
- Annette M Mathew
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Zuliang Deng
- The Center of Early Screening and Diagnosis of Gastrointestinal Tumors of Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
| | - Christian J Nelson
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Trenton G Mayberry
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Marco Lequio
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Emerson Fajardo
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Huaping Xiao
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
- The Center of Early Screening and Diagnosis of Gastrointestinal Tumors of Affiliated Hospital of Xiangnan University, Chenzhou, 423000, Hunan, People's Republic of China
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- The Department of Microbiology & Immunology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- The Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
- Ellis Fischel Cancer Center, University of Missouri, Columbia, MO, 65212, USA.
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
| |
Collapse
|
10
|
Ojo OA, Ogunlakin AD, Gyebi GA, Ayokunle DI, Odugbemi AI, Babatunde DE, Ajayi-Odoko OA, Iyobhebhe M, Ezea SC, Akintayo CO, Ayeleso A, Ojo AB, Ojo OO. GC-MS chemical profiling, antioxidant, anti-diabetic, and anti-inflammatory activities of ethyl acetate fraction of Spilanthes filicaulis (Schumach. and Thonn.) C.D. Adams leaves: experimental and computational studies. Front Pharmacol 2023; 14:1235810. [PMID: 37547334 PMCID: PMC10399624 DOI: 10.3389/fphar.2023.1235810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 06/29/2023] [Indexed: 08/08/2023] Open
Abstract
Introduction: This study aimed to investigate the chemical profile of GC-MS, antioxidant, anti-diabetic, and anti-inflammatory activities of the ethyl acetate fraction of Spilanthes filicaulis leaves (EFSFL) via experimental and computational studies. Methods: After inducing oxidative damage with FeSO4, we treated the tissues with different concentrations of EFSFL. An in-vitro analysis of EFSFL was carried out to determine its potential for antioxidant, anti-diabetic, and anti-inflammatory activities. We also measured the levels of CAT, SOD, GSH, and MDA. Results and discussion: EFSFL exhibited anti-inflammatory properties through membrane stabilizing properties (IC50 = 572.79 μg/ml), proteinase inhibition (IC50 = 319.90 μg/ml), and inhibition of protein denaturation (IC50 = 409.88 μg/ml). Furthermore, EFSFL inhibited α-amylase (IC50 = 169.77 μg/ml), α-glucosidase (IC50 = 293.12 μg/ml) and DPP-IV (IC50 = 380.94 μg/ml) activities, respectively. Our results indicated that induction of tissue damage reduced the levels of GSH, SOD, and CAT activities, and increased MDA levels. However, EFSFL treatment restores these levels to near normal. GC-MS profiling shows that EFSFL contains 13 compounds, with piperine being the most abundant. In silico interaction of the phytoconstituents using molecular and ensembled-based docking revealed strong binding tendencies of two hit compounds to DPP IV (alpha-caryophyllene and piperine with a binding affinity of -7.8 and -7.8 Kcal/mol), α-glucosidase (alpha-caryophyllene and piperine with a binding affinity of -9.6 and -8.9 Kcal/mol), and to α-amylase (piperine and Benzocycloheptano[2,3,4-I,j]isoquinoline, 4,5,6,6a-tetrahydro-1,9-dihydroxy-2,10-dimethoxy-5-methyl with a binding affinity of -7.8 and -7.9 Kcal/mol), respectively. These compounds also presented druggable properties with favorable ADMET. Conclusively, the antioxidant, antidiabetic, and anti-inflammatory activities of EFSFL could be due to the presence of secondary metabolites.
Collapse
Affiliation(s)
- Oluwafemi Adeleke Ojo
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | - Akingbolabo Daniel Ogunlakin
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | - Adeshina Isaiah Odugbemi
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
| | | | | | | | - Samson Chukwuemeka Ezea
- Department of Pharmacognosy and Environmental Medicine, University of Nigeria, Nsukka, Nigeria
| | | | - Ademola Ayeleso
- Phytomedicine, Molecular Toxicology, and Computational Biochemistry Research Laboratory (PMTCB-RL), Department of Biochemistry, Bowen University, Iwo, Nigeria
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, University of South Africa, Roodepoort, South Africa
| | | | | |
Collapse
|
11
|
Alsubaiei SRM, Alfawaz HA, Bhat RS, El-Ansary A. Nutritional Intervention as a Complementary Neuroprotective Approach against Propionic Acid-Induced Neurotoxicity and Associated Biochemical Autistic Features in Rat Pups. Metabolites 2023; 13:738. [PMID: 37367896 DOI: 10.3390/metabo13060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Since there is no known cure for autism spectrum disorder (ASD), its incidence rate is on the rise. Common comorbidities like gastrointestinal problems are observed as common signs of ASD and play a major role in controlling social and behavioral symptoms. Although there is a lot of interest in dietary treatments, no harmony exists with regard to the ideal nutritional therapy. To better direct prevention and intervention measures for ASD, the identification of risk and protective factors is required. Through the use of a rat model, our study aims to assess the possible danger of exposure to neurotoxic doses of propionic acid (PPA) and the nutritional protective effects of prebiotics and probiotics. Here, we conducted a biochemical assessment of the effects of dietary supplement therapy in the PPA model of autism. We used 36 male Sprague Dawley albino rat pups divided into six groups. Standard food and drink were given to the control group. The PPA-induced ASD model was the second group; it was fed a conventional diet for 27 days before receiving 250 mg/kg of PPA orally for three days. The four other groups were given 3 mL/kg of yoghurt daily, 400 mg/Kg of artichokes daily, 50 mg/kg of luteolin daily and Lacticaseibacillus rhamnosus GG at 0.2 mL daily for 27 days before being given PPA (250 mg/kg BW) for three days along with their normal diet. All groups had their brain homogenates tested for biochemical markers, which included gamma-aminobutyric acid (GABA), glutathione peroxidase 1 (GPX1), glutathione (GSH), interleukin 6 (IL-6), interleukin 10 (IL-10) and tumor necrosis factor-alpha (TNF). When compared with the control group, the PPA-induced model presented increased oxidative stress and neuroinflammation but groups treated with all four dietary therapies presented improvements in biochemical characteristics for oxidative stress and neuroinflammation. As all of the therapies show sufficient anti-inflammatory and antioxidant effects, they can be used as a useful dietary component to help prevent ASD.
Collapse
Affiliation(s)
- Sana Razhan M Alsubaiei
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Hanan A Alfawaz
- Department of Food Science and Nutrition, College of Food & Agriculture Sciences, King Saud University, Riyadh 11495, Saudi Arabia
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College, King Saud University, Riyadh 11495, Saudi Arabia
| | - Afaf El-Ansary
- Central Research Laboratory, Female Campus, King Saud University, Riyadh 11495, Saudi Arabia
| |
Collapse
|
12
|
Lin W, Zhao Y, Liu C, Yan Y, Ou Q. Quercetin supplementation and muscular atrophy in animal models: A systematic review and meta-analysis. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2127764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Weiqun Lin
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yongyi Zhao
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Cuibing Liu
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Yinghua Yan
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| | - Qiaowen Ou
- Department of Clinical Nutrition, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, People’s Republic of China
| |
Collapse
|
13
|
By-products of dates, cherries, plums and artichokes: A source of valuable bioactive compounds. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Costea L, Chițescu CL, Boscencu R, Ghica M, Lupuliasa D, Mihai DP, Deculescu-Ioniță T, Duțu LE, Popescu ML, Luță EA, Nițulescu GM, Olaru OT, Gîrd CE. The Polyphenolic Profile and Antioxidant Activity of Five Vegetal Extracts with Hepatoprotective Potential. PLANTS (BASEL, SWITZERLAND) 2022; 11:1680. [PMID: 35807632 PMCID: PMC9269044 DOI: 10.3390/plants11131680] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 12/13/2022]
Abstract
Oxidative stress is among the major triggers for many important human functional disorders, which often lead to various metabolic or tissue diseases. The aim of the study is to obtain five standardized vegetal extracts (Cynarae extractum-CE, Rosmarini extractum-RE, Taraxaci extractum-TE, Cichorii extractum-CHE, and Agrimoniae extractum-AE) that contain active principles with an essential role in protecting liver cells against free radicals and quantify their antioxidant actions. The compounds of therapeutic interest from the analyzed extracts were identified and quantified using the UHPLC-HRMS/MS technique. Thus, the resulting identified compounds were 28 compounds in CE, 48 compounds in RE, 39 compounds in TE, 43 compounds in CHE, and 31 compounds in AE. These compounds belong to the class of flavonoids, isoflavones, phenolic acids and dicarboxylic acids, depsides, diterpenes, triterpenes, sesquiterpenes, proanthocyanidins, or coumarin derivatives. From the major polyphenolic compounds quantified in all the extracts analyzed by UHPLC-HRMS/MS, considerable amounts have been found for chlorogenic acid (619.8 µg/g extract for TE-2032.4 µg/g extract for AE), rutoside (105.1 µg/g extract for RE-1724.7 µg/g extract for AE), kaempferol (243 µg/g extract for CHE-2028.4 µg/g extract for CE), and for naringenin (383 µg/g extract for CHE-1375.8 µg/g extract for AE). The quantitative chemical analysis showed the highest content of total phenolic acids for AE (24.1528 ± 1.1936 g chlorogenic acid/100 g dry extract), the highest concentration of flavones for RE (6.0847 ± 0.3025 g rutoside/100 g dry extract), and the richest extract in total polyphenols with 31.7017 ± 1.2211 g tannic acid equivalent/100 g dry extract for AE. Several methods (DPPH, ABTS, and FRAP) have been used to determine the in vitro total antioxidant activity of the extracts to evaluate their free radical scavenging ability, influenced by the identified compounds. As a result, the correlation between the content of the polyphenolic compounds and the antioxidant effect of the extracts has been demonstrated. Statistically significant differences were found when comparing the antiradical capacity within the study groups. Although all the analyzed extracts showed good IC50 values, which may explain their antihepatotoxic effects, the highest antioxidant activity was obtained for Agrimoniae extractum (IC50ABTS = 0.0147 mg/mL) and the lowest antioxidant activity was obtained for Cynarae extractum (IC50ABTS = 0.1588 mg/mL). Furthermore, the hepatoprotective potential was evaluated in silico by predicting the interactions between the determined phytochemicals and key molecular targets relevant to liver disease pathophysiology. Finally, the evaluation of the pharmacognostic and phytochemical properties of the studied extracts validates their use as adjuvants in phytotherapy, as they reduce oxidative stress and toxin accumulation and thus exert a hepatoprotective effect at the cellular level.
Collapse
Affiliation(s)
- Liliana Costea
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Carmen Lidia Chițescu
- Faculty of Medicine and Pharmacy, “Dunărea de Jos”, University of Galați, 35 A.I. Cuza Str., 800010 Galați, Romania
| | - Rica Boscencu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Manuela Ghica
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Dumitru Lupuliasa
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Dragoș Paul Mihai
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Teodora Deculescu-Ioniță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Ligia Elena Duțu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Maria Lidia Popescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Emanuela-Alice Luță
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - George Mihai Nițulescu
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Octavian Tudorel Olaru
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| | - Cerasela Elena Gîrd
- Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania; (R.B.); (M.G.); (D.L.); (T.D.-I.); (L.E.D.); (M.L.P.); (E.-A.L.); (G.M.N.); (O.T.O.); (C.E.G.)
| |
Collapse
|
15
|
Ben Salem M, Affes H, Dhouibi R, Charfi S, Turki M, Hammami S, Ayedi F, Sahnoun Z, Zeghal KM, Ksouda K. Preventive effect of Artichoke ( Cynara scolymus L.) in kidney dysfunction against high fat-diet induced obesity in rats. Arch Physiol Biochem 2022; 128:586-592. [PMID: 31855072 DOI: 10.1080/13813455.2019.1703755] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A high-fat diet (HFD) promotes oxidative stress, which contributes to the development of kidney dysfunction. We examined the protective effects of an ethanol extract of artichoke leaves (EEA) compared to Atorvastatin (ATOR) in the kidney of Wistar rats fed a high-fat diet. The experimental animals were divided into five groups: control (Cont), HFD, HFD treated with EEA (200 mg/kg), HFD treated with EEA (400 mg/kg), and HFD treated with ATOR. Organ weights, lipid profile, renal markers, and antioxidants enzymes were measured. Oral administration of EEA (200 and 400 mg/kg) for 60 days showed a significant decrease in organ weights and kidney markers levels accompanied by decreasing in oxidative stress biomarkers as compared to HFD groups. The histological findings showed a renoprotective effect of artichoke extract. These findings suggest that EEA exerts anti-oxidant kidney effects in HFD- induced obese rats.
Collapse
Affiliation(s)
- Maryem Ben Salem
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Hanen Affes
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Raouia Dhouibi
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Slim Charfi
- Laboratory of Anatomopathology, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Mouna Turki
- Biochemistry Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Serria Hammami
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Fatma Ayedi
- Biochemistry Laboratory, CHU Habib Bourguiba, University of Sfax, Sfax, Tunisia
| | - Zouheir Sahnoun
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Khaled Mounir Zeghal
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| | - Kamilia Ksouda
- Laboratory of Pharmacology, Faculty of Medicine, University of Sfax, Sfax, Tunisia
| |
Collapse
|
16
|
Cerulli A, Masullo M, Pizza C, Piacente S. Metabolite Profiling of “Green” Extracts of Cynara cardunculus subsp. scolymus, Cultivar “Carciofo di Paestum” PGI by 1H NMR and HRMS-Based Metabolomics. Molecules 2022; 27:molecules27103328. [PMID: 35630805 PMCID: PMC9145539 DOI: 10.3390/molecules27103328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/12/2022] Open
Abstract
Globe artichoke (Cynara cardunculus L. var. scolymus L.), is a perennial plant widely cultivated in the Mediterranean area, known for its edible part named capitula or heads. Its functional properties are related to its high levels of polyphenolic compounds and inulin. “Carciofo di Paestum”, an Italian traditional cultivar, is a labeled PGI (Protected Geographical Indication) product of the Campania region, representing an important economic resource. So far, a few chemical investigations were performed on this cultivar, mainly focused on the analysis of methanol extracts. Due to the increasing use of food supplements, in this study, a comprehensive analysis of green extracts of “Carciofo di Paestum” PGI heads was performed. EtOH, EtOH: H2O (80:20, 70:30, 60:40) extracts, as well as infusions and decoctions prepared according to Pharmacopeia XII were analyzed by LC-ESI/QExactive/MS/MS. A total of 17 compounds corresponding to caffeoylquinic acid derivatives, phenolics, flavonoids, and terpenoids were identified. The extracts were further submitted to NMR analysis to highlight the occurrence of primary metabolites. Both LCMS and NMR data were analyzed by Principal Component Analysis (PCA), showing significant differences among the extraction methods. Moreover, 5-caffeoylquinic acid and 1,5-dicaffeoylquinic acid were quantified in the extracts by LC-ESI/QTrap/MS/MS using the Multiple Reaction Monitoring (MRM) method. Furthermore, the phenolic content, antioxidant activity, and α-glucosidase inhibitory activity of C. cardunculus var. scolymus “Carciofo di Paestum” extracts were evaluated.
Collapse
|
17
|
Akbari B, Baghaei-Yazdi N, Bahmaie M, Mahdavi Abhari F. The role of plant-derived natural antioxidants in reduction of oxidative stress. Biofactors 2022; 48:611-633. [PMID: 35229925 DOI: 10.1002/biof.1831] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 12/15/2022]
Abstract
Free radicals are a group of damaging molecules produced during the normal metabolism of cells in the human body. Exposure to ultraviolet radiation, cigarette smoking, and other environmental pollutants enhances free radicals in the human body. The destructive effects of free radicals may also cause harm to membranes, enzymes, and DNA, leading to several human diseases such as cancer, atherosclerosis, malaria, coronavirus disease (COVID-19), rheumatoid arthritis, and neurodegenerative illnesses. This process occurs when there is an imbalance between free radicals and antioxidant defenses. Since antioxidants scavenge free radicals and repair damaged cells, increasing the consumption of fruits and vegetables containing high antioxidant values is recommended to slow down oxidative stress in the body. Additionally, natural products demonstrated a wide range of biological impacts such as anti-inflammatory, anti-aging, anti-atherosclerosis, and anti-cancer properties. Hence, in this review article, our goal is to explore the role of natural therapeutic antioxidant effects to reduce oxidative stress in the diseases.
Collapse
Affiliation(s)
- Behnaz Akbari
- School of Medicine, Department of Anatomy & Neurobiology, Boston University, Boston, Massachusetts, USA
| | - Namdar Baghaei-Yazdi
- College of Liberal Arts & Sciences, School of Life Sciences, University of Westminster, London, UK
| | - Manochehr Bahmaie
- Department of Chemistry, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | |
Collapse
|
18
|
Celepli S, Çolak B, Celepli P, Bigat İ, Batur HG, Soysal F, Karakurt S, Hücümenoğlu S, Kismet K, Şahin M. Artichoke for biochemistry, histology, and gene expression in obstructive jaundice. REVISTA DA ASSOCIAÇÃO MÉDICA BRASILEIRA 2022; 68:647-652. [DOI: 10.1590/1806-9282.20220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/27/2022] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | - İrem Bigat
- TOBB University of Economics & Technology, Turkey
| | | | | | | | | | | | | |
Collapse
|
19
|
Luca SV, Kulinowski Ł, Ciobanu C, Zengin G, Czerwińska ME, Granica S, Xiao J, Skalicka-Woźniak K, Trifan A. Phytochemical and multi-biological characterization of two Cynara scolymus L. varieties: A glance into their potential large scale cultivation and valorization as bio-functional ingredients. INDUSTRIAL CROPS AND PRODUCTS 2022; 178:114623. [DOI: 10.1016/j.indcrop.2022.114623] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Arnaboldi L, Corsini A, Bellosta S. Artichoke and bergamot extracts: a new opportunity for the management of dyslipidemia and related risk factors. Minerva Med 2022; 113:141-157. [PMID: 35313442 DOI: 10.23736/s0026-4806.21.07950-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The relationship between low LDL-C (cholesterol associated with low-density lipoprotein) and a lower relative risk of developing cardiovascular disease (CVD) has been widely demonstrated. Although from a pharmacological point of view, statins, ezetimibe and PCSK inhibitors, alone or in combination are the front and center of the therapeutic approaches for reducing LDL-C and its CV consequences, in recent years nutraceuticals and functional foods have increasingly been considered as a valid support in the reduction of LDL-C, especially in patients with mild/moderate hyperlipidemia - therefore not requiring pharmacological treatment - or in patients intolerant to statins or other drugs. An approach also shared by the European Atherosclerosis Society (EAS). Of the various active ingredients with hypolipidemic properties, we include the artichoke (Cynara cardunculus, Cynara scolymus) and the bergamot (Citrus bergamia) which, thanks essentially to the significant presence of polyphenols in their extracts, can exert this action associated with a number of other complementary inflammation and oxidation benefits. In light of these evidence, this review aimed to describe the effects of artichoke and bergamot in modifying the lipid and inflammatory parameters described in in vitro, in vivo and clinical studies. The available data support the use of standardized compositions of artichoke and bergamot extracts, alone or in combination, in the treatment of mild to moderate dyslipidemia, in patients suffering from metabolic syndrome, hepatic steatosis, or intolerant to common hypolipidemic treatments.
Collapse
|
21
|
GUNAY Y, KAYMAZ E. Cynara Scolymus (Artichoke) Improves Liver Regeneration after Partial Liver Resection in Rats. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2022. [DOI: 10.33808/clinexphealthsci.1008534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Objective: Liver regeneration is necessary to restore hepatic mass and functional capacity after partial hepatectomy (PH). Cynara scolymus (CS) is a pharmacologically important plant that contains phenolic acids and flavonoids, and experimental studies have indicated that it has antioxidant and hepatoprotective effects. The aim of this study was to investigate the role of CS in liver regeneration after PH in rats.
Methods: A total of 36 Wistar albino rats weighing 280.5 ± 18.6 g were used. CS leaf extract was administered after partial hepatectomy. The rats were sacrificed at postoperative day 14, and the histological changes were assessed. The mitotic index (MI), nucleus size, hepatocyte size, and binucleation rate (BR) of hepatocytes were assessed using hematoxylin-eosin (H&E) staining.
Results: The rats that received CS extract had significant differences in liver regeneration markers, including the hepatocyte size, mitotic index, and Ki-67 proliferation index (p
Collapse
Affiliation(s)
- Yusuf GUNAY
- ZONGULDAK BÜLENT ECEVİT ÜNİVERSİTESİ, TIP FAKÜLTESİ
| | | |
Collapse
|
22
|
Mandim F, Petropoulos SA, Pinela J, Dias MI, Giannoulis KD, Kostić M, Soković M, Queijo B, Santos-Buelga C, Ferreira ICFR, Barros L. Chemical composition and biological activity of cardoon (Cynara cardunculus L. var. altilis) seeds harvested at different maturity stages. Food Chem 2022; 369:130875. [PMID: 34438342 DOI: 10.1016/j.foodchem.2021.130875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 11/28/2022]
Abstract
Cardoon seeds collected in Greece at four different maturity stages (samples S1 to S4) were analysed in terms of chemical composition and in vitro bioactivities. The content of phenolic compounds (six compounds in total) increased with increasing maturity, and 3,5-O-dicaffeyolquinic (14.8-33.8 mg/g extract) acid was the compound detected in higher abundance. Mature seeds (sample S4) also revealed the highest content in lipids (23 g/100 g extract) and tocopherols (29.62 mg/100 g dw) and demonstrated the highest cytotoxic (GI50 of 97-216 µg/mL) and anti-inflammatory (IC50 = 148 µg/mL) activities, and capacity to inhibit the formation of thiobarbituric acid reactive substances (TBARS) (IC50 = 5 µg/mL). Cardoon seed hydroethanolic extracts also revealed high antibacterial and antifungal potential, particularly samples S3 and S1, respectively. This study proved the multifaceted potential associated with valorisation of cardoon seeds, while their biological and chemical composition can be influenced by the maturity stage.
Collapse
Affiliation(s)
- Filipa Mandim
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Spyridon A Petropoulos
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446 N. Ionia, Volos, Greece.
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Maria Inês Dias
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Kyriakos D Giannoulis
- University of Thessaly, Department of Agriculture, Crop Production and Rural Environment, 38446 N. Ionia, Volos, Greece
| | - Marina Kostić
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Marina Soković
- Institute for Biological Research "Siniša Stanković"- National Institute of Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Serbia
| | - Beatriz Queijo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Celestino Santos-Buelga
- Grupo de Investigación en Polifenoles (GIP-USAL), Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Isabel C F R Ferreira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal.
| |
Collapse
|
23
|
Amini MR, Sheikhhossein F, Talebyan A, Bazshahi E, Djafari F, Hekmatdoost A. Effects of Artichoke Supplementation on Liver Enzymes: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin Nutr Res 2022; 11:228-239. [PMID: 35949559 PMCID: PMC9348909 DOI: 10.7762/cnr.2022.11.3.228] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/09/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Studies examining the effect of artichoke on liver enzymes have reported inconsistent results. This systematic review and meta-analysis aimed to assess the effects of artichoke administration on the liver enzymes. PubMed, Embase, the Cochrane Library, and Scopus databases were searched for articles published up to January 2022. Standardized mean difference (Hedges’ g) were analyzed using a random-effects model. Heterogeneity, publication bias, and sensitivity analysis were assessed for the liver enzymes. Pooled analysis of seven randomized controlled trials (RCTs) suggested that the artichoke administration has an effect on both alanine aminotransferase (ALT) (Hedges’ g, −1.08; 95% confidence interval [CI], −1.76 to −0.40; p = 0.002), and aspartate aminotransferase (AST) (Hedges’ g, −1.02; 95% CI, −1.76 to −0.28; p = 0.007). Greater effects on ALT were detected in trials that lasted ≤8 weeks. Also, greater effects on AST were detected in trials using > 500 mg artichoke. Overall, this meta-analysis demonstrated artichoke supplementation decreased ALT and AST.
Collapse
Affiliation(s)
- Mohammad Reza Amini
- Student Research Committee, Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| | - Fatemeh Sheikhhossein
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Alireza Talebyan
- Department of Community Nutrition, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz 71348-14336, Iran
| | - Elham Bazshahi
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Farhang Djafari
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran 14155-6117, Iran
| | - Azita Hekmatdoost
- Department of Clinical Nutrition & Dietetics, National Nutrition & Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran 198396-3113, Iran
| |
Collapse
|
24
|
Standardized artichoke extract: physiological effects, possibilities of use in medical practice. Fam Med 2021. [DOI: 10.30841/2307-5112.4.2021.249412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Celepli S, Çolak B, Celepli P, Bigat İ, Batur HG, Soysal F, Karakurt S, Hücümenoğlu S, Kısmet K, Şahin M. Effects of artichoke leaf extract on hepatic ischemia-reperfusion injury. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2021; 68:87-93. [PMID: 34909970 DOI: 10.1590/1806-9282.20210840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the hepatoprotective effect and mechanism of action of artichoke leaf extract in hepatic ischemia/reperfusion injury. METHODS Rats were divided into three groups such as sham, control, and artichoke leaf extract groups. Antioxidant enzyme activities and biochemical parameters were examined from the tissue and serum obtained from the subjects. Histopathological findings were scored semiquantitatively. RESULTS Statistically, the antioxidant activity was highest in the artichoke leaf extract group, the difference in biochemical parameters and C-reactive protein was significant compared with the control group, and the histopathological positive effects were found to be significantly higher. CONCLUSIONS As a result, artichoke leaf extract had a hepatoprotective effect and that this effect was related to the antioxidant and anti-inflammatory effects of artichoke.
Collapse
Affiliation(s)
- Salih Celepli
- Gülhane Training and Research Hospital, Department of General Surgery - Ankara, Turkey
| | - Bayram Çolak
- Selçuk University, Faculty of Medicine, Department of General Surgery - Konya, Turkey
| | - Pınar Celepli
- Ankara Training and Research Hospital, Department of Pathology - Ankara, Turkey
| | - İrem Bigat
- TOBB University of Economics & Technology, Department of Biomedical Engineering - Ankara, Turkey
| | - Hatice Gül Batur
- Selçuk University, Science Faculty, Biochemistry Department - Konya, Turkey
| | - Furkan Soysal
- Ankara Yıldırım Beyazıt University, Faculty of Engineering and Natural Sciences, Department of Chemical Engineering - Konya, Turkey
| | - Serdar Karakurt
- Selçuk University, Science Faculty, Biochemistry Department - Konya, Turkey
| | - Sema Hücümenoğlu
- Ankara Training and Research Hospital, Department of Pathology - Ankara, Turkey
| | - Kemal Kısmet
- Selçuk University, Faculty of Nursing, Department of Surgical Nursing - Konya, Turkey
| | - Mustafa Şahin
- Selçuk University, Faculty of Medicine, Department of General Surgery - Konya, Turkey
| |
Collapse
|
26
|
Moradi S, Shokri-Mashhadi N, Saraf-Bank S, Mohammadi H, Zobeiri M, Clark CCT, Rouhani MH. The effects of Cynara scolymus L. supplementation on liver enzymes: A systematic review and meta-analysis. Int J Clin Pract 2021; 75:e14726. [PMID: 34383355 DOI: 10.1111/ijcp.14726] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 08/09/2021] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE A systematic review and meta-analysis was conducted to summarise studies conducted on the effects of artichoke supplementation on liver enzymes. METHODS Suitable studies were detected by searching online databases, including Medline, Embase, Cochrane Library, and Scopus databases, until 05 June 2021. As liver enzymes were reported in different units, standardised mean differences (SMD) were used and data were pooled using a random-effects model. Heterogeneity, publication bias, and sensitivity analysis were also assessed. RESULTS Pooled analysis, of eight clinical trials, revealed that artichoke supplementation significantly reduced the concentration of aspartate aminotransferase (AST) (P = .001) and alanine transaminase (ALT) (P = .016), in comparison with placebo. Subgroup analysis suggested that artichoke administration significantly reduces AST and ALT in patients with non-alcoholic fatty liver disease (P = .003 for AST and P < .001 for ALT), and ALT among overweight/obese subjects (P = .025). CONCLUSIONS Artichoke supplementation elicited significant reductions in liver enzymes, especially among patients with non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Sajjad Moradi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Shokri-Mashhadi
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Sahar Saraf-Bank
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hamed Mohammadi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Zobeiri
- Department of Internal Medicine, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, UK
| | - Mohammad Hossein Rouhani
- Food Security Research Center and Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
27
|
Metabolic and Anti-Inflammatory Protective Properties of Human Enriched Serum Following Artichoke Leaf Extract Absorption: Results from an Innovative Ex Vivo Clinical Trial. Nutrients 2021; 13:nu13082653. [PMID: 34444810 PMCID: PMC8398945 DOI: 10.3390/nu13082653] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
The aging of our population is accompanied by an increased prevalence of chronic diseases. Among those, liver, joint and adipose tissue-related pathologies have a major socio-economic impact. They share common origins as they result from a dysregulation of the inflammatory and metabolic status. Plant-derived nutrients and especially polyphenols, exert a large range of beneficial effects in the prevention of chronic diseases but require clinically validated approaches for optimized care management. In this study, we designed an innovative clinical approach considering the metabolites produced by the digestive tract following the ingestion of an artichoke leaf extract. Human serum, enriched with metabolites deriving from the extract, was collected and incubated with human hepatocytes, human primary chondrocytes and adipocytes to determine the biological activity of the extract. Changes in cellular behavior demonstrated that the artichoke leaf extract protects hepatocytes from lipotoxic stress, prevents adipocytes differentiation and hyperplasia, and exerts chondroprotective properties in an inflammatory context. These data validate the beneficial health properties of an artichoke leaf extract at the clinical level and provide both insights and further evidence that plant-derived nutrients and especially polyphenols from artichoke may represent a relevant alternative for nutritional strategies addressing chronic disease issues.
Collapse
|
28
|
Wang ZB, Jiang SL, Liu SB, Peng JB, Hu S, Wang X, Zhuo W, Liu T, Guo JW, Zhou HH, Yang ZQ, Mao XY, Liu ZQ. Metabolomics of Artichoke Bud Extract in Spontaneously Hypertensive Rats. ACS OMEGA 2021; 6:18610-18622. [PMID: 34337201 PMCID: PMC8319930 DOI: 10.1021/acsomega.1c01135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 05/10/2023]
Abstract
Hypertension adversely affects the quality of life in humans across modern society. Studies have attributed increased reactive oxygen species production to the pathophysiology of hypertension. So far, a specific drug to control the disease perfectly has not been developed. However, artichoke, an edible vegetable, plays an essential role in treating many diseases due to its potent antioxidant activities. The objective of this study is to evaluate the effect of artichoke bud extract (ABE) on heart tissue metabolomics of hypertensive rats. Spontaneously hypertensive rats and Wistar-Kyoto (WKY) rats were divided into six groups, then exposed to different doses comprising ABE, Enalapril Maleate, or 1% carboxylmethyl cellulose for 4 weeks. Their blood pressures were recorded at 0, 2, 3, and 4 weeks after the start of the test period. Thereafter, all rats were anesthetized, and blood was collected from their cardiac apexes. Then, we measured the levels for 15 kinds of serum biochemical parameters. An established orthogonal partial least square-discriminant analysis model completed the metabolomic analysis. Hypertensive rats in the ABE group exhibited well-controlled blood pressure, relative to those in the model group. Specifically, artichoke significantly lowered serum levels for total protein (TP), albumin (ALB), and uric acid (UA) in the hypertensive rats. This effect involved the action of eight metabolites, including guanine, 1-methylnicotinamide, p-aminobenzoic acid, NAD, NADH, uridine 5'-monophosphate, adenosine monophosphate, and methylmalonic acid. Collectively, these findings suggest that ABE may play a role in affecting oxidative stress and purine, nicotinate, and nicotinamide metabolism.
Collapse
Affiliation(s)
- Zhi-Bin Wang
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Shi-Long Jiang
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Shao-Bo Liu
- Department
of Pharmacy, Xiangya Hospital, Central South
University, Changsha 410008, P. R. China
| | - Jing-Bo Peng
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Shuo Hu
- Department
of Nuclear Medicine and Key Laboratory of Biological Nanotechnology
of National Health Commission, Xiangya Hospital, Central South University, Changsha 410008, P. R. China
| | - Xu Wang
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Wei Zhuo
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Tong Liu
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Ji-Wei Guo
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Hong-Hao Zhou
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Zhi-Quan Yang
- Department
of Neurosurgery, Xiangya Hospital, Central
South University, Changsha 410008, P. R. China
- . Phone: +86 731 89753845. Fax: +86 731 82354476
| | - Xiao-Yuan Mao
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| | - Zhao-Qian Liu
- Department
of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics,
and National Clinical Research Center for Geriatric Disorders, Xiangya
Hospital, Central South University, Changsha 410008, P. R. China
- Institute
of Clinical Pharmacology, Engineering Research Center for Applied
Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha 410078, P. R. China
| |
Collapse
|
29
|
Villarini M, Acito M, di Vito R, Vannini S, Dominici L, Fatigoni C, Pagiotti R, Moretti M. Pro-Apoptotic Activity of Artichoke Leaf Extracts in Human HT-29 and RKO Colon Cancer Cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084166. [PMID: 33920761 PMCID: PMC8071198 DOI: 10.3390/ijerph18084166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022]
Abstract
(1) Background: Cynara cardunculus L. subsp. scolymus (L.) Hegi, popularly known as artichoke, is an herbaceous plant belonging to the Asteraceae family. Artichoke leaf extracts (ALEs) have been widely used in traditional medicine because of their hepatoprotective, cholagogic, hypoglycaemic, hypolipemic and antibacterial properties. ALEs are also recognized for their antioxidative and anti-inflammatory activities. In this study, we evaluated the cytotoxic, genotoxic, and apoptotic activities, as well as effect on cell growth of ALEs on human colon cancer HT-29 and RKO cells. HT-29 and RKO cells exhibit a different p53 status: RKO cells express the wild-type protein, whereas HT-29 cells express a p53-R273H contact mutant. (2) Methods: Four different ALEs were obtained by sequential extraction of dried artichoke leaves; ALEs were characterized for their content in chlorogenic acid, cynaropicrin, and caffeoylquinic acids. HT-29 and RKO cells were used for in vitro testing (i.e., cytotoxicity and genotoxicity assessment, cell cycle analysis, apoptosis induction). (3) Results: Two out of the four tested ALEs showed marked effects on cell vitality toward HT-29 and RKO tumour cells. The effect was accompanied by a genotoxic activity exerted at a non-cytotoxic concentrations, by a significant perturbation of cell cycle (i.e., with increase of cells in the sub-G1 phase), and by the induction of apoptosis. (4) Conclusions: ALEs rich in cynaropicrin, caffeoylquinic acids, and chlorogenic acid showed to be capable of affecting HT-29 and RKO colon cancer cells by inducing favourable biological effects: cell cycle perturbation, activation of mitochondrial dependent pathway of apoptosis, and the induction of genotoxic effects probably mediated by the induction of apoptosis. Taken together, these results weigh in favour of a potential cancer chemotherapeutic activity of ALEs.
Collapse
Affiliation(s)
- Milena Villarini
- Unit of Public Health, Department of Pharmaceutical Sciences, University of Perugia, via del Giochetto, 06122 Perugia, Italy; (M.V.); (M.A.); (R.d.V.); (S.V.); (L.D.); (C.F.)
| | - Mattia Acito
- Unit of Public Health, Department of Pharmaceutical Sciences, University of Perugia, via del Giochetto, 06122 Perugia, Italy; (M.V.); (M.A.); (R.d.V.); (S.V.); (L.D.); (C.F.)
| | - Raffaella di Vito
- Unit of Public Health, Department of Pharmaceutical Sciences, University of Perugia, via del Giochetto, 06122 Perugia, Italy; (M.V.); (M.A.); (R.d.V.); (S.V.); (L.D.); (C.F.)
| | - Samuele Vannini
- Unit of Public Health, Department of Pharmaceutical Sciences, University of Perugia, via del Giochetto, 06122 Perugia, Italy; (M.V.); (M.A.); (R.d.V.); (S.V.); (L.D.); (C.F.)
| | - Luca Dominici
- Unit of Public Health, Department of Pharmaceutical Sciences, University of Perugia, via del Giochetto, 06122 Perugia, Italy; (M.V.); (M.A.); (R.d.V.); (S.V.); (L.D.); (C.F.)
| | - Cristina Fatigoni
- Unit of Public Health, Department of Pharmaceutical Sciences, University of Perugia, via del Giochetto, 06122 Perugia, Italy; (M.V.); (M.A.); (R.d.V.); (S.V.); (L.D.); (C.F.)
| | - Rita Pagiotti
- Unit of Plant Biology, Department of Pharmaceutical Sciences, University of Perugia, via del Giochetto, 06122 Perugia, Italy;
| | - Massimo Moretti
- Unit of Public Health, Department of Pharmaceutical Sciences, University of Perugia, via del Giochetto, 06122 Perugia, Italy; (M.V.); (M.A.); (R.d.V.); (S.V.); (L.D.); (C.F.)
- Correspondence: ; Tel.: +39-075-5857420
| |
Collapse
|
30
|
Salmasifar A, Edraki M, Alibakhshi E, Ramezanzadeh B, Bahlakeh G. Combined electrochemical/surface investigations and computer modeling of the aquatic Artichoke extract molecules corrosion inhibition properties on the mild steel surface immersed in the acidic medium. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
31
|
Sokkar HH, Abo Dena AS, Mahana NA, Badr A. Artichoke extracts in cancer therapy: do the extraction conditions affect the anticancer activity? FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Artichoke is an edible plant that is grown in the Mediterranean region and is known for its antimicrobial, antifungal, antibacterial, antioxidant and anticancer activities. Different artichoke extraction methods can impressively affect the nature as well as the yield of the extracted components.
Main body
The different methods of artichoke extraction and the influence of the extraction conditions on the extraction efficiency are summarized herein. In addition, cancer causalities and hallmarks together with the molecular mechanisms of artichoke active molecules in cancer treatment are also discussed. Moreover, a short background is given on the common types of cancer that can be treated with artichoke extracts as well as their pathogenesis. A brief discussion of the previous works devoted to the application of artichoke extracts in the treatment of these cancers is also given.
Conclusion
This review article covers the extraction methods, composition, utilization and applications of artichoke extracts in the treatment of different cancers.
Collapse
|
32
|
Jaramillo FM, Piñeros DDV, Corrêa RR, Pogliani FC, Cogliati B, Baccarin RYA. Efficacy of oral Cynara scolymus and Silybum marianum on toxicity of imidocarb dipropionate in horses. Vet Rec Open 2020; 7:e000416. [PMID: 33178437 PMCID: PMC7646365 DOI: 10.1136/vetreco-2020-000416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 11/04/2022] Open
Abstract
Background Despite hepatotoxic effects, imidocarb dipropionate is the drug of choice for treatment of equine piroplasmosis. It is important, therefore, to identify adjuvant therapies that may improve the safety of imidocarb dipropionate by reducing the risk of liver damage during its use. The aim of the present study was to evaluate the hepatoprotective and hepatoregulatory effects of treatment with Cynara scolymus and Silybum marianum during administration of imidocarb dipropionate. Methods Ten healthy horses, seroconverted to Theileria equi by C-ELISA, were treated with 5 mg/kg/day of imidocarb dipropionate for three consecutive days. The study population was divided into two groups. The control group did not receive any complementary treatments. The treated group received a daily oral supplement containing C scolymus and S marianum for 30 days. Physical, haematological and histological examinations of hepatic fragments were performed. Results All haematological values remained within normal range for the study population. Histological analysis revealed that treated group animals had 62 per cent less lobular inflammation, 55 per cent less pigment accumulation, 65 per cent less steatosis and 57 per cent less portal inflammation than control group animals, with an equivalent percentage of hydropic degeneration. Conclusion C scolymus and S marianum supplements resulted in beneficial hepatoprotective effects in horses treated with imidocarb dipropionate.
Collapse
Affiliation(s)
- Fernando Mosquera Jaramillo
- Departamento de Clínica Médica, Universidade de São Paulo Faculdade de Medicina Veterinária e Zootecnia, Sao Paulo, Brazil
| | | | - Rodrigo Romero Corrêa
- Departamento de Cirurgia, Universidade de São Paulo Faculdade de Medicina Veterinária e Zootecnia, Sao Paulo, Brazil
| | - Fabio Celidonio Pogliani
- Departamento de Clínica Médica, Universidade de São Paulo Faculdade de Medicina Veterinária e Zootecnia, Sao Paulo, Brazil
| | - Bruno Cogliati
- Departamento de Patologia, Universidade de São Paulo Faculdade de Medicina Veterinária e Zootecnia, Sao Paulo, Brazil
| | - Raquel Yvonne Arantes Baccarin
- Departamento de Clínica Médica, Universidade de São Paulo Faculdade de Medicina Veterinária e Zootecnia, Sao Paulo, Brazil
| |
Collapse
|
33
|
Jalili C, Moradi S, Babaei A, Boozari B, Asbaghi O, Lazaridi AV, Hojjati Kermani MA, Miraghajani M. Effects of Cynara scolymus L. on glycemic indices:A systematic review and meta-analysis of randomized clinical trials. Complement Ther Med 2020; 52:102496. [PMID: 32951745 DOI: 10.1016/j.ctim.2020.102496] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 02/09/2023] Open
Abstract
OBJECTIVES Cynara scolymus L. (common artichoke) and its products have been considered as potential phytotherapeutic agents for various conditions, such as cardiovascular, hepatic and gastric diseases, among others. Until now, the effects of artichoke and artichoke products administration on glycemic indices have not been sufficiently appraised. The present study evaluated the effects of artichoke and artichoke products administration on the glycemic indices. METHODS Clinical trials were identified in the Cochrane Library, PubMed, Embase and Scopus databases; to infinity until 15 March 2020. Weighted mean differences (WMD) were pooled using a random-effects model. Heterogeneity, sensitivity analysis and publication bias were reported using standard methods. RESULTS Pooled analysis of nine Randomized controlled trials (RCTs), demonstrated that the administration of artichoke and artichoke products led to a significant reduced fasting blood sugar (FBS) (WMD: -5.28 mg/dl, 95 % CI: -8.95, -1.61; p = 0.005). However, other glycemic indeces including fasting insulin (WMD: -0.45 μIU/dL, 95 % CI: -1.14, 0.25; p = 0.20), HOMA-IR (MD: -0.25, 95 % CI: -0.57, 0.07; p = 0.12) or Hemoglobin A1c (HbA1c) (WMD: -0.09, 95 % CI: -0.20, 0.02; p = 0.09) did not alter after the administration of artichoke and artichoke products. A subgroup analysis comparing the kind of intervention, revealed that just the supplementation of artichoke and artichoke products, in a noco-supplementation form, was efficacy for the reduction of Homeostatic model assessment of insulin resistance (HOMA-IR) (WMD: -0.52, 95 % CI: -0.85, -0.19; p = 0.002). CONCLUSIONS The supplementation of artichoke and artichoke products can significantly reduce the FBS concentrations in humans. Moreover, these outcomes suggested that just the supplementation of artichoke and artichoke products is more effective in the reduction of HOMA-IR levels than the co-supplementation form. However, additional clinical trials with longer study periods are necessitated to obtain a robust conclusion for producing new guidelines as part of a healthy diet.
Collapse
Affiliation(s)
- Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajjad Moradi
- Halal Research Center of IRI, FDA, Tehran, Iran; Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Atefeh Babaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Behnoosh Boozari
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Asbaghi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Anastasia-Viktoria Lazaridi
- The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom
| | - Mohammad Ali Hojjati Kermani
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Miraghajani
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; The Early Life Research Unit, Academic Division of Child Health, Obstetrics and Gynaecology, Medical School, University of Nottingham, Nottingham, NG7 2UH, United Kingdom.
| |
Collapse
|
34
|
Cynara cardunculus L.: Outgoing and potential trends of phytochemical, industrial, nutritive and medicinal merits. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103937] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
35
|
Evidences on Molecules Most Frequently Included in Canine and Feline Complementary Feed to Support Liver Function. Vet Med Int 2020; 2020:9185759. [PMID: 32454964 PMCID: PMC7232710 DOI: 10.1155/2020/9185759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/21/2020] [Indexed: 11/18/2022] Open
Abstract
Numerous complementary feeds to support liver function are commercially available for small animals. Aiming to furnish a scientific support for clinicians/nutritionists that necessitate a complementary feed to support liver function in dogs and cats, with the present paper, we analyzed scientific evidences supporting the use, for this purpose, of ingredients/additives such as artichoke (Cynara scolymus), curcumin, dandelion (Taraxacum officinale), milk thistle (Silybum marianum), phosphatidylcholine, and S-adenosylmethionine. Although sustained by significant results, our review found only few scientific papers, and albeit we believe that they represent a significant aid in handling hepatopathies, in the authors' opinion, this topic probably deserves, and would benefit of, further studies.
Collapse
|
36
|
Takahashi JA, Rezende FAGG, Moura MAF, Dominguete LCB, Sande D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res Int 2020; 129:108868. [DOI: 10.1016/j.foodres.2019.108868] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
|
37
|
Rezazadeh K, Ebrahimi-Mameghani M. Artichoke leaf extract and use in metabolic syndrome as an antioxidant. Pathology 2020. [DOI: 10.1016/b978-0-12-815972-9.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Extraction and Characterization of Inulin-Type Fructans from Artichoke Wastes and Their Effect on the Growth of Intestinal Bacteria Associated with Health. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1083952. [PMID: 31662964 PMCID: PMC6778948 DOI: 10.1155/2019/1083952] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/19/2019] [Accepted: 08/06/2019] [Indexed: 02/08/2023]
Abstract
Globe artichoke is an intriguing source of indigestible sugar polymers such as inulin-type fructans. In this study, the effect of ultrasound in combination with ethanol precipitation to enhance the extraction of long chain fructans from artichoke wastes has been evaluated. The inulin-type fructans content both from bracts and stems was measured using an enzymatic fructanase-based assay, while its average degree of polymerization (DP) was determined by HPLC-RID analysis. Results show that this method provides artichoke extracts with an inulin-type fructans content of 70% with an average DP between 32 and 42 both in bracts and in stems. The prebiotic effect of long chain inulins from artichoke extract wastes was demonstrated by its ability to support the growth of five Lactobacillus and four Bifidobacterium species, previously characterized as probiotics. Besides, we considered the possibility to industrialize the process developing a simpler method for the production of inulin-type fructans from the artichoke wastes so that the artichoke inulin preparation could be suitable for its use in synbiotic formulations in combination with different probiotics for further studies including in vivo trials.
Collapse
|
39
|
Lee CL, Liao KC, Chen CC, Lin YA, Wu TY, Jhan YL, Chen CJ, Yang JC, Wu YC. Characterization Of Secondary Metabolites From The Rhizome Of Cynara Scolymus And Their Antioxidant Properties. Nat Prod Res 2019; 35:2051-2055. [PMID: 31359780 DOI: 10.1080/14786419.2019.1645664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The aerial portions of Cynara scolymus commonly have been eaten as vegetables or functional foods by the people lived in Mediterranean region. In preliminary antioxidant screening, the rhizome portions (CSR) of this species showed better potential than leaves ones. However, neither phytochemical nor pharmacology studies of CSR have been reported to date. The purpose of this research was to identify the active components from CSR through bioassay-guided fractionation. The antioxidant properties of secondary metabolites 1-9 were evaluated in this investigation. Compounds 4-6, 8, and 9 showed antioxidant activities based on DPPH free radical scavenging activity with IC50 values of 22.91-147.21 μM. Besides, compound 8 significantly and dose-dependently reduced H2O2-induced ROS levels in keratinocyte HaCaT cells without cytotoxicity toward HaCaT. Overall, our studies demonstrated the rhizome of C. scolymus could be used as a new natural antioxidant like the edible aerial portions and phenolic compounds are the active components.
Collapse
Affiliation(s)
- Chia-Lin Lee
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan.,Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Chen Liao
- Department of Nutrition and Institute of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chih Chen
- School of Pharmacy, China Medical University, Taichung, Taiwan
| | - Yen-An Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Tung-Ying Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yun-Lian Jhan
- Department of Cosmeceutics, China Medical University, Taichung, Taiwan
| | - Chao-Jung Chen
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.,Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| | - Juan-Cheng Yang
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|