1
|
Meybodi SM, Rabori VS, Salkhorde D, Jafari N, Zeinaly M, Mojodi E, Kesharwani P, Saberiyan M, Sahebkar A. Dexamethasone in COVID-19 treatment: Analyzing monotherapy and combination therapy approaches. Cytokine 2024; 184:156794. [PMID: 39489912 DOI: 10.1016/j.cyto.2024.156794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
The COVID-19 pandemic has prompted the exploration of effective treatment options, with dexamethasone emerging as a key corticosteroid for severe cases. This review evaluates the efficacy and safety of dexamethasone, highlighting its ability to reduce mortality rates, alleviate acute respiratory distress syndrome (ARDS), and mitigate hyperinflammation. While dexamethasone shows therapeutic promise, potential adverse effects-including cardiovascular issues, neuropsychiatric complications, lung infections, and liver damage-necessitate careful monitoring and individualized treatment strategies. The review also addresses the debate over using dexamethasone alone versus in combination with other therapies targeting SARS-CoV-2, examining potential synergistic effects and drug resistance. In summary, dexamethasone is a valuable treatment option for COVID-19 but its risks highlight the need for tailored surveillance approaches. Further research is essential to establish clear guidelines for optimizing treatment and improving patient outcomes.
Collapse
Affiliation(s)
| | | | - Darya Salkhorde
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negar Jafari
- Department of Cardiology, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahsa Zeinaly
- Department of Biology, Faculty of Science, University of Guilan
| | - Elham Mojodi
- Depatment of Biology, Faculty of Science, Yazd University, Yazd, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Mohammadreza Saberiyan
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Rathi V, Sagi SSK, Yadav AK, Kumar M, Varshney R. Quercetin prophylaxis protects the kidneys by modulating the renin-angiotensin-aldosterone axis under acute hypobaric hypoxic stress. Sci Rep 2024; 14:7617. [PMID: 38556603 PMCID: PMC10982295 DOI: 10.1038/s41598-024-58134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/26/2024] [Indexed: 04/02/2024] Open
Abstract
The study presented here aims at assessing the effects of hypobaric hypoxia on RAAS pathway and its components along with mitigation of anomalies with quercetin prophylaxis. One hour prior to hypobaric hypoxia exposure, male SD rats were orally supplemented with quercetin (50 mg/kg BW) and acetazolamide (50 mg/kg BW) and exposed them to 25,000 ft. (7,620 m) in a simulated environmental chamber for 12 h at 25 ± 2 °C. Different biochemical parameters like renin activity, aldosterone, angiotensin I, ACE 2 were determined in plasma. As a conventional response to low oxygen conditions, oxidative stress parameters (ROS and MDA) were elevated along with suppressed antioxidant system (GPx and catalase) in plasma of rats. Quercetin prophylaxis significantly down regulated the hypoxia induced oxidative stress by reducing plasma ROS & MDA levels with efficient enhancement of antioxidants (GPx and Catalase). Further, hypoxia mediated regulation of renin and ACE 2 proves the outstanding efficacy of quercetin in repudiating altercations in RAAS cascade due to hypobaric hypoxia. Furthermore, differential protein expression of HIF-1α, NFκB, IL-18 and endothelin-1 analyzed by western blotting approves the biochemical outcomes and showed that quercetin significantly aids in the reduction of inflammation under hypoxia. Studies conducted with Surface Plasmon Resonance demonstrated a binding among quercetin and ACE 2 that indicates that this flavonoid might regulate RAAS pathway via ACE 2. Henceforth, the study promotes the prophylaxis of quercetin for the better adaptability under hypobaric hypoxic conditions via modulating the RAAS pathway.
Collapse
Affiliation(s)
- Vaishnavi Rathi
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India
| | - Sarada S K Sagi
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India.
| | - Amit Kumar Yadav
- Department of Biophysics, All India Institute of Medical Science, Delhi, India
| | - Manoj Kumar
- Department of Biophysics, All India Institute of Medical Science, Delhi, India
| | - Rajeev Varshney
- Defence Institute of Physiology and Allied Sciences, DRDO, Lucknow Road, Timarpur, New Delhi, 110054, India
| |
Collapse
|
3
|
Abarova S, Alexova R, Dragomanova S, Solak A, Fagone P, Mangano K, Petralia MC, Nicoletti F, Kalfin R, Tancheva L. Emerging Therapeutic Potential of Polyphenols from Geranium sanguineum L. in Viral Infections, Including SARS-CoV-2. Biomolecules 2024; 14:130. [PMID: 38275759 PMCID: PMC10812934 DOI: 10.3390/biom14010130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
The existing literature supports the anti-inflammatory, antioxidant, and antiviral capacities of the polyphenol extracts derived from Geranium sanguineum L. These extracts exhibit potential in hindering viral replication by inhibiting enzymes like DNA polymerase and reverse transcriptase. The antiviral properties of G. sanguineum L. seem to complement its immunomodulatory effects, contributing to infection resolution. While preclinical studies on G. sanguineum L. suggest its potential effectiveness against COVID-19, there is still a lack of clinical evidence. Therefore, the polyphenols extracted from this herb warrant further investigation as a potential alternative for preventing and treating COVID-19 infections.
Collapse
Affiliation(s)
- Silviya Abarova
- Department of Medical Physics and Biophysics, Faculty of Medicine, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria;
| | - Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University of Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University of Varna, Tsar Osvoboditel Blvd 84A, 9002 Varna, Bulgaria;
| | - Ayten Solak
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd. 53, 1407 Sofia, Bulgaria;
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
- Department of Healthcare, South-West University “Neofit Rilski”, Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str. 23, 1113 Sofia, Bulgaria; (R.K.); (L.T.)
| |
Collapse
|
4
|
Ziaei S, Alimohammadi‐Kamalabadi M, Hasani M, Malekahmadi M, Persad E, Heshmati J. The effect of quercetin supplementation on clinical outcomes in COVID-19 patients: A systematic review and meta-analysis. Food Sci Nutr 2023; 11:7504-7514. [PMID: 38107099 PMCID: PMC10724618 DOI: 10.1002/fsn3.3715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 12/19/2023] Open
Abstract
Coronavirus disease (COVID-19) affects both the respiratory system and the body as a whole. Natural molecules, such as flavonoid quercetin, as potential treatment methods to help patients combat COVID-19. The aim of this systematic review and meta-analysis is to give a comprehensive overview of the impact of quercetin supplementation on inflammatory factors, hospital admission, and mortality of patients with COVID-19. The search has been conducted on PubMed, Scopus, Web of Science, EMBASE, and the Cochrane Library using relevant keywords until August 25, 2023. We included randomized controlled trials (RCTs) comparing COVID-19 patients who received quercetin supplementation versus controls. We included five studies summarizing the evidence in 544 patients. Meta-analysis showed that quercetin administration significantly reduced LDH activity (standard mean difference (SMD): -0.42, 95% CI: -0.82, -0.02, I 2 = 48.86%), decreased the risk of hospital admission by 70% (RR: 0.30, 95% CI: 0.14, 0.62, I 2 = 00.00%), ICU admission by 73% (RR: 0.27, 95% CI: 0.09, 0.78, I 2 = 20.66%), and mortality by 82% (RR: 0.18, 95% CI: 0.03, 0.98, I 2 = 00.00%). No significant changes in CRP, D-dimmer, and ferritin were found between groups. Quercetin was found to significantly reduce LDH levels and decrease the risk of hospital and ICU admission and mortality in patients with COVID-19 infection.
Collapse
Affiliation(s)
- Somayeh Ziaei
- ICU Department, Emam Reza HospitalKermanshah University of Medical SciencesKermanshahIran
| | - Malek Alimohammadi‐Kamalabadi
- Department of Cellular‐Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
| | - Motahareh Hasani
- Department of Nutritional Sciences, School of HealthGolestan University of Medical SciencesGorganIran
| | - Mahsa Malekahmadi
- Department of Cellular‐Molecular Nutrition, School of Nutritional Sciences and DieteticsTehran University of Medical SciencesTehranIran
- Imam Khomeini Hospital Complex, Tehran University of Medicinal Sciences Tehran IranTehran University of Medical SciencesTehranIran
| | - Emma Persad
- Department for Evidence‐based Medicine and EvaluationDanube University KremsKremsAustria
| | - Javad Heshmati
- Songhor Healthcare CenterKermanshah University of Medical SciencesKermanshahIran
| |
Collapse
|
5
|
Banitalebi E, Abdizadeh T, Khademi Dehkordi M, Saghaei E, Mardaniyan Ghahfarrokhi M. In silico study of potential immunonutrient-based sports supplements against COVID-19 via targeting ACE2 inhibition using molecular docking and molecular dynamics simulations. J Biomol Struct Dyn 2023; 41:1041-1061. [PMID: 34931597 DOI: 10.1080/07391102.2021.2016489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Use of some sports supplements can inhibit angiotensin-converting enzyme II (ACE2), a receptor for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), as reviewed through molecular docking and sequent molecular dynamics (MD) simulations against this condition. The crystal structures of ACE2 receptors of SARS-CoV-2 and SARS-CoV, applied in docking analysis, were taken from the Protein Data Bank (PDB). The receptors were then prepared using the Molecular Operating Environment (MOE), as a drug-discovery software platform for docking. Supplements such as quercetin and beta glucan (β-glucan) were the top docked compounds to ACE2 receptor though they strongly interacted with CoV target protein. The study data showed that immune responses to immunonutrient-based sports compounds (viz. quercetin and β-glucan) in Coronavirus disease 2019 (COVID-19) were essential in mounting successful immune responses by athletes. While awaiting the development of an effective vaccine, there is a need to focus on immunonutrient-based sports supplements as preventive and therapeutic options that can be implemented in a safe and quick manner to bolster immune responses in athletes.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Tooba Abdizadeh
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Elham Saghaei
- Physiology and Pharmacology Department, School of medicine, Shahrekord University of medical sciences, Shahrekord, Iran.,Medical plants research center, Basic health science, Shahrekord University of medical sciences, Shahrekord, Iran
| | | |
Collapse
|
6
|
Nguyen HT, Do VM, Phan TT, Nguyen Huynh DT. The Potential of Ameliorating COVID-19 and Sequelae From Andrographis paniculata via Bioinformatics. Bioinform Biol Insights 2023; 17:11779322221149622. [PMID: 36654765 PMCID: PMC9841859 DOI: 10.1177/11779322221149622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/18/2022] [Indexed: 01/13/2023] Open
Abstract
The current coronavirus disease 2019 (COVID-19) outbreak is alarmingly escalating and raises challenges in finding efficient compounds for treatment. Repurposing phytochemicals in herbs is an ideal and economical approach for screening potential herbal components against COVID-19. Andrographis paniculata, also known as Chuan Xin Lian, has traditionally been used as an anti-inflammatory and antibacterial herb for centuries and has recently been classified as a promising herbal remedy for adjuvant therapy in treating respiratory diseases. This study aimed to screen Chuan Xin Lian's bioactive components and elicit the potential pharmacological mechanisms and plausible pathways for treating COVID-19 using network pharmacology combined with molecular docking. The results found terpenoid (andrographolide) and flavonoid (luteolin, quercetin, kaempferol, and wogonin) derivatives had remarkable potential against COVID-19 and sequelae owing to their high degrees in the component-target-pathway network and strong binding capacities in docking scores. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the PI3K-AKT signaling pathway might be the most vital molecular pathway in the pathophysiology of COVID-19 and long-term sequelae whereby therapeutic strategies can intervene.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Faculty of Public Health, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Van Mai Do
- Faculty of Traditional Medicine, Can Tho University of Medicine and Pharmacy, Can Tho, Vietnam
| | - Thanh Thuy Phan
- Faculty of Pharmacy, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Dung Tam Nguyen Huynh
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei,Dung Tam Nguyen Huynh, School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei.
| |
Collapse
|
7
|
Gasmi A, Mujawdiya PK, Lysiuk R, Shanaida M, Peana M, Gasmi Benahmed A, Beley N, Kovalska N, Bjørklund G. Quercetin in the Prevention and Treatment of Coronavirus Infections: A Focus on SARS-CoV-2. Pharmaceuticals (Basel) 2022; 15:1049. [PMID: 36145270 PMCID: PMC9504481 DOI: 10.3390/ph15091049] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 outbreak seems to be the most dangerous challenge of the third millennium due to its highly contagious nature. Amongst natural molecules for COVID-19 treatment, the flavonoid molecule quercetin (QR) is currently considered one of the most promising. QR is an active agent against SARS and MERS due to its antimicrobial, antiviral, anti-inflammatory, antioxidant, and some other beneficial effects. QR may hold therapeutic potential against SARS-CoV-2 due to its inhibitory effects on several stages of the viral life cycle. In fact, QR inhibits viral entry, absorption, and penetration in the SARS-CoV virus, which might be at least partly explained by the ability of QR and its derivatives to inhibit 3-chymotrypsin-like protease (3CLpro) and papain-like protease (PLpro). QR is a potent immunomodulatory molecule due to its direct modulatory effects on several immune cells, cytokines, and other immune molecules. QR-based nanopreparations possess enhanced bioavailability and solubility in water. In this review, we discuss the prospects for the application of QR as a preventive and treatment agent for COVID-19. Given the multifactorial beneficial action of QR, it can be considered a very valid drug as a preventative, mitigating, and therapeutic agent of COVID-19 infection, especially in synergism with zinc, vitamins C, D, and E, and other polyphenols.
Collapse
Affiliation(s)
- Amin Gasmi
- Société Francophone de Nutrithérapie et de Nutrigénétique Appliquée, 69100 Villeurbanne, France
| | | | - Roman Lysiuk
- Department of Pharmacognosy and Botany, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
- CONEM Ukraine Life Science Research Group, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine
| | - Mariia Shanaida
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Massimiliano Peana
- Department of Chemical, Physics, Mathematics and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Asma Gasmi Benahmed
- Académie Internationale de Médecine Dentaire Intégrative, 75000 Paris, France
| | - Nataliya Beley
- I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | | | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine (CONEM), Toften 24, 8610 Mo i Rana, Norway
| |
Collapse
|
8
|
Huang N, Li S. High-quality trials and pharmacological studies needed as translational evidence for the application of traditional Chinese medicine Lianhua Qingwen against COVID-19. Phytother Res 2022; 36:4295-4298. [PMID: 35915552 PMCID: PMC9538057 DOI: 10.1002/ptr.7574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/31/2022]
Abstract
Traditional Chinese medicine (TCM) has been employed as complementary medication against COVID-19 in China since 2020. Two years since then, TCM, with Lianhua Qingwen (LHQW) as an example, has been included in every version of official clinical protocol guidelines. Recently, LHQW is even distributed to general public at risk but not yet infected. Such common application and widely claimed positive outcome among mild to moderate patients were accompanied by a number of published studies on antiviral, antiinflammatory, and immune modulatory potential using either in vitro or animal models. However, aside from retrospective understanding and open-labeled clinical trials with relatively small subject size, major gap in conclusive proof for efficacy and safety remains due to the lack of double-blind placebo-controlled studies and comprehensive pharmacodynamic and kinetic investigations. This is also supported by a recent WHO expert meeting on this subject, which acknowledged the potential benefits of TCM in mild-moderate cases, while recommended more rigorous studies to further understand effect size, application implications, and outcome determinants. Therefore, there is an urgent need to address the exact role TCM like LHQW could play in COVID-19 management from translational evidence-based perspective. High-quality clinical trials, pharmacological studies, and real-world data from recent outbreak are recommended.
Collapse
Affiliation(s)
| | - Saichao Li
- Department of Health TechnologiesYidu Cloud Technology (Shanghai) IncShanghaiChina
| |
Collapse
|
9
|
Bahrami A, Arabestani MR, Taheri M, Farmany A, Norozzadeh F, Hosseini SM, Nozari H, Nouri F. Exploring the Role of Heavy Metals and Their Derivatives on the Pathophysiology of COVID-19. Biol Trace Elem Res 2022; 200:2639-2650. [PMID: 34448983 PMCID: PMC8391869 DOI: 10.1007/s12011-021-02893-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/17/2021] [Indexed: 12/13/2022]
Abstract
Many aspects of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its disease, COVID-19, have been studied to determine its properties, transmission mechanisms, and pathology. These efforts are aimed at identifying potential approaches to control or treat the disease. Early treatment of novel SARS-CoV-2 infection to minimize symptom progression has minimal evidence; however, many researchers and firms are working on vaccines, and only a few vaccines exist. COVID-19 is affected by several heavy metals and their nanoparticles. We investigated the effects of heavy metals and heavy metal nanoparticles on SARS-CoV-2 and their roles in COVID-19 pathogenesis. AgNPs, AuNPs, gold-silver hybrid NPs, copper nanoparticles, zinc oxide, vanadium, gallium, bismuth, titanium, palladium, silver grafted graphene oxide, and some quantum dots were tested to see if they could minimize the severity or duration of symptoms in patients with SARS-CoV-2 infection when compared to standard therapy.
Collapse
Affiliation(s)
- Ali Bahrami
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Reza Arabestani
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Taheri
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abbas Farmany
- Dental Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Norozzadeh
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Mostafa Hosseini
- Department of Medical Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hesam Nozari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Nouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
10
|
Pawar A, Russo M, Rani I, Goswami K, Russo GL, Pal A. A critical evaluation of risk to reward ratio of quercetin supplementation for COVID-19 and associated comorbid conditions. Phytother Res 2022; 36:2394-2415. [PMID: 35393674 PMCID: PMC9111035 DOI: 10.1002/ptr.7461] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/19/2022] [Accepted: 03/26/2022] [Indexed: 01/08/2023]
Abstract
The interim results of the large, multinational trials on coronavirus disease 2019 (COVID‐19) using a combination of antiviral drugs appear to have little to no effect on the 28‐day mortality or the in‐hospital course. Therefore, there is a still vivid interest in finding alternate re‐purposed drugs and nutrition supplements, which can halt or slow the disease severity. We review here the multiple preclinical studies, partially supported by clinical evidence showing the quercetin's possible therapeutic/prophylaxis efficacy against severe acute respiratory syndrome coronavirus (SARS‐CoV) as well as comorbidities like chronic obstructive pulmonary disease (COPD), diabetes mellitus, obesity, coagulopathy, and hypertension. Currently, 14 interventional clinical trials are underway assessing the efficacy of quercetin along with other antiviral drugs/nutritional supplements as prophylaxis/treatment option against COVID‐19. The present review is tempting to suggest that, based on circumstantial scientific evidence and preliminary clinical data, the flavonoid quercetin can ameliorate COVID‐19 infection and symptoms acting in concert on two parallel and independent paths: inhibiting key factors responsible for SARS‐CoV‐2 infections and mitigating the clinical manifestations of the disease in patients with comorbid conditions. Despite the broad therapeutic properties of quercetin, further high power randomized clinical trials are needed to firmly establish its clinical efficacy against COVID‐19.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar, India
| | - Maria Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Isha Rani
- Department of Biochemistry, Maharishi Markandeshwar Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Ambala, India
| | | | - Gian Luigi Russo
- National Research Council, Institute of Food Sciences, Avellino, Italy
| | - Amit Pal
- Department of Biochemistry, AIIMS, Kalyani, India
| |
Collapse
|
11
|
Bardelčíková A, Miroššay A, Šoltýs J, Mojžiš J. Therapeutic and prophylactic effect of flavonoids in post-COVID-19 therapy. Phytother Res 2022; 36:2042-2060. [PMID: 35302260 PMCID: PMC9111001 DOI: 10.1002/ptr.7436] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022]
Abstract
The high incidence of post-covid symptoms in humans confirms the need for effective treatment. Due to long-term complications across several disciplines, special treatment programs emerge for affected patients, emphasizing multidisciplinary care. For these reasons, we decided to look at current knowledge about possible long-term complications of COVID-19 disease and then present the effect of flavonoids, which could help alleviate or eliminate complications in humans after overcoming the COVID-19 infection. Based on articles published from 2003 to 2021, we summarize the flavonoids-based molecular mechanisms associated with the post-COVID-19 syndrome and simultaneously provide a complex view regarding their prophylactic and therapeutic potential. Review clearly sorts out the outcome of post-COVID-19 syndrome according particular body systems. The conclusion is that flavonoids play an important role in prevention of many diseases. We suggest that flavonoids as critical nutritional supplements, are suitable for the alleviation and shortening of the period associated with the post-COVID-19 syndrome. The most promising flavonoid with noteworthy therapeutic and prophylactic effect appears to be quercetin.
Collapse
Affiliation(s)
- Annamária Bardelčíková
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Andrej Miroššay
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| | - Jindřich Šoltýs
- Institute of Parasitology, Slovak Academy of Science, Košice, Slovak Republic
| | - Ján Mojžiš
- Department of Pharmacology, Medical Faculty of University of Pavol Jozef Šafárik in Košice, Košice, Slovak Republic
| |
Collapse
|
12
|
Pagano E. Phytocompounds and COVID-19: Two years of knowledge. Phytother Res 2022; 36:2267-2271. [PMID: 35170093 PMCID: PMC9111037 DOI: 10.1002/ptr.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
13
|
Promising Effects of 3-Month Period of Quercetin Phytosome ® Supplementation in the Prevention of Symptomatic COVID-19 Disease in Healthcare Workers: A Pilot Study. Life (Basel) 2022; 12:life12010066. [PMID: 35054459 PMCID: PMC8780248 DOI: 10.3390/life12010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/23/2021] [Accepted: 01/02/2022] [Indexed: 12/13/2022] Open
Abstract
Quercetin, for its crucial properties, fulfills the need for a multifactor action that is useful for the potential counterbalance of a COVID-19 infection. Given this background, the aim of the study was to evaluate the potential effect of 3 months’ supplementation with Quercetin Phytosome® (250 mg twice a day) as prevention against symptomatic COVID-19. In total, 120 subjects were enrolled (males, 63; females, 57; age 49 ± 12), with 60 in the supplementation group and 60 in the placebo group. No significant differences were detected between groups in terms of gender, smoking, and chronic disease. Subjects underwent rapid COVID-19 diagnostic tests every 3 weeks. During our study, 5 subjects had COVID-19, 1 out of 60 subjects in the quercetin group and 4 out of 60 in the control group. Complete clinical remission was recorded at 7 and 15 days in the quercetin and placebo groups, respectively. Analysis showed that, at 5 months, the COVID free survival function (risk of infection) was 99.8% in subjects under quercetin supplementation and 96.5% in control group. As shown by the value of EXP(B), those who had taken the supplement had a protection factor of 14% more to not contract the COVID-19 infection than that of those who had taken a placebo. Obtained results are encouraging, but further studies are required to add quercetin as regular prophylaxis.
Collapse
|
14
|
Abd-Elsalam S, Soliman S, Esmail ES, Khalaf M, Mostafa EF, Medhat MA, Ahmed OA, El Ghafar MSA, Alboraie M, Hassany SM. Do Zinc Supplements Enhance the Clinical Efficacy of Hydroxychloroquine?: a Randomized, Multicenter Trial. Biol Trace Elem Res 2021; 199:3642-3646. [PMID: 33247380 PMCID: PMC7695238 DOI: 10.1007/s12011-020-02512-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
No specific treatment for COVID-19 infection is available up till now, and there is a great urge for effective treatment to reduce morbidity and mortality during this pandemic. We aimed to evaluate the effect of combining chloroquine/hydroxychloroquine (CQ/HCQ) and zinc in the treatment of COVID-19 patients. This was a randomized clinical trial conducted at three major University hospitals in Egypt. One hundred ninety-one patients with a confirmed diagnosis of COVID-19 infection were randomized into two groups: group I (96) patients received both HCQ and zinc, and group II (95) received HCQ only. The primary endpoints were the recovery within 28 days, the need for mechanical ventilation, and death. The two groups were matched for age and gender. They had no significant difference regarding any of the baseline laboratory parameters or clinical severity grading. Clinical recovery after 28 days was achieved by 79.2% in the zinc group and 77.9% in zinc-free treatment group, without any significant difference (p = 0.969). The need for mechanical ventilation and the overall mortality rates did not show any significant difference between the 2 groups either (p = 0.537 and 0.986, respectively). The age of the patient and the need for mechanical ventilation were the only risk factors associated with the patients' mortality by the univariate regression analysis (p = 0.001 and < 0.001, respectively). Zinc supplements did not enhance the clinical efficacy of HCQ. More randomized studies are needed to evaluate the value of adding zinc to other therapies for COVID 19. ClinicalTrials.gov Identifier: NCT04447534.
Collapse
Affiliation(s)
- Sherief Abd-Elsalam
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, El-Giash Street, Tanta, 31527, Egypt.
| | - Shaimaa Soliman
- Public health and Community Medicine, Menoufia University, Menoufia, Egypt
| | - Eslam Saber Esmail
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, El-Giash Street, Tanta, 31527, Egypt
| | - Mai Khalaf
- Tropical Medicine and Infectious Diseases Department, Faculty of Medicine, Tanta University, El-Giash Street, Tanta, 31527, Egypt
| | - Ehab F Mostafa
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohammed A Medhat
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | | | - Mohamed Samir Abd El Ghafar
- Department of Anesthesia, Surgical Intensive Care and Pain Medicine, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Mohamed Alboraie
- Department of Internal Medicine, Al-Azhar University, Cairo, Egypt
| | - Sahar M Hassany
- Tropical Medicine and Gastroenterology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Yadav D, Birdi A, Tomo S, Charan J, Bhardwaj P, Sharma P. Association of Vitamin D Status with COVID-19 Infection and Mortality in the Asia Pacific region: A Cross-Sectional Study. Indian J Clin Biochem 2021; 36:492-497. [PMID: 33551585 PMCID: PMC7854023 DOI: 10.1007/s12291-020-00950-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
COVID-19 has been declared a global pandemic by WHO on 11 March 2020. Still, very little is known about the potential protective dietary factors for the prevention of infection and mortality due to COVID-19. Keeping in view the scarcity of literature/studies available, in this regards present study was undertaken to assess if there is any correlation between mean levels of Vitamin D in various Asia Pacific countries with the infection and mortality caused by COVID-19. We collected data for mean levels of Vitamin D for 37 Asia Pacific countries for which we have also got the data regarding the morbidity and mortality of COVID-19. The mean levels of Vitamin D were found to have a significant association with the number of cases/million(r = - 0.394, p value = 0.016) and a weak association with the number of deaths/ million (r = - 0.280, p value = 0.093) due to COVID-19. In conclusion, we found a significant relationship between Vitamin D levels with the number of COVID-19 cases. So further clinical trial/study with a large sample size is needed to elucidate the protective role of Vitamin D in COVID-19.
Collapse
Affiliation(s)
- Dharmveer Yadav
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Amandeep Birdi
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Sojit Tomo
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Jaykaran Charan
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Pankaj Bhardwaj
- Department of Community and Family Medicine, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, Rajasthan India
| |
Collapse
|
16
|
Gour A, Manhas D, Bag S, Gorain B, Nandi U. Flavonoids as potential phytotherapeutics to combat cytokine storm in SARS-CoV-2. Phytother Res 2021; 35:4258-4283. [PMID: 33786876 PMCID: PMC8250405 DOI: 10.1002/ptr.7092] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/12/2021] [Indexed: 01/08/2023]
Abstract
Emergence of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, COVID-19, has become the global panic since December 2019, which urges the global healthcare professionals to identify novel therapeutics to counteract this pandemic. So far, there is no approved treatment available to control this public health issue; however, a few antiviral agents and repurposed drugs support the patients under medical supervision by compromising their adverse effects, especially in emergency conditions. Only a few vaccines have been approved to date. In this context, several plant natural products-based research studies are evidenced to play a crucial role in immunomodulation that can prevent the chances of infection as well as combat the cytokine release storm (CRS) generated during COVID-19 infection. In this present review, we have focused on flavonoids, especially epicatechin, epigallocatechin gallate, hesperidin, naringenin, quercetin, rutin, luteolin, baicalin, diosmin, ge nistein, biochanin A, and silymarin, which can counteract the virus-mediated elevated levels of inflammatory cytokines leading to multiple organ failure. In addition, a comprehensive discussion on available in silico, in vitro, and in vivo findings with critical analysis has also been evaluated, which might pave the way for further development of phytotherapeutics to identify the potential lead candidatetoward effective and safe management of the SARS-CoV-2 disease.
Collapse
Affiliation(s)
- Abhishek Gour
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| | - Diksha Manhas
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| | - Swarnendu Bag
- Proteomics DivisionCSIR‐Institute of Genomics and Integrative BiologyNew DelhiIndia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical SciencesTaylor's UniversitySubang JayaMalaysia
| | - Utpal Nandi
- PK‐PD, Toxicology and Formulation DivisionCSIR‐Indian Institute of Integrative MedicineJammuIndia
- Academy of Scientific and Innovative Research (AcSIR)GhaziabadUttar PradeshIndia
| |
Collapse
|
17
|
Panagiotopoulos A, Tseliou M, Karakasiliotis I, Kotzampasi D, Daskalakis V, Kesesidis N, Notas G, Lionis C, Kampa M, Pirintsos S, Sourvinos G, Castanas E. p-cymene impairs SARS-CoV-2 and Influenza A (H1N1) viral replication: In silico predicted interaction with SARS-CoV-2 nucleocapsid protein and H1N1 nucleoprotein. Pharmacol Res Perspect 2021; 9:e00798. [PMID: 34128351 PMCID: PMC8204097 DOI: 10.1002/prp2.798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Therapeutic regimens for the COVID-19 pandemics remain unmet. In this line, repurposing of existing drugs against known or predicted SARS-CoV-2 protein actions have been advanced, while natural products have also been tested. Here, we propose that p-cymene, a natural monoterpene, can act as a potential novel agent for the treatment of SARS-CoV-2-induced COVID-19 and other RNA-virus-induced diseases (influenza, rabies, Ebola). We show by extensive molecular simulations that SARS-CoV-2 C-terminal structured domain contains a nuclear localization signal (NLS), like SARS-CoV, on which p-cymene binds with low micromolar affinity, impairing nuclear translocation of this protein and inhibiting viral replication, as verified by preliminary in vitro experiments. A similar mechanism may occur in other RNA-viruses (influenza, rabies and Ebola), also verified in vitro for influenza, by interaction of p-cymene with viral nucleoproteins, and structural modification of their NLS site, weakening its interaction with importin A. This common mechanism of action renders therefore p-cymene as a possible antiviral, alone, or in combination with other agents, in a broad spectrum of RNA viruses, from SARS-CoV-2 to influenza A infections.
Collapse
Affiliation(s)
| | - Melpomeni Tseliou
- Laboratory of Clinical VirologySchool of MedicineUniversity of CreteHeraklionGreece
| | - Ioannis Karakasiliotis
- Laboratory of BiologySchool of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Danai‐Maria Kotzampasi
- Laboratory of Experimental EndocrinologySchool of MedicineUniversity of CreteHeraklionGreece
| | - Vangelis Daskalakis
- Department of Chemical EngineeringCyprus University of TechnologyLimassolCyprus
| | - Nikolaos Kesesidis
- Laboratory of BiologySchool of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - George Notas
- Laboratory of Experimental EndocrinologySchool of MedicineUniversity of CreteHeraklionGreece
| | - Christos Lionis
- Clinic of Social and Family MedicineSchool of MedicineUniversity of CreteHeraklionGreece
- Nature Crete PharmaceuticalsHeraklionGreece
| | - Marilena Kampa
- Laboratory of Experimental EndocrinologySchool of MedicineUniversity of CreteHeraklionGreece
- Nature Crete PharmaceuticalsHeraklionGreece
| | - Stergios Pirintsos
- Nature Crete PharmaceuticalsHeraklionGreece
- Department of BiologyUniversity of CreteHeraklionGreece
- Botanical GardenUniversity of CreteRethymnonGreece
| | - George Sourvinos
- Laboratory of Clinical VirologySchool of MedicineUniversity of CreteHeraklionGreece
- Nature Crete PharmaceuticalsHeraklionGreece
| | - Elias Castanas
- Laboratory of Experimental EndocrinologySchool of MedicineUniversity of CreteHeraklionGreece
- Nature Crete PharmaceuticalsHeraklionGreece
| |
Collapse
|
18
|
Asl SH, Nikfarjam S, Majidi Zolbanin N, Nassiri R, Jafari R. Immunopharmacological perspective on zinc in SARS-CoV-2 infection. Int Immunopharmacol 2021; 96:107630. [PMID: 33882442 PMCID: PMC8015651 DOI: 10.1016/j.intimp.2021.107630] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023]
Abstract
The novel SARS-CoV-2 which was first reported in China is the cause of infection known as COVID-19. In comparison with other coronaviruses such as SARS-CoV and MERS, the mortality rate of SARS-CoV-2 is lower but the transmissibility is higher. Immune dysregulation is the most common feature of the immunopathogenesis of COVID-19 that leads to hyperinflammation. Micronutrients such as zinc are essential for normal immune function. According to the assessment of WHO, approximately one-third of the world's society suffer from zinc deficiency. Low plasma levels of zinc are associated with abnormal immune system functions such as impaired chemotaxis of polymorphonuclear cells (PMNs) and phagocytosis, dysregulated intracellular killing, overexpression of the inflammatory cytokines, lymphopenia, decreased antibody production, and sensitivity to microbes especially viral respiratory infections. Zinc exerts numerous direct and indirect effects against a wide variety of viral species particularly RNA viruses. The use of zinc and a combination of zinc-pyrithione at low concentrations impede SARS-CoV replication in vitro. Accordingly, zinc can inhibit the elongation step of RNA transcription. Furthermore, zinc might improve antiviral immunity by up-regulation of IFNα through JAK/STAT1 signaling pathway in leukocytes. On the other hand, zinc supplementation might ameliorate tissue damage caused by mechanical ventilation in critical COVID-19 patients. Finally, zinc might be used in combination with antiviral medications for the management of COVID-19 patients. In the current review article, we review and discuss the immunobiological roles and antiviral properties as well as the therapeutic application of zinc in SARS-CoV-2 and related coronaviruses infections.
Collapse
Affiliation(s)
- Sima Heydarzadeh Asl
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Sepideh Nikfarjam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Naime Majidi Zolbanin
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| | - Reza Nassiri
- Departments of Pharmacology and Community Medicine, Michigan State University, East Lansing, MI, USA.
| | - Reza Jafari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
19
|
Pawar A, Pal A, Goswami K, Squitti R, Rongiolettie M. Molecular basis of quercetin as a plausible common denominator of macrophage-cholesterol-fenofibrate dependent potential COVID-19 treatment axis. RESULTS IN CHEMISTRY 2021; 3:100148. [PMID: 34150487 PMCID: PMC8196513 DOI: 10.1016/j.rechem.2021.100148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/09/2021] [Indexed: 12/18/2022] Open
Abstract
The world's largest randomized control trial against COVID-19 using remdesivir, hydroxychloroquine, lopinavir and interferon-β1a appeared to have little or no effect on hospitalized COVID-19 patients. This has again led to search for alternate re-purposed drugs and/or effective “add-on” nutritional supplementation, which can complement or enhance the therapeutic effect of re-purposed drug. Focus has been shifted to therapeutic targets of severe acute respiratory syndrome coronavirus (SARS-CoV-2), which includes specific enzymes and regulators of lipid metabolism. Very recently, fenofibrate (cholesterol-lowering drug), suppressed the SARS-CoV-2 replication and pathogenesis by affecting the pathways of lipid metabolism in lung cells of COVID-19 patients. A preclinical study has shown synergistic effect of quercetin (a flavonoid) and fenofibrate in reducing the cholesterol content, which might be useful in COVID-19 treatment. Based on the scientific literature, use of quercetin and fenofibrate in COVID-19 seems meaningful in pharmaceutical and biomedical research, and warrants basic, experimental and clinical studies. In this article, we have summarized the contemporary findings about drug fenofibrate and its effect on membrane synthesis of COVID-19 virus along with emphasizing on possible synergistic effects of quercetin with fenofibrate.
Collapse
Affiliation(s)
- Anil Pawar
- Department of Zoology, DAV University, Jalandhar 144012, Punjab, India
| | - Amit Pal
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Kalyan Goswami
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Kalyani 741245, West Bengal, India
| | - Rosanna Squitti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Mauro Rongiolettie
- Department of Laboratory Medicine, Research and Development Division, San Giovanni Calibita Fatebenefratelli Hospital, Isola Tiberina, Rome, Italy
| |
Collapse
|
20
|
Di Pierro F, Derosa G, Maffioli P, Bertuccioli A, Togni S, Riva A, Allegrini P, Khan A, Khan S, Khan BA, Altaf N, Zahid M, Ujjan ID, Nigar R, Khushk MI, Phulpoto M, Lail A, Devrajani BR, Ahmed S. Possible Therapeutic Effects of Adjuvant Quercetin Supplementation Against Early-Stage COVID-19 Infection: A Prospective, Randomized, Controlled, and Open-Label Study. Int J Gen Med 2021; 14:2359-2366. [PMID: 34135619 PMCID: PMC8197660 DOI: 10.2147/ijgm.s318720] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 05/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background Quercetin, a well-known naturally occurring polyphenol, has recently been shown by molecular docking, in vitro and in vivo studies to be a possible anti-COVID-19 candidate. Quercetin has strong antioxidant, anti-inflammatory, immunomodulatory, and antiviral properties, and it is characterized by a very high safety profile, exerted in animals and in humans. Like most other polyphenols, quercetin shows a very low rate of oral absorption and its clinical use is considered by most of modest utility. Quercetin in a delivery-food grade system with sunflower phospholipids (Quercetin Phytosome®, QP) increases its oral absorption up to 20-fold. Methods In the present prospective, randomized, controlled, and open-label study, a daily dose of 1000 mg of QP was investigated for 30 days in 152 COVID-19 outpatients to disclose its adjuvant effect in treating the early symptoms and in preventing the severe outcomes of the disease. Results The results revealed a reduction in frequency and length of hospitalization, in need of non-invasive oxygen therapy, in progression to intensive care units and in number of deaths. The results also confirmed the very high safety profile of quercetin and suggested possible anti-fatigue and pro-appetite properties. Conclusion QP is a safe agent and in combination with standard care, when used in early stage of viral infection, could aid in improving the early symptoms and help in preventing the severity of COVID-19 disease. It is suggested that a double-blind, placebo-controlled study should be urgently carried out to confirm the results of our study.
Collapse
Affiliation(s)
- Francesco Di Pierro
- Scientific & Research Department, Velleja Research, Milan, Italy.,Digestive Endoscopy, Fondazione Poliambulanza, Brescia, Italy
| | - Giuseppe Derosa
- Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy.,Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pamela Maffioli
- Laboratory of Molecular Medicine, University of Pavia, Pavia, Italy
| | | | - Stefano Togni
- Indena Research and Development Department, Milan, Italy
| | - Antonella Riva
- Indena Research and Development Department, Milan, Italy
| | | | - Amjad Khan
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.,University of Health Sciences, Lahore, Pakistan
| | - Saeed Khan
- Department of Molecular Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Bilal Ahmad Khan
- Department of Molecular Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Naireen Altaf
- Department of Molecular Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Maria Zahid
- Department of Molecular Pathology, Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Ikram Din Ujjan
- Department of Pathology, Liaquat University of Medical & Health Sciences, Jamshoro, Sindh, Pakistan
| | - Roohi Nigar
- Department of Obstetrics and Gynaecology, Liaquat University of Medical & Health Sciences, Jamshoro, Sindh, Pakistan
| | - Mehwish Imam Khushk
- Department of Pathology, Liaquat University of Medical & Health Sciences, Jamshoro, Sindh, Pakistan
| | - Maryam Phulpoto
- Department of Obstetrics and Gynaecology, Liaquat University of Medical & Health Sciences, Jamshoro, Sindh, Pakistan
| | - Amanullah Lail
- Department of Paediatric Dow International Medical College, Dow University of Health Sciences, Karachi, Pakistan
| | - Bikha Ram Devrajani
- Department of Medicine, Liaquat University of Medical & Health Sciences, Jamshoro, Sindh, Pakistan
| | - Sagheer Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad, Pakistan
| |
Collapse
|
21
|
Razzaque MS. COVID-19 pandemic: Can zinc supplementation provide an additional shield against the infection? Comput Struct Biotechnol J 2021; 19:1371-1378. [PMID: 33680350 PMCID: PMC7923946 DOI: 10.1016/j.csbj.2021.02.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/17/2021] [Accepted: 02/20/2021] [Indexed: 02/08/2023] Open
Abstract
Coronavirus disease-19 (COVID-19)-induced severe acute respiratory syndrome is a global pandemic. As a preventive measure, human movement is restricted in most of the world. The Centers for Disease Control and Prevention (CDC), the National Institutes of Health (NIH), along with the World Health Organization (WHO) have laid out some therapeutic guidelines for the infected patients. However, other than handwashing and vigilance surrounding commonly encountered oronasal symptoms and fever, no universally available prophylactic measure has yet been established. In a pandemic, the accessibility of a prophylactic biologically active substance is crucial. Ideally, it would be something readily available at a low price to a larger percentage of the population with minimal risk. Studies have demonstrated that zinc may reduce viral replication and increase immune responses. While consuming zinc (within the recommended upper safety limits), as a prophylactic might provide an additional shield against the initiation and progression of COVID-19 would need clinical studies, the potential clearly exists. Even after vaccination, low zinc status may affect the vaccination responses.
Collapse
Affiliation(s)
- Mohammed S. Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| |
Collapse
|
22
|
Samad N, Sodunke TE, Abubakar AR, Jahan I, Sharma P, Islam S, Dutta S, Haque M. The Implications of Zinc Therapy in Combating the COVID-19 Global Pandemic. J Inflamm Res 2021; 14:527-550. [PMID: 33679136 PMCID: PMC7930604 DOI: 10.2147/jir.s295377] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 12/15/2022] Open
Abstract
The global pandemic from COVID-19 infection has generated significant public health concerns, both health-wise and economically. There is no specific pharmacological antiviral therapeutic option to date available for COVID-19 management. Also, there is an urgent need to discover effective medicines, prevention, and control methods because of the harsh death toll from this novel coronavirus infection. Acute respiratory tract infections, significantly lower respiratory tract infections, and pneumonia are the primary cause of millions of deaths worldwide. The role of micronutrients, including trace elements, boosted the human immune system and was well established. Several vitamins such as vitamin A, B6, B12, C, D, E, and folate; microelement including zinc, iron, selenium, magnesium, and copper; omega-3 fatty acids as eicosapentaenoic acid and docosahexaenoic acid plays essential physiological roles in promoting the immune system. Furthermore, zinc is an indispensable microelement essential for a thorough enzymatic physiological process. It also helps regulate gene-transcription such as DNA replication, RNA transcription, cell division, and cell activation in the human biological system. Subsequently, zinc, together with natural scavenger cells and neutrophils, are also involved in developing cells responsible for regulating nonspecific immunity. The modern food habit often promotes zinc deficiency; as such, quite a few COVID-19 patients presented to hospitals were frequently diagnosed as zinc deficient. Earlier studies documented that zinc deficiency predisposes patients to a viral infection such as herpes simplex, common cold, hepatitis C, severe acute respiratory syndrome coronavirus (SARS-CoV-1), the human immunodeficiency virus (HIV) because of reducing antiviral immunity. This manuscript aimed to discuss the various roles played by zinc in the management of COVID-19 infection.
Collapse
Affiliation(s)
- Nandeeta Samad
- Department of Public Health, North South University, Dhaka, 1229, Bangladesh
| | | | - Abdullahi Rabiu Abubakar
- Department of Pharmacology and Therapeutics, Faculty of Pharmaceutical Sciences, Bayero University, Kano, 700233, Nigeria
| | - Iffat Jahan
- Department of Physiology, Eastern Medical College, Cumilla, Bangladesh
| | - Paras Sharma
- Department of Pharmacognosy, BVM College of Pharmacy, Gwalior, India
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Dhaka, 1342, Bangladesh
| | - Siddhartha Dutta
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, Rajasthan, India
| | - Mainul Haque
- The Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kuala Lumpur, Malaysia
| |
Collapse
|
23
|
Trace Elements as Immunoregulators in SARS-CoV-2 and Other Viral Infections. Indian J Clin Biochem 2021; 36:416-426. [PMID: 33613002 PMCID: PMC7879594 DOI: 10.1007/s12291-021-00961-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/23/2021] [Indexed: 12/23/2022]
Abstract
Nutritional deficiency is associated with impaired immunity and increased susceptibility to infections. The complex interactions of trace elements with the macromolecules trigger the effective immune response against the viral diseases. The outcome of various viral infections along with susceptibility is affected by trace elements such as zinc, selenium, iron, copper, etc. due to their immuno-modulatory effects. Available electronic databases have been comprehensively searched for articles published with full text available and with the key words “Trace elements”, “COVID-19”, “Viral Infections” and “Immune Response” (i.e. separately Zn, Se, Fe, Cu, Mn, Mo, Cr, Li, Ni, Co) appearing in the title and abstract. On the basis of available articles we have explored the role of trace elements in viral infections with special reference to COVID-19 and their interactions with the immune system. Zinc, selenium and other trace elements are vital to triggerTH1 cells and cytokine-mediated immune response for substantial production of proinflammatory cytokines. The antiviral activity of some trace elements is attributed to their inhibitory effect on viral entry, replication and other downstream processes. Trace elements having antioxidants activity not only regulate host immune responses, but also modify the viral genome. Adequate dietary intake of trace elements is essential for activation, development, differentiation and numerous functions.
Collapse
|
24
|
Pagano E. The pharmacological potential of plant compounds and preparations in COVID-19: A PTR virtual issue. Phytother Res 2020; 35:1683-1685. [PMID: 33368721 DOI: 10.1002/ptr.6961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|