1
|
Chen Y, Hour MJ, Lin CS, Chang YS, Chen ZY, Koval'skaya AV, Su WC, Tsypysheva IP, Lin CW. Assessing the inhibitory effects of some secondary amines, thioureas and 1,3-dimethyluracil conjugates of (-)-cytisine and thermopsine on the RNA-dependent RNA polymerase of SARS-CoV-1 and SARS-CoV-2. Bioorg Med Chem Lett 2024; 113:129950. [PMID: 39251111 DOI: 10.1016/j.bmcl.2024.129950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
SARS-CoV-2 causes COVID-19, with symptoms ranging from mild to severe, including pneumonia and death. This beta coronavirus has a 30-kilobase RNA genome and shares about 80 % of its nucleotide sequence with SARS-CoV-1. The replication/transcription complex, essential for viral RNA synthesis, includes RNA-dependent RNA polymerase (RdRp, nsp12) enhanced by nsp7 and nsp8. Antivirals like molnupiravir and remdesivir, which are RdRp inhibitors, treat severe COVID-19 but have limitations, highlighting the need for new therapies. This study assessed (-)-cytisine, methylcytisine, and thermopsine derivatives against SARS-CoV-1 and SARS-CoV-2 in vitro, focusing on their RdRp inhibition. Selected compounds from a previous study were evaluated using a SARS-CoV-2 RNA polymerase assay kit to investigate their structure-activity relationships. Compound 17 (1,3-dimethyluracil conjugate with (-)-cytisine and thermopsine) emerged as a potent inhibitor of SARS-CoV-1 and SARS-CoV-2 RdRp, with an IC50 value of 7.8 μM against SARS-CoV-2 RdRp. It showed a dose-dependent reduction in cytopathic effects in cells infected with SARS-CoV-1 and SARS-CoV-2 replicon-based single-round infectious particles (SRIPs) and significantly inhibited SARS-CoV N protein expression, with EC50 values of 0.12 µM for SARS-CoV-1 and 1.47 µM for SARS-CoV-2 SRIPs. Additionally, compound 17 reduced viral subgenomic RNA levels in a concentration-dependent manner in SRIP-infected cells. The structure-activity relationships of compound 17 with SARS-CoV-1 and SARS-CoV-2 RdRp were also investigated, highlighting it as a promising lead for developing antiviral agents against SARS and COVID-19.
Collapse
Affiliation(s)
- Yeh Chen
- Department of Food Science and Biotechnology of National Chung Hsing University, Taichung, Taiwan
| | - Mann-Jen Hour
- School of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Chen-Sheng Lin
- Division of Gastroenterology, Kuang Tien General Hospital, No. 117, Shatian Rd, Shalu District, Taichung City 433, Taiwan
| | - Young-Sheng Chang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Zan-Yu Chen
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan
| | - Alena V Koval'skaya
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; International Master's Program of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan
| | - Inna P Tsypysheva
- Ufa Institute of Chemistry, Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prosp. Oktyabrya, 450054 Ufa, Russian Federation.
| | - Cheng-Wen Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404394, Taiwan; Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404394, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Wufeng, Taichung 413305, Taiwan.
| |
Collapse
|
2
|
Rahmani D, Jafari A, Kesharwani P, Sahebkar A. Molecular targets in SARS-CoV-2 infection: An update on repurposed drug candidates. Pathol Res Pract 2024; 263:155589. [PMID: 39276508 DOI: 10.1016/j.prp.2024.155589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
The 2019 widespread contagion of the human coronavirus novel type (SARS-CoV-2) led to a pandemic declaration by the World Health Organization. A daily increase in patient numbers has formed an urgent necessity to find suitable targets and treatment options for the novel coronavirus (COVID-19). Despite scientists' struggles to discover quick treatment solutions, few effective specific drugs are approved to control SARS-CoV-2 infections thoroughly. Drug repositioning or Drug repurposing and target-based approaches are promising strategies for facilitating the drug discovery process. Here, we review current in silico, in vitro, in vivo, and clinical updates regarding proposed drugs for prospective treatment options for COVID-19. Drug targets that can direct pharmaceutical sciences efforts to discover new drugs against SARS-CoV-2 are divided into two categories: Virus-based targets, for example, Spike glycoprotein and Nucleocapsid Protein, and host-based targets, for instance, inflammatory cytokines and cell receptors through which the virus infects the cell. A broad spectrum of drugs has been found to show anti-SARS-CoV-2 potential, including antiviral drugs and monoclonal antibodies, statins, anti-inflammatory agents, and herbal products.
Collapse
Affiliation(s)
- Dibachehr Rahmani
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Koyama S, Joseph PV, Shields VDC, Heinbockel T, Adhikari P, Kaur R, Kumar R, Alizadeh R, Bhutani S, Calcinoni O, Mucignat-Caretta C, Chen J, Cooper KW, Das SR, Rohlfs Domínguez P, Guàrdia MD, Klyuchnikova MA, Laktionova TK, Mori E, Namjoo Z, Nguyen H, Özdener MH, Parsa S, Özdener-Poyraz E, Strub DJ, Taghizadeh-Hesary F, Ueha R, Voznessenskaya VV. Possible roles of phytochemicals with bioactive properties in the prevention of and recovery from COVID-19. Front Nutr 2024; 11:1408248. [PMID: 39050135 PMCID: PMC11266003 DOI: 10.3389/fnut.2024.1408248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction There have been large geographical differences in the infection and death rates of COVID-19. Foods and beverages containing high amounts of phytochemicals with bioactive properties were suggested to prevent contracting and to facilitate recovery from COVID-19. The goal of our study was to determine the correlation of the type of foods/beverages people consumed and the risk reduction of contracting COVID-19 and the recovery from COVID-19. Methods We developed an online survey that asked the participants whether they contracted COVID-19, their symptoms, time to recover, and their frequency of eating various types of foods/beverages. The survey was developed in 10 different languages. Results The participants who did not contract COVID-19 consumed vegetables, herbs/spices, and fermented foods/beverages significantly more than the participants who contracted COVID-19. Among the six countries (India/Iran/Italy/Japan/Russia/Spain) with over 100 participants and high correspondence between the location of the participants and the language of the survey, in India and Japan the people who contracted COVID-19 showed significantly shorter recovery time, and greater daily intake of vegetables, herbs/spices, and fermented foods/beverages was associated with faster recovery. Conclusions Our results suggest that phytochemical compounds included in the vegetables may have contributed in not only preventing contraction of COVID-19, but also accelerating their recovery.
Collapse
Affiliation(s)
- Sachiko Koyama
- School of Medicine, Indiana University, Indianapolis, IN, United States
| | - Paule V. Joseph
- Section of Sensory Science and Metabolism and National Institute of Nursing Research, National Institute of Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Vonnie D. C. Shields
- Department of Biological Sciences, Fisher College of Science and Mathematics, Towson University, Towson, MD, United States
| | - Thomas Heinbockel
- Department of Anatomy, Howard University College of Medicine, Washington, DC, United States
| | | | - Rishemjit Kaur
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| | - Ritesh Kumar
- CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| | - Rafieh Alizadeh
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Surabhi Bhutani
- School of Exercise and Nutritional Sciences, San Diego State University, San Diego, CA, United States
| | | | | | - Jingguo Chen
- Department of Otolaryngology-Head and Neck Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Keiland W. Cooper
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Subha R. Das
- Department of Chemistry, The Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Paloma Rohlfs Domínguez
- Department of Evolutionary Psychology and Educational Psychology, Universidad del País Vasco-Euskal Herriko Unibertsitatea, Leioa, Spain
| | | | - Maria A. Klyuchnikova
- Severtsov Institute of Ecology & Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana K. Laktionova
- Severtsov Institute of Ecology & Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Eri Mori
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Zeinab Namjoo
- Department of Anatomical Sciences, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ha Nguyen
- Monell Chemical Senses Center, Philadelphia, PA, United States
| | | | - Shima Parsa
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elif Özdener-Poyraz
- School of Pharmacy & Health Sciences, Fairleigh Dickinson University, Florham Park, NJ, United States
| | - Daniel Jan Strub
- Department of Chemical Biology and Bioimaging, Wrocław University of Science and Technology, Wrocław, Poland
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rumi Ueha
- Swallowing Center, The University of Tokyo Hospital, Tokyo, Japan
| | | |
Collapse
|
4
|
Yarovaya OI, Filimonov AS, Baev DS, Borisevich SS, Zaykovskaya AV, Chirkova VY, Marenina MK, Meshkova YV, Belenkaya SV, Shcherbakov DN, Gureev MA, Luzina OA, Pyankov OV, Salakhutdinov NF, Khvostov MV. The Potential of Usnic-Acid-Based Thiazolo-Thiophenes as Inhibitors of the Main Protease of SARS-CoV-2 Viruses. Viruses 2024; 16:215. [PMID: 38399993 PMCID: PMC10893357 DOI: 10.3390/v16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Although the COVID-19 pandemic caused by SARS-CoV-2 viruses is officially over, the search for new effective agents with activity against a wide range of coronaviruses is still an important task for medical chemists and virologists. We synthesized a series of thiazolo-thiophenes based on (+)- and (-)-usnic acid and studied their ability to inhibit the main protease of SARS-CoV-2. Substances containing unsubstituted thiophene groups or methyl- or bromo-substituted thiophene moieties showed moderate activity. Derivatives containing nitro substituents in the thiophene heterocycle-just as pure (+)- and (-)-usnic acids-showed no anti-3CLpro activity. Kinetic parameters of the most active compound, (+)-3e, were investigated, and molecular modeling of the possible interaction of the new thiazolo-thiophenes with the active site of the main protease was carried out. We evaluated the binding energies of the ligand and protein in a ligand-protein complex. Active compound (+)-3e was found to bind with minimum free energy; the binding of inactive compound (+)-3g is characterized by higher values of minimum free energy; the positioning of pure (+)-usnic acid proved to be unstable and is accompanied by the formation of intermolecular contacts with many amino acids of the catalytic binding site. Thus, the molecular dynamics results were consistent with the experimental data. In an in vitro antiviral assay against six strains (Wuhan, Delta, and four Omicron sublineages) of SARS-CoV-2, (+)-3e demonstrated pronounced antiviral activity against all the strains.
Collapse
Affiliation(s)
- Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Dmitriy S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, 630559 Koltsovo, Russia;
| | - Sophia S. Borisevich
- Synchrotron Radiation Facility SKIF, G.K. Boreskov Institute of Catalysis SB RAS, 630559 Koltsovo, Russia;
- Laboratory of Chemical Physics, Ufa Institute of Chemistry, Ufa Federal Research Centre, 450078 Ufa, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Varvara Yu. Chirkova
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia;
| | - Mariya K. Marenina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Yulia V. Meshkova
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Svetlana V. Belenkaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Dmitriy N. Shcherbakov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
- Institute of Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia;
| | - Maxim A. Gureev
- Laboratory of Bio- and Cheminformatics, St. Petersburg School of Physics, Mathematics and Computer Science, HSE University, 194100 St. Peterburg, Russia;
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Russia; (A.V.Z.); (O.V.P.)
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| | - Mikhail V. Khvostov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia; (A.S.F.); (D.S.B.); (M.K.M.); (Y.V.M.); (S.V.B.); (D.N.S.); (O.A.L.); (N.F.S.); (M.V.K.)
| |
Collapse
|
5
|
Kim JY, Kim TY, Son SR, Kim SY, Kwon J, Kwon HC, Lee CJ, Jang DS. Triterpenoidal Saponins from the Leaves of Aster koraiensis Offer Inhibitory Activities against SARS-CoV-2. PLANTS (BASEL, SWITZERLAND) 2024; 13:303. [PMID: 38276760 PMCID: PMC10819127 DOI: 10.3390/plants13020303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/12/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024]
Abstract
Triterpenoidal saponins have been reported to be able to restrain SARS-CoV-2 infection. To isolate antiviral compounds against SARS-CoV-2 from the leaves of Aster koraiensis, we conducted multiple steps of column chromatography. We isolated six triperpenoidal saponins from A. koraiensis leaves, including three unreported saponins. Their chemical structures were determined using HR-MS and NMR data analyses. Subsequently, we tested the isolates to assess their ability to impede the entry of the SARS-CoV-2 pseudovirus (pSARS-CoV-2) into ACE2+ H1299 cells and found that five of the six isolates displayed antiviral activity with an IC50 value below 10 μM. Notably, one unreported saponin, astersaponin J (1), blocks pSARS-CoV-2 in ACE2+ and ACE2/TMPRSS2+ cells with similar IC50 values (2.92 and 2.96 μM, respectively), without any significant toxic effect. Furthermore, our cell-to-cell fusion and SARS-CoV-2 Spike-ACE2 binding assays revealed that astersaponin J inhibits membrane fusion, thereby blocking both entry pathways of SARS-CoV-2 while leaving the interaction between the SARS-CoV-2 Spike and ACE2 unaffected. Overall, this study expands the list of antiviral saponins by introducing previously undescribed triterpenoidal saponins isolated from the leaves of A. koraiensis, thereby corroborating the potency of triterpenoid saponins in impeding SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ji-Young Kim
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-Y.K.); (S.-R.S.)
| | - Tai Young Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea; (S.Y.K.); (C.J.L.)
| | - So-Ri Son
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-Y.K.); (S.-R.S.)
| | - Suyeon Yellena Kim
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea; (S.Y.K.); (C.J.L.)
| | - Jaeyoung Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (J.K.); (H.C.K.)
| | - Hak Cheol Kwon
- KIST Gangneung Institute of Natural Products, Korea Institute of Science and Technology, Gangneung 25451, Republic of Korea; (J.K.); (H.C.K.)
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon 34126, Republic of Korea; (S.Y.K.); (C.J.L.)
| | - Dae Sik Jang
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea; (J.-Y.K.); (S.-R.S.)
| |
Collapse
|
6
|
Khazir J, Ahmed S, Thakur RK, Hussain M, Gandhi SG, Babbar S, Mir SA, Shafi N, Tonfack LB, Rajpal VR, Maqbool T, Mir BA, Peer LA. Repurposing of Plant-based Antiviral Molecules for the Treatment of COVID-19. Curr Top Med Chem 2024; 24:614-633. [PMID: 38477206 DOI: 10.2174/0115680266276749240206101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 03/14/2024]
Abstract
COVID-19, stemming from SARS-CoV-2, poses a formidable threat to global healthcare, with a staggering 77 million confirmed cases and 690,067 deaths recorded till December 24, 2023. Given the absence of specific drugs for this viral infection, the exploration of novel antiviral compounds becomes imperative. High-throughput technologies are actively engaged in drug discovery, and there is a parallel effort to repurpose plant-based molecules with established antiviral properties. In this context, the review meticulously delves into the potential of plant-based folk remedies and existing molecules. These substances have showcased substantial viral inhibition in diverse in vivo, in silico, and in vitro studies, particularly against critical viral protein targets, including SARS-CoV-2. The findings position these plant-based molecules as promising antiviral drug candidates for the swift advancement of treatments for COVID-19. It is noteworthy that the inherent attributes of these plant-based molecules, such as their natural origin, potency, safety, and cost-effectiveness, contribute to their appeal as lead candidates. The review advocates for further exploration through comprehensive in vivo studies conducted on animal models, emphasizing the potential of plant-based compounds to help in the ongoing quest to develop effective antivirals against COVID-19.
Collapse
Affiliation(s)
- Jabeena Khazir
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Sajad Ahmed
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Rakesh Kr Thakur
- Amity Institute of Biotechnology, Amity University, Noida, 201313, India
| | - Manzoor Hussain
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Sumit G Gandhi
- Indian Institute of Integrative Medicine, Canal Road Jammu, 180001, J&K, India
| | - Sadhana Babbar
- Department of Botany, Swami Shradhanand College, University of Delhi, Delhi, 110036, India
| | - Shabir Ahmad Mir
- Department of Medical Laboratory Sciences, College of Applied Medical Science, Majmaah University, Al Majmaah, 11952, Saudi Arabia
| | - Nusrat Shafi
- Department of Chemistry, HKM Govt. Degree College Eidgah, Cluster University Srinagar, J&K, 190001, India
| | - Libert Brice Tonfack
- Laboratory of Biotechnology and Environment, Department of Plant Biology, Faculty of Science, University of Yaounde I, PO Box 812, Yaounde, Cameroon
| | - Vijay Rani Rajpal
- Department of Botany, Hans Raj College, University of Delhi, Delhi, 110007, India
| | - Tariq Maqbool
- Laboratory of Nanotherapeutics and Regenerative Medicine, University of Kashmir, Srinagar, 190006, India
| | - Bilal Ahmad Mir
- Department of Botany, North Campus, University of Kashmir, Delina, Baramulla, J&K, 193103, India
| | - Latif Ahmad Peer
- Department of Botany, University of Kashmir, Srinagar, J&K, 190006, India
| |
Collapse
|
7
|
Moschovou K, Antoniou M, Chontzopoulou E, Papavasileiou KD, Melagraki G, Afantitis A, Mavromoustakos T. Exploring the Binding Effects of Natural Products and Antihypertensive Drugs on SARS-CoV-2: An In Silico Investigation of Main Protease and Spike Protein. Int J Mol Sci 2023; 24:15894. [PMID: 37958877 PMCID: PMC10649947 DOI: 10.3390/ijms242115894] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
In this in silico study, we conducted an in-depth exploration of the potential of natural products and antihypertensive molecules that could serve as inhibitors targeting the key proteins of the SARS-CoV-2 virus: the main protease (Mpro) and the spike (S) protein. By utilizing Induced Fit Docking (IFD), we assessed the binding affinities of the molecules under study to these crucial viral components. To further comprehend the stability and molecular interactions of the "protein-ligand" complexes that derived from docking studies, we performed molecular dynamics (MD) simulations, shedding light on the molecular basis of potential drug candidates for COVID-19 treatment. Moreover, we employed Molecular Mechanics Generalized Born Surface Area (MM-GBSA) calculations on all "protein-ligand" complexes, underscoring the robust binding capabilities of rosmarinic acid, curcumin, and quercetin against Mpro, and salvianolic acid b, rosmarinic acid, and quercetin toward the S protein. Furthermore, in order to expand our search for potent inhibitors, we conducted a structure similarity analysis, using the Enalos Suite, based on the molecules that indicated the most favored results in the in silico studies. The Enalos Suite generated 115 structurally similar compounds to salvianolic acid, rosmarinic acid, and quercetin. These compounds underwent IFD calculations, leading to the identification of two salvianolic acid analogues that exhibited strong binding to all the examined binding sites in both proteins, showcasing their potential as multi-target inhibitors. These findings introduce exciting possibilities for the development of novel therapeutic agents aiming to effectively disrupt the SARS-CoV-2 virus lifecycle.
Collapse
Affiliation(s)
- Kalliopi Moschovou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Maria Antoniou
- Department of ChemoInformatics, NovaMechanics Ltd., 1046 Nicosia, Cyprus
- Department of Chemoinformatics, NovaMechanics MIKE, 18536 Piraeus, Greece
| | - Eleni Chontzopoulou
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | - Konstantinos D. Papavasileiou
- Department of ChemoInformatics, NovaMechanics Ltd., 1046 Nicosia, Cyprus
- Department of Chemoinformatics, NovaMechanics MIKE, 18536 Piraeus, Greece
| | - Georgia Melagraki
- Division of Physical Sciences & Applications, Hellenic Military Academy, 16672 Vari, Greece
| | - Antreas Afantitis
- Department of ChemoInformatics, NovaMechanics Ltd., 1046 Nicosia, Cyprus
- Department of Chemoinformatics, NovaMechanics MIKE, 18536 Piraeus, Greece
| | - Thomas Mavromoustakos
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
8
|
Valipour M. Therapeutic prospects of naturally occurring p38 MAPK inhibitors tanshinone IIA and pinocembrin for the treatment of SARS-CoV-2-induced CNS complications. Phytother Res 2023; 37:3724-3743. [PMID: 37282807 DOI: 10.1002/ptr.7902] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/20/2023] [Accepted: 05/15/2023] [Indexed: 06/08/2023]
Abstract
P38 mitogen-activated protein kinase (p38 MAPK) signaling pathway is closely related to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) replication and hyperinflammatory responses in coronavirus disease 2019 (COVID-19). Therefore, blood-brain barrier-penetrating p38 MAPK inhibitors have good potential for the treatment of central nervous system (CNS) complications of COVID-19. The aim of the present study is the characterization of the therapeutic potential of tanshinone IIA and pinocembrin for the treatment of CNS complications of COVID-19. Studies published in high-quality journals indexed in databases Scopus, Web of Science, PubMed, and so forth were used to review the therapeutic capabilities of selected compounds. In continuation of our previous efforts to identify agents with favorable activity/toxicity profiles for the treatment of COVID-19, tanshinone IIA and pinocembrin were identified with a high ability to penetrate the CNS. Considering the nature of the study, no specific time frame was determined for the selection of studies, but the focus was strongly on studies published after the emergence of COVID-19. By describing the association of COVID-19-induced CNS disorders with p38 MAPK pathway disruption, this study concludes that tanshinone IIA and pinocembrin have great potential for better treatment of these complications. The inclusion of these compounds in the drug regimen of COVID-19 patients requires confirmation of their effectiveness through the conduction of high-quality clinical trials.
Collapse
Affiliation(s)
- Mehdi Valipour
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Tang P, Shen T, Wang H, Zhang R, Zhang X, Li X, Xiao W. Challenges and opportunities for improving the druggability of natural product: Why need drug delivery system? Biomed Pharmacother 2023; 164:114955. [PMID: 37269810 DOI: 10.1016/j.biopha.2023.114955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/14/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023] Open
Abstract
Bioactive natural products (BNPs) are the marrow of medicinal plants, which are the secondary metabolites of organisms and have been the most famous drug discovery database. Bioactive natural products are famous for their enormous number and great safety in medical applications. However, BNPs are troubled by their poor druggability compared with synthesis drugs and are challenged as medicine (only a few BNPs are applied in clinical settings). In order to find a reasonable solution to improving the druggability of BNPs, this review summarizes their bioactive nature based on the enormous pharmacological research and tries to explain the reasons for the poor druggability of BNPs. And then focused on the boosting research on BNPs loaded drug delivery systems, this review further concludes the advantages of drug delivery systems on the druggability improvement of BNPs from the perspective of their bioactive nature, discusses why BNPs need drug delivery systems, and predicts the next direction.
Collapse
Affiliation(s)
- Peng Tang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xingjie Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University, Kunming, China; School of Pharmacy and School of Chemical Science and Technology, Yunnan University, Kunming, China; Yunnan Characteristic Plant Extraction Laboratory, Yunnan Provincial Center for Research & Development of Natural Products, Kunming, China; State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
10
|
Sha A, Liu Y, Zhao X. SARS-CoV-2 and gastrointestinal diseases. Front Microbiol 2023; 14:1177741. [PMID: 37323898 PMCID: PMC10267706 DOI: 10.3389/fmicb.2023.1177741] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/21/2023] [Indexed: 06/17/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative agent of the novel coronavirus disease (COVID-19) pandemic, which has caused serious challenges for public health systems worldwide. Literature review SARS-CoV-2 invades not only the respiratory system, but also the digestive system, causing a variety of gastrointestinal diseases. Significance Understanding the gastrointestinal diseases caused by SARS-CoV-2, and the damage mechanisms of SARS-CoV-2 to the gastrointestinal tracts and gastrointestinal glands are crucial to treating the gastrointestinal diseases caused by SARS-CoV-2. Conclusion This review summarizes the gastrointestinal diseases caused by SARS-CoV-2, including gastrointestinal inflammatory disorders, gastrointestinal ulcer diseases, gastrointestinal bleeding, and gastrointestinal thrombotic diseases, etc. Furthermore, the mechanisms of gastrointestinal injury induced by SARS-COV-2 were analyzed and summarized, and the suggestions for drug prevention and treatment were put forward for the reference of clinical workers.
Collapse
Affiliation(s)
- Ailong Sha
- School of Teacher Education, Chongqing Three Gorges University, Chongqing, China
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Yi Liu
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Xuewen Zhao
- School of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| |
Collapse
|
11
|
Jantan I, Arshad L, Septama AW, Haque MA, Mohamed-Hussein ZA, Govender NT. Antiviral effects of phytochemicals against severe acute respiratory syndrome coronavirus 2 and their mechanisms of action: A review. Phytother Res 2023; 37:1036-1056. [PMID: 36343627 PMCID: PMC9878073 DOI: 10.1002/ptr.7671] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
The worldwide spreading of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to health, economic, environmental, and social aspects of human lives. Currently, there are no approved treatments that can effectively block the virus although several existing antimalarial and antiviral agents have been repurposed and allowed use during the pandemic under the emergency use authorization (EUA) status. This review gives an updated overview of the antiviral effects of phytochemicals including alkaloids, flavonoids, and terpenoids against the COVID-19 virus and their mechanisms of action. Search for natural lead molecules against SARS-CoV-2 has been focusing on virtual screening and in vitro studies on phytochemicals that have shown great promise against other coronaviruses such as SARS-CoV. Until now, there is limited data on in vivo investigations to examine the antiviral activity of plants in SARS-CoV-2-infected animal models and the studies were performed using crude extracts. Further experimental and preclinical investigations on the in vivo effects of phytochemicals have to be performed to provide sufficient efficacy and safety data before clinical studies can be performed to develop them into COVID-19 drugs. Phytochemicals are potential sources of new chemical leads for the development of safe and potent anti-SARS-CoV-2 agents.
Collapse
Affiliation(s)
- Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Laiba Arshad
- Department of Pharmacy, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredient and Traditional Medicine, National Research and Innovation Agency (BRIN), Cibinong Science Center, West Java, Indonesia
| | - Md Areeful Haque
- Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zeti-Azura Mohamed-Hussein
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia.,Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Nisha T Govender
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
12
|
Enichen E, Harvey C, Demmig-Adams B. COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors. Am J Lifestyle Med 2023; 17:231-257. [PMID: 36883129 PMCID: PMC9445631 DOI: 10.1177/15598276221123005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans' physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats' low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.
Collapse
Affiliation(s)
- Elizabeth Enichen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Caitlyn Harvey
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
| |
Collapse
|
13
|
England C, TrejoMartinez J, PerezSanchez P, Karki U, Xu J. Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19. Life (Basel) 2023; 13:617. [PMID: 36983772 PMCID: PMC10054913 DOI: 10.3390/life13030617] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world's health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19's impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Collapse
Affiliation(s)
- Corbin England
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | | | - Paula PerezSanchez
- Department of Biological Sciences, Arkansas State University, Jonesboro, AR 72401, USA
| | - Uddhab Karki
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- Molecular Biosciences Program, Arkansas State University, Jonesboro, AR 72401, USA
| | - Jianfeng Xu
- Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401, USA
- College of Agriculture, Arkansas State University, Jonesboro, AR 72401, USA
| |
Collapse
|
14
|
Firouzi R, Ashouri M. Identification of Potential Anti‐COVID‐19 Drug Leads from Medicinal Plants through Virtual High‐Throughput Screening. ChemistrySelect 2023. [DOI: 10.1002/slct.202203865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Affiliation(s)
- Rohoullah Firouzi
- Department of Physical Chemistry Chemistry and Chemical Engineering Research Center of Iran Tehran Iran
| | - Mitra Ashouri
- Department of Physical Chemistry School of Chemistry College of Science University of Tehran Tehran Iran
| |
Collapse
|
15
|
Liu P, Zhong L, Xiao J, Hu Y, Liu T, Ren Z, Wang Y, Zheng K. Ethanol extract from Artemisia argyi leaves inhibits HSV-1 infection by destroying the viral envelope. Virol J 2023; 20:8. [PMID: 36647143 PMCID: PMC9841929 DOI: 10.1186/s12985-023-01969-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/07/2023] [Indexed: 01/17/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a widely disseminated virus that establishes latency in the brain and causes occasional but fatal herpes simplex encephalitis. Currently, acyclovir (ACV) is the main clinical drug used in the treatment of HSV-1 infection, and the failure of therapy in immunocompromised patients caused by ACV-resistant HSV-1 strains necessitates the requirement to develop novel anti-HSV-1 drugs. Artemisia argyi, a Traditional Chinese Medicine, has been historically used to treat inflammation, bacterial infection, and cancer. In this study, we demonstrated the antiviral effect and mechanism of ethanol extract of A. argyi leaves (hereafter referred to as 'AEE'). We showed that AEE at 10 μg/ml exhibits potent antiviral effects on both normal and ACV-resistant HSV-1 strains. AEE also inhibited the infection of HSV-2, rotavirus, and influenza virus. Transmission electron microscopy revealed that AEE destroys the membrane integrity of HSV-1 viral particles, resulting in impaired viral attachment and penetration. Furthermore, mass spectrometry assay identified 12 major components of AEE, among which two new flavones, deoxysappanone B 7,3'-dimethyl ether, and 3,7-dihydroxy-3',4'-dimethoxyflavone, exhibited the highest binding affinity to HSV-1 glycoprotein gB at the surface site critical for gB-gH-gL interaction and gB-mediated membrane fusion, suggesting their involvement in inactivating virions. Therefore, A. argyi is an important source of antiviral drugs, and the AEE may be a potential novel antiviral agent against HSV-1 infection.
Collapse
Affiliation(s)
- Ping Liu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Lishan Zhong
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Ji Xiao
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Yuze Hu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Tao Liu
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Zhe Ren
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Yifei Wang
- grid.258164.c0000 0004 1790 3548Institute of Biomedicine, College of Life Science and Technology, Guangdong Province Key Laboratory of Bioengineering Medicine, Key Laboratory of Innovative Technology Research on Natural Products and Cosmetics Raw Materials, Jinan University, Guangzhou, 510632 China ,Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, National Engineering Research Centre for Modernization of Chinese Medicine, Guangzhou, 510632 China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Medical School, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
16
|
Bijelić K, Hitl M, Kladar N. Phytochemicals in the Prevention and Treatment of SARS-CoV-2-Clinical Evidence. Antibiotics (Basel) 2022; 11:1614. [PMID: 36421257 PMCID: PMC9686831 DOI: 10.3390/antibiotics11111614] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/06/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The first case of SARS-CoV-2 infection was reported in December 2019. Due to the rapid spread of the disease and the lack of adequate therapy, the use of plants that have a long history in the treatment of viral infections has often been considered. The aim of this paper is to provide a brief review of the literature on the use of phytochemicals during the new pandemic. An extensive search of published works was performed through platforms Google Scholar, PubMed, Science Direct, Web of Science and Clinicaltrials.gov. Numerous preclinical studies on the use of phytochemicals (quercetin, curcumin, baicalin, kaempferol, resveratrol, glycyrrhizin, lycorine, colchicine) against SARS-CoV-2 have shown that these components can be effective in the prevention and treatment of this infection. Clinical research has proven that the use of black cumin and green propolis as well as quercetin has positive effects. As for other phytochemicals, in addition to preclinical testing which has already been carried out, it would be necessary to conduct clinical tests in order to assert their effectiveness. For those phytochemicals whose clinical efficacy has been proven, it would be necessary to conduct research on a larger number of patients, so that the conclusions are more representative.
Collapse
Affiliation(s)
- Katarina Bijelić
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Maja Hitl
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| | - Nebojša Kladar
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
- Center for Medical and Pharmaceutical Investigation and Quality Control, Faculty of Medicine, University of Novi Sad, Hajduk Veljkova 3, 21000 Novi Sad, Serbia
| |
Collapse
|
17
|
Zekeya N, Mamiro B, Ndossi H, Mallya RC, Kilonzo M, Kisingo A, Mtambo M, Kideghesho J, Chilongola J. Screening and evaluation of cytotoxicity and antiviral effects of secondary metabolites from water extracts of Bersama abyssinica against SARS-CoV-2 Delta. BMC Complement Med Ther 2022; 22:280. [PMID: 36289484 PMCID: PMC9598020 DOI: 10.1186/s12906-022-03754-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 10/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background Bersama abyssinica is a common herb in Africa, with diverse medical uses in different areas. The plant is well-known in Tanzania for treating respiratory disorders such as TB, tonsillitis, bronchitis, and asthma, and it has lately been utilized to treat COVID-19 symptoms. Water extract of leaf and stem bark has been registered as an herbal medication known as 'Coviba Dawa' in Tanzania for the relief of bacterial respiratory infections. The extracts, however, have not been scientifically tested for their anti-viral activities. The aim of this work was to test for the cytotoxicity and antiviral effects of bioactive ingredients from B. abyssinica extracts against the Delta variant of the SARS-CoV-2 coronavirus. Methods B. abyssinica leaves and stem bark were dried under shade in room temperature and then pulverized to obtain small pieces before soaking into different solvents. One hundred grams of each, leaves and stem bark, were extracted in petroleum ether, dichloromethane, ethyl acetate and methanol. Water extract was obtained by decoction of stem bark and leaves into water. Phenols, flavonoids, tannins, and antioxidants were confirmed as components of the extracts. Analysis of polar extracts of bark stem bark and leaves was done. Antiviral screening and cytotoxicity experiments were conducted in a Biosafety Level 3 (BSL-3) Laboratory facility according to International Standard Operating Procedures (SOPs). Results By the use of LC–MS/MS analysis, this study confirmed the existence of four phenolic compounds in B. abyssinica water extract; 2,4-di-tert-butylphenol, 4-formyl-2-methoxyphenyl propionate, 7,8-Dihydroxy-4-methylcoumarin, and 2,3, 6-trimethoxyflavone with antioxidant activity. This study showed that, while the water extracts of B. abyssinica had significant antiviral activity against SARS Cov2 virus, it showed no cytotoxicity effect on Vero E6 cells. In particular, the water extract (Coviba dawa) showed 75% while ethylacetate fraction of B. abyssinica leaves showed a 50% in vitro viral inhibition, indicating that these substances may be useful for the development of future anti-viral agents. Conclusion We therefore recommend isolation of compounds for further profiling and development with a broader concentration range. We further recommend studies that determine the antiviral activity of extracts of B.abyssinica on other viral pathogens of clinical concern. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03754-3.
Collapse
Affiliation(s)
- Never Zekeya
- grid.442468.80000 0001 0566 9529Department of Wildlife Management, College of African Wildlife Management, CAWM, P.O. Box 3031, Mweka, Moshi, Kilimanjaro Tanzania
| | - Bertha Mamiro
- grid.463666.70000 0001 0358 5436Tanzania Industrial Research and Development Organization (TIRDO), P.O. Box 23235, Msasani, Dar es Salaam, Tanzania
| | - Humphrey Ndossi
- grid.463666.70000 0001 0358 5436Tanzania Industrial Research and Development Organization (TIRDO), P.O. Box 23235, Msasani, Dar es Salaam, Tanzania
| | - Rehema Chande Mallya
- grid.25867.3e0000 0001 1481 7466School of Pharmacy and Pharmacognosy, Muhimbili University of Health and Allied Sciences, P.O. Box 65014, Dar es salaam, Tanzania
| | - Mhuji Kilonzo
- grid.442459.a0000 0001 1998 2954University of Dodoma, Dodoma, Tanzania
| | - Alex Kisingo
- grid.442468.80000 0001 0566 9529Department of Wildlife Management, College of African Wildlife Management, CAWM, P.O. Box 3031, Mweka, Moshi, Kilimanjaro Tanzania
| | - Mkumbukwa Mtambo
- grid.463666.70000 0001 0358 5436Tanzania Industrial Research and Development Organization (TIRDO), P.O. Box 23235, Msasani, Dar es Salaam, Tanzania
| | - Jafari Kideghesho
- grid.442468.80000 0001 0566 9529Department of Wildlife Management, College of African Wildlife Management, CAWM, P.O. Box 3031, Mweka, Moshi, Kilimanjaro Tanzania
| | - Jaffu Chilongola
- grid.412898.e0000 0004 0648 0439Kilimanjaro Christian Medical University College, P.O. Box 2240, Moshi, Kilimanjaro Tanzania
| |
Collapse
|
18
|
Filimonov AS, Yarovaya OI, Zaykovskaya AV, Rudometova NB, Shcherbakov DN, Chirkova VY, Baev DS, Borisevich SS, Luzina OA, Pyankov OV, Maksyutov RA, Salakhutdinov NF. (+)-Usnic Acid and Its Derivatives as Inhibitors of a Wide Spectrum of SARS-CoV-2 Viruses. Viruses 2022; 14:2154. [PMID: 36298709 PMCID: PMC9611092 DOI: 10.3390/v14102154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2023] Open
Abstract
In order to test the antiviral activity, a series of usnic acid derivatives were synthesized, including new, previously undescribed compounds. The activity of the derivatives against three strains of SARS-CoV-2 virus was studied. To understand the mechanism of antiviral action, the inhibitory activity of the main protease of SARS-CoV-2 virus was studied using the developed model as well as the antiviral activity against the pseudoviral system with glycoprotein S of SARS-CoV-2 virus on its surface. It was shown that usnic acid exhibits activity against three strains of SARS-CoV-2 virus: Wuhan, Delta, and Omicron. Compounds 10 and 13 also showed high activity against the three strains. The performed biological studies and molecular modeling allowed us to assume that the derivatives of usnic acid bind in the N-terminal domain of the surface glycoprotein S at the binding site of the hemoglobin decay metabolite.
Collapse
Affiliation(s)
- Aleksandr S. Filimonov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Olga I. Yarovaya
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nadezda B. Rudometova
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Dmitriy N. Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Varvara Yu. Chirkova
- Department of Physical-Chemistry Biology and Biotechnology, Altay State University, 656049 Barnaul, Russia
| | - Dmitry S. Baev
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Sophia S. Borisevich
- Laboratory of Chemical Physics, Ufa Institute of Chemistry Ufa Federal Research Center, 450078 Ufa, Russia
| | - Olga A. Luzina
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Rinat A. Maksyutov
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Yekaterinburg, Russia
| | - Nariman F. Salakhutdinov
- Department of Medicinal Chemistry, N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Mahmud S, Afrose S, Biswas S, Nagata A, Paul GK, Mita MA, Hasan MR, Shimu MSS, Zaman S, Uddin MS, Islam MS, Saleh MA. Plant-derived compounds effectively inhibit the main protease of SARS-CoV-2: An in silico approach. PLoS One 2022; 17:e0273341. [PMID: 35998194 PMCID: PMC9398018 DOI: 10.1371/journal.pone.0273341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 08/06/2022] [Indexed: 11/23/2022] Open
Abstract
The current coronavirus disease 2019 (COVID-19) pandemic, caused by the coronavirus 2 (SARS-CoV-2), involves severe acute respiratory syndrome and poses unprecedented challenges to global health. Structure-based drug design techniques have been developed targeting the main protease of the SARS-CoV-2, responsible for viral replication and transcription, to rapidly identify effective inhibitors and therapeutic targets. Herein, we constructed a phytochemical dataset of 1154 compounds using deep literature mining and explored their potential to bind with and inhibit the main protease of SARS-CoV-2. The three most effective phytochemicals Cosmosiine, Pelargonidin-3-O-glucoside, and Cleomiscosin A had binding energies of -8.4, -8.4, and -8.2 kcal/mol, respectively, in the docking analysis. These molecules could bind to Gln189, Glu166, Cys145, His41, and Met165 residues on the active site of the targeted protein, leading to specific inhibition. The pharmacological characteristics and toxicity of these compounds, examined using absorption, distribution, metabolism, excretion, and toxicity (ADMET) analyses, revealed no carcinogenicity or toxicity. Furthermore, the complexes were simulated with molecular dynamics for 100 ns to calculate the root mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent-accessible surface area (SASA), and hydrogen profiles from the simulation trajectories. Our analysis validated the rigidity of the docked protein-ligand. Taken together, our computational study findings might help develop potential drugs to combat the main protease of the SARS-CoV-2 and help alleviate the severity of the pandemic.
Collapse
Affiliation(s)
- Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Suvro Biswas
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Abir Nagata
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Md Sayeedul Islam
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Md. Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| |
Collapse
|
20
|
Ghosh S, Al-Sharify ZT, Maleka MF, Onyeaka H, Maleke M, Maolloum A, Godoy L, Meskini M, Rami MR, Ahmadi S, Al-Najjar SZ, Al-Sharify NT, Ahmed SM, Dehghani MH. Propolis efficacy on SARS-COV viruses: a review on antimicrobial activities and molecular simulations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58628-58647. [PMID: 35794320 PMCID: PMC9258455 DOI: 10.1007/s11356-022-21652-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
This current study review provides a brief review of a natural bee product known as propolis and its relevance toward combating SARS-CoV viruses. Propolis has been utilized in medicinal products for centuries due to its excellent biological properties. These include anti-oxidant, immunomodulatory, anti-inflammatory, anti-viral, anti-fungal, and bactericidal activities. Furthermore, studies on molecular simulations show that flavonoids in propolis may reduce viral replication. While further research is needed to validate this theory, it has been observed that COVID-19 patients receiving propolis show earlier viral clearance, enhanced symptom recovery, quicker discharge from hospitals, and a reduced mortality rate relative to other patients. As a result, it appears that propolis could probably be useful in the treatment of SARS-CoV-2-infected patients. Therefore, this review sought to explore the natural properties of propolis and further evaluated past studies that investigated propolis as an alternative product for the treatment of COVID-19 symptoms. In addition, the review also highlights the possible mode of propolis action as well as molecular simulations of propolis compounds that may interact with the SARS-CoV-2 virus. The activity of propolis compounds in decreasing the impact of COVID-19-related comorbidities, the possible roles of such compounds as COVID-19 vaccine adjuvants, and the use of nutraceuticals in COVID-19 treatment, instead of pharmaceuticals, has also been discussed.
Collapse
Affiliation(s)
- Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Zainab T Al-Sharify
- Department of Environmental Engineering, College of Engineering, Mustansiriyah University, Bab-al-Mu'adhem, P.O. Box 14150, Baghdad, Iraq
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Mathabatha Frank Maleka
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein, 9301, South Africa
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Maleke Maleke
- Department of Life Science, Faculty of Health and Environmental Science, Central University of Technology, Bloemfontein, 9301, South Africa
| | - Alhaji Maolloum
- Department of Physics, Faculty of Science, University of Maroua, PO BOX 46, Maroua, Cameroon
- Department of Chemistry, University of the Free State, PO BOX 339, Bloemfontein, 9300, South Africa
| | - Liliana Godoy
- Department of Fruit and Oenology, Faculty of Agronomy and Forestry, Pontifical Catholic University of Chile, Santiago, Chile
| | - Maryam Meskini
- Microbiology Research Center, Pasteur Institute of Iran, Teheran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Teheran, Iran
| | - Mina Rezghi Rami
- Department of Chemistry, K.N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Shabnam Ahmadi
- Department of Environmental Health Engineering, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Shahad Z Al-Najjar
- Chemical Engineering Department, College of Engineering, Al-Nahrain University, Baghdad, Iraq
| | - Noor T Al-Sharify
- Medical Instrumentation Engineering Department, Al-Esraa University College, Baghdad, Iraq
| | - Sura M Ahmed
- Department of Electrical and Electronic Engineering, College of Engineering, Universiti Tenaga Nasional, Kajang, Malaysia
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
- Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
21
|
In Silico Analysis Using SARS-CoV-2 Main Protease and a Set of Phytocompounds to Accelerate the Development of Therapeutic Components against COVID-19. Processes (Basel) 2022. [DOI: 10.3390/pr10071397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
SARS-CoV-2, the virus that caused the widespread COVID-19 pandemic, is homologous to SARS-CoV. It would be ideal to develop antivirals effective against SARS-CoV-2. In this study, we chose one therapeutic target known as the main protease (Mpro) of SARS-CoV-2. A crystal structure (Id: 6LU7) from the protein data bank (PDB) was used to accomplish the screening and docking studies. A set of phytocompounds was used for the docking investigation. The nature of the interaction and the interacting residues indicated the molecular properties that are essential for significant affinity. Six compounds were selected, based on the docking as well as the MM-GBSA score. Pentagalloylglucose, Shephagenin, Isoacteoside, Isoquercitrin, Kappa-Carrageenan, and Dolabellin are the six compounds with the lowest binding energies (−12 to −8 kcal/mol) and show significant interactions with the target Mpro protein. The MMGBSA scores of these compounds are highly promising, and they should be investigated to determine their potential as Mpro inhibitors, beneficial for COVID-19 treatment. In this study, we highlight the crucial role of in silico technologies in the search for novel therapeutic components. Computational biology, combined with structural biology, makes drug discovery studies more rigorous and reliable, and it creates a scenario where researchers can use existing drug components to discover new roles as modulators or inhibitors for various therapeutic targets. This study demonstrated that computational analyses can yield promising findings in the search for potential drug components. This work demonstrated the significance of increasing in silico and wetlab research to generate improved structure-based medicines.
Collapse
|
22
|
Hsieh PC, Chao YC, Tsai KW, Li CH, Tzeng IS, Wu YK, Shih CY. Efficacy and Safety of Complementary Therapy With Jing Si Herbal Tea in Patients With Mild-To-Moderate COVID-19: A Prospective Cohort Study. Front Nutr 2022; 9:832321. [PMID: 35369061 PMCID: PMC8967163 DOI: 10.3389/fnut.2022.832321] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/24/2022] [Indexed: 01/02/2023] Open
Abstract
Background Since late 2019, there has been a global COVID-19 pandemic. To preserve medical capacity and decrease adverse health effects, preventing the progression of COVID-19 to severe status is essential. Jing-Si Herbal Tea (JSHT), a novel traditional Chinese medicine formula was developed to treat COVID-19. This study examined the clinical efficacy and safety of JSHT in patients with mild-to-moderate COVID-19. Methods In this prospective cohort study, we enrolled 260 patients with mild-to-moderate COVID-19. The enrolled patients were divided into the JSHT (n = 117) and control (n = 143) groups. Both groups received standard management. The JSHT group was treated with JSHT as a complementary therapy. Results Compared with standard management alone, JSHT combined with standard management more effectively improved the reverse transcription–polymerase chain reaction cycle threshold value, C-reactive protein level, and Brixia score in the adult patients with mild-to-moderate COVID-19, especially in the male and older patients (those aged ≥60 years). The results revealed that the patients treated with JSHT combined with standard management had 51, 70, and 100% lower risks of intubation, Medisave Care Unit admission, and mortality compared with those receiving standard management only. Conclusions JSHT combined with standard management more effectively reduced the SARS-CoV-2 viral load and systemic inflammation and alleviated lung infiltrates in the patients with mild-to-moderate COVID-19, especially in the male and older patients (those aged ≥60 years). JSHT combined with standard management may prevent critical status and mortality in patients with mild-to-moderate COVID-19. JSHT is a promising complementary therapy for patients with mild-to-moderate COVID-19.
Collapse
Affiliation(s)
- Po-Chun Hsieh
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - You-Chen Chao
- Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Chung-Hsien Li
- Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - I-Shiang Tzeng
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Yao-Kuang Wu
- School of Medicine, Tzu Chi University, Hualien, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- *Correspondence: Yao-Kuang Wu
| | | |
Collapse
|
23
|
Shah T, Xia KY, Shah Z, Baloch Z. Therapeutic mechanisms and impact of traditional Chinese medicine on COVID-19 and other influenza diseases. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022. [PMCID: PMC8666147 DOI: 10.1016/j.prmcm.2021.100029] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Coronavirus disease 2019 (COVID-19), first reported in Wuhan, China, has rapidly spread worldwide. Traditional Chinese medicine (TCM) has been used to prevent and treat viral epidemics and plagues for over 2,500 years. In the guidelines on fighting against COVID-19, the National Health Commission of the People's Republic of China has recommended certain TCM formulas, namely Jinhua Qinggan granule (JHQGG), Lianhua Qingwen granule (LHQWG), Qingfei Paidu decoction (QFPDD), Xuanfei Baidu granule (XFBD), Xuebijing injection (XBJ), and Huashi Baidu granule (HSBD) for treating COVID-19 infected individuals. Among these six TCM formulas, JHQGG and LHQWG effectively treated mild/moderate and severe COVID-19 infections. XFBD therapy is recommended for mild COVID-19 infections, while XBJ and HSBD effectively treat severe COVID-19 infections. The internationalization of TCM faces many challenges due to the absence of a clinical efficacy evaluation system, insufficient research evidence, and a lack of customer trust across the globe. Therefore, evidence-based research is crucial in battling this infectious disease. This review summarizes SARS-CoV-2 pathogenesis and the history of TCM used to treat various viral epidemics, with a focus on six TCM formulas. Based on the evidence, we also discuss the composition of various TCM formulas, their underlying therapeutic mechanisms, and their role in curing COVID-19 infections. In addition, we evaluated the roles of six TCM formulas in the treatment and prevention of other influenza diseases, such as influenza A (H1N1), severe acute respiratory syndrome (SARS), and Middle East respiratory syndrome (MERS). Furthermore, we highlighted the efficacy and side effects of single prescriptions used in TCM formulas.
Collapse
|
24
|
Jing Si Herbal Drink as a prospective adjunctive therapy for COVID-19 treatment: Molecular evidence and mechanisms. PHARMACOLOGICAL RESEARCH - MODERN CHINESE MEDICINE 2022. [PMCID: PMC8654706 DOI: 10.1016/j.prmcm.2021.100024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background SARS-CoV-2 has led to a sharp increase in the number of hospitalizations and deaths from pneumonia and multiorgan disease worldwide; therefore, SARS-CoV-2 has become a global health problem. Supportive therapies remain the mainstay treatments against COVID-19, such as oxygen inhalation, antiviral drugs, and antibiotics. Traditional Chinese medicine (TCM) has been shown clinically to relieve the symptoms of COVID-19 infection, and TCMs can affect the pathogenesis of SARS-CoV-2 infection in vitro. Jing Si Herbal Drink (JSHD), an eight herb formula jointly developed by Tzu Chi University and Tzu Chi Hospital, has shown potential as an adjuvant treatment for COVID-19 infection. A randomized controlled trial (RCT) of JSHD as an adjuvant treatment in patients with COVID-19 infection is underway Objectives This article aims to explore the efficacy of the herbs in JSHD against COVID-19 infection from a mechanistic standpoint and provide a reference for the rational utilization of JSHD in the treatment of COVID-19. Method We compiled evidence of the herbs in JSHD to treat COVID-19 in vivo and in vitro. Results We described the efficacy and mechanism of action of the active ingredients in JSHD to treat COVID-19 based on experimental evidence. JSHD includes 5 antiviral herbs, 7 antioxidant herbs, and 7 anti-inflammatory herbs. In addition, 2 herbs inhibit the overactive immune system, 1 herb reduces cell apoptosis, and 1 herb possesses antithrombotic ability. Conclusion Although experimental data have confirmed that the ingredients in JSHD are effective against COVID-19, more rigorously designed studies are required to confirm the efficacy and safety of JSHD as a COVID-19 treatment.
Collapse
|
25
|
Pagano E. Phytocompounds and COVID-19: Two years of knowledge. Phytother Res 2022; 36:2267-2271. [PMID: 35170093 PMCID: PMC9111037 DOI: 10.1002/ptr.7420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 01/30/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Ester Pagano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Naples, Italy
| |
Collapse
|
26
|
Bisht D, Rashid M, Arya RKK, Kumar D, Chaudhary SK, Rana VS, Sethiya NK. Revisiting liquorice ( Glycyrrhiza glabra L.) as anti-inflammatory, antivirals and immunomodulators: Potential pharmacological applications with mechanistic insight. PHYTOMEDICINE PLUS : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 2:100206. [PMID: 35403088 PMCID: PMC8683220 DOI: 10.1016/j.phyplu.2021.100206] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 04/27/2023]
Abstract
BACKGROUND Glycyrrhiza glabra L. (G. glabra) commonly known as liquorice is one of the highly exploited and utilized medicinal plant of the world. Since ancient times liquorice is considered as an auspicious and valuable traditional medicine across the world for treatment of various ailments. METHOD Several electronic online scientific databases such as Science Direct, PubMed, Scopus, Scifinder, Google Scholar, online books and reports were assessed for collecting information. All the collected information was classified into different sections to meet the objective of the paper. RESULTS The electronic database search yielded 3908 articles from different countries. Out of them one ninety-eight articles published between 1956 and 2021 were included, corresponding to all detailed review on G. glabra and research on anti-inflammatories, antivirals and immunomodulatory through pre-clinical and clinical models. From all selective area of studies on G. glabra and its bioactive components it was established (including molecular mechanisms) as a suitable remedy as per the current requirement of pandemic situation arise through respiratory tract infection. CONCLUSION Different relevant studies have been thoroughly reviewed to gain an insight on utility of liquorice and its bioactive constituents for anti-inflammatories, antivirals and immunomodulatory effects with special emphasized for prevention and treatment of COVID-19 infection with possible mechanism of action at molecular level. Proposed directions for future research are also outlined to encourage researchers to find out various mechanistic targets and useful value added products of liquorice in future investigations.
Collapse
Affiliation(s)
- Dheeraj Bisht
- Department of Pharmaceutical Sciences, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Mohmmad Rashid
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Dentistry and Pharmacy, Buraydah Colleges, Al-Qassim, 31717, Saudi Arabia
| | - Rajeshwar Kamal Kant Arya
- Department of Pharmaceutical Sciences, Sir J. C. Bose Technical Campus Bhimtal, Kumaun University Nainital, Uttarakhand, 263136, India
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173 229, India
| | | | - Vijay Singh Rana
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| | - Neeraj K Sethiya
- Faculty of Pharmacy, DIT University, Dehradun, Uttarakhand, 248009, India
| |
Collapse
|
27
|
Huang J, Li JX, Ma LR, Xu DH, Wang P, Li LQ, Yu LL, Li Y, Li RZ, Zhang H, Zheng YH, Tang L, Yan PY. Traditional Herbal Medicine: A Potential Therapeutic Approach for Adjuvant Treatment of Non-small Cell Lung Cancer in the Future. Integr Cancer Ther 2022; 21:15347354221144312. [PMID: 36567455 PMCID: PMC9806388 DOI: 10.1177/15347354221144312] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/27/2022] Open
Abstract
Lung carcinoma is the primary reason for cancer-associated mortality, and it exhibits the highest mortality and incidence in developed and developing countries. Non-small cell lung cancer (NSCLC) and SCLC are the 2 main types of lung cancer, with NSCLC contributing to 85% of all lung carcinoma cases. Conventional treatment mainly involves surgery, chemoradiotherapy, and immunotherapy, but has a dismal prognosis for many patients. Therefore, identifying an effective adjuvant therapy is urgent. Historically, traditional herbal medicine has been an essential part of complementary and alternative medicine, due to its numerous targets, few side effects and substantial therapeutic benefits. In China and other East Asian countries, traditional herbal medicine is increasingly popular, and is highly accepted by patients as a clinical adjuvant therapy. Numerous studies have reported that herbal extracts and prescription medications are effective at combating tumors. It emphasizes that, by mainly regulating the P13K/AKT signaling pathway, the Wnt signaling pathway, and the NF-κB signaling pathway, herbal medicine induces apoptosis and inhibits the proliferation and migration of tumor cells. The present review discusses the anti-NSCLC mechanisms of herbal medicines and provides options for future adjuvant therapy in patients with NSCLC.
Collapse
Affiliation(s)
- Jie Huang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Jia-Xin Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Lin-Rui Ma
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Dong-Han Xu
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Peng Wang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Li-Qi Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Li-Li Yu
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Yu Li
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Run-Ze Li
- Second Affiliated Hospital of Guangzhou
University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hao Zhang
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Yu-Hong Zheng
- Macau University of Science and
Technology, Taipa, Macau, China
| | - Ling Tang
- Southern Medical University, Guangzhou,
Guangdong, China
- Guangdong Provincial Key Laboratory of
Chinese Medicine Pharmaceutics, Guangzhou, Guangdong, China
- Guangdong Provincial Engineering
Laboratory of Chinese Medicine Preparation Technology, Guangzhou, Guangdong,
China
| | - Pei-Yu Yan
- Macau University of Science and
Technology, Taipa, Macau, China
| |
Collapse
|
28
|
Lam HY, Tergaonkar V, Kumar AP, Ahn KS. Mast cells: Therapeutic targets for COVID-19 and beyond. IUBMB Life 2021; 73:1278-1292. [PMID: 34467628 PMCID: PMC8652840 DOI: 10.1002/iub.2552] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023]
Abstract
Mast cells (MCs) are innate immune cells that widely distribute throughout all tissues and express a variety of cell surface receptors. Upon activation, MCs can rapidly release a diverse array of preformed mediators residing within their secretory granules and newly synthesize a broad spectrum of inflammatory and immunomodulatory mediators. These unique features of MCs enable them to act as sentinels in response to rapid changes within their microenvironment. There is increasing evidence now that MCs play prominent roles in other pathophysiological processes besides allergic inflammation. In this review, we highlight the recent findings on the emerging roles of MCs in the pathogenesis of coronavirus disease-2019 (COVID-19) and discuss the potential of MCs as novel therapeutic targets for COVID-19 and other non-allergic inflammatory diseases.
Collapse
Affiliation(s)
- Hiu Yan Lam
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Vinay Tergaonkar
- Laboratory of NF‐κB SignalingInstitute of Molecular and Cell Biology (IMCB)SingaporeSingapore
- Department of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- Department of Pathology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
- National University Cancer InstituteNational University Health SystemSingaporeSingapore
| | - Kwang Seok Ahn
- Department of Science in Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
29
|
Targeting autophagy with natural products to prevent SARS-CoV-2 infection. J Tradit Complement Med 2021; 12:55-68. [PMID: 34664025 PMCID: PMC8516241 DOI: 10.1016/j.jtcme.2021.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 01/18/2023] Open
Abstract
Autophagy is a catabolic process that maintains internal homeostasis and energy balance through the lysosomal degradation of redundant or damaged cellular components. During virus infection, autophagy is triggered both in parenchymal and in immune cells with different finalistic objectives: in parenchymal cells, the goal is to destroy the virion particle while in macrophages and dendritic cells the goal is to expose virion-derived fragments for priming the lymphocytes and initiate the immune response. However, some viruses have developed a strategy to subvert the autophagy machinery to escape the destructive destiny and instead exploit it for virion assembly and exocytosis. Coronaviruses (like SARS-CoV-2) possess such ability. The autophagy process requires a set of proteins that constitute the core machinery and is controlled by several signaling pathways. Here, we report on natural products capable of interfering with SARS-CoV-2 cellular infection and replication through their action on autophagy. The present study provides support to the use of such natural products as adjuvant therapeutics for the management of COVID-19 pandemic to prevent the virus infection and replication, and so mitigating the progression of the disease.
Collapse
|
30
|
Zrieq R, Ahmad I, Snoussi M, Noumi E, Iriti M, Algahtani FD, Patel H, Saeed M, Tasleem M, Sulaiman S, Aouadi K, Kadri A. Tomatidine and Patchouli Alcohol as Inhibitors of SARS-CoV-2 Enzymes (3CLpro, PLpro and NSP15) by Molecular Docking and Molecular Dynamics Simulations. Int J Mol Sci 2021; 22:10693. [PMID: 34639036 PMCID: PMC8509278 DOI: 10.3390/ijms221910693] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 12/24/2022] Open
Abstract
Considering the current dramatic and fatal situation due to the high spreading of SARS-CoV-2 infection, there is an urgent unmet medical need to identify novel and effective approaches for prevention and treatment of Coronavirus disease (COVID 19) by re-evaluating and repurposing of known drugs. For this, tomatidine and patchouli alcohol have been selected as potential drugs for combating the virus. The hit compounds were subsequently docked into the active site and molecular docking analyses revealed that both drugs can bind the active site of SARS-CoV-2 3CLpro, PLpro, NSP15, COX-2 and PLA2 targets with a number of important binding interactions. To further validate the interactions of promising compound tomatidine, Molecular dynamics study of 100 ns was carried out towards 3CLpro, NSP15 and COX-2. This indicated that the protein-ligand complex was stable throughout the simulation period, and minimal backbone fluctuations have ensued in the system. Post dynamic MM-GBSA analysis of molecular dynamics data showed promising mean binding free energy 47.4633 ± 9.28, 51.8064 ± 8.91 and 54.8918 ± 7.55 kcal/mol, respectively. Likewise, in silico ADMET studies of the selected ligands showed excellent pharmacokinetic properties with good absorption, bioavailability and devoid of toxicity. Therefore, patchouli alcohol and especially, tomatidine may provide prospect treatment options against SARS-CoV-2 infection by potentially inhibiting virus duplication though more research is guaranteed and secured.
Collapse
Affiliation(s)
- Rafat Zrieq
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
| | - Iqrar Ahmad
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Emira Noumi
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
- Laboratory of Bioresources: Integrative Biology and Valorization, (LR14-ES06), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- Phytochem Lab., Department of Agricultural and Environmental Sciences, Università degli Studi di Milano, 20133 Milano, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM), 50121 Firenze, Italy
- BAT Center—Interuniversity Center for Studies on Bioispired Agro-Environmental Technology, University of Napoli “Federico II”, Portici, 80055 Napoli, Italy
| | - Fahad D. Algahtani
- Department of Public Health, College of Public Health and Health Informatics, University of Ha’il, Ha’il 81451, Saudi Arabia; (R.Z.); (F.D.A.)
- Molecular Diagnostic and Personalized Therapeutics Unit, University of Ha’il, Ha’il 81451, Saudi Arabia
| | - Harun Patel
- Division of Computer Aided Drug Design, Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra 425405, India; (I.A.); (H.P.)
| | - Mohd Saeed
- Department of Biology, College of Science, University of Ha’il City, P.O. 2440, Ha’il 2440, Saudi Arabia; (E.N.); (M.S.)
| | - Munazzah Tasleem
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Shadi Sulaiman
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Ha’il, Ha’il 81451, Saudi Arabia;
| | - Kaïss Aouadi
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia;
- Faculty of Science of Monastir, University of Monastir, Avenue of the Environment, Monastir 5019, Tunisia
| | - Adel Kadri
- Department of Chemistry, Faculty of Science and Arts of Baljurashi, Albaha University, Al Bahah 65731, Saudi Arabia;
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia
| |
Collapse
|
31
|
Jezova D, Karailiev P, Karailievova L, Puhova A, Murck H. Food Enrichment with Glycyrrhiza glabra Extract Suppresses ACE2 mRNA and Protein Expression in Rats-Possible Implications for COVID-19. Nutrients 2021; 13:2321. [PMID: 34371831 PMCID: PMC8308790 DOI: 10.3390/nu13072321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/12/2022] Open
Abstract
Angiotensin converting enzyme 2 (ACE2) is a key entry point of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus known to induce Coronavirus disease 2019 (COVID-19). We have recently outlined a concept to reduce ACE2 expression by the administration of glycyrrhizin, a component of Glycyrrhiza glabra extract, via its inhibitory activity on 11beta hydroxysteroid dehydrogenase type 2 (11betaHSD2) and resulting activation of mineralocorticoid receptor (MR). We hypothesized that in organs such as the ileum, which co-express 11betaHSD2, MR and ACE2, the expression of ACE2 would be suppressed. We studied organ tissues from an experiment originally designed to address the effects of Glycyrrhiza glabra extract on stress response. Male Sprague Dawley rats were left undisturbed or exposed to chronic mild stress for five weeks. For the last two weeks, animals continued with a placebo diet or received a diet containing extract of Glycyrrhiza glabra root at a dose of 150 mg/kg of body weight/day. Quantitative PCR measurements showed a significant decrease in gene expression of ACE2 in the small intestine of rats fed with diet containing Glycyrrhiza glabra extract. This effect was independent of the stress condition and failed to be observed in non-target tissues, namely the heart and the brain cortex. In the small intestine we also confirmed the reduction of ACE2 at the protein level. Present findings provide evidence to support the hypothesis that Glycyrrhiza glabra extract may reduce an entry point of SARS-CoV-2. Whether this phenomenon, when confirmed in additional studies, is linked to the susceptibility of cells to the virus requires further studies.
Collapse
Affiliation(s)
- Daniela Jezova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (D.J.); (P.K.); (L.K.); (A.P.)
| | - Peter Karailiev
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (D.J.); (P.K.); (L.K.); (A.P.)
| | - Lucia Karailievova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (D.J.); (P.K.); (L.K.); (A.P.)
| | - Agnesa Puhova
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, 84505 Bratislava, Slovakia; (D.J.); (P.K.); (L.K.); (A.P.)
| | - Harald Murck
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, 35039 Marburg, Germany
- Murck-Neuroscience, Westfield, NJ 07090, USA
| |
Collapse
|