1
|
Gao T, Wang C, Yang X, He Z, Wang Y, Mi W. Hyperoside ameliorates neuropathic pain by modulating the astroglial reactivity in the vlPAG. Neuropharmacology 2025; 266:110276. [PMID: 39716641 DOI: 10.1016/j.neuropharm.2024.110276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 12/25/2024]
Abstract
Hyperoside, a natural flavonoid, exhibits a wide range of biological activities, including analgesic effects on acute and chronic inflammatory pain. This study illustrates that repeated intraperitoneal administration or microinjection of hyperoside into the ventrolateral periaqueductal grey (vlPAG) alleviated mechanical allodynia, cold allodynia, and abnormal gait induced by spared nerve injury (SNI) in male mice. Furthermore, repeated hyperoside administration suppressed SNI-induced astrocyte reactivity in the vlPAG. Moreover, hyperoside alleviated the pain behaviors resulting from the pharmacogenetic activation of vlPAG astrocytes. These results suggest that hyperoside may effectively mitigate neuropathic pain and inhibit astroglial reactivity in the vlPAG, highlighting its potential as a viable therapeutic intervention for chronic neuropathic pain.
Collapse
Affiliation(s)
- Tianchi Gao
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Chenghao Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China; College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai'an, 271016, China
| | - Xiaotong Yang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhiwei He
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanqing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenli Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Science, Institutes of Integrative Medicine, Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Zhang M, Sun X, Zhao F, Chen Z, Liu M, Wang P, Lu P, Wang X. Tinglu Yixin granule inhibited fibroblast-myofibroblast transdifferentiation to ameliorate myocardial fibrosis in diabetic mice. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118980. [PMID: 39454704 DOI: 10.1016/j.jep.2024.118980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myocardial fibrosis is one of the pathological characteristics of advanced diabetic cardiomyopathy (DCM) and serves as the strong evidence of poor prognosis. Among them, the transdifferentiation of cardiac fibroblasts (CFs) may play a crucial role in the development of myocardial fibrosis in DCM. Tinglu Yixin granule (TLYXG) has been clinically used for many years and can significantly improve cardiac function of patients with DCM. However, the effect of TLYXG on myocardial fibrosis in DCM remains unknown, and the underlying mechanisms of its efficacy have yet to be fully understood. AIM OF THE STUDY This study aimed to investigate the impact and underlying mechanism of TLYXG on myocardial fibrosis in diabetes mice. MATERIALS AND METHODS The bioactive compounds in TLYXG were identified using ultra-performance liquid chromatography-mass spectrometry (UPLC-MS). The potential mechanism of TLYXG in treating DCM was predicted using network pharmacology combined with molecular docking and protein-protein docking. The mice model of type 2 diabetes were established by intraperitoneal injection of streptozotocin (STZ) and the high-fat diet (HFD). Indicators of pancreatic islet function, lipids, oxidative stress, and inflammatory factors were tested using kits. Cardiac function was assessed in diabetic mice using echocardiography. Histologic staining was performed to evaluate myocardial hypertrophy and fibrosis. Mechanistically, the hypothesis was tested through rescue experiments. The expression levels of transient receptor potential channel 6 (TRPC6), transforming growth factor-β1 (TGF-β1), collagen I (COL-I) and alpha-smooth muscle actin (α-SMA), along with the mRNA and phosphorylation levels of SMAD family member 3 (Smad3) and protein 38 mitogen-activated protein kinase (p38 MAPK), were assessed using quantitative RT-qPCR, Western blot, immunohistochemistry, and immunofluorescence. Neonatal lactating mice were used to extract primary CFs for vitro experiments. Scratch and transwell assays were conducted to assess CFs migration and invasion abilities. Western blot and immunofluorescence were used to evaluate the expression levels of CFs transdifferentiation markers COL-I and α-SMA. RESULTS A total of 168 active ingredients were detected in TLYXG based on UPLC-MS and databases. Network pharmacology indicated that TLYXG could improve DCM through inflammatory mediator regulation of TRP channels, TGF-beta signaling pathway, and MAPK signaling pathway. ELISA results showed that TLYXG could ameliorate metabolic levels, inflammation, and oxidative stress in diabetic mice. Echocardiography suggested that TLYXG improved cardiac systolic and diastolic dysfunction in diabetic mice. Histological analysis revealed that TLYXG alleviated myocardial fibrosis in diabetes mice. Additionally, molecular docking analysis indicated strong binding activity between the main active ingredients of TLYXG and TRPC6 of the TRP family. At the molecular level, TLYXG reduced the mRNA and protein expression levels of TRPC6 and TGF-β1 and inhibited the mRNA and phosphorylation levels of Smad3 and p38 MAPK. Furthermore, TLYXG inhibited CFs migration and invasion, and reduced the expression levels of the CFs transdifferentiation markers COL-I and α-SMA. CONCLUSION TLYXG inhibited the proliferation, migration, invasion and transdifferentiation of CFs by suppressing TGF-β1/Smad3/p38 MAPK signaling through down-regulation of TRPC6, thereby ameliorating myocardial fibrosis in diabetes mice.
Collapse
Affiliation(s)
- Meng Zhang
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xuemei Sun
- Department of Cardiology, Changzhou Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, 213004, China
| | - Fusen Zhao
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Zhaoyang Chen
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Min Liu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengqun Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Pengyu Lu
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China
| | - Xindong Wang
- The Third Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| |
Collapse
|
3
|
Mohamed Yusoff AA, Mohd Khair SZN. Unraveling mitochondrial dysfunction: comprehensive perspectives on its impact on neurodegenerative diseases. Rev Neurosci 2025; 36:53-90. [PMID: 39174305 DOI: 10.1515/revneuro-2024-0080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024]
Abstract
Neurodegenerative diseases represent a significant challenge to modern medicine, with their complex etiology and progressive nature posing hurdles to effective treatment strategies. Among the various contributing factors, mitochondrial dysfunction has emerged as a pivotal player in the pathogenesis of several neurodegenerative disorders. This review paper provides a comprehensive overview of how mitochondrial impairment contributes to the development of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, driven by bioenergetic defects, biogenesis impairment, alterations in mitochondrial dynamics (such as fusion or fission), disruptions in calcium buffering, lipid metabolism dysregulation and mitophagy dysfunction. It also covers current therapeutic interventions targeting mitochondrial dysfunction in these diseases.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Siti Zulaikha Nashwa Mohd Khair
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, 16150 Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
4
|
Zhou Q, Tang H, Wang Y, Hua Y, Ouyang X, Li L. Hyperoside mitigates PCOS-associated adipogenesis and insulin resistance by regulating NCOA2-mediated PPAR-γ ubiquitination and degradation. Life Sci 2025; 364:123417. [PMID: 39880157 DOI: 10.1016/j.lfs.2025.123417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
AIMS Polycystic ovary syndrome (PCOS) is closely associated with metabolic disorders such as insulin resistance and obesity, but the role of adipogenesis in its pathophysiology remains unclear. This study investigates the role of adipogenesis in PCOS development and evaluates whether hyperoside (HPS), an anti-adipogenic herbal compound, can improve PCOS by inhibiting adipogenesis. MAIN METHODS A combination of in vivo and in vitro models was used to assess the impact of HPS on ovarian function, insulin resistance, and adipogenesis. PCOS mice were treated with HPS, and their ovarian function and insulin resistance were evaluated. In vitro adipocyte differentiation assays were conducted to examine the effects of HPS on adipogenesis. The target of HPS was analyzed by Surface plasmon resonance. The expression levels of NCOA2 and PPAR-γ ubiquitination and degradation were analyzed using quantitative real-time PCR and Western blotting. Additionally, NCOA2 knockdown experiments were performed to investigate its role in ovarian function, insulin resistance, and adipogenesis in PCOS mice. KEY FINDINGS HPS treatment significantly improved ovarian function, reduced insulin resistance, and suppressed adipogenesis in PCOS mice. Mechanistically, HPS inhibited adipogenesis by reducing NCOA2 expression, thereby preventing PPAR-γ ubiquitination and degradation. Knockdown of NCOA2 further validated its role by improving ovarian function, insulin resistance, and adipogenesis in PCOS models. SIGNIFICANCE These findings demonstrate that HPS alleviates PCOS by regulating NCOA2-mediated PPAR-γ ubiquitination and degradation, offering new insights into the role of adipogenesis in PCOS pathophysiology.
Collapse
Affiliation(s)
- Qi Zhou
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China; Central Laboratory, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, 200137, China
| | - Hong Tang
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yongfeng Wang
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Yu Hua
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Xiaoling Ouyang
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Linxia Li
- Departments of Gynaecology and Obstetrics, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China.
| |
Collapse
|
5
|
Adedara IA, Weis GCC, Monteiro CS, Soares FAA, Rocha JBT, Schetinger MRC, Emanuelli T, Aschner M. Versatility of Caenorhabditis elegans as a Model Organism for Evaluating Foodborne Neurotoxins and Food Bioactive Compounds in Nutritional Neuroscience. Mol Neurobiol 2025:10.1007/s12035-025-04705-y. [PMID: 39863742 DOI: 10.1007/s12035-025-04705-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Epidemiological evidence has shown that the regular ingestion of vegetables and fruits is associated with reduced risk of developing chronic diseases. The introduction of the 3Rs (replacement, reduction, and refinement) principle into animal experiments has led to the use of valid, cost-effective, and efficient alternative and complementary invertebrate animal models which are simpler and lower in the phylogenetic hierarchy. Caenorhabditis elegans (C. elegans), a nematode with a much simpler anatomy and physiology compared to mammals, share similarities with humans at the cellular and molecular levels, thus making it a valid model organism in neurotoxicology. This review explores the versatility of C. elegans in elucidating the neuroprotective mechanisms elicited by food bioactive compounds against neurotoxic effects of food- and environmental-related contaminants. Several signaling pathways linked to the molecular basis of neuroprotection exerted by bioactive compounds in chemically induced or transgenic C. elegans models of neurodegenerative diseases are also discussed. Specifically, the modulatory effects of bioactive compounds on the DAF-16/FoxO and SKN-1/Nrf2 signaling pathways, stress resistance- and autophagy-related genes, and antioxidant defense enzyme activities were highlighted. Altogether, C. elegans represent a valuable model in nutritional neuroscience for the identification of promising neuroprotective agents and neurotherapeutic targets which could help in overcoming the limitations of current therapeutic agents for neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Isaac A Adedara
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil.
| | - Grazielle C C Weis
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Camila S Monteiro
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Felix A A Soares
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, 97105-900, Brazil
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, 97105-900, Brazil
| | - Maria R C Schetinger
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences, Federal University of Santa Maria, Camobi, Santa Maria, 97105-900, Brazil
| | - Tatiana Emanuelli
- Department of Food Technology and Science, Center of Rural Sciences, Federal University of Santa Maria, Camobi, Santa Maria, RS, 97105-900, Brazil
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, USA
| |
Collapse
|
6
|
Zhou P, Xu HJ, Wang L. Cardiovascular protective effects of natural flavonoids on intestinal barrier injury. Mol Cell Biochem 2025:10.1007/s11010-025-05213-2. [PMID: 39820766 DOI: 10.1007/s11010-025-05213-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Natural flavonoids may be utilized as an important therapy for cardiovascular diseases (CVDs) caused by intestinal barrier damage. More research is being conducted on the protective properties of natural flavonoids against intestinal barrier injury, although the underlying processes remain unknown. Thus, the purpose of this article is to present current research on natural flavonoids to reduce the incidence of CVDs by protecting intestinal barrier injury, with a particular emphasis on intestinal epithelial barrier integrity (inhibiting oxidative stress, regulating inflammatory cytokine expression, and increasing tight junction protein expression). Furthermore, the mechanisms driving intestinal barrier injury development are briefly explored, as well as natural flavonoids having CVD-protective actions on the intestinal barrier. In addition, natural flavonoids with myocardial protective effects were docked with ZO-1 targets to find natural products with higher activity. These natural flavonoids can improve intestinal mechanical barrier function through anti-oxidant or anti-inflammatory mechanism, and then prevent the occurrence and development of CVDs.
Collapse
Affiliation(s)
- Peng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Hui-Juan Xu
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China
| | - Liang Wang
- Department of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, Anhui, China.
- Research Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, Anhui, China.
| |
Collapse
|
7
|
Yüksel G, Özhan Y, Güreşçi D, Güzelmeriç E, Şen NB, Bedir İ, Senol O, Emre G, Telci D, Petrikaitė V, Sipahi H. Tilia species (linden) exert anti-cancer effects on MIA PaCa-2 cells through the modulation of oxidative stress and inflammation. Sci Rep 2025; 15:2317. [PMID: 39833445 PMCID: PMC11747248 DOI: 10.1038/s41598-025-86457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
This study investigated the anti-cancer effects of the chemically characterized Tilia species (linden) on MIA PaCa-2 cells by analyzing various cancer-triggering mechanisms, including oxidative stress and inflammation status. Extracts from the flowers, bracts, and inflorescences of T. cordata, T. platyphyllos, T. rubra, and T. tomentosa were evaluated for antioxidant activity; subsequently, their ability to mitigate inflammation was assessed through in vitro nitrite assays in LPS-induced RAW264.7 cells. The anticancer potentials of the extracts against MIA PaCa-2 pancreatic cancer cells were investigated in 2D (cytotoxic effect) and 3D (effect on spheroid growth) models in vitro. All investigated Tilia species displayed remarkable antioxidant activity and significantly inhibited LPS-induced nitrite, IL-6, and PGE2 production. Extract from T. rubra bracts showed the highest cytotoxic activity against MIA PaCa-2 cells with an IC50 value of 0.16 mg/mL, as well as the most significant delay on spheroid growth, which was further confirmed through the arrest in cell cycle. In the Annexin V cell death assays of T. rubra, cells treated with the flower extract exhibited the highest rate of necrotic population with 66.53%. Overall, our results highlight a potential use for Tilia extracts, particularly T. rubra, in pancreatic cancer treatment by modulating cell death.
Collapse
Affiliation(s)
- Gamze Yüksel
- Faculty of Pharmacy, Department of Toxicology, Yeditepe University, 34755, Istanbul, Türkiye
| | - Yağmur Özhan
- Faculty of Pharmacy, Department of Toxicology, Yeditepe University, 34755, Istanbul, Türkiye
| | - Dilara Güreşçi
- Faculty of Pharmacy, Department of Toxicology, Yeditepe University, 34755, Istanbul, Türkiye
| | - Etil Güzelmeriç
- Faculty of Pharmacy, Department of Pharmacognosy, Yeditepe University, 34755, Istanbul, Türkiye
| | - Nisa Beril Şen
- Faculty of Pharmacy, Department of Pharmacognosy, Yeditepe University, 34755, Istanbul, Türkiye
| | - İpek Bedir
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Türkiye
| | - Onur Senol
- East Anatolian High Technology Research and Application Center (DAYTAM), Atatürk University, 25240, Erzurum, Türkiye
| | - Gizem Emre
- Faculty of Pharmacy, Department of Pharmaceutical Botany, Marmara University, 34854, Istanbul, Türkiye
| | - Dilek Telci
- Department of Genetics and Bioengineering, Yeditepe University, 34755, Istanbul, Türkiye
| | - Vilma Petrikaitė
- Lithuanian University of Health Sciences, LT-44307, Kaunas, Lithuania
- Life Sciences Center, Institute of Biotechnology, Vilnius University, LT-10257, Vilnius, Lithuania
| | - Hande Sipahi
- Faculty of Pharmacy, Department of Toxicology, Yeditepe University, 34755, Istanbul, Türkiye.
| |
Collapse
|
8
|
Chen K, Lu S, Shi K, Ali MH, Liu J, Yin F, Yin W. Hyperoside attenuates sepsis-induced acute lung injury by Nrf2 activation and ferroptosis inhibition. Int Immunopharmacol 2025; 145:113734. [PMID: 39657533 DOI: 10.1016/j.intimp.2024.113734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/11/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Sepsis-induced acute lung injury (ALI) is a life-threatening condition associated with high morbidity and mortality rates in intensive care units (ICUs). Emerging evidence from clinical studies suggests that compounds derived from traditional Chinese medicine (TCM) have shown promising therapeutic effects in treating sepsis-induced ALI. Hyperoside is a bioactive compound extracted from TCM. Prior studies reported that hyperoside exhibits potent anti-inflammatory, antioxidant, and organ-protective properties, however, the underlying mechanisms of its effects on ALI remain unclear. Hyperoside pretreatment significantly reduced inflammation, iron accumulation, and lipid peroxidation in the pulmonary tissues of ALI mice induced by CLP and in LPS-stimulated MLE-12 cells. In particular, hyperoside preferentially binds with Keap1 at Arg380 and Arg415, thereby inhibiting the ubiquitin-mediated degradation of nuclear Nrf2, promoting its translocation to the nucleus, and leading to upregulation of anti-ferroptosis gene expression. Moreover, the protective effects of hyperoside were significantly abrogated after Nrf2 expression was silenced or its activity was inhibited by chemical inhibitors, highlighting that Nrf2 is critically involved in the impact of hyperoside. This study confirms that hyperoside exhibits a therapeutically protective effect against sepsis-induced ALI by inhibiting ferroptosis through Nrf2-mediated signaling pathway. Hyperoside acts as an Nrf2 activator by preferentially binding to Arg380 and Arg415 of Keap1 and disrupting the Keap1/Nrf2 interaction.
Collapse
Affiliation(s)
- Kuida Chen
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shipeng Lu
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Ke Shi
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China; Medical Research Center, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu 225001, China
| | - Mustafa Hussein Ali
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jian Liu
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Fangzhou Yin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Wu Yin
- State Key Laboratory of Pharmaceutical Biotechnology, College of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Zhao K, Zhou F, Lu Y, Gao T, Wang R, Xie M, Wang H. Hyperoside alleviates depressive-like behavior in social defeat mice by mediating microglial polarization and neuroinflammation via TRX1/NLRP1/Caspase-1 signal pathway. Int Immunopharmacol 2025; 145:113731. [PMID: 39647288 DOI: 10.1016/j.intimp.2024.113731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/10/2024]
Abstract
The primary objective of this study was to investigate the potential pharmacological effects of Hyperoside (Hyp) extract on chronic social defeat stress (CSDS)-induced depression-like behavior in mice. We established CSDS mice to evaluate the antidepressant effects of Hyp. Additionally, We assessed the changes in neuroinflammatory factors in the TRX1/NLRP1/Caspase-1 signaling pathway using adeno-associated virus (AAV) and BV2 microglial cells. The expression levels of TRX1 protein and BDNF also increased by Hyp, while NLRP1 and Caspase-1 a significant decrease. Additionally, Hyp was found to inhibit TRX1 ubiquitination in the microglial inflammation model. In both in vivo and in vitro experiments, it was found that Hyp significantly promotes microglial polarization towards the M2 phenotype in the hippocampus and alleviates neuroinflammation, thereby improving depression-like behavior in CSDS mice. This is associated with the regulation of TRX1 ubiquitination, which inhibits the expression levels of NLRP1 and Caspase-1 proteins.
Collapse
Affiliation(s)
- Keke Zhao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Fangling Zhou
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Youyuan Lu
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian Gao
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Rui Wang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Mingxia Xie
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410007, China
| | - Hanqing Wang
- College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan, Ningxia 750004, China; Ningxia Regional Characteristic Traditional Chinese Medicine Collaborative Innovation Center Co-constructed by the Province and Ministry, Ningxia Engineering and Technology Research Center for Modernization of Regional Characteristic Traditional Chinese Medicine, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
10
|
Jin Z, Wu Y, Zhang Y, Feng S, Hu G, Liu H, Zhao Y, Xu J. Enrichment of Ginseng Rare Sapogenin 25-OH-PPT and Its Protective Effect on Myocardial Fibrosis. Molecules 2024; 29:5813. [PMID: 39683971 DOI: 10.3390/molecules29235813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Ginseng (Panax ginseng C. A. Meyer), a traditional Chinese medicine, and the rare ginsenosides contained in it have various physiological activities. 25-OH-PPT (T19) is a rare natural dammarane-type ginseng sapogenin. Pharmacological studies have shown that T19 has good hypoglycemic, antioxidant, and anti-inflammatory activities. In the research, we optimized the T19 enrichment process and explored the potential mechanism of T19 in myocardial oxidative stress. Firstly, we studied a hydrolysis process on ginseng stems and leaves ginsenosides. Optimization factors include acid types, acid concentrations, ultrasound time, and ultrasound temperature. To develop safer preparation conditions more suitable for production scaleup, we studied the difference in hydrolysis between inorganic acid and food acids. The results show that using hydrochloric acid to hydrolyze ginsenosides in ginseng stems and leaves can increase the content of T19 to 12.16%. When using edible citric acid, the maximum content of T19 is 1.9%. However, using citric acid for hydrolysis has higher safety and non-toxic properties. Meanwhile, the myocardial protective effect of T19 was evaluated, indicating that T19 could effectively reduce isoproterenol (ISO)-induced oxidative stress injury by reducing the levels of LDH and CK-MB and regulating the contents of antioxidant enzymes SOD, lipid peroxidation product MDA, and non-enzymatic antioxidant GSH in cardiomyocytes. Further study demonstrated that regulation of fibrosis markers Collagen I, Collagen III, and α-SMA was involved in the potential mechanism of T19 efficiency.
Collapse
Affiliation(s)
- Zixuan Jin
- School of Functional Food & Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuemin Wu
- School of Functional Food & Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanyan Zhang
- School of Functional Food & Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Siqi Feng
- School of Functional Food & Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guotao Hu
- School of Functional Food & Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hairong Liu
- School of Functional Food & Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China
| | - Jing Xu
- School of Functional Food & Wine, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
11
|
Jiang L, Gong Y, Zhao Y, Dong W, Guo L, Ju J, Su N. Changes in Biochemical Composition and Nutrient Materials in Apocynum pictum Honey During Storage. Foods 2024; 13:3790. [PMID: 39682862 DOI: 10.3390/foods13233790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Apocynum pictum (A. pictum) honey is rich in effective ingredients including flavonoids, terpenes, and alkaloids that are beneficial to human health. In this study, widely targeted metabolomics were used to detect the plant-derived secondary metabolites of the same batch of A. pictum honey from 2022 to 2024, in order to explore whether storage time changes the quality of A. pictum honey, especially the content of plant-derived secondary metabolites with important health benefits. The results showed that storage time had no significant effect on the content of sugars, proteins, and other major components in A. pictum honey. At the same time, we also found that although storage time had an impact on the content of some secondary metabolites such as flavonoids in A. pictum honey, the changes in the content of the characteristic active ingredient, hyperoside, in A. pictum honey were not significant. These findings suggest that storage time has a minimal impact on the quality of A. pictum honey. This study provides a theoretical basis for the rational storage of A. pictum honey.
Collapse
Affiliation(s)
- Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yanning Gong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanqing Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Leyan Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Ju
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
12
|
Wei J, Chai Q, Qin Y, Li L, Guo C, Lu Z, Liu H. Hyperoside induces ferroptosis in chronic myeloid leukemia cells by targeting NRF2. Mol Med 2024; 30:224. [PMID: 39573995 PMCID: PMC11583796 DOI: 10.1186/s10020-024-01002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Hyperoside (quercetin-3-O-β-D-galactopyranoside) is a flavonol glycoside compound derived from plants in the Hypericum and Crataegus genera that reportedly exhibits an array of anti-inflammatory, antioxidant, and antitumor properties such that it has been used to treat various diseases. Whether it can serve as an effective treatment for chronic myeloid leukemia (CML) cells, however, has yet to be established. The present study was thus devised to assess the therapeutic effects of hyperoside on CML cells and to clarify the underlying mechanism of action. METHODS Cellular viability, proliferative activity, migration, and apoptotic death were respectively analyzed through CCK-8, EDU, transwell, and flow cytometry assays. RNA-seq and bioinformatics approaches were further employed to evaluate the mechanisms through which hyperoside influences CML cells, while analyses of reactive oxygen species (ROS) and free iron were detected with commercial kits. Transmission electron microscopy was used to assess mitochondrial morphology. Molecular docking, cellular thermal shift assay (CETSA), and drug affinity responsive target stability (DARTS) approaches were also used to explore the ability of hyperoside to target NRF2. RESULTS From a mechanistic perspective, hyperoside was able to inhibit SLC7A11/GPX4 signaling in a manner that was abrogated by the ferroptosis inhibitor ferrostatin-1. NRF2 was also closely associated with the inactivation of the SLC7A11/GPX4 axis mediated by hyperoside such that overexpressing NRF2 ablated the benefits associated with hyperoside treatment. CONCLUSIONS The present analyses indicate that hyperoside can target the NRF2/SLC7A11/GPX4 axis to induce ferroptotic CML cell death.
Collapse
MESH Headings
- NF-E2-Related Factor 2/metabolism
- NF-E2-Related Factor 2/genetics
- Humans
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Ferroptosis/drug effects
- Quercetin/pharmacology
- Quercetin/analogs & derivatives
- Molecular Docking Simulation
- Cell Line, Tumor
- Reactive Oxygen Species/metabolism
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Apoptosis/drug effects
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Junyi Wei
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Quanyou Chai
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Cardiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Yuqiao Qin
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Long Li
- Department of Cardiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunling Guo
- Department of Cardiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhaoyang Lu
- Department of Cardiology, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang Province, and Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China.
- Department of Cardiology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| | - Huimin Liu
- Institute of Immunology, Zhejiang University School of Medicine, 866 Yuhangtang Road, Hangzhou, 310058, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
- Department of Hematology, The Second Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
13
|
Viteri R, Espinoza F, Cornejo X, Simirgiotis MJ, Manzano P. Phytochemical profiling, antioxidant, enzymatic inhibitory, and antibacterial activities of Wigandia ecuadorensis. FRONTIERS IN PLANT SCIENCE 2024; 15:1481447. [PMID: 39574448 PMCID: PMC11578724 DOI: 10.3389/fpls.2024.1481447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 11/24/2024]
Abstract
Wigandia ecuadoriensis, a member of the Namaceae family, is a source of metabolites and has been traditionally used as an anti-inflammatory. This work aimed to determine the total phenolic content (TPC), total flavonoid content (TFC), antioxidant effect, inhibition of α-glucosidase and cholinesterase enzymes (AChE, BChE), and antibacterial activity of the methanolic extract (ME) and subfractions of Wigandia ecuadoriensis. The findings revealed that ME and its subfractions exhibited significant antioxidant capacity, with the ethyl acetate fraction being the most active, displaying an IC50 of 17.66 µg/mL against the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 10.31 µg/mL against 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS). This activity was attributed to its high total phenolic content (357.47 mg GAE/g). Furthermore, W. ecuadoriensis fractions showed marked antimicrobial properties against human pathogen strains with Minimum Bactericidal Concentration (MBC) values of 1.56-6.25 mg/mL for S. aureus, E. faecalis and E. coli. Furthermore, aqueous fraction exhibited slight inhibition of acetylcholinesterase (IC50: 915.98 µg/mL) and butyrylcholinesterase (IC50: 380.42 µg/mL). Interestingly, EF showed the greatest inhibitory effect of α-glucosidase (IC50: 38.44 µg/mL) which is more potent than the control used, acarbose (IC50: 179.07 µg/mL). UHPLC-QTOF-MS analysis identified forty compounds, including phenolic acids, flavonoids, saponins, terpenes, and fatty acyls. As far as we know, this is the first study to evaluate the chemical composition and biological potential of W. ecuadoriensis. Our results provide the first evidence to the chemical knowledge of the species W. ecuadoriensis and demonstrate its bioactive potential as an interesting source of secondary metabolites with possible beneficial properties for health.
Collapse
Affiliation(s)
- Rafael Viteri
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| | - Fernando Espinoza
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| | - Xavier Cornejo
- Herbario GUAY, Departamento de Botánica, Facultad de Ciencias Naturales, Universidad de Guayaquil, Guayaquil, Ecuador
| | - Mario J. Simirgiotis
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Patricia Manzano
- Centro de Investigaciones Biotecnológicas del Ecuador, ESPOL, Polytechnic University, ESPOL, Guayaquil, Ecuador
| |
Collapse
|
14
|
Yuan J, Dong X, Zhou S, Nao J. Pharmacological activities and therapeutic potential of Hyperoside in the treatment of Alzheimer's and Parkinson's diseases: A systemic review. Neuroscience 2024; 563:136-147. [PMID: 39489478 DOI: 10.1016/j.neuroscience.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders that significantly impact well-being. Hyperoside (HYP), a flavonoid found in various plant species, particularly within the genus Hypericin, exhibits diverse pharmacological properties. However, the precise mechanisms underlying the anti-AD and anti-PD effects of HYP remain unclear. This systematic review consolidated existing preclinical research on HYP by conducting a comprehensive literature survey and analysis. The objective was to corroborate the therapeutic efficacy of HYP in AD and PD models and to synthesize its potential therapeutic mechanisms. Searches were conducted in the PubMed, CNKI, and Web of Science databases. Reliability assessment of the 17 included studies confirmed the credibility of the mechanisms of action of HYP against AD and PD. We systematically assessed the neuroprotective potential of HYP in in vivo and in vitro models of AD and PD. Our findings indicated that HYP can mitigate, intervene in, and treat AD and PD animal models and associated cells through various mechanisms, including anti-oxidative, anti-inflammatory, anti-apoptotic, anti-Aβ aggregation, and cholinesterase inhibitory activities. Therefore, HYP potentially exerts anti-AD and anti-PD effects through diverse mechanisms, making it a promising candidate for therapeutic intervention in both AD and PD.
Collapse
Affiliation(s)
- Jiayu Yuan
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Siyu Zhou
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
15
|
Aghaei SM, Hosseini SM. Inflammation-related miRNAs in obesity, CVD, and NAFLD. Cytokine 2024; 182:156724. [PMID: 39106574 DOI: 10.1016/j.cyto.2024.156724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/08/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Obesity, cardiovascular diseases (CVD), and nonalcoholic fatty liver disease (NAFLD) pose significant worldwide health challenges, characterized by complex interplay among inflammatory pathways that underlie their development. In this review, we examine the contribution of inflammation and associated signaling molecules to the pathogenesis of these conditions, while also emphasizing the significant participation of non-coding RNAs (ncRNAs) in modulating inflammatory pathways. In the context of obesity, aberrant expression patterns of inflammatory-associated miRNAs play a contributory role in adipose tissue inflammation and insulin resistance, thereby exacerbating disturbances in metabolic homeostasis. Similarly, in CVD, dysregulated miRNA expression alters inflammatory reactions, disrupts endothelial function, and induces cardiac remodeling, thereby impacting the advancement of the disease. Moreover, in the context of NAFLD, inflammatory-associated miRNAs are implicated in mediating hepatic inflammation, lipid deposition, and fibrosis, underscoring their candidacy as promising therapeutic targets. Additionally, the competing endogenous RNA (ceRNA) network has emerged as a novel regulatory mechanism in the etiology of CVD, obesity, and NAFLD, wherein ncRNAs assume pivotal roles in facilitating communication across diverse molecular pathways. Moreover, in the concluding section, we underscored the potential efficacy of directing interventions towards inflammatory-related miRNAs utilizing herbal remedies and therapies based on exosome delivery systems as a promising strategy for ameliorating pathologies associated with inflammation in obesity, CVD, and NAFLD.
Collapse
Affiliation(s)
- Sayed Mohsen Aghaei
- Student Research Committee, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Sayed Mostafa Hosseini
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Wang Q, Ning Y, Zhang J, Du X, Xu Z, Hu Y, Gao F, Chen Y. Rapamycin and Hyperoside-Co-loaded Macrophage Delivery System Enhanced Pulmonary Fibrosis Therapy by Autophagy Upregulation and Epithelial-to-Mesenchymal Transition Inhibition. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48993-49002. [PMID: 39225760 DOI: 10.1021/acsami.4c07604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Pulmonary fibrosis is a lethal interstitial lung disease, for which current treatments are inadequate in halting its progression. A significant factor contributing to the development of fibrosis is insufficient autophagy, which leads to increased fibroblast proliferation and collagen deposition. However, treatments aimed at upregulating autophagy often cause further lung pathology due to the disruption of epithelial cell balance. In response, we have developed a novel macrophage delivery system loaded with an epithelial-to-mesenchymal transition inhibitor, hyperoside (HYP), and an autophagy inducer, rapamycin (RAP). This system targets the fibrotic areas of the lung through chemotaxis, releases liposomes via macrophage extracellular traps, and effectively inhibits fibroblast proliferation while restoring the alveolar structure through the combined effects of RAP and HYP, ultimately reducing lung pathology without causing systemic toxicity. Our findings not only highlight a promising method to enhance autophagy-based treatments for pulmonary fibrosis but also demonstrate the potential of macrophages as effective nanocarriers for drug delivery.
Collapse
Affiliation(s)
- Qi Wang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanmeng Ning
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Jinru Zhang
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xu Du
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zihan Xu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yongcheng Hu
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Feng Gao
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yanzuo Chen
- Pharmaceutical Engineering and Process of Chemical Engineering Research Center of Ministry of Education, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
17
|
Wei Q, Ouyang M, Guo X, Fu X, Liu T, Luo Y, Tang H, Yang Y, Gao X, Mao H. Effect of hyperoside on osteoporosis in ovariectomized mice through estrogen receptor α/ITGβ3 signaling pathway. Eur J Pharmacol 2024; 977:176666. [PMID: 38797313 DOI: 10.1016/j.ejphar.2024.176666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/23/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Osteoporosis is a highly prevalent bone metabolic disease in menopause due to estrogen deficiency. Hyperoside is a main compound in Semen cuscutae. Our team previously reported that Semen cuscutae has anti osteoporosis effect on ovariectomized mice by inhibiting bone resorption of osteoclasts. However, it is still unclear whether hyperoside affects osteoclast differentiation and bone resorption, and whether its anti-osteoporosis effect is related to an estrogen-like effect. This study investigates the potential mechanism of hyperoside's anti-osteoporotic effect by examining its impact on osteoclast differentiation and its relationship with the estrogen receptor. DXA, Micro-CT, TRAP staining, HE, and ELISA were used to assess the impact of hyperoside on OVX-induced osteoporosis. The effect of hyperoside on octeoclast differentiation was evaluated using TRAP activity assay, TRAP staining, F-actin staining. The activation of the estrogen receptor by hyperoside and its relationship with osteoclast differentiation were detected using dual-luciferase reporter assay and estrogen receptor antagonists. Our findings revealed that hyperoside (20-80 mg/kg) protect against OVX-induced osteoporosis, including increasing BMD and BMC and improving bone microstructure. Hyperoside inhibited osteoclast differentiation in a concentration dependent manner, whereas estrogen receptor α antagonists reversed its inhibitory effect osteoclast differentiation. Western blot results suggested that hyperoside inhibited TRAP, RANKL, c-Fos and ITG β3 protein expression in osteoclast or femoral bone marrow of ovariectomized mice. Our findings suggest that hyperoside inhibits osteoclast differentiation and protects OVX-induced osteoporosis through the ERα/ITGβ3 signaling pathway.
Collapse
Affiliation(s)
- Qiu Wei
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - MingHui Ouyang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaotong Guo
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Fu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ting Liu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yage Luo
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huajing Tang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yun Yang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Haoping Mao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
18
|
Fernando PDSM, Piao MJ, Herath HMUL, Kang KA, Hyun CL, Kim ET, Koh YS, Hyun JW. Hyperoside reduced particulate matter 2.5-induced endoplasmic reticulum stress and senescence in skin cells. Toxicol In Vitro 2024; 99:105870. [PMID: 38848825 DOI: 10.1016/j.tiv.2024.105870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 05/26/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Particulate matter 2.5 (PM2.5) causes skin aging, inflammation, and impaired skin homeostasis. Hyperoside, a flavanol glycoside, has been proposed to reduce the risk of diseases caused by oxidative stress. This study evaluated the cytoprotective potential of hyperoside against PM2.5-induced skin cell damage. Cultured human HaCaT keratinocytes were pretreated with hyperoside and treated with PM2.5. Initially, the cytoprotective and antioxidant ability of hyperoside against PM2.5 was evaluated. Western blotting was further employed to investigate endoplasmic reticulum (ER) stress and cellular senescence and for evaluation of cell cycle regulation-related proteins. Hyperoside inhibited PM2.5-mediated ER stress as well as mitochondrial damage. Colony formation assessment confirmed that PM2.5-impaired cell proliferation was restored by hyperoside. Moreover, hyperoside reduced the activation of PM2.5-induced ER stress-related proteins, such as protein kinase R-like ER kinase, cleaved activating transcription factor 6, and inositol-requiring enzyme 1. Hyperoside promoted cell cycle progression in the G0/G1 phase by upregulating the PM2.5-impaired cell cycle regulatory proteins. Hyperoside significantly reduced the expression of PM2.5-induced senescence-associated β-galactosidase and matrix metalloproteinases (MMPs), such as MMP-1 and MMP-9. Overall, hyperoside ameliorated PM2.5-impaired cell proliferation, ER stress, and cellular senescence, offering potential therapeutic implications for mitigating the adverse effects of environmental pollutants on skin health.
Collapse
Affiliation(s)
- Pincha Devage Sameera Madushan Fernando
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Mei Jing Piao
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | | | - Kyoung Ah Kang
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Chang Lim Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Eui Tae Kim
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Young Sang Koh
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea
| | - Jin Won Hyun
- Jeju Research Center for Natural Medicine, Jeju National University, Jeju 63243, Republic of Korea; Department of Biochemistry, College of Medicine, Jeju National University, Jeju 63243, Republic of Korea.
| |
Collapse
|
19
|
Wang SW, Lee TL, Chang TH, Chen YL, Houng HY, Chang N, Chang S, Chang CC, Houng JY. Antidiabetic Potential of Abelmoschus manihot Flower Extract: In Vitro and Intracellular Studies. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1211. [PMID: 39202492 PMCID: PMC11356367 DOI: 10.3390/medicina60081211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/07/2024] [Accepted: 07/24/2024] [Indexed: 09/03/2024]
Abstract
Abelmoschus manihot (L.) Medic flower (AMf) exhibits both nutritional value and bioactivities such as antioxidative, anti-inflammatory, neuroprotective, cardioprotective, and hepatoprotective effects. The aim of this investigation was to examine the potential impact of three different solvent extracts of AMf: supercritical CO2 extraction extract, water extract, and ethanol extract (AME), on management of diabetes. All three extracts demonstrated significant inhibitory effects on α-glucosidase (IC50 = 157-261 μg/mL) and lipase (IC50 = 401-577 μg/mL) activities while enhancing the α-amylase activity (32.4-41.8 folds at 200 μg/mL). Moreover, all three extracts exhibited notable inhibition of the formation of advanced glycation end-products, including the Amadori products (inhibition rates = 15.7-36.6%) and the dicarbonyl compounds (inhibition rates = 18.6-28.3%). Among the three extracts, AME exhibited the most pronounced inhibitory effect. AME displayed substantial in vitro and intracellular antioxidative activity, and effectively reduced ROS production (135% at 500 μg/mL) in β-cells under hyperglycemic (HG) conditions. AME also enhanced the activity and gene expression of antioxidant enzymes, which were markedly decreased in the HG-induced β-cells. Furthermore, AME protected β-cell viability and maintained normal insulin secretion under HG conditions, likely due to its ability to reduce oxidative stress within β-cells. This study demonstrated the potential of AME in preventing and managing diabetes and its associated complications. Further in vivo research is necessary to thoroughly elucidate the preventive effects and their underlying mechanisms.
Collapse
Affiliation(s)
- Shih-Wei Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Thung-Lip Lee
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Tzu-Hsien Chang
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-H.C.); (Y.-L.C.); (H.-Y.H.)
- Department of Obstetrics & Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-H.C.); (Y.-L.C.); (H.-Y.H.)
- Department of Obstetrics & Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Hsin-Ya Houng
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-H.C.); (Y.-L.C.); (H.-Y.H.)
- Department of Obstetrics & Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Natasha Chang
- Sayles Hill Campus Center, Carleton College, Northfield, MN 55057, USA; (N.C.); (S.C.)
| | - Sabrina Chang
- Sayles Hill Campus Center, Carleton College, Northfield, MN 55057, USA; (N.C.); (S.C.)
| | - Chi-Chang Chang
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan;
- Department of Obstetrics & Gynecology, E-Da Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (T.-H.C.); (Y.-L.C.); (H.-Y.H.)
- Department of Obstetrics & Gynecology, E-Da Dachang Hospital, I-Shou University, Kaohsiung 80706, Taiwan
| | - Jer-Yiing Houng
- Department of Nutrition, I-Shou University, Kaohsiung 82445, Taiwan
- Department of Chemical Engineering, I-Shou University, Kaohsiung 82445, Taiwan
| |
Collapse
|
20
|
Hsuan CF, Tsai IT, Fang LW, Chang TH, Chen YL, Houng HY, Chang CC, Houng JY. Aibika Flower Flavonoid Extract Exhibits Antiulcer Activity in a Murine Model of Ethanol-Induced Acute Gastric Injury. J Med Food 2024; 27:615-626. [PMID: 38717115 DOI: 10.1089/jmf.2024.k.0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024] Open
Abstract
Aibika (Abelmoschus manihot (L.) Medic) is a garden vegetable whose flower has been shown to have various bioactivities. This study investigated the protective effect of aibika flower flavonoid extract (AFF) on ethanol-induced gastric injury in mice. The experimental results showed that pre-feeding 125 and 250 mg AFF/kg BW for 1 week significantly reduced the gastric injury area in the negative control group from 19.2% to 6.7% and 0.6%, respectively. The results of the pathological sections staining also showed that AFF had a protective ability against alcohol-induced injury of gastric tissue and liver tissue. When the mice were exposed to high concentrations of ethanol, AFF pretreatment significantly upregulated the expression of antioxidant enzymes. The pretreatment also promoted the production of the intracellular antioxidant, reduced glutathione, in both gastric tissue and serum. On the contrary, AFF delayed the lipid peroxidation process, which, in turn, reduced the damage to the gastric mucosa. When acute inflammation was induced by ethanol stimulation, AFF significantly downregulated the proinflammatory cytokines and mediators such as TNF-α, IL-1β, IL-6, NF-κB, COX-2, and iNOS. Furthermore, AFF pretreatment greatly promoted the production of healing factors, such as matrix metalloproteinase (MMP)-2, MMP-7, and MMP-9, in the gastric tissue. In addition, AFF significantly reduced gastric cell apoptosis induced by ethanol stimulation. These results demonstrate that AFF has a good protective effect on alcohol-induced gastric ulcer and has the potential to be used in gastrointestinal health care.
Collapse
Affiliation(s)
- Chin-Feng Hsuan
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital/E-Da Dachang Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung, Taiwan
| | - I-Ting Tsai
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung, Taiwan
- Department of Emergency, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Li-Wen Fang
- Department of Nutrition, I-Shou University, Kaohsiung, Taiwan
| | - Tzu-Hsien Chang
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Ya-Ling Chen
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Hsin-Ya Houng
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Chang Chang
- Department of Obstetrics & Gynecology, E-Da Hospital/E-Da Dachang Hospital, I-Shou University, Kaohsiung, Taiwan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Jer-Yiing Houng
- Department of Nutrition, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
21
|
Wang J, Sun H, Su M, Li Z, Li L, Zhao F, Zhang Y, Bai W, Yu S, Yang X, Qi S, Yang D, Guo D, Li C, Zhu Q, Xing X, Sun D. Natural hyperoside extracted from hawthorn exhibits antiviral activity against porcine epidemic diarrhea virus in vitro and in vivo. Virology 2024; 594:110037. [PMID: 38498965 DOI: 10.1016/j.virol.2024.110037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) causes severe diarrhea and death in piglets, resulting in significant economic losses for the pork industry. There is an urgent need for new treatment strategies. Here, we focused on optimizing the process of purifying natural hyperoside (nHYP) from hawthorn and evaluating its effectiveness against PEDV both in vitro and in vivo. Our findings demonstrated that nHYP with a purity >98% was successfully isolated from hawthorn with an extraction rate of 0.42 mg/g. Furthermore, nHYP exhibited strong inhibitory effects on PEDV replication in cells, with a selection index of 9.72. nHYP significantly reduced the viral load in the intestines of piglets and protected three of four piglets from death caused by PEDV infection. Mechanistically, nHYP could intervene in the interaction of PEDV N protein and p53. The findings implicate nHYP as having promising therapeutic potential for combating PEDV infections.
Collapse
Affiliation(s)
- Jun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Haibo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Mingjun Su
- College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, 666 Wusu Street, Linan District, Hangzhou, Zhejiang Province, 311300, China
| | - Zijian Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Lu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Feiyu Zhao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Yongchen Zhang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Wenfei Bai
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shiping Yu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xu Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Shanshan Qi
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Dan Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Donghua Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Chunqiu Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Qinghe Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China
| | - Xiaoxu Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| | - Dongbo Sun
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing, 163319, China.
| |
Collapse
|
22
|
Li D, Chang J, Wang Y, Du X, Xu J, Cui J, Zhang T, Chen Y. Hyperoside mitigates photoreceptor degeneration in part by targeting cGAS and suppressing DNA-induced microglial activation. Acta Neuropathol Commun 2024; 12:76. [PMID: 38755736 PMCID: PMC11097432 DOI: 10.1186/s40478-024-01793-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024] Open
Abstract
Activated microglia play an important role in driving photoreceptor degeneration-associated neuroinflammation in the retina. Controlling pro-inflammatory activation of microglia holds promise for mitigating the progression of photoreceptor degeneration. Our previous study has demonstrated that pre-light damage treatment of hyperoside, a naturally occurring flavonol glycoside with antioxidant and anti-inflammatory activities, prevents photooxidative stress-induced photoreceptor degeneration and neuroinflammatory responses in the retina. However, the direct impact of hyperoside on microglia-mediated neuroinflammation during photoreceptor degeneration remains unknown. Upon verifying the anti-inflammatory effects of hyperoside in LPS-stimulated BV-2 cells, our results here further demonstrated that post-light damage hyperoside treatment mitigated the loss of photoreceptors and attenuated the functional decline of the retina. Meanwhile, post-light damage hyperoside treatment lowered neuroinflammatory responses and dampened microglial activation in the illuminated retinas. With respect to microglial activation, hyperoside mitigated the pro-inflammatory responses in DNA-stimulated BV-2 cells and lowered DNA-stimulated production of 2'3'-cGAMP in BV-2 cells. Moreover, hyperoside was shown to directly interact with cGAS and suppress the enzymatic activity of cGAS in a cell-free system. In conclusion, the current study suggests for the first time that the DNA sensor cGAS is a direct target of hyperoside. Hyperoside is effective at mitigating DNA-stimulated cGAS-mediated pro-inflammatory activation of microglia, which likely contributes to the therapeutic effects of hyperoside at curtailing neuroinflammation and alleviating neuroinflammation-instigated photoreceptor degeneration.
Collapse
Affiliation(s)
- Daijin Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jie Chang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yujue Wang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaoye Du
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jing Xu
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jingang Cui
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Teng Zhang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yu Chen
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
- Clinical Research Institute of Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200437, China.
- Laboratory of Clinical and Molecular Pharmacology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
23
|
Jin X, Xia X, Li J, Adu-Frimpong M, Wang X, Wang Q, Wu H, Yu Q, Ji H, Toreniyazov E, Cao X, Yu J, Xu X. Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles. Drug Deliv Transl Res 2024; 14:1370-1388. [PMID: 37957475 DOI: 10.1007/s13346-023-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
At present, ulcerative colitis (UC) has become a global disease due to its high incidence. Hyperoside (HYP) is a naturally occurring flavonoid compound with many pharmacological effects. This study aimed to develop HYP-loaded mixed micelles (HYP-M) to improve oral bioavailability of HYP and to evaluate its therapeutic effect on UC. The prepared HYP-M exhibited stable physical and chemical properties, smaller particle size (PS) (21.48 ± 1.37 nm), good polydispersity index (PDI = 0.178 ± 0.013), negative Zeta potential (ZP) (- 20.00 ± 0.48 mV) and high entrapment rate (EE) (89.59 ± 2.03%). In vitro release and in vivo pharmacokinetic results showed that HYP-M significantly increased the releasing rate of HYP, wherein its oral bioavailability was 4.15 times higher than that of free HYP. In addition, HYP-M was more effective in the treatment of UC than free HYP. In conclusion, HYP-M could serve as a novel approach to improve bioavailability and increase anti-UC activity of HYP.
Collapse
Affiliation(s)
- Xingcheng Jin
- Department of Pharmacy, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxiao Wu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Nukus, Uzbekistan
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
24
|
Nitthikan N, Preedalikit W, Supadej K, Chaichit S, Leelapornpisid P, Kiattisin K. Exploring the Wound Healing Potential of a Cuscuta chinensis Extract-Loaded Nanoemulsion-Based Gel. Pharmaceutics 2024; 16:573. [PMID: 38794235 PMCID: PMC11124339 DOI: 10.3390/pharmaceutics16050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/17/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Cuscuta chinensis (C. chinensis) presents many pharmacological activities, including antidiabetic effects, and antioxidant, anti-inflammatory, and antitumor properties. However, the wound care properties of this plant have not yet been reported. Therefore, this research aimed to evaluate the antioxidant, anti-inflammatory, and antibacterial activities of ethanol and ethyl acetate C. chinensis extracts. The phytochemical markers in the extracts were analyzed using high-performance liquid chromatography (HPLC). Then, the selected C. chinensis extract was developed into a nanoemulsion-based gel for wound care testing in rats. The results showed that both of the C. chinensis extracts exhibited antioxidant activity when tested using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), ferric reducing antioxidant power (FRAP), and lipid peroxidation inhibition assays. They reduced the expression of IL-1β, IL-6, and TNF-α in RAW264.7 cells induced with lipopolysaccharide (LPS). The ethyl acetate extract also had antibacterial properties. Kaempferol was found in both extracts, whereas hyperoside was found only in the ethanol extract. These compounds were found to be related to the biological activities of the extracts, confirmed via molecular docking. The C. chinensis extract-loaded nanoemulsions had a small particle size, a narrow polydispersity index (PDI), and good stability. Furthermore, the C. chinensis extract-loaded nanoemulsion-based gel had a positive effect on wound healing, presenting a better percentage wound contraction Fucidin cream. In conclusion, this formulation has the potential for use as an alternative wound treatment and warrants further study in clinical trials.
Collapse
Affiliation(s)
- Nichcha Nitthikan
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.N.); (S.C.); (P.L.)
| | - Weeraya Preedalikit
- Department of Cosmetic Sciences, School of Pharmaceutical Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Kanittapon Supadej
- Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
| | - Siripat Chaichit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.N.); (S.C.); (P.L.)
| | - Pimporn Leelapornpisid
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.N.); (S.C.); (P.L.)
| | - Kanokwan Kiattisin
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; (N.N.); (S.C.); (P.L.)
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
25
|
Liang H, Ma Z, Zhong W, Liu J, Sugimoto K, Chen H. Regulation of mitophagy and mitochondrial function: Natural compounds as potential therapeutic strategies for Parkinson's disease. Phytother Res 2024; 38:1838-1862. [PMID: 38356178 DOI: 10.1002/ptr.8156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Mitochondrial damage is associated with the development of Parkinson's disease (PD), indicating that mitochondrial-targeted treatments could hold promise as disease-modifying approaches for PD. Notably, natural compounds have demonstrated the ability to modulate mitochondrial-related processes. In this review article, we discussed the possible neuroprotective mechanisms of natural compounds against PD in modulating mitophagy and mitochondrial function. A comprehensive literature search on natural compounds related to the treatment of PD by regulating mitophagy and mitochondrial function was conducted from PubMed, Web of Science and Chinese National Knowledge Infrastructure databases from their inception until April 2023. We summarize recent advancements in mitophagy's molecular mechanisms, including upstream and downstream processes, and its relationship with PD-related genes or proteins. Importantly, we highlight how natural compounds can therapeutically regulate various mitochondrial processes through multiple targets and pathways to alleviate oxidative stress, neuroinflammation, Lewy's body aggregation and apoptosis, which are key contributors to PD pathogenesis. Unlike the single-target strategy of modern medicine, natural compounds provide neuroprotection against PD by modulating various mitochondrial-related processes, including ameliorating mitophagy by targeting the PINK1/parkin pathway, the NIX/BNIP3 pathway, and autophagosome formation (i.e., LC3 and p62). Given the prevalence of mitochondrial damage in various neurodegenerative diseases, exploring the exact mechanism of natural compounds on mitophagy and mitochondrial dysfunction could shed light on the development of highly effective disease-modifying or adjuvant therapies targeting PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Hao Liang
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Zhenwang Ma
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Wei Zhong
- Department of Rheumatology and Immunology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, China
| | - Jia Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Kazuo Sugimoto
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing, China
| | - Hong Chen
- Department of Acupuncture, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- Department of TCM Geriatric, Southern Medical University, Guangzhou, China
| |
Collapse
|
26
|
Li W, Zhang L, He P, Li H, Pan X, Zhang W, Xiao M, He F. Traditional uses, botany, phytochemistry, and pharmacology of Lonicerae japonicae flos and Lonicerae flos: A systematic comparative review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117278. [PMID: 37972908 DOI: 10.1016/j.jep.2023.117278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 10/03/2023] [Indexed: 11/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicerae japonicae flos (LJF) and Lonicerae flos (LF) belong to different genera of Caprifoliaceae with analogous appearances and functions. Historically, they have been used as herbal medicines to treat various diseases with confirmed wind-heat evacuation, heat-clearing, and detoxification effects. However, the Chinese Pharmacopoeia (2005 Edition) lists LJF and LF under different categories. AIM OF THE STUDY Few studies have systematically compared the similarities and dissimilarities of LJF and LF concerning their research achievements. This systematic review and comparison of the traditional use, identification, and phytochemical and pharmacological properties of LJF and LF provides valuable insights for their further application and clinical safety. MATERIALS AND METHODS Related document information was collected from databases that included Web of Science, X-MOL, Science Direct, PubMed, and the China National Knowledge Infrastructure. RESULTS The chemical constituents and pharmacological effects of LJF and LF were similar. A total of 337 and 242 chemical constituents were isolated and identified in LJF and LF, respectively. These included volatile oils, cyclic ether terpenes, flavonoids, phenolic acids, triterpenoids, and their saponins. Additionally, LJF plants contain more iridoids and flavonoids than LF plants. The latter have a variety of triterpenoid saponins and significantly higher chlorogenic acid content than LJF plants. Pharmacological studies have shown that LJF and LF have various anti-inflammatory, antiviral, antibacterial, anti-endotoxic, antioxidant, anti-tumor, anti-platelet, myocardial protective, and hepatoprotective effects. CONCLUSIONS This review was undertaken to explore whether LJF and LF should be listed separately in the Chinese Pharmacopoeia in terms of their disease prevention and treatment strategies. Although LJF and LF showed promising effects, their action mechanisms remains unclear. Specifically, their impact on gut microbiota, gastrointestinal tract, and blood parameters requires further investigation. These studies will provide the foundation for scientific utilization and clinical/non-clinical applications of LJF and LF, and the maximum benefits from their mutual use.
Collapse
Affiliation(s)
- Wenjiao Li
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Liangqi Zhang
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Peng He
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Haiying Li
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Xue Pan
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Weilong Zhang
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Meifeng Xiao
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, PR China.
| | - Fuyuan He
- Department of Pharmaceutics, Pharmacy College, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Key Laboratory of Druggability and Preparation Modification for Traditional Chinese Medicine, Changsha, Hunan 410208, PR China; Supramolecular Mechanism and Mathematic-Physics Characterization for Chinese Materia Medicine, Changsha, Hunan 410208, PR China.
| |
Collapse
|
27
|
Chen J, Zhao Y, Wang X, Zang L, Yin D, Tan S. Hyperoside Inhibits RNF8-mediated Nuclear Translocation of β-catenin to Repress PD-L1 Expression and Prostate Cancer. Anticancer Agents Med Chem 2024; 24:464-476. [PMID: 38305391 DOI: 10.2174/0118715206289246240110044931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND Hyperoside is a flavonol glycoside isolated from Hypericum perforatum L. that has inhibitory effects on cancer cells; however, its effects on prostate cancer (PCa) remain unclear. Therefore, we studied the anti-PCa effects of hyperoside and its underlying mechanisms in vitro and in vivo. AIM This study aimed to explore the mechanism of hyperoside in anti-PCa. METHODS 3-(4,5-Dimethyl-2-Thiazolyl)-2,5-Diphenyl Tetrazolium Bromide (MTT), transwell, and flow cytometry assays were used to detect PCa cell growth, invasion, and cell apoptosis. Immunoblot analysis, immunofluorescence, immunoprecipitation, and quantitative real-time PCR (qRT-PCR) were used to analyze the antitumor mechanism of hyperoside. RESULTS Hyperoside inhibited PCa cell growth, invasion, and cell cycle and induced cell apoptosis. Furthermore, RING finger protein 8 (RNF8), an E3 ligase that assembles K63 polyubiquitination chains, was predicted to be a direct target of hyperoside and was downregulated by hyperoside. Downregulation of RNF8 by hyperoside impeded the nuclear translocation of β-catenin and disrupted the Wnt/β-catenin pathway, which reduced the expression of the target genes c-myc, cyclin D1, and programmed death ligand 1 (PD-L1). Decreased PD-L1 levels contributed to induced immunity in Jurkat cells in vitro. Finally, in vivo studies demonstrated that hyperoside significantly reduced tumor size, inhibited PD-L1 and RNF8 expression, and induced apoptosis in tumor tissues of a subcutaneous mouse model. CONCLUSION Hyperoside exerts its anti-PCa effect by reducing RNF8 protein, inhibiting nuclear translocation of β-catenin, and disrupting the Wnt/β-catenin pathway, in turn reducing the expression of PD-L1 and improving Jurkat cell immunity.
Collapse
Affiliation(s)
- Jie Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Yi Zhao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Xiaoli Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Long Zang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Dengke Yin
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| | - Song Tan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, 230012, China
| |
Collapse
|
28
|
Orzelska-Górka J, Dos Santos Szewczyk K, Gawrońska-Grzywacz M, Herbet M, Lesniak A, Bielenica A, Bujalska-Zadrożny M, Biała G. Procognitive, Anxiolytic, and Antidepressant-like Properties of Hyperoside and Protocatechuic Acid Corresponding with the Increase in Serum Serotonin Level after Prolonged Treatment in Mice. Pharmaceuticals (Basel) 2023; 16:1691. [PMID: 38139817 PMCID: PMC10747003 DOI: 10.3390/ph16121691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Two polyphenols-hyperoside (HYP) and protocatechuic acid (PCA) were reported to exert antidepressant activity in rodents after acute treatment. Our previous study also showed that this activity might have been influenced by the monoaminergic system and the upregulation of the brain-derived neurotropic factor (BDNF) level. A very long-term pharmacological therapy is required for the treatment of a patient with depression. The repetitive use of antidepressants is recognized to impact the brain structures responsible for regulating both emotional and cognitive behaviors. Thus, we investigated the antidepressant, anxiolytic, and procognitive effects of HYP and PCA in mice after acute and prolonged treatment (14 days). Both polyphenols induced an anxiogenic-like effect after acute treatment, whereas an anxiolytic effect occurred after repetitive administration. PCA and HYP showed procognitive effects when they were administered acutely and chronically, but it seems that their influence on long-term memory was stronger than on short-term memory. In addition, the preset study showed that the dose of 7.5 mg/kg of PCA and HYP was effective in counteracting the effects of co-administered scopolamine in the long-term memory impairment model induced by scopolamine. Our experiments revealed the compounds have no affinity for 5-HT1A and 5-HT2A receptors, whereas a significant increase in serum serotonin level after prolonged administration of PCA and HYP at a dose of 3.75 mg/kg was observed. Thus, it supports the involvement of the serotonergic system in the polyphenol mechanisms. These findings led us to hypothesize that the polyphenols isolated from Impatiens glandulifera can hold promise in treating mental disorders with cognitive dysfunction. Consequently, extended studies are necessary to delve into their pharmacological profile.
Collapse
Affiliation(s)
- Jolanta Orzelska-Górka
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.-G.); (M.H.)
| | - Mariola Herbet
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (M.G.-G.); (M.H.)
| | - Anna Lesniak
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Anna Bielenica
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland;
| | - Magdalena Bujalska-Zadrożny
- Department of Pharmacotherapy and Pharmaceutical Care, Faculty of Pharmacy, Medical University of Warsaw, Centre for Preclinical Research and Technology, 02-097 Warsaw, Poland; (A.L.); (M.B.-Z.)
| | - Grażyna Biała
- Chair and Department of Pharmacology and Pharmacodynamics, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland;
| |
Collapse
|
29
|
Zhang K, Li M, Yin K, Wang M, Dong Q, Miao Z, Guan Y, Wu Q, Zhou Y. Hyperoside mediates protection from diabetes kidney disease by regulating ROS-ERK signaling pathway and pyroptosis. Phytother Res 2023; 37:5871-5882. [PMID: 37646382 DOI: 10.1002/ptr.7993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023]
Abstract
Renal tubular injury is a key factor in the progression of diabetic kidney disease to end-stage renal disease. Hyperoside, a natural flavonol glycoside in various plants, is a potentially effective drug for the clinical treatment of diabetic kidney disease. However, the specific mechanisms remain unknown. Therefore, this study will explore the effect and mechanism of hyperoside on renal tubulointerstitium in diabetic kidney disease. db/db mouse (C57BL/KsJ) is a model of type 2 diabetes resulting from Leptin receptor point mutations, with the appearance of diabetic kidney disease. Therefore, db/db mice were used for in vivo experimental studies. In vitro, human renal tubular epithelial cells were incubated with bovine serum albumin to simulate the injury of renal tubular epithelial cells caused by excessive albumin in primary urine. The experimental results showed that hyperoside could improve kidney function and reduce kidney tissue damage in mice, and could inhibit oxidative stress, extracellularly regulated protein kinases 1/2 signaling activation, and pyroptosis in human renal tubular epithelial cells. Therefore, hyperoside inhibited oxidative stress by regulating the activation of the extracellularly regulated protein kinases 1/2/mitogen-activated protein kinase signaling pathway, thereby alleviating proteinuria-induced pyroptosis in renal tubular epithelial cells. This study provides novel evidence that could facilitate the clinical application of hyperoside in diabetic kidney disease treatment.
Collapse
Affiliation(s)
- Kejia Zhang
- Public Experimental Research Center, Xuzhou Medical University, Xuzhou, China
| | - MiaoMiao Li
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Kaiwen Yin
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Minjie Wang
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Qiuchi Dong
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Zilan Miao
- The Second Clinical Medical School, Xuzhou Medical University, Xuzhou, China
| | - Yubo Guan
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| | - Qi Wu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Yao Zhou
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, China
- Laboratory of Clinical and Experimental Pathology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
30
|
Wei S, Ma W, Xie S, Liu S, Xie N, Li W, Zhang B, Liu J. Hyperoside Protects Trastuzumab-Induced Cardiotoxicity via Activating the PI3K/Akt Signaling Pathway. Cardiovasc Drugs Ther 2023:10.1007/s10557-023-07522-4. [PMID: 37943365 DOI: 10.1007/s10557-023-07522-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2023] [Indexed: 11/10/2023]
Abstract
PURPOSE Trastuzumab is a landmark agent in the treatment of human epidermal growth factor receptor-2(HER2)-positive breast cancer. Nevertheless, trastuzumab also comes with unexpected cardiac side effects. Hyperoside is a natural product that serves beneficial roles in cardiovascular disease. This study aimed to explore the effect and mechanism of hyperoside in trastuzumab-induced cardiotoxicity. METHODS A female C57BL/6 mice cardiotoxicity model was established via intraperitoneally injecting with trastuzumab (10 mg/kg/day, once every other day, cumulative dosage to 40 mg/kg) with or without hyperoside (15 or 30 mg/kg/day) administration. In vitro, the H9c2 cells were exposed to 1 μM trastuzumab with or without hyperoside (100 or 200 μM) administration. Cardiac function was evaluated by echocardiographic, myocardial enzymes levels, and pathological section examinations. TUNEL staining and Annexin V-FITC/ propidium iodide flow cytometry were used to analyze the cardiomyocyte apoptosis. RESULTS Compared to the control group, the LVEF, LVFS was decreased and the concentrations of cTnT, CK, CK-MB and LDH in mice were significantly increased after treatment with trastuzumab. Collagen deposition and cardiomyocyte hypertrophy were observed in the myocardium of the trastuzumab group. However, these changes were all reversed by different doses of hyperoside. In addition, hyperoside attenuated trastuzumab-induced myocardium apoptosis and H9c2 cells apoptosis through inhibiting the expressions of cleaved caspase-3 and Bax. Trastuzumab abolished the PI3K/Akt signaling pathway in mice and H9c2 cells, while co-treatment of hyperoside effectively increased the ratio of p-Akt/Akt. CONCLUSION Hyperoside inhibited trastuzumab-induced cardiotoxicity through activating the PI3K/Akt signaling pathway. Hyperoside may be a promising therapeutic approach to trastuzumab-induced cardiotoxicity.
Collapse
Affiliation(s)
- Shanshan Wei
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Wanjun Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Suifen Xie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Sa Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Ning Xie
- Department of Breast Cancer Medical Oncology, Hunan Cancer Hospital, Changsha, 410013, China
| | - Wenqun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China
| | - Jian Liu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
31
|
Tagrida M, Palamae S, Saetang J, Ma L, Hong H, Benjakul S. Comparative Study of Quercetin and Hyperoside: Antimicrobial Potential towards Food Spoilage Bacteria, Mode of Action and Molecular Docking. Foods 2023; 12:4051. [PMID: 38002109 PMCID: PMC10670185 DOI: 10.3390/foods12224051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The antibacterial activities of quercetin and hyperoside were evaluated towards two major spoilage bacteria in fish, Pseudomonas aeruginosa (PA) and Shewanella putrefaciens (SP). Hyperoside showed a lower minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) towards both spoilage bacteria, PA and SP, than quercetin. Cell membrane morphology was affected when treated with hyperoside and quercetin. The release of content from the treated cells occurred, as ascertained by the release of potassium and magnesium ions and the increase in conductivity of the culture media. The morphology of cells was significantly changed, in which shrinkage and pores were obtained, when observed using SEM. Both compounds negatively affected the motility, both swimming and swarming, and the formation of extracellular polymeric substance (EPS), thus confirming antibiofilm activities. Agarose gel analysis revealed that both compounds could bind to or degrade the genomic DNA of both bacteria, thereby causing bacterial death. Molecular docking indicated that the compounds interacted with the minor groove of the DNA, favoring the adenine-thymine-rich regions. Thus, both quercetin and hyperoside could serve as potential antimicrobial agents to retard the spoilage of fish or perishable products.
Collapse
Affiliation(s)
- Mohamed Tagrida
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Suriya Palamae
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Jirakrit Saetang
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
| | - Lukai Ma
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food of Ministry and Rural Affairs, College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China;
| | - Hui Hong
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China;
| | - Soottawat Benjakul
- International Center of Excellence in Seafood Science and Innovation, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai 90110, Songkhla, Thailand; (M.T.); (S.P.); (J.S.)
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
32
|
Liang J, Yao F, Fang D, Chen L, Zou Z, Feng L, Zhuang Y, Xie T, Wei P, Li P, Zhang S. Hyperoside alleviates photoreceptor degeneration by preventing cell senescence through AMPK-ULK1 signaling. FASEB J 2023; 37:e23250. [PMID: 37819682 DOI: 10.1096/fj.202301273rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023]
Abstract
Vision loss and blindness are frequently caused by photoreceptor degeneration, for example in age-related macular degeneration and retinitis pigmentosa. However, there is no effective medicine to treat these photoreceptor degeneration-related diseases. Cell senescence is a common phenotype in many diseases; however, few studies have reported whether it occurs in photoreceptor degeneration diseases. Herein, we identified that cell senescence is associated with photoreceptor degeneration induced by N-methyl-N-nitrosourea (MNU, a commonly used photoreceptor degeneration model), presented as increased senescence-associated β-galactosidase activity, DNA damage, oxidative stress and inflammation-related cytokine Interleukin 6 (IL6), and upregulation of cyclin p21 or p16. These results suggested that visual function might be protected using anti-aging treatment. Furthermore, Hyperoside is reported to help prevent aging in various organs. In this study, we showed that Hyperoside, delivered intravitreally, alleviated photoreceptor cell senescence and ameliorated the functional and morphological degeneration of the retina in vivo and in vitro. Importantly, Hyperoside attenuated the MNU-induced injury and aging of photoreceptors via AMPK-ULK1 signaling inhibition. Taken together, our results demonstrated that Hyperoside can prevent MNU-induced photoreceptor degeneration by inhibiting cell senescence via the AMPK-ULK1 pathway.
Collapse
Affiliation(s)
- Jia Liang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Fei Yao
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Dong Fang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Lu Chen
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Zhenhua Zou
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Lujia Feng
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Yijing Zhuang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Ting Xie
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Pengxue Wei
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Pengfeng Li
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| | - Shaochong Zhang
- Shenzhen Eye Hospital, Shenzhen Eye Institute, Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
33
|
Alsharairi NA. Quercetin Derivatives as Potential Therapeutic Agents: An Updated Perspective on the Treatment of Nicotine-Induced Non-Small Cell Lung Cancer. Int J Mol Sci 2023; 24:15208. [PMID: 37894889 PMCID: PMC10607898 DOI: 10.3390/ijms242015208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/13/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
Flavonoids are the largest group of polyphenols, represented by many compounds that exhibit high anticancer properties. Quercetin (Q) and its main derivatives (rutin, quercitrin, isoquercitrin, isorhamnetin, tamarixetin, rhamnetin, and hyperoside) in the class of flavonols have been documented to exert anticancer activity. Q has been shown to be useful in the treatment of non-small cell lung cancer (NSCLC), as demonstrated by in vitro/in vivo studies, due to its antitumor, anti-inflammatory, anti-proliferative, anti-angiogenesis, and apoptotic properties. Some flavonoids (flavone, anthocyanins, and proanthocyanidins) have been demonstrated to be effective in nicotine-induced NSCLC treatment. However, the molecular mechanisms of quercetin derivatives (QDs) in nicotine-induced NSCLC treatment remain unclear. Thus, this review aims to summarize the available literature on the therapeutic effects of QDs in nicotine-induced NSCLC.
Collapse
Affiliation(s)
- Naser A Alsharairi
- Heart, Mind and Body Research Group, Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
34
|
Fan Q, He R, Li Y, Gao P, Huang R, Li R, Zhang J, Li H, Liang X. Studying the effect of hyperoside on recovery from cyclophosphamide induced oligoasthenozoospermia. Syst Biol Reprod Med 2023; 69:333-346. [PMID: 37578152 DOI: 10.1080/19396368.2023.2241600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/15/2023]
Abstract
Oligoasthenozoospermia is becoming a serious problem, but effective prevention or treatment is lacking. Hyperoside, one of the main active ingredients in traditional Chinese medicine, may be effective in the treatment of oligoasthenozoospermia. In this study, we used cyclophosphamide (CTX: 50 mg/kg) to establish a mouse model of Oligoasthenozoospermia to investigate the therapeutic effect of hyperoside (30 mg/kg) on CTX-induced oligoasthenozoospermia. All mice were divided into four groups: blank control group (Control), treatment control group (Hyp), disease group (CTX) and treatment group (CTX + H). Mice body weight, testicular weight, sperm parameters and testicular histology were used to assess the reproductive capacity of mice and to explore the underlying mechanism of hyperoside in the treatment of oligoasthenozoospermia by assessing hormone levels, protein levels of molecules related to hormone synthesis and transcript levels of important genes related to spermatogenesis. Treatment with hyperoside significantly improved sperm density, sperm viability and testicular function compared to untreated oligoasthenozoospermia mice. In mechanism, treatment with hyperoside resulted in significant improvement in pathological changes in spermatogenic tubules, with an increase in testosterone production, and upregulations of Protein Kinase CAMP-Activated Catalytic Subunit Beta (PRKACB), Steroidogenic Acute Regulatory Protein (STAR), and Cytochrome P450 Family 17 Subfamily A Member 1 (CYP17A1) for testosterone production. Hyperoside also promoted the cell cycle of germ cells and up-regulated meiosis and spermatogenesis-related genes, including DNA Meiotic Recombinase 1 (Dmc1), Ataxia telangiectasia mutated (Atm) and RAD21 Cohesin Complex Component (Rad21). In conclusion, hyperoside exerted protective effects on oligoasthenozoospermia mice by regulating testosterone production, meiosis and sperm maturation of germ cells.
Collapse
Affiliation(s)
- Qigang Fan
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Yi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Pu Gao
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Runchun Huang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Rong Li
- Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Jiayu Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Hongli Li
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| |
Collapse
|
35
|
Sun H, Feng J, Sun Y, Sun S, Li L, Zhu J, Zang H. Phytochemistry and Pharmacology of Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y.Hu: A Review. Molecules 2023; 28:6564. [PMID: 37764339 PMCID: PMC10536541 DOI: 10.3390/molecules28186564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Eleutherococcus sessiliflorus (Rupr. & Maxim.) S.Y.Hu (E. sessiliflorus), a member of the Araliaceae family, is a valuable plant widely used for medicinal and dietary purposes. The tender shoots of E. sessiliflorus are commonly consumed as a staple wild vegetable. The fruits of E. sessiliflorus, known for their rich flavor, play a crucial role in the production of beverages and fruit wines. The root barks of E. sessiliflorus are renowned for their therapeutic effects, including dispelling wind and dampness, strengthening tendons and bones, promoting blood circulation, and removing stasis. To compile a comprehensive collection of information on E. sessiliflorus, extensive searches were conducted in databases such as Web of Science, PubMed, ProQuest, and CNKI. This review aims to provide a detailed exposition of E. sessiliflorus from various perspectives, including phytochemistry and pharmacological effects, to lay a solid foundation for further investigations into its potential uses. Moreover, this review aims to introduce innovative ideas for the rational utilization of E. sessiliflorus resources and the efficient development of related products. To date, a total of 314 compounds have been isolated and identified from E. sessiliflorus, encompassing terpenoids, phenylpropanoids, flavonoids, volatile oils, organic acids and their esters, nitrogenous compounds, quinones, phenolics, and carbohydrates. Among these, triterpenoids and phenylpropanoids are the primary bioactive components, with E. sessiliflorus containing unique 3,4-seco-lupane triterpenoids. These compounds have demonstrated promising properties such as anti-oxidative stress, anti-aging, antiplatelet aggregation, and antitumor effects. Additionally, they show potential in improving glucose metabolism, cardiovascular systems, and immune systems. Despite some existing basic research on E. sessiliflorus, further investigations are required to enhance our understanding of its mechanisms of action, quality assessment, and formulation studies. A more comprehensive investigation into E. sessiliflorus is warranted to delve deeper into its mechanisms of action and potentially expand its pharmaceutical resources, thus facilitating its development and utilization.
Collapse
Affiliation(s)
- Hui Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
| | - Jiaxin Feng
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Yue Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Shuang Sun
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- College of Pharmacy, Yanbian University, Yanji 133000, China
| | - Li Li
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
| | - Junyi Zhu
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| | - Hao Zang
- Green Medicinal Chemistry Laboratory, School of Pharmacy and Medicine, Tonghua Normal University, Tonghua 134002, China; (H.S.); (J.F.); (Y.S.); (S.S.); (J.Z.)
- College of Pharmacy, Yanbian University, Yanji 133000, China
- Key Laboratory of Evaluation and Application of Changbai Mountain Biological Gerplasm Resources of Jilin Province, Tonghua 134002, China
| |
Collapse
|
36
|
Wang Y, Cui Z, Li Q, Zhang S, Li Y, Li X, Kong L, Luo J. The parallel biosynthesis routes of hyperoside from naringenin in Hypericum monogynum. HORTICULTURE RESEARCH 2023; 10:uhad166. [PMID: 37727703 PMCID: PMC10506691 DOI: 10.1093/hr/uhad166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/09/2023] [Indexed: 09/21/2023]
Abstract
Hyperoside is a bioactive flavonoid galactoside in both medicinal and edible plants. It plays an important physiological role in the growth of flower buds. However, the hyperoside biosynthesis pathway has not been systematically elucidated in plants, including its original source, Hypericaceae. Our group found abundant hyperoside in the flower buds of Hypericum monogynum, and we sequenced its transcriptome to study the biosynthetic mechanism of hyperoside. After gene screening and functional verification, four kinds of key enzymes were identified. Specifically, HmF3Hs (flavanone 3-hydroxylases) and HmFLSs (flavonol synthases) could catalyze flavanones into dihydroflavonols, as well as catalyzing dihydroflavonols into flavonols. HmFLSs could also convert flavanones into flavonols and flavones with varying efficiencies. HmF3'H (flavonoid 3'-hydroxylase) was found to act broadly on 4'-hydroxyl flavonoids to produce 3',4'-diydroxylated flavanones, dihydroflavonols, flavonols, and flavones. HmGAT (flavonoid 3-O-galactosyltransferase) would transform flavonols into the corresponding 3-O-galactosides, including hyperoside. The parallel hyperoside biosynthesis routes were thus depicted, one of which was successfully reconstructed in Escherichia coli BL21(DE3) by feeding naringenin, resulting in a hyperoside yield of 25 mg/l. Overall, this research not only helped us understand the interior catalytic mechanism of hyperoside in H. monogynum concerning flower development and bioactivity, but also provided valuable insights into these enzyme families.
Collapse
Affiliation(s)
- Yingying Wang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhirong Cui
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qianqian Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shuai Zhang
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yongyi Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xueyan Li
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jun Luo
- Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, Department of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
37
|
Kumar Sishu N, Das U, Immanuel Selvaraj C. Indian jujube a potential fruit tree to improve the livelihood. Saudi J Biol Sci 2023; 30:103769. [PMID: 37609543 PMCID: PMC10440574 DOI: 10.1016/j.sjbs.2023.103769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/25/2023] [Accepted: 07/29/2023] [Indexed: 08/24/2023] Open
Abstract
Indian Jujube, also known as Ber or Ziziphus Mauritiana Lam., is a fruit-bearing tree endemic to South Asia, including India, Pakistan, Bangladesh, and Sri Lanka. The tree belongs to the buckthorn family and is known for its fruit, a tiny, round, or oblong-shaped drupe roughly the size of a cherry or a small plum. Indian Jujube has been growing for thousands of years. It is a popular fruit throughout the tropical and subtropical regions of Asia, Africa, and South America. Despite the fruit's delicious flavour and health benefits, it is also known for its therapeutic value. Many studies have suggested that various components of ber trees, such as fruit, seed leaves, roots, and flowers, include bioactive substances that demonstrate the potential for antioxidant activity and have anticancer, antibacterial, and antidiabetic effects. Due to the crop's minimal management requirements, it may slow down climate change and the threat of extreme soil and weather conditions, such as drought resistance, strong winds, erosion, high salt, and floods. The main objectives of the current systematic review are to understand Ber's chemical compositions, health benefits, culinary uses, major nutraceutical features, and its function in fostering livelihoods and climatic tolerance.
Collapse
Affiliation(s)
- Nayan Kumar Sishu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Utpal Das
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| | - Chinnadurai Immanuel Selvaraj
- VIT School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore 632 014, Tamil Nadu, India
| |
Collapse
|
38
|
Chen M, Chen Y, Zhu W, Yan X, Xiao J, Zhang P, Liu P, Li P. Advances in the pharmacological study of Chinese herbal medicine to alleviate diabetic nephropathy by improving mitochondrial oxidative stress. Biomed Pharmacother 2023; 165:115088. [PMID: 37413900 DOI: 10.1016/j.biopha.2023.115088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023] Open
Abstract
Diabetic nephropathy (DN) is one of the serious complications of diabetes mellitus, primarily arising from type 2 diabetes (T2DM), and can progress to chronic kidney disease (CKD) and end stage renal disease (ESRD). The pathogenesis of DN involves various factors such as hemodynamic changes, oxidative stress, inflammatory response, and lipid metabolism disorders. Increasing attention is being given to DN caused by oxidative stress in the mitochondrial pathway, prompting researchers to explore drugs that can regulate these target pathways. Chinese herbal medicine, known for its accessibility, rich historical usage, and remarkable efficacy, has shown promise in ameliorating renal injury caused by DN by modulating oxidative stress in the mitochondrial pathway. This review aims to provide a reference for the prevention and treatment of DN. Firstly, we outline the mechanisms by which mitochondrial dysfunction impairs DN, focusing on outlining the damage to mitochondria by oxidative stress. Subsequently, we describe the process by which formulas, herbs and monomeric compounds protect the kidney by ameliorating oxidative stress in the mitochondrial pathway. Finally, the rich variety of Chinese herbal medicine, combined with modern extraction techniques, has great potential, and as we gradually understand the pathogenesis of DN and research techniques are constantly updated, there will be more and more promising therapeutic targets and herbal drug candidates. This paper aims to provide a reference for the prevention and treatment of DN.
Collapse
Affiliation(s)
- Ming Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Yao Chen
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Wenhui Zhu
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Xiaoming Yan
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Jing Xiao
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China
| | - Peiqing Zhang
- Renal Division, Department of Medicine, Heilongjiang Academy of Chinese Medicine Sciences, Harbin, China.
| | - Peng Liu
- Shunyi Hospital, Beijing Hospital of Traditional Chinese Medicine, Beijing, China.
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
39
|
Uzelac M, Sladonja B, Šola I, Dudaš S, Bilić J, Famuyide IM, McGaw LJ, Eloff JN, Mikulic-Petkovsek M, Poljuha D. Invasive Alien Species as a Potential Source of Phytopharmaceuticals: Phenolic Composition and Antimicrobial and Cytotoxic Activity of Robinia pseudoacacia L. Leaf and Flower Extracts. PLANTS (BASEL, SWITZERLAND) 2023; 12:2715. [PMID: 37514330 PMCID: PMC10385011 DOI: 10.3390/plants12142715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023]
Abstract
Black locust (Robinia pseudoacacia L.), an invasive tree in Europe, commonly known for its negative impact on biodiversity, is a rich source of phenolic compounds recognized in traditional medicine. Since the metabolite profile depends on the environment and climate, this study aimed to provide the first LC-MS phytochemical screening of the black locust from the Istria region (Croatia). The compounds were extracted from leaves and flowers with 70% ethanol and 80% methanol. Total phenolics (TP) and flavonoids (TF), as well as antioxidant capacity (AC) measured by ABTS (17.49-146.41 mg TE/g DW), DPPH (24.67-118.49 mg TE/g DW), and FRAP (7.38-77.53 mg TE/g DW) assays, were higher in leaf than in flower extracts. Higher TP and total non-flavonoid (TNF) values were displayed in ethanolic than in methanolic extracts. In total, 64 compounds were identified, of which flavonols (20) and hydroxycinnamic acid derivatives (15) were the most represented. Flavanols such as catechin dominated in leaf extracts, followed by flavonols, with kaempferol glucuronyl rhamnosyl hexosides as the main compound, respectively. Flower extracts had the highest share of flavones, followed by ellagitannins, with luteolin dirhamnosyl hexosides and vescalagin, respectively, being predominant. The extracts had good quorum sensing, biofilm formation prevention, and eradicating capacity. The results provided new insights into the phytochemical properties of R. pseudoacacia as the first step toward its potential pharmaceutical use.
Collapse
Affiliation(s)
- Mirela Uzelac
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Barbara Sladonja
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia
| | - Slavica Dudaš
- Agricultural Department, Polytechnic of Rijeka, Karla Huguesa 6, 52440 Poreč, Croatia
| | - Josipa Bilić
- METRIS Research Centre, Istrian University of Applied Sciences, Zagrebačka 30, 52100 Pula, Croatia
| | - Ibukun M Famuyide
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Lyndy J McGaw
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Jacobus N Eloff
- Phytomedicine Programme, Paraclinical Sciences Department, University of Pretoria, P/Bag X04, Onderstepoort, Pretoria 0110, Gauteng, South Africa
| | - Maja Mikulic-Petkovsek
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Danijela Poljuha
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| |
Collapse
|
40
|
Fredsgaard M, Kaniki SEK, Antonopoulou I, Chaturvedi T, Thomsen MH. Phenolic Compounds in Salicornia spp. and Their Potential Therapeutic Effects on H1N1, HBV, HCV, and HIV: A Review. Molecules 2023; 28:5312. [PMID: 37513186 PMCID: PMC10384198 DOI: 10.3390/molecules28145312] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/07/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.
Collapse
Affiliation(s)
| | | | - Io Antonopoulou
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | | | | |
Collapse
|
41
|
Shi Y, Jiang M, Zhang Y, Diao Y, Li N, Liu W, Qiu Z, Qiu Y, Jia A. Hyperoside Nanomicelles Alleviate Atherosclerosis by Modulating the Lipid Profile and Intestinal Flora Structure in High-Fat-Diet-Fed Apolipoprotein-E-Deficient Mice. Molecules 2023; 28:5088. [PMID: 37446750 DOI: 10.3390/molecules28135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Atherosclerosis (AS) is a serious threat to human health and the main pathological basis of cardiovascular disease. Hyperoside (Hyp), a flavonoid found mainly in traditional Chinese herbs, can exert antitumor, anti-inflammatory, antioxidant, and cardiovascular-protective effects. Herein, we prepared hybrid nanomicelles (HFT) comprising Hyp loaded into pluronic F-127 and polyethylene glycol 1000 vitamin E succinate and assessed their effects on AS. To establish an AS model, apolipoprotein-E-deficient (ApoE-/-) mice were fed a high-fat diet. We then analyzed the effects of HFT on AS-induced changes in aortic tissues and metabolic markers, simultaneously assessing changes in gut flora community structure. In mice with AS, HFT significantly reduced the aortic plaque area; decreased levels of total cholesterol, triglyceride, low-density lipoprotein cholesterol, inflammatory factors, and inducible nitric oxide synthase (NOS); increased high-density lipoprotein cholesterol, endothelial NOS, superoxide dismutase, catalase, and glutathione levels; and promoted the proliferation of beneficial gut bacteria. HFT could regulate intestinal flora structure and lipid metabolism and inhibit inflammatory responses. These beneficial effects may be mediated by inhibiting nuclear factor kappa B signal activation, reducing inflammatory factor expression and improving gut microflora structure and dyslipidemia. The present study provides an empirical basis for the development and clinical application of new dosage forms of Hyp.
Collapse
Affiliation(s)
- Yuwen Shi
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mengcheng Jiang
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuhang Zhang
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yuanyuan Diao
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Na Li
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Weipeng Liu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhidong Qiu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ye Qiu
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Ailing Jia
- Pharmacy College, Changchun University of Chinese Medicine, Changchun 130117, China
| |
Collapse
|
42
|
Moukova A, Malina L, Kolarova H, Bajgar R. Hyperoside as a UV Photoprotective or Photostimulating Compound-Evaluation of the Effect of UV Radiation with Selected UV-Absorbing Organic Compounds on Skin Cells. Int J Mol Sci 2023; 24:9910. [PMID: 37373060 DOI: 10.3390/ijms24129910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Ultraviolet (UV) radiation is a non-ionizing radiation, which has a cytotoxic potential, and it is therefore necessary to protect against it. Human skin is exposed to the longer-wavelength components of UV radiation (UVA and UVB) from the sun. In the present paper, we focused on the study of eight organic UV-absorbing compounds: astragalin, beta-carotene, 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, hyperoside, 3-(4-methylbenzylidene)camphor, pachypodol, and trans-urocanic acid, as possible protectives of skin cells against UVA and UVB radiation. Their protective effects on skin cell viability, ROS production, mitochondrial membrane potential, liposomal permeability, and DNA integrity were investigated. Only some of the compounds studied, such as trans-urocanic acid and hyperoside, had a significant effect on the examined hallmarks of UV-induced cell damage. This was also confirmed by an atomic force microscopy study of morphological changes in HaCaT cells or a study conducted on a 3D skin model. In conclusion, hyperoside was found to be a very effective UV-protective compound, especially against UVA radiation. Commonly used sunscreen compounds such as 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, and 3-(4-methylbenzylidene)camphor turned out to be only physical UV filters, and pachypodol with a relatively high absorption in the UVA region was shown to be more phototoxic than photoprotective.
Collapse
Affiliation(s)
- Anna Moukova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Lukas Malina
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Hana Kolarova
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Robert Bajgar
- Department of Medical Biophysics, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| |
Collapse
|
43
|
Chen L, Qin Z, Ruan ZB. Hyperoside alleviates doxorubicin-induced myocardial cells apoptosis by inhibiting the apoptosis signal-regulating kinase 1/p38 pathway. PeerJ 2023; 11:e15315. [PMID: 37220525 PMCID: PMC10200097 DOI: 10.7717/peerj.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/06/2023] [Indexed: 05/25/2023] Open
Abstract
Background Cardiotoxicity is a side effect of the anthracycline broad-spectrum anti-tumor agent, doxorubicin (DOX). Hyperoside, a flavonoid glycoside extracted from many herbs, has anti-apoptotic and anticancer properties. However, its impact on the alleviation of DOX-induced apoptosis in cardiomyocytes remains elusive. Methods The HL-1 cell line was treated with 100 µ M hyperoside for 1 h prior to treatment with 100 µ M hyperoside and 1 µ M DOX for 24 h. The cell counting kit-8 (CCK-8) assay was used to detect cell viability; DCFH-DA fluorescent probe was used to detect (reactive oxygen species) ROS; biochemical methods were used to detect the activity of glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA); the degree of apoptosis following DOX insult was assessed using immunofluorescence staining and terminal deoxynucleotidyl transferase mediated deoxy uridine triphosphate nick end labeling (TUNEL) assay; the change in protein expression of apoptosis signal-regulating kinase 1 (ASK1), p38, and apoptosis markers was determined using western blot. Results Hyperoside ameliorated DOX-induced oxidative stress in HL-1 cells, up-regulated GSH, SOD and CAT activity, reduced ROS production and inhibited MDA overproduction. Moreover, in addition to promoting HL-1 cell apoptosis, DOX administration also increased B-cell lymphoma (Bcl)-2-associated X-protein and cleaved caspase-3 protein levels and decreased Bcl-2 protein level. Hyperoside therapy, however, significantly reversed the impact of DOX on the cardiomyocytes. Mechanically, DOX treatment increased the phosphorylation of the ASK1/p38 axis whereas hyperoside treatment attenuated those changes. In a further step, hyperoside synergizes with DOX to kill MDA-MB-231 cells. Conclusions Hyperoside protects HL-1 cells from DOX-induced cardiotoxicity by inhibiting the ASK1/p38 signaling pathway. Meanwhile, hyperoside maintained the cytotoxicity of DOX in MDA-MB-231 cells.
Collapse
Affiliation(s)
- Lingxia Chen
- Department of Cardiology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Zhi Qin
- Department of Cardiology, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| | - Zhong-bao Ruan
- Department of Cardiology, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, China
| |
Collapse
|
44
|
Cheng S, Ni X, Yao Y, Sun Y, Yu X, Xia D, Yang Z, Hu MG, Hou X. Hyperoside prevents high-fat diet-induced obesity by increasing white fat browning and lipophagy via CDK6-TFEB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 307:116259. [PMID: 36781055 DOI: 10.1016/j.jep.2023.116259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hypericum perforatum L. (genus Hypericum, family Hypericaceae) is a flowering plant native to Europe, North Africa and Asia, which can be used in the treatment of psychiatric disorder, cardiothoracic depression and diabetes. Crataegus pinnatifida Bunge (genus Crataegus pinnatifida Bunge, family Rosaceae) was another traditional Chinese medicine for treating hyperlipidemia. Hyperoside (Hype), a major flavonoid glycoside component of Hypericum perforatum L. and Crataegus pinnatifida Bunge, possesses multiple physiological activities, such as anti-inflammatory and antioxidant effects. However, the role of Hype on obesity and related metabolic diseases still needs to be further investigated. AIM OF THE STUDY We explored the effect of Hype on high-fat diet (HFD)-induced obesity and its metabolic regulation on white fat tissues. MATERIALS AND METHODS In vivo four-week-old male C57BL/6J mice were randomly assigned to vehicle (0.5% methycellulose) and Hype (80 mg/kg/day by gavage) group under a normal chow diet (NCD) or HFD for 8 weeks. In vitro, 3T3-L1 preadipocyte cell line and primary stromal vascular fraction (SVF) cells from inguinal white adipose tissue (iWAT) of mice were used to investigate the molecular mechanisms of Hype regulation on adipocyte energy metabolism. RESULTS Hype treatment in vivo promotes UCP1-dependent white to beige fat transition, increases glucose and lipid metabolism, and resists HFD-induced obesity. Meanwhile, Hype induces lipophagy, a specific autophagy that facilitates the breakdown of lipid droplets, and blocking autophagy partially reduces UCP1 expression. Mechanistically, Hype inhibited CDK6, leading to the increased nuclear translocation of TFEB, while overexpression of CDK6 partially reversed the enhancement of UCP1 by Hype. CONCLUSIONS Hype protects mice from HFD-induced obesity by increasing energy expenditure of white fat tissue via CDK6-TFEB pathway.
Collapse
Affiliation(s)
- Siyao Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, China
| | - Xintao Ni
- School of Life Sciences, Zhejiang Chinese Medical University, China
| | - Yanjing Yao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Yunxia Sun
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaofeng Yu
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Daozong Xia
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, China
| | - Zhenggang Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Miaofen G Hu
- Department of Medicine, Division of Hematology and Oncology, Tufts Medical Center, Boston, MA, USA
| | - Xiaoli Hou
- Academy of Chinese Medical Science, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
45
|
Zhang X, Li D, Wang K, Xie J, Liu Y, Wang T, Liu S, Huang Q, Guo Q, Wang H. Hyperoside inhibits pancreatic lipase activity in vitro and reduces fat accumulation in vivo. Food Funct 2023; 14:4763-4776. [PMID: 37128768 DOI: 10.1039/d2fo03219h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Hyperoside, the main component of many anti-obesity plants, might exhibit a lipase inhibition effect to reduce fat accumulation. The anti-obesity effect of hyperoside was investigated by studying its inhibitory effect and mechanism on pancreatic lipase in vitro and evaluating its ability to reduce lipid accumulation in vivo. Hyperoside is a mixed-type inhibitor of lipase with an IC50 of 0.67 ± 0.02 mmol L-in vitro. Hyperoside changed the secondary conformation of lipase, increased the α-helix content, and changed the microenvironment of lipase through static quenching. The interaction between hyperoside and lipase results from a strong binding spontaneous exothermic reaction, mainly through hydrogen bonding, van der Waals force and electrostatic force. Hyperoside protected hepatic lipid accumulation and adipose tissue hypertrophy and reduced the expression of inflammatory factors in high-fat diet-induced rats. Moreover, hyperoside had a good inhibitory effect on lipase activity in serum and increased fecal fat excretion, thereby reducing lipid absorption in vivo. This study provides theoretical support for the research and development of hyperoside in fat-reducing functional foods.
Collapse
Affiliation(s)
- Xinyue Zhang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Dan Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Kexin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jiao Xie
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou 550025, PR China.
| | - Yaojie Liu
- College of Food Engineering and Nutrition Science, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
| | - Tianxin Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Suwen Liu
- College of Food Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.
| | - Qun Huang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guizhou 550025, PR China.
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Hao Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
46
|
Peralta-Moreno MN, Anton-Muñoz V, Ortega-Alarcon D, Jimenez-Alesanco A, Vega S, Abian O, Velazquez-Campoy A, Thomson TM, Granadino-Roldán JM, Machicado C, Rubio-Martinez J. Autochthonous Peruvian Natural Plants as Potential SARS-CoV-2 M pro Main Protease Inhibitors. Pharmaceuticals (Basel) 2023; 16:ph16040585. [PMID: 37111342 PMCID: PMC10146424 DOI: 10.3390/ph16040585] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/08/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Over 750 million cases of COVID-19, caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), have been reported since the onset of the global outbreak. The need for effective treatments has spurred intensive research for therapeutic agents based on pharmaceutical repositioning or natural products. In light of prior studies asserting the bioactivity of natural compounds of the autochthonous Peruvian flora, the present study focuses on the identification SARS-CoV-2 Mpro main protease dimer inhibitors. To this end, a target-based virtual screening was performed over a representative set of Peruvian flora-derived natural compounds. The best poses obtained from the ensemble molecular docking process were selected. These structures were subjected to extensive molecular dynamics steps for the computation of binding free energies along the trajectory and evaluation of the stability of the complexes. The compounds exhibiting the best free energy behaviors were selected for in vitro testing, confirming the inhibitory activity of Hyperoside against Mpro, with a Ki value lower than 20 µM, presumably through allosteric modulation.
Collapse
Affiliation(s)
- Maria Nuria Peralta-Moreno
- Department of Materials Science and Physical Chemistry, University of Barcelona, and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| | - Vanessa Anton-Muñoz
- Facultad de Farmacia y Bioquímica, Universidad Nacional Mayor de San Marcos, Jr. Puno 1002, Lima 15001, Peru
| | - David Ortega-Alarcon
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Ana Jimenez-Alesanco
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
| | - Sonia Vega
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - Olga Abian
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Adrian Velazquez-Campoy
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Departamento de Bioquímica y Biología Molecular y Celular, Universidad de Zaragoza, 50009 Zaragoza, Spain
- Instituto de Investigación Sanitaria de Aragón (IIS Aragon), 50009 Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain
| | - Timothy M Thomson
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas Digestivas (CIBERehd), 28029 Madrid, Spain
- Institute of Molecular Biology of Barcelona (IBMB-CSIC), 08028 Barcelona, Spain
- Laboratorio de Investigación Traslacional y Biología Computacional, Facultad de Ciencias y Filosofía-LID, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima 15102, Peru
| | - José Manuel Granadino-Roldán
- Departamento de Química Física y Analítica, Facultad de Ciencias Experimentales, Universidad de Jaén, Campus "Las Lagunillas" s/n, 23071 Jaén, Spain
| | - Claudia Machicado
- Institute of Biocomputation and Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Laboratorio de Investigación Traslacional y Biología Computacional, Facultad de Ciencias y Filosofía-LID, Universidad Peruana Cayetano Heredia, Av. Honorio Delgado 430, Lima 15102, Peru
| | - Jaime Rubio-Martinez
- Department of Materials Science and Physical Chemistry, University of Barcelona, and the Institut de Recerca en Quimica Teorica i Computacional (IQTCUB), 08028 Barcelona, Spain
| |
Collapse
|
47
|
Antibacterial and Antibiofilm Effects of Allelopathic Compounds Identified in Medicago sativa L. Seedling Exudate against Escherichia coli. Molecules 2023; 28:molecules28062645. [PMID: 36985619 PMCID: PMC10056293 DOI: 10.3390/molecules28062645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/17/2023] Open
Abstract
In this study, the allelopathic properties of Medicago sativa L. (alfalfa) seedling exudates on the germination of seeds of various species were investigated. The compounds responsible for the allelopathic effects of alfalfa were identified and characterized by employing liquid chromatography ion mobility high-resolution mass spectrometry. Crude exudates inhibited the germination of seeds of all various plant species tested. Overall, nine compounds in alfalfa were identified and quantified. The most predominant compounds were a hyperoside representing a flavonoid glucoside, the non-proteinogenic amino acid canavanine, and two dipeptides, identified as H-Glu-Tyr-OH and H-Phe-Glu-OH. The latter corresponds to the first finding that dipeptides are exuded from alfalfa seedlings. In addition, the antibacterial and antibiofilm activities of alfalfa exudate and its identified compounds were elucidated. Both hyperoside and canavanine revealed the best antibacterial activity with minimum inhibitory concentration (MIC) values that ranged from 8 to 32 and 32 to 256 µg/mL, respectively. Regarding the antibiofilm action, hyperoside and canavanine caused a decline in the percentage of E. coli isolates that possessed a strong and moderate biofilm-forming potential from 68.42% to 21.05% and 31.58%, respectively. Studies on their inhibiting effects exhibit that these major substances are predominantly responsible for the allelopathic and antimicrobial effects of the crude exudates.
Collapse
|
48
|
Su L, Zhang M, Zhang Y, Chen Y, Yang L, Wang Y, Song Y, Gong L. Transcriptome analysis reveals the crucial function of hyperoside in inhibiting anthocyanin accumulation in grape ( Vitis vinifera L.) fruits by inducing VvMYB62. FRONTIERS IN PLANT SCIENCE 2023; 14:1119749. [PMID: 36959929 PMCID: PMC10028066 DOI: 10.3389/fpls.2023.1119749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION The formation of color in plants is significantly dependent on anthocyaninpigments. Grape species vary in color due to the differences in anthocyanin accumulation. It is widely recognized that both biotic and abiotic conditions may have an impact on anthocyanin synthesis in plants. The underlying molecular mechanisms by which external application of hyperoside impacts anthocyanin formation in grapes, however, have received little attention. METHODS In the current study,the transcriptome of Gemstone seedless grape was examined using high-throughput RNA sequencing at various developmental stages reply to both control and hyperoside treatments. RESULTS The results of this study suggested that the major genes controlling anthocyanin accumulation in response to the externalinjection of hyperoside could be VvMYB62, VvPAL, VvCHS, and VvF3'5'H.Quantitative reverse transcription PCR (RT-qPCR) results were used to confirm the changes in the expression levels of the genes encoding the anthocyanin biosynthesis pathway under the control and hyperoside treatments. Using a transient transformation system, it was discovered that VvMYB62 was shown to regulate the anthocyanin accumulation at both the transcriptional and posttranslational levels and could be influenced by the external administration of hyperoside. In grape embryogenic calli, hyperoside could specifically suppress theexpression of VvMYB62 and anthocyanin accumulation. In this instance, the VvMYB62 characterisation brought attention to the significance of exogenous hyperoside-induced anthocyanin accumulation. Therefore, the results demonstrated that VvMYB62 could be hindered in the process of grape during anthocyanin accumulation caused by hyperoside. DISCUSSION These findings offer excellent candidate genes in the future breeding of novel grape varieties in addition to serving as a crucial reference for understanding the underlying molecular processes of hyperoside suppression of anthocyanin formation in plants.
Collapse
Affiliation(s)
- Ling Su
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Man Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, Hebei, China
| | - Yudie Zhang
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Hebei, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, Hebei, China
| | - Yingchun Chen
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liying Yang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yongmei Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yangbo Song
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China
| | - Lei Gong
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan, China
| |
Collapse
|
49
|
Shen H, Wang J, Ao J, Hou Y, Xi M, Cai Y, Li M, Luo A. Structure-activity relationships and the underlying mechanism of α-amylase inhibition by hyperoside and quercetin: Multi-spectroscopy and molecular docking analyses. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121797. [PMID: 36115306 DOI: 10.1016/j.saa.2022.121797] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/19/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Inhibiting the activity of α-amylase has been considered an effective strategy to manage hyperglycemia. Hyperoside and quercetin are the main natural flavonoids in various plants, and the inhibition mechanism on α-amylase remains unclear. In this study, the structure-activity relationships between hyperoside/quercetin and α-amylase were evaluated by enzyme kinetic analysis, multi-spectroscopic techniques, and molecular docking analysis. Results showed that hyperoside and quercetin exhibited significant α-amylase inhibitory activities with IC50 values of 0.491 and 0.325 mg/mL, respectively. The α-amylase activity decreased in the presence of hyperoside and quercetin in a competitive and noncompetitive manner, respectively. UV-vis spectra suggested that the aromatic amino acid residues (Trp and Tyr) microenvironment of α-amylase changed in the presence of these two flavonoids. FTIR and CD spectra showed the vibrations of the amide bands and the secondary structure content changes. The fluorescence quenching mechanism of α-amylase by hyperoside and quercetin belonged to the static quenching type. Finally, molecular docking intuitively showed that hyperoside/quercetin formed hydrogen bonds with the key active site residues (Asp197, Glu233, and Asp300) in α-amylase. MD simulation indicated hyperoside/quercetin-α-amylase docked complexes had good stability. Taken together, this research provides new sights to developing potent drugs or functional foods with hyperoside and quercetin, offering new avenues for hyperglycemia treatment.
Collapse
Affiliation(s)
- Heyu Shen
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Jingfang Ao
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yujie Hou
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Meihua Xi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Cai
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Mei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Anwei Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
50
|
Li C, Tang Y, Ye Y, Zuo M, Lu Q. Potential of natural flavonols and flavanones in the treatment of ulcerative colitis. Front Pharmacol 2023; 14:1120616. [PMID: 36937890 PMCID: PMC10020211 DOI: 10.3389/fphar.2023.1120616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease generally characterized by chronic, persistent, recurrent, and non-specific ulcers of the intestine. Its main clinical manifestations include abdominal pain, diarrhea, and bloody stools. This disease is difficult to cure and even carries the risk of canceration. It has been listed as a modern refractory disease by the World Health Organization. Though a large amount of drugs are available for the inhibition of UC, the conventional treatment such as aminosalicylic acids, glucocorticoids, immunosuppressors, and biological agents possess certain limitations and serious side effects. Therefore, it is urgently needed for safe and effective drugs of UC, and natural-derived flavonols and flavanones showed tremendous potential. The present study concentrated on the progress of natural-derived flavonols and flavanones from edible and pharmaceutical plants for the remedy of UC over the last two decades. The potential pharmaceutical of natural-derived flavonols and flavanones against UC were closely connected with the modulation of gut microflora, gut barrier function, inflammatory reactions, oxidative stress, and apoptosis. The excellent efficacy and safety of natural flavonols and flavanones make them prospective drug candidates for UC suppression.
Collapse
Affiliation(s)
- Cailan Li
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Ying Tang
- Department of Pharmacology, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Guizhou Province and School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yonghao Ye
- Zhuhai Resproly Pharmaceutical Technology Company Limited, Zhuhai, China
| | - Manhua Zuo
- Department of Nursing, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
| | - Qiang Lu
- Department of Pharmaceutical Sciences, Zunyi Medical University, Zhuhai Campus, Zhuhai, China
- *Correspondence: Qiang Lu,
| |
Collapse
|