1
|
Stillger MN, Li MJ, Hönscheid P, von Neubeck C, Föll MC. Advancing rare cancer research by MALDI mass spectrometry imaging: Applications, challenges, and future perspectives in sarcoma. Proteomics 2024; 24:e2300001. [PMID: 38402423 DOI: 10.1002/pmic.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 02/10/2024] [Accepted: 02/12/2024] [Indexed: 02/26/2024]
Abstract
MALDI mass spectrometry imaging (MALDI imaging) uniquely advances cancer research, by measuring spatial distribution of endogenous and exogenous molecules directly from tissue sections. These molecular maps provide valuable insights into basic and translational cancer research, including tumor biology, tumor microenvironment, biomarker identification, drug treatment, and patient stratification. Despite its advantages, MALDI imaging is underutilized in studying rare cancers. Sarcomas, a group of malignant mesenchymal tumors, pose unique challenges in medical research due to their complex heterogeneity and low incidence, resulting in understudied subtypes with suboptimal management and outcomes. In this review, we explore the applicability of MALDI imaging in sarcoma research, showcasing its value in understanding this highly heterogeneous and challenging rare cancer. We summarize all MALDI imaging studies in sarcoma to date, highlight their impact on key research fields, including molecular signatures, cancer heterogeneity, and drug studies. We address specific challenges encountered when employing MALDI imaging for sarcomas, and propose solutions, such as using formalin-fixed paraffin-embedded tissues, and multiplexed experiments, and considerations for multi-site studies and digital data sharing practices. Through this review, we aim to spark collaboration between MALDI imaging researchers and clinical colleagues, to deploy the unique capabilities of MALDI imaging in the context of sarcoma.
Collapse
Affiliation(s)
- Maren Nicole Stillger
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Mujia Jenny Li
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- Institute for Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Pia Hönscheid
- Institute of Pathology, Faculty of Medicine, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- National Center for Tumor Diseases, Partner Site Dresden, German Cancer Research Center Heidelberg, Dresden, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Cläre von Neubeck
- Department of Particle Therapy, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Christine Föll
- Institute for Surgical Pathology, Faculty of Medicine, University Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
- Khoury College of Computer Sciences, Northeastern University, Boston, USA
| |
Collapse
|
2
|
Ferey J, Larroque M, Schmitz-Afonso I, Le Maître J, Sgarbura O, Carrere S, Quenet F, Bouyssiere B, Enjalbal C, Mounicou S, Afonso C. Imaging Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry of oxaliplatin derivatives in human tissue sections. Talanta 2022; 237:122915. [PMID: 34736651 DOI: 10.1016/j.talanta.2021.122915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/17/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Mass Spectrometry Imaging is an effective technology that allows to determine the in-situ distribution of endogen and/or exogen small molecules. It is a rapidly emerging approach for visualizing drugs and their metabolites within biological tissues. Matrix-Assisted Laser Desorption Ionization (MALDI) Mass Spectrometry Imaging (MSI) coupled to high resolving power analyzer (e.g. TOF) was already investigated for metallodrug localization and metabolization studies, but was proved to suffer from a lack of sensitivity and resolution, leading to poor coverage and assignment. To counter these technological limitations, the use of ultra-high resolving power analyzer such as Fourier Transform Ion Cyclotron Resonance (FTICR) could be revealed as a technique of choice. The high field FTICR MS provides ultra-high resolving power and mass accuracy that allows exhaustive molecule coverage and non-ambiguous molecular formula assignments. Platinum derivatives, such as oxaliplatin, are widely used as therapeutic agents for cancer treatment. The assessment of their intake, distribution and metabolism within the organs is important to know the risks associated with their use. In this study, MALDI FTICR MSI analyses were performed to better understand the penetration and metabolization of platinum derivatives in ovaries of women treated by Hyperthermic Intraperitoneal Chemotherapy (HIPEC) for peritoneal metastasis of colorectal or appendicular origin. Twelve ovary sections, from six ovary samples in six women donors, before and after treatment, were analyzed with 120 μm spatial resolution. For the first time, the high resolving power (220,000 at m/z 457) and sub-ppm accuracy (<1 ppm) of the FTICR combined with an Isotopic Fine Structure study enabled to distinguish two Pt-isobaric species derived from oxaliplatin in biological tissues. One of these, which is unknown, was specifically localized at the contour of the ovary.
Collapse
Affiliation(s)
- Justine Ferey
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France; UMR1331 Toxalim (Research Centre in Food Toxicology), Toulouse University, INRAE, ENVT, INP-Purpan, UPS, 31027, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, 31027, Toulouse, France
| | - Marion Larroque
- Unité de Recherche Translationnelle, Institut du Cancer de Montpellier (ICM), 208 rue des apothicaires, 34298, Montpellier, France
| | - Isabelle Schmitz-Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France.
| | - Johann Le Maître
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France
| | - Olivia Sgarbura
- Service Chirurgie, Institut du Cancer de Montpellier (ICM), 208 rue des apothicaires, 34298, Montpellier, France
| | - Sébastien Carrere
- Service Chirurgie, Institut du Cancer de Montpellier (ICM), 208 rue des apothicaires, 34298, Montpellier, France
| | - François Quenet
- Service Chirurgie, Institut du Cancer de Montpellier (ICM), 208 rue des apothicaires, 34298, Montpellier, France
| | - Brice Bouyssiere
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR5254, Hélioparc, 64053, Pau, France
| | | | - Sandra Mounicou
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Materiaux, UMR5254, Hélioparc, 64053, Pau, France
| | - Carlos Afonso
- Normandie Univ, COBRA, UMR 6014 and FR 3038, Université de Rouen, INSA de Rouen, CNRS, IRCOF, 1 rue Tesnières, 76821, Mont-Saint-Aignan, Cedex, France
| |
Collapse
|
3
|
Larroque M, Mounicou S, Sgarbura O, Arnaudguilhem C, Rebel L, Leaha C, Faye PA, Enjalbal C, Quénet F, Bouyssiere B, Carrere S. Study of oxaliplatin penetration into ovaries of patients treated with hyperthermic intraperitoneal chemotherapy (HIPEC) for peritoneal metastases of colorectal and appendiceal origin using mass spectrometry imaging. Pleura Peritoneum 2021; 6:67-74. [PMID: 34179340 PMCID: PMC8216839 DOI: 10.1515/pp-2020-0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/25/2021] [Indexed: 12/27/2022] Open
Abstract
Objectives Platinum salts are commonly used in hyperthermic intraperitoneal chemotherapy (HIPEC) for digestive tract cancer treatment. During HIPEC with oxaliplatin for peritoneal metastases (PMs) treatment, the ovaries are directly exposed to the drug, questioning about ovarian resection and the potential impact of the drug on ovarian functionality, especially in young women of childbearing age. The goal of this work is to understand unwanted damages to the ovaries during HIPEC therapy by the determination of the concentration and distribution of platinum in ovaries in order to address its potential toxicity. Methods Mass spectrometry imaging techniques, matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP MS), were used to study the penetration of oxaliplatin in ovaries after HIPEC treatment. Results MALDI-MS allowed the localization of an oxaliplatin-derivative (m/z 456.2) at the periphery of the ovaries. The quantitative LA-ICP MS maps confirmed the localization of elemental platinum as well as in the central part of ovaries from patients who received a previous platinum salt-based chemotherapy. Conclusions LA-ICP MS images showed that platinum diffusion was extended in cases of previous systemic treatment, questioning about platinum derivatives gonado-toxicity when combining the two treatments.
Collapse
Affiliation(s)
- Marion Larroque
- Institut du Cancer de Montpellier, Unité de Recherche Translationnelle, Montpellier, France.,IRCM, INSERM, Univ Montpellier, Montpellier, France.,Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Sandra Mounicou
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Olivia Sgarbura
- Département Chirurgie Oncologique, Institut du Cancer de Montpellier, Montpellier, France
| | | | - Lucie Rebel
- Département Chirurgie Oncologique, Institut du Cancer de Montpellier, Montpellier, France
| | - Cristina Leaha
- Département d'Anatomopathologie, Institut du Cancer de Montpellier, Montpellier, France
| | - Pierre-Arnaud Faye
- Centre des Ressources Biologiques, Institut du Cancer de Montpellier, Montpellier, France
| | | | - François Quénet
- IRCM, INSERM, Univ Montpellier, Montpellier, France.,Département Chirurgie Oncologique, Institut du Cancer de Montpellier, Montpellier, France
| | - Brice Bouyssiere
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Sébastien Carrere
- IRCM, INSERM, Univ Montpellier, Montpellier, France.,Département Chirurgie Oncologique, Institut du Cancer de Montpellier, Montpellier, France
| |
Collapse
|
4
|
Theiner S, Schoeberl A, Schweikert A, Keppler BK, Koellensperger G. Mass spectrometry techniques for imaging and detection of metallodrugs. Curr Opin Chem Biol 2021; 61:123-134. [PMID: 33535112 DOI: 10.1016/j.cbpa.2020.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022]
Abstract
Undoubtedly, metallomic approaches based on mass spectrometry have evolved into essential tools supporting the drug development of novel metal-based anticancer drugs. This article will comment on the state-of-the-art instrumentation and highlight some of the recent analytical advances beyond routine, especially focusing on the latest developments in inductively coupled plasma-mass spectrometry (ICP-MS). Mass spectrometry-based bioimaging and single-cell methods will be presented, paving the way to exciting investigations of metal-based anticancer drugs in heterogeneous and structurally, as well as functionally complex solid tumor tissues.
Collapse
Affiliation(s)
- Sarah Theiner
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Anna Schoeberl
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria
| | - Andreas Schweikert
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria; Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 42, 1090, Vienna, Austria
| | - Gunda Koellensperger
- Institute of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Strasse 38, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Chung ACK, Li X, Li WC, Wang T, Lee HK, Jin L, Cai Z, Leung KCF. Mass spectrometry imaging and monitoring of in vivo glutathione-triggered cisplatin release from nanoparticles in the kidneys. NANOSCALE ADVANCES 2020; 2:5857-5865. [PMID: 36133892 PMCID: PMC9416930 DOI: 10.1039/d0na00708k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 10/22/2020] [Indexed: 06/16/2023]
Abstract
An increasing number of studies have reported the use of various nanoparticles to encapsulate cisplatin, a frontline chemotherapeutic drug against a broad-spectrum of cancers, for overcoming its inherent drawbacks in clinical applications. Nevertheless, few analytical methods or instruments could provide the precise distribution information on this platinum drug in biological tissues. Herein, we provide the first evidence of applying matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) to assess the spatial distribution of cisplatin released from the cell-penetrating poly(disulfide) (CPD)-modified hollow iron oxide nanoparticles (hFe3O4-MPS-CPD) at the kidneys via an in situ glutathione (GSH) responsive mode. The cisplatin released from the nanoparticles triggered by GSH was successfully examined as [Pt(DDTC)2]+ (m/z 491.01) and [Pt(DDTC)3]+ (m/z 639.04) by MALDI-MS after derivatization using diethyldithiocarbamate. The in situ spatial distribution of [Pt(DDTC)2]+ and [Pt(DDTC)3]+ in the kidneys was then mapped using MALDI-MSI. This study presents an optimized analytical approach to evaluate and map the metallodrug in biological tissue samples in an efficient and convenient manner, offering great assistance in investigating the biodistribution of cisplatin delivered by nanoparticles, and sheds light on facilitating the studies of the pharmacokinetics of cisplatin in biomedical research.
Collapse
Affiliation(s)
- Arthur C K Chung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Xuan Li
- Faculty of Dentistry, The University of Hong Kong Sai Ying Pun Hong Kong SAR P. R. China
| | - Wai-Chung Li
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Tao Wang
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Hin-Kiu Lee
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong Sai Ying Pun Hong Kong SAR P. R. China
| | - Zongwei Cai
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
| | - Ken Cham-Fai Leung
- Department of Chemistry, State Key Laboratory of Environmental and Biological Analysis, The Hong Kong Baptist University Kowloon Tong Kowloon Hong Kong SAR P. R. China
- Faculty of Dentistry, The University of Hong Kong Sai Ying Pun Hong Kong SAR P. R. China
| |
Collapse
|
6
|
Precision pharmacology: Mass spectrometry imaging and pharmacokinetic drug resistance. Crit Rev Oncol Hematol 2019; 141:153-162. [PMID: 31302407 DOI: 10.1016/j.critrevonc.2019.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/08/2019] [Accepted: 06/13/2019] [Indexed: 12/27/2022] Open
Abstract
Failure of systemic cancer treatment can be, at least in part, due to the drug not being delivered to the tumour at sufficiently high concentration and/or sufficiently homogeneous distribution; this is termed as "pharmacokinetic drug resistance". To understand whether a drug is being adequately delivered to the tumour, "precision pharmacology" techniques are needed. Mass spectrometry imaging (MSI) is a relatively new and complex technique that allows imaging of drug distribution within tissues. In this review we address the applicability of MSI to the study of cancer drug distribution from the bench to the bedside. We address: (i) the role of MSI in pre-clinical studies to characterize anti-cancer drug distribution within the body and the tumour, (ii) the application of MSI in pre-clinical studies to define optimal drug dose or schedule, combinations or new drug delivery systems, and finally (iii) the emerging role of MSI in clinical research.
Collapse
|
7
|
Holtkamp HU, Hartinger CG. Advanced metallomics methods in anticancer metallodrug mode of action studies. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2017.09.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
8
|
Mass spectrometry as a powerful tool to study therapeutic metallodrugs speciation mechanisms: Current frontiers and perspectives. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Arentz G, Mittal P, Zhang C, Ho YY, Briggs M, Winderbaum L, Hoffmann MK, Hoffmann P. Applications of Mass Spectrometry Imaging to Cancer. Adv Cancer Res 2017; 134:27-66. [PMID: 28110654 DOI: 10.1016/bs.acr.2016.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Pathologists play an essential role in the diagnosis and prognosis of benign and cancerous tumors. Clinicians provide tissue samples, for example, from a biopsy, which are then processed and thin sections are placed onto glass slides, followed by staining of the tissue with visible dyes. Upon processing and microscopic examination, a pathology report is provided, which relies on the pathologist's interpretation of the phenotypical presentation of the tissue. Targeted analysis of single proteins provide further insight and together with clinical data these results influence clinical decision making. Recent developments in mass spectrometry facilitate the collection of molecular information about such tissue specimens. These relatively new techniques generate label-free mass spectra across tissue sections providing nonbiased, nontargeted molecular information. At each pixel with spatial coordinates (x/y) a mass spectrum is acquired. The acquired mass spectrums can be visualized as intensity maps displaying the distribution of single m/z values of interest. Based on the sample preparation, proteins, peptides, lipids, small molecules, or glycans can be analyzed. The generated intensity maps/images allow new insights into tumor tissues. The technique has the ability to detect and characterize tumor cells and their environment in a spatial context and combined with histological staining, can be used to aid pathologists and clinicians in the diagnosis and management of cancer. Moreover, such data may help classify patients to aid therapy decisions and predict outcomes. The novel complementary mass spectrometry-based methods described in this chapter will contribute to the transformation of pathology services around the world.
Collapse
Affiliation(s)
- G Arentz
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - P Mittal
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - C Zhang
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - Y-Y Ho
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - M Briggs
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia; ARC Centre for Nanoscale BioPhotonics (CNBP), University of Adelaide, Adelaide, SA, Australia
| | - L Winderbaum
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - M K Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia
| | - P Hoffmann
- Adelaide Proteomics Centre, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia; Institute for Photonics and Advanced Sensing (IPAS), University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
10
|
Lee RFS, Theiner S, Meibom A, Koellensperger G, Keppler BK, Dyson PJ. Application of imaging mass spectrometry approaches to facilitate metal-based anticancer drug research. Metallomics 2017; 9:365-381. [DOI: 10.1039/c6mt00231e] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Liu X, Hummon AB. Chemical Imaging of Platinum-Based Drugs and their Metabolites. Sci Rep 2016; 6:38507. [PMID: 27917942 PMCID: PMC5137023 DOI: 10.1038/srep38507] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 11/04/2016] [Indexed: 12/18/2022] Open
Abstract
Platinum-based drugs (cisplatin, carboplatin, and oxaliplatin) are widely used therapeutic agents for cancer treatment. Even though the platinum (Pt)-drugs are routinely used clinically, a clear picture of their distribution within tumor tissues is lacking. The current methods to image the distribution of Pt drugs are limited and do not enable the discrimination of the drug from its metabolites. In this manuscript, we demonstrate a methodology that enables chemical imaging of a Pt drug and its metabolites simultaneously and specifically. Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometry Imaging (MSI) is combined with an on-tissue chemical derivatization using diethyldithiocarbamate (DDTC). DDTC abstracts the Pt atom to generate ionizable complexes that can be imaged by MALDI MSI. We demonstrate that Pt drugs and their metabolites can be specifically imaged. This approach was successfully applied to map the penetration and metabolism of oxaliplatin in hyperthermic intraperitoneal chemotherapy (HIPEC)-like treated 3D colorectal tumor mimics. The distribution of cisplatin and carboplatin was mapped in additional 3D tumor mimics. We demonstrate that the approach can also be used to image the distribution of copper ions in cells. This method has the potential to be used to evaluate the penetration and distribution of a wide range of compounds.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry and Biochemistry Harper Cancer Research Institute University of Notre Dame McCourtney Hall Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry Harper Cancer Research Institute University of Notre Dame McCourtney Hall Notre Dame, IN 46556, USA
| |
Collapse
|
12
|
Abstract
During the last decade, lateral and temporal localization of drug compounds and their metabolites have been demonstrated and dynamically developed using MS imaging. The pharmaceutical industry has recognized the potential of the technology that provides simultaneous distribution and quantitative data. In this review, we present the latest technological achievements and summarize applications of drug imaging focusing on studies about metabolites by MALDI-MS imaging. We also introduce potential areas with pharmaceutical applications that are currently under exploration, including pharmacological, toxicological characterizations and metabolic enzyme localization in comparison with drug and metabolite distribution.
Collapse
|
13
|
Liu X, Hummon AB. Mass spectrometry imaging of therapeutics from animal models to three-dimensional cell cultures. Anal Chem 2015; 87:9508-19. [PMID: 26084404 PMCID: PMC4766864 DOI: 10.1021/acs.analchem.5b00419] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mass spectrometry imaging (MSI) is a powerful label-free technique for the investigation of the spatial distribution of molecules at complex surfaces and has been widely used in the pharmaceutical sciences to understand the distribution of different drugs and their metabolites in various biological samples, ranging from cell-based models to tissues. Here, we review the current applications of MSI for drug studies in animal models, followed by a discussion of the novel advances of MSI in three-dimensional (3D) cell cultures for accurate, efficient, and high-throughput analyses to evaluate therapeutics.
Collapse
Affiliation(s)
- Xin Liu
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Amanda B. Hummon
- Department of Chemistry and Biochemistry, Harper Cancer Research Institute, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Abstract
Advances in development of mass spectrometry (MS) are successfully utilized for spatial localization of pharmaceutical compounds in these tissue sections. Today MS instruments can be used in imaging mode when the datasets are generated from the surface of the tissue over an array of acquisition positions. This review is focused on the technological developments of matrix-assisted laser desorption/ionization MS imaging (MALDI-MSI) and related sample preparation procedures. MALDI-MSI provides a sensitive and label-free approach for imaging of drugs and their metabolites. Due to these features, MALDI-MSI is expected to become a standard technique in pharmaceutical development providing complementary information to current methods.
Collapse
Affiliation(s)
- Ákos Végvári
- Clinical Protein Science & Imaging, Department of Biomedical Engineering, Lund University, Sweden.,CREATE Health, Lund University, Sweden; Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
15
|
Petruzzella E, Margiotta N, Natile G, Hoeschele JD. Reactivity of kiteplatin with S-donor biomolecules and nucleotides. Dalton Trans 2015; 43:12851-9. [PMID: 25051186 DOI: 10.1039/c4dt01474j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Kiteplatin, (cis-1,4-DACH)dichloridoplatinum(ii), contains an isomeric form of the carrier ligand present in the successful antitumor drug oxaliplatin and has been recently found to be very active against oxaliplatin-resistant colon cancers, confirming that, by changing the nature of the amine ligand, it is possible to obtain platinum drugs that are not cross-resistant to those already in clinical use. Apart from interaction with DNA, another factor that can affect the activity of platinum drugs is their metabolic fate in the cellular environment. Therefore, kiteplatin has been reacted with S-donor biomolecules, such as glutathione, cysteine, and methionine. The investigation has further confirmed the different reactivity of methionine as compared to cysteine-containing peptides and has unraveled the possibility of cis-1,4-DACH to become mono-coordinated with one free end (a situation never seen for isomeric 1,2-DACH ligands) and to labilize cis ligands as a consequence of its large steric hindrance. The reaction of kiteplatin-GSH adducts with 5'-GMP has also shown how the reaction products can be different depending upon the aerobic or anaerobic reaction conditions used.
Collapse
|
16
|
Cobice DF, Goodwin RJA, Andren PE, Nilsson A, Mackay CL, Andrew R. Future technology insight: mass spectrometry imaging as a tool in drug research and development. Br J Pharmacol 2015; 172:3266-83. [PMID: 25766375 DOI: 10.1111/bph.13135] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 02/09/2015] [Accepted: 03/03/2015] [Indexed: 12/14/2022] Open
Abstract
In pharmaceutical research, understanding the biodistribution, accumulation and metabolism of drugs in tissue plays a key role during drug discovery and development. In particular, information regarding pharmacokinetics, pharmacodynamics and transport properties of compounds in tissues is crucial during early screening. Historically, the abundance and distribution of drugs have been assessed by well-established techniques such as quantitative whole-body autoradiography (WBA) or tissue homogenization with LC/MS analysis. However, WBA does not distinguish active drug from its metabolites and LC/MS, while highly sensitive, does not report spatial distribution. Mass spectrometry imaging (MSI) can discriminate drug and its metabolites and endogenous compounds, while simultaneously reporting their distribution. MSI data are influencing drug development and currently used in investigational studies in areas such as compound toxicity. In in vivo studies MSI results may soon be used to support new drug regulatory applications, although clinical trial MSI data will take longer to be validated for incorporation into submissions. We review the current and future applications of MSI, focussing on applications for drug discovery and development, with examples to highlight the impact of this promising technique in early drug screening. Recent sample preparation and analysis methods that enable effective MSI, including quantitative analysis of drugs from tissue sections will be summarized and key aspects of methodological protocols to increase the effectiveness of MSI analysis for previously undetectable targets addressed. These examples highlight how MSI has become a powerful tool in drug research and development and offers great potential in streamlining the drug discovery process.
Collapse
Affiliation(s)
- D F Cobice
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - R J A Goodwin
- Drug Metabolism and Distribution, Mass Spectrometry Imaging, AstraZeneca R&D, Macclesfield, UK
| | - P E Andren
- Biomolecular Imaging and Proteomics, National Center for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - A Nilsson
- Biomolecular Imaging and Proteomics, National Center for Mass Spectrometry Imaging, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - C L Mackay
- SIRCAMS, School of Chemistry, University of Edinburgh, Edinburgh, UK
| | - R Andrew
- University/British Heart Foundation Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
17
|
Mirnezami R, Spagou K, Vorkas PA, Lewis MR, Kinross J, Want E, Shion H, Goldin RD, Darzi A, Takats Z, Holmes E, Cloarec O, Nicholson JK. Chemical mapping of the colorectal cancer microenvironment via MALDI imaging mass spectrometry (MALDI-MSI) reveals novel cancer-associated field effects. Mol Oncol 2014; 8:39-49. [PMID: 24112879 PMCID: PMC5528498 DOI: 10.1016/j.molonc.2013.08.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 08/08/2013] [Accepted: 08/26/2013] [Indexed: 12/29/2022] Open
Abstract
Matrix-assisted laser desorption ionisation imaging mass spectrometry (MALDI-MSI) is a rapidly advancing technique for intact tissue analysis that allows simultaneous localisation and quantification of biomolecules in different histological regions of interest. This approach can potentially offer novel insights into tumour microenvironmental (TME) biochemistry. In this study we employed MALDI-MSI to evaluate fresh frozen sections of colorectal cancer (CRC) tissue and adjacent healthy mucosa obtained from 12 consenting patients undergoing surgery for confirmed CRC. Specifically, we sought to address three objectives: (1) To identify biochemical differences between different morphological regions within the CRC TME; (2) To characterise the biochemical differences between cancerous and healthy colorectal tissue using MALDI-MSI; (3) To determine whether MALDI-MSI profiling of tumour-adjacent tissue can identify novel metabolic 'field effects' associated with cancer. Our results demonstrate that CRC tissue harbours characteristic phospholipid signatures compared with healthy tissue and additionally, different tissue regions within the CRC TME reveal distinct biochemical profiles. Furthermore we observed biochemical differences between tumour-adjacent and tumour-remote healthy mucosa. We have referred to this 'field effect', exhibited by the tumour locale, as cancer-adjacent metaboplasia (CAM) and this finding builds on the established concept of field cancerisation.
Collapse
Affiliation(s)
- R Mirnezami
- Biosurgery and Surgical Technology, Department of Surgery and Cancer, Faculty of Medicine, St. Mary's Hospital, Imperial College London, W2 1NY London, UK
| | - K Spagou
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - P A Vorkas
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - M R Lewis
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - J Kinross
- Biosurgery and Surgical Technology, Department of Surgery and Cancer, Faculty of Medicine, St. Mary's Hospital, Imperial College London, W2 1NY London, UK
| | - E Want
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - H Shion
- Department of Metabolic Profiling, Waters Corporation, Milford, MA 01757, USA
| | - R D Goldin
- Centre for Pathology, Department of Medicine, Faculty of Medicine, St. Mary's Hospital, Imperial College London, W2 1NY London, UK
| | - A Darzi
- Biosurgery and Surgical Technology, Department of Surgery and Cancer, Faculty of Medicine, St. Mary's Hospital, Imperial College London, W2 1NY London, UK
| | - Z Takats
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - E Holmes
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| | - O Cloarec
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK; Korrigan Sciences Ltd., 9 Imperial Place, Maidenhead SL6 2GN, UK.
| | - J K Nicholson
- Computational and Systems Medicine, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, SW7 2AZ London, UK
| |
Collapse
|
18
|
Hartinger CG, Groessl M, Meier SM, Casini A, Dyson PJ. Application of mass spectrometric techniques to delineate the modes-of-action of anticancer metallodrugs. Chem Soc Rev 2014; 42:6186-99. [PMID: 23660626 DOI: 10.1039/c3cs35532b] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mass spectrometry (MS) has emerged as an important tool for studying anticancer metallodrugs in complex biological samples and for characterising their interactions with biomolecules and potential targets on a molecular level. The exact modes-of-action of these coordination compounds and especially of next generation drug candidates have not been fully elucidated. Due to the fact that DNA is considered a crucial target for platinum chemotherapeutics, metallodrug-DNA binding studies dominated the field for a long time. However, more recently, alternative targets were considered, including enzymes and proteins that may play a role in the overall pharmacological and toxicological profile of metallodrugs. This review focuses on MS-based techniques for studying anticancer metallodrugs in vivo, in vitro and in situ to delineate their modes-of-action.
Collapse
Affiliation(s)
- Christian G Hartinger
- School of Chemical Sciences, The University of Auckland, 1142 Auckland, New Zealand.
| | | | | | | | | |
Collapse
|
19
|
Bianga J, Bouslimani A, Bec N, Quenet F, Mounicou S, Szpunar J, Bouyssiere B, Lobinski R, Larroque C. Complementarity of MALDI and LA ICP mass spectrometry for platinum anticancer imaging in human tumor. Metallomics 2014; 6:1382-6. [DOI: 10.1039/c4mt00131a] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The follow-up of the Heated Intraoperative Chemotherapy (HIPEC) of peritoneal carcinomatosis would benefit from the monitoring of the penetration, distribution and metabolism of the drug within the tumor.
Collapse
Affiliation(s)
| | - Amina Bouslimani
- IRCM
- Institut de Recherche en Cancérologie de Montpellier
- INSERM U896
- Université Montpellier 1
- Montpellier, France
| | - Nicole Bec
- IRCM
- Institut de Recherche en Cancérologie de Montpellier
- INSERM U896
- Université Montpellier 1
- Montpellier, France
| | - François Quenet
- ICM
- Institut Régional du Cancer de Montpellier
- Montpellier, France
| | | | | | | | | | - Christian Larroque
- IRCM
- Institut de Recherche en Cancérologie de Montpellier
- INSERM U896
- Université Montpellier 1
- Montpellier, France
| |
Collapse
|
20
|
Shimma S, Takashima Y, Hashimoto J, Yonemori K, Tamura K, Hamada A. Alternative two-step matrix application method for imaging mass spectrometry to avoid tissue shrinkage and improve ionization efficiency. JOURNAL OF MASS SPECTROMETRY : JMS 2013; 48:1285-90. [PMID: 24338883 DOI: 10.1002/jms.3288] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 09/16/2013] [Accepted: 09/25/2013] [Indexed: 05/20/2023]
Abstract
Mass spectrometry (MS) was used to measure the concentrations of drug and biological compounds in plasma and tissues. Matrix-assisted laser desorption/ionization (MALDI) imaging MS (IMS) has recently been applied to the analysis of localized drugs on biological tissue surfaces. In MALDI-IMS, matrix application process is crucial for successful results. However, it is difficult to obtain homogeneous matrix crystals on the tissue surface due to endogenous salts and tissue surface heterogeneity. Consequently, the non-uniform crystals degrade the quality of the spectrum and likely cause surface imaging artifacts. Furthermore, the direct application of matrix solution can cause tissue shrinkage due to the organic solvents. Here, we report an alternative two-step matrix application protocol which combines the vacuum deposition of matrix crystals and the spraying of matrix solution to produce a homogeneous matrix layer on the tissue surface. Our proposed technique can also prevent cracking or shrinking of the tissue samples and improve the ionization efficiency of the distributed exogenous material.
Collapse
Affiliation(s)
- Shuichi Shimma
- Division of Translational Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 1040045, Japan; Division of Clinical Pharmacology Group for Translational Research Support Core, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 1040045, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Toue S, Sugiura Y, Kubo A, Ohmura M, Karakawa S, Mizukoshi T, Yoneda J, Miyano H, Noguchi Y, Kobayashi T, Kabe Y, Suematsu M. Microscopic imaging mass spectrometry assisted by on-tissue chemical derivatization for visualizing multiple amino acids in human colon cancer xenografts. Proteomics 2013; 14:810-9. [PMID: 23818158 DOI: 10.1002/pmic.201300041] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Revised: 03/20/2013] [Accepted: 03/30/2013] [Indexed: 11/09/2022]
Abstract
Imaging MS combined with CE/MS serves as a method to provide semi-quantitative and spatial information of small molecular metabolites in tissue slices. However, not all metabolites including amino acids have fully been visualized, because of low-ionization efficiency in MALDI MS. This study aimed to acquire semi-quantitative spatial information for multiple amino acids in frozen tissue slices. As a derivatization reagent, p-N,N,N-trimethylammonioanilyl N'-hydroxysuccinimidyl carbamate iodide (TAHS) was applied to increase their ionization efficiency and detection sensitivity. Semi-quantitative MALDI-imaging MS allowed us to visualize and quantify free amino acid pools in human colon cancer xenografts using a model of liver metastases in super-immunodeficient NOD/scid/γ(null) mice (NOG mice). Because the m/z values of several TAHS-derivatized amino acids overlap with those of the 2,5-dihydroxybenzoic acid background and other endogenous compounds, we imaged them with tandem MS. The results indicated that regional contents of glutamate, glutamine, glycine, leucine/isoleucine/hydroxyproline, phenylalanine, and alanine were significantly elevated in metastatic tumors versus parenchyma of tumor-bearing livers. On-tissue TAHS derivatization thus serves as a useful method to detect alterations in many amino acid levels in vivo, thereby enabling understanding of the spatial alterations of these metabolites under varied disease conditions including cancer.
Collapse
Affiliation(s)
- Sakino Toue
- Department of Biochemistry, School of Medicine, Keio University, Tokyo, Japan; Institute for Innovation, Ajinomoto Co., Inc, Kawasaki, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Morosi L, Spinelli P, Zucchetti M, Pretto F, Carrà A, D’Incalci M, Giavazzi R, Davoli E. Determination of paclitaxel distribution in solid tumors by nano-particle assisted laser desorption ionization mass spectrometry imaging. PLoS One 2013; 8:e72532. [PMID: 23991120 PMCID: PMC3753243 DOI: 10.1371/journal.pone.0072532] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/10/2013] [Indexed: 11/19/2022] Open
Abstract
A sensitive, simple and reproducible protocol for nanoparticle-assisted laser desorption/ionization mass spectrometry imaging technique is described. The use of commercially available TiO2 nanoparticles abolishes heterogeneous crystallization, matrix background interferences and enhances signal detection, especially in the low mass range. Molecular image normalization was based on internal standard deposition on tissues, allowing direct comparison of drug penetration and distribution between different organs and tissues. The method was applied to analyze the distribution of the anticancer drug paclitaxel, inside normal and neoplastic mouse tissue sections. Spatial resolution was good, with a linear response between different in vivo treatments and molecular imaging intensity using therapeutic drug doses. This technique distinguishes the different intensity of paclitaxel distribution in control organs of mice, such as liver and kidney, in relation to the dose. Animals treated with 30 mg/kg of paclitaxel had half of the concentration of those treated with 60 mg/kg. We investigated the spatial distribution of paclitaxel in human melanoma mouse xenografts, following different dosage schedules and found a more homogeneous drug distribution in tumors of mice given repeated doses (5×8 mg/kg) plus a 60 mg/kg dose than in those assigned only a single 60 mg/kg dose. The protocol can be readily applied to investigate anticancer drug distribution in neoplastic lesions and to develop strategies to optimize and enhance drug penetration through different tumor tissues.
Collapse
Affiliation(s)
- Lavinia Morosi
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Department of Oncology, Milano, Italy
| | - Pietro Spinelli
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Department of Oncology, Milano, Italy
| | - Massimo Zucchetti
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Department of Oncology, Milano, Italy
| | - Francesca Pretto
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Department of Oncology, Milano, Italy
| | - Andrea Carrà
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Department of Environmental Health Sciences, Mass Spectrometry Laboratory, Milano, Italy
| | - Maurizio D’Incalci
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Department of Oncology, Milano, Italy
| | - Raffaella Giavazzi
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Department of Oncology, Milano, Italy
| | - Enrico Davoli
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”, Department of Environmental Health Sciences, Mass Spectrometry Laboratory, Milano, Italy
- * E-mail:
| |
Collapse
|
23
|
Weaver EM, Hummon AB. Imaging mass spectrometry: from tissue sections to cell cultures. Adv Drug Deliv Rev 2013; 65:1039-55. [PMID: 23571020 DOI: 10.1016/j.addr.2013.03.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Imaging mass spectrometry (IMS) has been a useful tool for investigating protein, peptide, drug and metabolite distributions in human and animal tissue samples for almost 15years. The major advantages of this method include a broad mass range, the ability to detect multiple analytes in a single experiment without the use of labels and the preservation of biologically relevant spatial information. Currently the majority of IMS experiments are based on imaging animal tissue sections or small tumor biopsies. An alternative method currently being developed is the application of IMS to three-dimensional cell and tissue culture systems. With new advances in tissue culture and engineering, these model systems are able to provide increasingly accurate, high-throughput and cost-effective models that recapitulate important characteristics of cell and tissue growth in vivo. This review will describe the most recent advances in IMS technology and the bright future of applying IMS to the field of three-dimensional cell and tissue culture.
Collapse
|
24
|
Quanico J, Franck J, Dauly C, Strupat K, Dupuy J, Day R, Salzet M, Fournier I, Wisztorski M. Development of liquid microjunction extraction strategy for improving protein identification from tissue sections. J Proteomics 2013; 79:200-18. [DOI: 10.1016/j.jprot.2012.11.025] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 11/20/2012] [Accepted: 11/30/2012] [Indexed: 12/22/2022]
|
25
|
Lanekoff I, Thomas M, Carson JP, Smith JN, Timchalk C, Laskin J. Imaging nicotine in rat brain tissue by use of nanospray desorption electrospray ionization mass spectrometry. Anal Chem 2013; 85:882-9. [PMID: 23256596 DOI: 10.1021/ac302308p] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Imaging mass spectrometry offers simultaneous spatially resolved detection of drugs, drug metabolites, and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nanospray desorption electrospray ionization, nano-DESI, is a new ambient technique that enables spatially resolved analysis of a variety of samples without special sample pretreatment. This study introduces an experimental approach for accurate spatial mapping of drugs and metabolites in tissue sections by nano-DESI imaging. In this approach, an isotopically labeled standard is added to the nano-DESI solvent to compensate for matrix effects and ion suppression. The analyte image is obtained by normalizing the analyte signal to the signal of the standard in each pixel. We demonstrate that the presence of internal standard enables online quantification of analyte molecules extracted from tissue sections. Ion images are subsequently mapped to the anatomical brain regions in the analyzed section by use of an atlas mesh deformed to match the optical image of the section. Atlas-based registration accounts for the physical variability between animals, which is important for data interpretation. The new approach was used for mapping the distribution of nicotine in rat brain tissue sections following in vivo drug administration. We demonstrate the utility of nano-DESI imaging for sensitive detection of the drug in tissue sections with subfemtomole sensitivity in each pixel of a 27 μm × 150 μm area. Such sensitivity is necessary for spatially resolved detection of low-abundance molecules in complex matrices.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Chemical and Materials Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Silina YE, Volmer DA. Nanostructured solid substrates for efficient laser desorption/ionization mass spectrometry (LDI-MS) of low molecular weight compounds. Analyst 2013; 138:7053-65. [DOI: 10.1039/c3an01120h] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
27
|
Kang S, Maeng H, Kim BG, Qing GM, Choi YP, Kim HY, Kim PS, Kim Y, Kim YH, Choi YD, Cho NH. In situ identification and localization of IGHA2 in the breast tumor microenvironment by mass spectrometry. J Proteome Res 2012; 11:4567-74. [PMID: 22894699 DOI: 10.1021/pr3003672] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Modifications in the tumor microenvironment (TME) play a major role in the establishment, progression, and metastasis of cancer. Matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI) is a powerful technique that enables the simultaneous identification and localization of biological compounds within tissues. To detect markers of early TME remodeling in invasive breast cancer, we used MALDI-MSI to compare the molecular profiles of tissues from the breast cancer interface zone, tumor zone, and normal-tissue zone. Using direct-tissue MALDI tandem mass spectrometry (MS/MS), we identified immunoglobulin heavy constant alpha 2 (IGHA2) as a new, zone-specific protein in the breast TME. The zone-specific expression of IGHA2 was verified by immunoblotting and immunohistochemical analysis. IGHA2 expression was consistently positive in tumor cells that were metastatic to regional nodes, with intense expression along the cytoplasmic borders. As a factor related to an increased percentage of nodes with tumor metastasis, IGHA2 expression was upregulated 3.745-fold in cases with an increased number of cancerous nodes (p = 0.0468). Our results provide the first evidence of IGHA2 as a marker of the early process of TME remodeling in invasive breast cancer. Furthermore, IGHA2 may be a novel marker for regional metastases in the lymph nodes of patients with breast cancer.
Collapse
Affiliation(s)
- Suki Kang
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Prideaux B, Stoeckli M. Mass spectrometry imaging for drug distribution studies. J Proteomics 2012; 75:4999-5013. [DOI: 10.1016/j.jprot.2012.07.028] [Citation(s) in RCA: 224] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 07/15/2012] [Accepted: 07/16/2012] [Indexed: 01/13/2023]
|
29
|
Implementation of molecular phenotyping approaches in the personalized surgical patient journey. Ann Surg 2012; 255:881-9. [PMID: 22156927 DOI: 10.1097/sla.0b013e31823e3c43] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The present review describes commonly employed metabolic profiling platforms and discusses the current and likely future application of these technologies in surgery. BACKGROUND The metabolic adaptations that occur in response to surgical illness and trauma are incompletely understood. Evaluating these will be critical to the development of personalized surgical health solutions. Metabonomics is an advancing field in systems biology, which provides a means of interrogating these metabolic shifts. METHODS Recent literature regarding metabolic profiling technologies and their applications in surgical practice are discussed. Future strategies are proposed for the incorporation of these and next-generation technologies in the evaluation of all steps in the patient surgical pathway. RESULTS Metabolite-based profiling has provided valuable insights into the metabolic irregularities that occur in cancer development and progression across a variety of cancer subclasses including colorectal, breast, prostate, and lung cancers. In addition, metabolic modeling has shown considerable promise in other surgical conditions including trauma and sepsis and in the assessment of pharmacotherapeutic efficacy. DISCUSSION Metabonomics offers a posttranscriptional view of system activity providing functional information downstream of the genome and proteome. Information at this level will provide the surgeon with a novel means of evaluating major socioeconomic problems such as cancer and sepsis. In addition, the rapid nature of emerging next generation profiling platforms provides a viable means of "real-time" perioperative metabolic assessment and optimization.
Collapse
|
30
|
Le PAIR-gynécologie : recherche multi/interdisciplinaire en cancérologie gynécologique. Les problèmes à résoudre en 2012. Bull Cancer 2012; 99:479-98. [DOI: 10.1684/bdc.2012.1558] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Radisavljević M, Kamčeva T, Bugarčić ŽD, Petković M. Inhibitory effect of cisplatin and [Pt(dach)Cl2] on the activity of phospholipase A2. J Enzyme Inhib Med Chem 2012; 28:651-60. [DOI: 10.3109/14756366.2012.666539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Maja Radisavljević
- Laboratory of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade,
Belgrade, Republic of Serbia
| | - Tina Kamčeva
- Laboratory of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade,
Belgrade, Republic of Serbia
| | - Živadin D. Bugarčić
- Faculty of Science, Department of Chemistry, University of Kragujevac,
Kragujevac, Republic of Serbia
| | - Marijana Petković
- Laboratory of Physical Chemistry, Vinča Institute of Nuclear Sciences, University of Belgrade,
Belgrade, Republic of Serbia
| |
Collapse
|
32
|
Casini A, Reedijk J. Interactions of anticancer Pt compounds with proteins: an overlooked topic in medicinal inorganic chemistry? Chem Sci 2012. [DOI: 10.1039/c2sc20627g] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Abstract
Two frontline MS technologies, which have recently gained much attention, are discussed within the scope of this review. Besides a brief summary on the contemporary state of lung cancer and chronic obstructive pulmonary disease, the principles of multiple reaction monitoring and matrix assisted laser desorption ionization (MALDI) MS imaging are presented. A comprehensive overview of quantitative mass spectrometry applications is provided, covering multiple reaction monitoring assay developments for analysis of proteins (biomarkers) and low-molecular-weight compounds (drugs) with a special focus on the disease areas of lung cancer and chronic obstructive pulmonary disease. The MALDI-MS imaging applications are discussed similarly, providing references to studies conducted on lung tissues in order to localize drug compounds and protein biomarkers.
Collapse
|
34
|
MALDI imaging mass spectrometry for direct tissue analysis: technological advancements and recent applications. Histochem Cell Biol 2011; 136:227-44. [PMID: 21805154 DOI: 10.1007/s00418-011-0843-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/09/2011] [Indexed: 12/29/2022]
Abstract
Matrix assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) is a method that allows the investigation of the molecular content of tissues within its morphological context. Since it is able to measure the distribution of hundreds of analytes at once, while being label free, this method has great potential which has been increasingly recognized in the field of tissue-based research. In the last few years, MALDI-IMS has been successfully used for the molecular assessment of tissue samples mainly in biomedical research and also in other scientific fields. The present article will give an update on the application of MALDI-IMS in clinical and preclinical research. It will also give an overview of the multitude of technical advancements of this method in recent years. This includes developments in instrumentation, sample preparation, computational data analysis and protein identification. It will also highlight a number of emerging fields for application of MALDI-IMS like drug imaging where MALDI-IMS is used for studying the spatial distribution of drugs in tissues.
Collapse
|
35
|
Seeley EH, Schwamborn K, Caprioli RM. Imaging of intact tissue sections: moving beyond the microscope. J Biol Chem 2011; 286:25459-66. [PMID: 21632549 PMCID: PMC3138310 DOI: 10.1074/jbc.r111.225854] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
MALDI-imaging MS is a new molecular imaging technology for direct in situ analysis of thin tissue sections. Multiple analytes can be monitored simultaneously without prior knowledge of their identities and without the need for target-specific reagents such as antibodies. Imaging MS provides important insights into biological processes because the native distributions of molecules are minimally disturbed, and histological features remain intact throughout the analysis. A wide variety of molecules can be imaged, including proteins, peptides, lipids, drugs, and metabolites. Several specific examples are presented to highlight the utility of the technology.
Collapse
Affiliation(s)
- Erin H. Seeley
- From the Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | - Kristina Schwamborn
- From the Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| | - Richard M. Caprioli
- From the Mass Spectrometry Research Center and Department of Biochemistry, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, Tennessee 37232
| |
Collapse
|
36
|
Wyatt MF. MALDI-TOFMS analysis of coordination and organometallic complexes: a nic(h)e area to work in. JOURNAL OF MASS SPECTROMETRY : JMS 2011; 46:712-719. [PMID: 21744419 DOI: 10.1002/jms.1957] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A mini-review of the characterisation of metal-containing compounds by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOFMS) is presented. Organometallic and coordination compounds have many varied applications, most notably in industrial catalytic processes and also in the electronics and healthcare sectors. In general, the compounds discussed, be they small or large molecules, have a high percentage metal content, rather than simply containing 'a metal atom'. A brief history of the field is given, but the main scope over the last 5 years is covered in some detail. How MALDI-TOFMS compliments electrospray for metal-containing compounds is highlighted. Perspectives on recent advances, such as solvent-free and air/moisture-sensitive sample preparation, and potential future challenges and developments, such as nanomaterials and metallodrug/metallometabolite imaging, are given.
Collapse
Affiliation(s)
- Mark F Wyatt
- EPSRC National Mass Spectrometry Service Centre (NMSSC), Institute of Mass Spectrometry (IMS), College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK.
| |
Collapse
|
37
|
Melzer S, Clerens S, Bishop PJ. Differential polymorphism in cutaneous glands of archaic Leiopelma species. J Morphol 2011; 272:1116-30. [DOI: 10.1002/jmor.10960] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 01/24/2011] [Accepted: 02/20/2011] [Indexed: 11/08/2022]
|
38
|
Drug localization in different lung cancer phenotypes by MALDI mass spectrometry imaging. J Proteomics 2011; 74:982-92. [DOI: 10.1016/j.jprot.2011.03.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 11/21/2022]
|
39
|
Greer T, Sturm R, Li L. Mass spectrometry imaging for drugs and metabolites. J Proteomics 2011; 74:2617-31. [PMID: 21515430 DOI: 10.1016/j.jprot.2011.03.032] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 03/20/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
Mass spectrometric imaging (MSI) is a powerful analytical technique that provides two- and three-dimensional spatial maps of multiple compounds in a single experiment. This technique has been routinely applied to protein, peptide, and lipid molecules with much less research reporting small molecule distributions, especially pharmaceutical drugs. This review's main focus is to provide readers with an up-to-date description of the substrates and compounds that have been analyzed for drug and metabolite composition using MSI technology. Additionally, ionization techniques, sample preparation, and instrumentation developments are discussed.
Collapse
Affiliation(s)
- Tyler Greer
- Department of Chemistry and School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705–2222, USA
| | | | | |
Collapse
|
40
|
Petković M, Kamčeva T. FAB, ESI and MALDI Mass Spectrometric methods in the study of metallo-drugs and their biomolecular interactions. Metallomics 2011; 3:550-65. [DOI: 10.1039/c0mt00096e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
41
|
Molecular mass spectrometry imaging in biomedical and life science research. Histochem Cell Biol 2010; 134:423-43. [DOI: 10.1007/s00418-010-0753-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2010] [Indexed: 10/18/2022]
|
42
|
MALDI imaging mass spectrometry--painting molecular pictures. Mol Oncol 2010; 4:529-38. [PMID: 20965799 DOI: 10.1016/j.molonc.2010.09.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 09/20/2010] [Accepted: 09/20/2010] [Indexed: 11/23/2022] Open
Abstract
MALDI Imaging Mass Spectrometry is a molecular analytical technology capable of simultaneously measuring multiple analytes directly from intact tissue sections. Histological features within the sample can be correlated with molecular species without the need for target-specific reagents such as antibodies. Several studies have demonstrated the strength of the technology for uncovering new markers that correlate with disease severity as well as prognosis and therapeutic response. This review describes technological aspects of imaging mass spectrometry together with applications in cancer research.
Collapse
|
43
|
Abstract
Imaging mass spectrometry (IMS) using matrix-assisted laser desorption ionization (MALDI) is a new and effective tool for molecular studies of complex biological samples such as tissue sections. As histological features remain intact throughout the analysis of a section, distribution maps of multiple analytes can be correlated with histological and clinical features. Spatial molecular arrangements can be assessed without the need for target-specific reagents, allowing the discovery of diagnostic and prognostic markers of different cancer types and enabling the determination of effective therapies.
Collapse
Affiliation(s)
- Kristina Schwamborn
- Mass Spectrometry Research Center, Department of Biochemistry, Vanderbilt University, Nashville, Tennessee 37232-2195, USA
| | | |
Collapse
|
44
|
Affiliation(s)
- Kamila Chughtai
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ron M.A. Heeren
- FOM-Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam, The Netherlands
| |
Collapse
|