1
|
Lyu CA, Shen Y, Zhang P. Zooming in and out: Exploring RNA Viral Infections with Multiscale Microscopic Methods. Viruses 2024; 16:1504. [PMID: 39339980 PMCID: PMC11437419 DOI: 10.3390/v16091504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
RNA viruses, being submicroscopic organisms, have intriguing biological makeups and substantially impact human health. Microscopic methods have been utilized for studying RNA viruses at a variety of scales. In order of observation scale from large to small, fluorescence microscopy, cryo-soft X-ray tomography (cryo-SXT), serial cryo-focused ion beam/scanning electron microscopy (cryo-FIB/SEM) volume imaging, cryo-electron tomography (cryo-ET), and cryo-electron microscopy (cryo-EM) single-particle analysis (SPA) have been employed, enabling researchers to explore the intricate world of RNA viruses, their ultrastructure, dynamics, and interactions with host cells. These methods evolve to be combined to achieve a wide resolution range from atomic to sub-nano resolutions, making correlative microscopy an emerging trend. The developments in microscopic methods provide multi-fold and spatial information, advancing our understanding of viral infections and providing critical tools for developing novel antiviral strategies and rapid responses to emerging viral threats.
Collapse
Affiliation(s)
- Cheng-An Lyu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| | - Yao Shen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK;
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| |
Collapse
|
2
|
Chen XN, Cai ST, Liang YF, Weng ZJ, Song TQ, Li X, Sun YS, Peng YZ, Huang Z, Gao Q, Tang SQ, Zhang GH, Gong L. Subcellular localization of viral proteins after porcine epidemic diarrhea virus infection and their roles in the viral life cycle. Int J Biol Macromol 2024; 274:133401. [PMID: 38925184 DOI: 10.1016/j.ijbiomac.2024.133401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Porcine epidemic diarrhea virus (PEDV) is one of the most devastating diseases affecting the pig industry globally. Due to the emergence of novel strains, no effective vaccines are available for prevention and control. Investigating the pathogenic mechanisms of PEDV may provide insights for creating clinical interventions. This study constructed and expressed eukaryotic expression vectors containing PEDV proteins (except NSP11) with a 3' HA tag in Vero cells. The subcellular localization of PEDV proteins was examined using endogenous protein antibodies to investigate their involvement in the viral life cycle, including endocytosis, intracellular trafficking, genome replication, energy metabolism, budding, and release. We systematically analyzed the potential roles of all PEDV viral proteins in the virus life cycle. We found that the endosome sorting complex required for transport (ESCRT) machinery may be involved in the replication and budding processes of PEDV. Our study provides insight into the molecular mechanisms underlying PEDV infection. IMPORTANCE: The global swine industry has suffered immense losses due to the spread of PEDV. Currently, there are no effective vaccines available for clinical protection. Exploring the pathogenic mechanisms of PEDV may provide valuable insights for clinical interventions. This study investigated the involvement of viral proteins in various stages of the PEDV lifecycle in the state of viral infection and identified several previously unreported interactions between viral and host proteins. These findings contribute to a better understanding of the pathogenic mechanisms underlying PEDV infection and may serve as a basis for further research and development of therapeutic strategies.
Collapse
Affiliation(s)
- Xiong-Nan Chen
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Shao-Tong Cai
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China
| | - Yi-Fan Liang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Zhi-Jun Weng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Tian-Qi Song
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People's Republic of China
| | - Xi Li
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Ying-Shuo Sun
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Yun-Zhao Peng
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People's Republic of China
| | - Zhao Huang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Qi Gao
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China
| | - Sheng-Qiu Tang
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, People's Republic of China
| | - Gui-Hong Zhang
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People's Republic of China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People's Republic of China.
| | - Lang Gong
- Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People's Republic of China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong, People's Republic of China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, People's Republic of China; National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, People's Republic of China.
| |
Collapse
|
3
|
Pérez-Yanes S, Lorenzo-Sánchez I, Cabrera-Rodríguez R, García-Luis J, Trujillo-González R, Estévez-Herrera J, Valenzuela-Fernández A. The ZIKV NS5 Protein Aberrantly Alters the Tubulin Cytoskeleton, Induces the Accumulation of Autophagic p62 and Affects IFN Production: HDAC6 Has Emerged as an Anti-NS5/ZIKV Factor. Cells 2024; 13:598. [PMID: 38607037 PMCID: PMC11011779 DOI: 10.3390/cells13070598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Zika virus (ZIKV) infection and pathogenesis are linked to the disruption of neurogenesis, congenital Zika syndrome and microcephaly by affecting neural progenitor cells. Nonstructural protein 5 (NS5) is the largest product encoded by ZIKV-RNA and is important for replication and immune evasion. Here, we studied the potential effects of NS5 on microtubules (MTs) and autophagy flux, together with the interplay of NS5 with histone deacetylase 6 (HDAC6). Fluorescence microscopy, biochemical cell-fractionation combined with the use of HDAC6 mutants, chemical inhibitors and RNA interference indicated that NS5 accumulates in nuclear structures and strongly promotes the acetylation of MTs that aberrantly reorganize in nested structures. Similarly, NS5 accumulates the p62 protein, an autophagic-flux marker. Therefore, NS5 alters events that are under the control of the autophagic tubulin-deacetylase HDAC6. HDAC6 appears to degrade NS5 by autophagy in a deacetylase- and BUZ domain-dependent manner and to control the cytoplasmic expression of NS5. Moreover, NS5 inhibits RNA-mediated RIG-I interferon (IFN) production, resulting in greater activity when autophagy is inhibited (i.e., effect correlated with NS5 stability). Therefore, it is conceivable that NS5 contributes to cell toxicity and pathogenesis, evading the IFN-immune response by overcoming HDAC6 functions. HDAC6 has emerged as an anti-ZIKV factor by targeting NS5.
Collapse
Affiliation(s)
- Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Department of Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, 38296 La Laguna, Spain;
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, 38200 La Laguna, Spain; (S.P.-Y.); (I.L.-S.); (R.C.-R.); (J.G.-L.)
| |
Collapse
|
4
|
De Ávila-Arias M, Villarreal-Camacho JL, Cadena-Cruz C, Hurtado-Gómez L, Costello HM, Rodriguez A, Burgos-Florez F, Bettin A, Kararoudi MN, Muñoz A, Peeples ME, San-Juan-Vergara H. Exploring the secrets of virus entry: the first respiratory syncytial virus carrying beta lactamase. Front Microbiol 2024; 15:1339569. [PMID: 38455070 PMCID: PMC10919290 DOI: 10.3389/fmicb.2024.1339569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/06/2024] [Indexed: 03/09/2024] Open
Abstract
Background Respiratory Syncytial Virus (RSV) presents a significant health threat, especially to young children. In-depth understanding of RSV entry mechanisms is essential for effective antiviral development. This study introduces an innovative RSV variant, featuring the fusion of the beta-lactamase (BlaM) enzyme with the RSV-P phosphoprotein, providing a versatile tool for dissecting viral entry dynamics. Methods Using the AlphaFold2 algorithm, we modeled the tertiary structure of the P-BlaM chimera, revealing structural similarities with both RSV-P and BlaM. Functional assessments, utilizing flow cytometry, quantified beta-lactamase activity and GFP expression in infected bronchial epithelial cells. Western blot analysis confirmed the integrity of P-BlaM within virions. Results The modeled P-BlaM chimera exhibited structural parallels with RSV-P and BlaM. Functional assays demonstrated robust beta-lactamase activity in recombinant virions, confirming successful P-BlaM incorporation as a structural protein. Quercetin, known for its antiviral properties, impeded viral entry by affecting virion fusion. Additionally, Ulixertinib, an ERK-1/2 inhibitor, significantly curtailed viral entry, implicating ERK-1/2 pathway signaling. Conclusions Our engineered RSV-P-BlaM chimera emerges as a valuable tool, illuminating RSV entry mechanisms. Structural and functional analyses unveil potential therapeutic targets. Quercetin and Ulixertinib, identified as distinct stage inhibitors, show promise for targeted antiviral strategies. Time-of-addition assays pinpoint quercetin's specific interference stage, advancing our comprehension of RSV entry and guiding future antiviral developments.
Collapse
Affiliation(s)
- Marcio De Ávila-Arias
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | - Jose Luis Villarreal-Camacho
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Christian Cadena-Cruz
- Programa de Medicina, Facultad de Ciencias de la Salud, Universidad Libre Seccional Barranquilla, Barranquilla, Colombia
| | - Leidy Hurtado-Gómez
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | - Heather M. Costello
- Genomics Services Laboratory, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Alexander Rodriguez
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | - Francisco Burgos-Florez
- Programa de regencia en farmacia, grupo de investigación creatividad e innovación tecnológica, Corporación tecnológica Indoamérica, Barranquilla, Colombia
- Escuela de Pregrado, Dirección Académica, Vicerrectoría de Sede, Universidad Nacional de Colombia, Sede La Paz, Cesar, Colombia
| | - Alfonso Bettin
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| | - Meisam Naeimi Kararoudi
- Center for Childhood Cancer and Blood Diseases, Abigail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Amner Muñoz
- Departamento de Química y Biología, Universidad del Norte, Barranquilla, Colombia
| | - Mark E. Peeples
- Center for Vaccines and Immunity, The Abagail Wexner Research Institute at Nationwide Children’s Hospital, Columbus, OH, United States
| | - Homero San-Juan-Vergara
- Departamento de Medicina, División Ciencias de la Salud, Universidad del Norte, Barranquilla, Colombia
| |
Collapse
|
5
|
Cabrera-Rodríguez R, Pérez-Yanes S, Lorenzo-Sánchez I, Trujillo-González R, Estévez-Herrera J, García-Luis J, Valenzuela-Fernández A. HIV Infection: Shaping the Complex, Dynamic, and Interconnected Network of the Cytoskeleton. Int J Mol Sci 2023; 24:13104. [PMID: 37685911 PMCID: PMC10487602 DOI: 10.3390/ijms241713104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
HIV-1 has evolved a plethora of strategies to overcome the cytoskeletal barrier (i.e., actin and intermediate filaments (AFs and IFs) and microtubules (MTs)) to achieve the viral cycle. HIV-1 modifies cytoskeletal organization and dynamics by acting on associated adaptors and molecular motors to productively fuse, enter, and infect cells and then traffic to the cell surface, where virions assemble and are released to spread infection. The HIV-1 envelope (Env) initiates the cycle by binding to and signaling through its main cell surface receptors (CD4/CCR5/CXCR4) to shape the cytoskeleton for fusion pore formation, which permits viral core entry. Then, the HIV-1 capsid is transported to the nucleus associated with cytoskeleton tracks under the control of specific adaptors/molecular motors, as well as HIV-1 accessory proteins. Furthermore, HIV-1 drives the late stages of the viral cycle by regulating cytoskeleton dynamics to assure viral Pr55Gag expression and transport to the cell surface, where it assembles and buds to mature infectious virions. In this review, we therefore analyze how HIV-1 generates a cell-permissive state to infection by regulating the cytoskeleton and associated factors. Likewise, we discuss the relevance of this knowledge to understand HIV-1 infection and pathogenesis in patients and to develop therapeutic strategies to battle HIV-1.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Iria Lorenzo-Sánchez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
- Analysis Department, Faculty of Mathematics, Universidad de La Laguna (ULL), 38200 La Laguna, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Jonay García-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), 38200 La Laguna, Spain; (R.C.-R.); (S.P.-Y.); (I.L.-S.); (R.T.-G.); (J.E.-H.); (J.G.-L.)
| |
Collapse
|
6
|
Lara-Hernandez I, Muñoz-Escalante JC, Bernal-Silva S, Noyola DE, Wong-Chew RM, Comas-García A, Comas-Garcia M. Ultrastructural and Functional Characterization of Mitochondrial Dynamics Induced by Human Respiratory Syncytial Virus Infection in HEp-2 Cells. Viruses 2023; 15:1518. [PMID: 37515204 PMCID: PMC10386036 DOI: 10.3390/v15071518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Human respiratory syncytial virus (hRSV) is the leading cause of acute lower respiratory tract infections in children under five years of age and older adults worldwide. During hRSV infection, host cells undergo changes in endomembrane organelles, including mitochondria. This organelle is responsible for energy production in the cell and plays an important role in the antiviral response. The present study focuses on characterizing the ultrastructural and functional changes during hRSV infection using thin-section transmission electron microscopy and RT-qPCR. Here we report that hRSV infection alters mitochondrial morphodynamics by regulating the expression of key genes in the antiviral response process, such as Mfn1, VDAC2, and PINK1. Our results suggest that hRSV alters mitochondrial morphology during infection, producing a mitochondrial phenotype with shortened cristae, swollen matrix, and damaged membrane. We also observed that hRSV infection modulates the expression of the aforementioned genes, possibly as an evasion mechanism in the face of cellular antiviral response. Taken together, these results advance our knowledge of the ultrastructural alterations associated with hRSV infection and might guide future therapeutic efforts to develop effective antiviral drugs for hRSV treatment.
Collapse
Affiliation(s)
- Ignacio Lara-Hernandez
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Juan Carlos Muñoz-Escalante
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Sofía Bernal-Silva
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Genomic Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Daniel E Noyola
- Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Rosa María Wong-Chew
- Research Division, School of Medicine, National Autonomous University of Mexico, Mexico City 04360, Mexico
| | - Andreu Comas-García
- Department of Microbiology, School of Medicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Mauricio Comas-Garcia
- High-Resolution Microscopy Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Science Department, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
- Molecular and Translation Medicine Section, Center for Research in Health Sciences and Biomedicine, Autonomous University of San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
7
|
Jadhav AC, Kounatidis I. Correlative Cryo-imaging Using Soft X-Ray Tomography for the Study of Virus Biology in Cells and Tissues. Subcell Biochem 2023; 106:169-196. [PMID: 38159227 DOI: 10.1007/978-3-031-40086-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Viruses are obligate intracellular pathogens that depend on their host cell machinery and metabolism for their replicative life cycle. Virus entry, replication, and assembly are dynamic processes that lead to the reorganisation of host cell components. Therefore, a complete understanding of the viral processes requires their study in the cellular context where advanced imaging has been proven valuable in providing the necessary information. Among the available imaging techniques, soft X-ray tomography (SXT) at cryogenic temperatures can provide three-dimensional mapping to 25 nm resolution and is ideally suited to visualise the internal organisation of virus-infected cells. In this chapter, the principles and practices of synchrotron-based cryo-soft X-ray tomography (cryo-SXT) in virus research are presented. The potential of the cryo-SXT in correlative microscopy platforms is also demonstrated through working examples of reovirus and hepatitis research at Beamline B24 (Diamond Light Source Synchrotron, UK) and BL09-Mistral beamline (ALBA Synchrotron, Spain), respectively.
Collapse
Affiliation(s)
- Archana C Jadhav
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK
| | - Ilias Kounatidis
- Beamline B24, Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK.
- School of Life, Health and Chemical Sciences, The Open University, Milton Keynes, UK.
| |
Collapse
|
8
|
The Evolutionary Dance between Innate Host Antiviral Pathways and SARS-CoV-2. Pathogens 2022; 11:pathogens11050538. [PMID: 35631059 PMCID: PMC9147806 DOI: 10.3390/pathogens11050538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Compared to what we knew at the start of the SARS-CoV-2 global pandemic, our understanding of the interplay between the interferon signaling pathway and SARS-CoV-2 infection has dramatically increased. Innate antiviral strategies range from the direct inhibition of viral components to reprograming the host’s own metabolic pathways to block viral infection. SARS-CoV-2 has also evolved to exploit diverse tactics to overcome immune barriers and successfully infect host cells. Herein, we review the current knowledge of the innate immune signaling pathways triggered by SARS-CoV-2 with a focus on the type I interferon response, as well as the mechanisms by which SARS-CoV-2 impairs those defenses.
Collapse
|
9
|
Criglar JM, Estes MK, Crawford SE. Rotavirus-Induced Lipid Droplet Biogenesis Is Critical for Virus Replication. Front Physiol 2022; 13:836870. [PMID: 35492603 PMCID: PMC9040889 DOI: 10.3389/fphys.2022.836870] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/02/2022] [Indexed: 01/14/2023] Open
Abstract
A variety of pathogens, including viruses, bacteria and parasites, target cellular lipid droplets for their replication. Rotaviruses (RVs) infect the villous epithelium of the small intestine and are a major cause of acute gastroenteritis in infants and young children worldwide. RVs induce and require lipid droplets for the formation of viroplasms, sites of virus genome replication, and nascent particle assembly. Here we review the role of lipid droplets in RV replication. Inhibitors of fatty acid synthesis or chemicals that interfere with lipid droplet homeostasis decrease the number and size of viroplasms and the yield of infectious virus. We used a genetically engineered RV, delayed in viroplasm assembly, to show an early interaction of RV nonstructural protein NSP2 and the lipid droplet-associated protein phospho-PLIN1. The interaction between NSP2 and phospho-PLIN1 suggests that we have identified part of the mechanism of RV-induced lipid droplet formation. These studies demonstrate that RV is an excellent model to dissect the cellular process of lipid droplet formation and to determine how RV induces and usurps lipid droplet biogenesis to form viroplasm/lipid droplets for virus replication.
Collapse
Affiliation(s)
- Jeanette M Criglar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mary K Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States.,Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Sue E Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
10
|
Abstract
Zika virus is a mosquito-borne flavivirus known to cause severe birth defects and neuroimmunological disorders. We have previously demonstrated that mosquito transmission of Zika virus decreases with temperature. While transmission was optimized at 29°C, it was limited at cool temperatures (<22°C) due to poor virus establishment in the mosquitoes. Temperature is one of the strongest drivers of vector-borne disease transmission due to its profound effect on ectothermic mosquito vectors, viruses, and their interaction. Although there is substantial evidence of temperature effects on arbovirus replication and dissemination inside mosquitoes, little is known about whether temperature affects virus replication directly or indirectly through mosquito physiology. In order to determine the mechanisms behind temperature-induced changes in Zika virus transmission potential, we investigated different steps of the virus replication cycle in mosquito cells (C6/36) at optimal (28°C) and cool (20°C) temperatures. We found that the cool temperature did not alter Zika virus entry or translation, but it affected genome replication and reduced the amount of double-stranded RNA replication intermediates. If replication complexes were first formed at 28°C and the cells were subsequently shifted to 20°C, the late steps in the virus replication cycle were efficiently completed. These data suggest that cool temperature decreases the efficiency of Zika virus genome replication in mosquito cells. This phenotype was observed in the Asian lineage of Zika virus, while the African lineage Zika virus was less restricted at 20°C. IMPORTANCE With half of the human population at risk, arboviral diseases represent a substantial global health burden. Zika virus, previously known to cause sporadic infections in humans, emerged in the Americas in 2015 and quickly spread worldwide. There was an urgent need to better understand the disease pathogenesis and develop therapeutics and vaccines, as well as to understand, predict, and control virus transmission. In order to efficiently predict the seasonality and geography for Zika virus transmission, we need a deeper understanding of the host-pathogen interactions and how they can be altered by environmental factors such as temperature. Identifying the step in the virus replication cycle that is inhibited under cool conditions can have implications in modeling the temperature suitability for arbovirus transmission as global environmental patterns change. Understanding the link between pathogen replication and environmental conditions can potentially be exploited to develop new vector control strategies in the future.
Collapse
|
11
|
Aliyari SR, Ghaffari AA, Pernet O, Parvatiyar K, Wang Y, Gerami H, Tong AJ, Vergnes L, Takallou A, Zhang A, Wei X, Chilin LD, Wu Y, Semenkovich CF, Reue K, Smale ST, Lee B, Cheng G. Suppressing fatty acid synthase by type I interferon and chemical inhibitors as a broad spectrum anti-viral strategy against SARS-CoV-2. Acta Pharm Sin B 2022; 12:1624-1635. [PMID: 35251918 PMCID: PMC8883762 DOI: 10.1016/j.apsb.2022.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/27/2022] [Accepted: 02/08/2022] [Indexed: 12/15/2022] Open
Abstract
SARS-CoV-2 is an emerging viral pathogen and a major global public health challenge since December of 2019, with limited effective treatments throughout the pandemic. As part of the innate immune response to viral infection, type I interferons (IFN-I) trigger a signaling cascade that culminates in the activation of hundreds of genes, known as interferon stimulated genes (ISGs), that collectively foster an antiviral state. We report here the identification of a group of type I interferon suppressed genes, including fatty acid synthase (FASN), which are involved in lipid metabolism. Overexpression of FASN or the addition of its downstream product, palmitate, increased viral infection while knockout or knockdown of FASN reduced infection. More importantly, pharmacological inhibitors of FASN effectively blocked infections with a broad range of viruses, including SARS-CoV-2 and its variants of concern. Thus, our studies not only suggest that downregulation of metabolic genes may present an antiviral strategy by type I interferon, but they also introduce the potential for FASN inhibitors to have a therapeutic application in combating emerging infectious diseases such as COVID-19.
Collapse
Affiliation(s)
- Saba R. Aliyari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Amir Ali Ghaffari
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Olivier Pernet
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- EnViro International Laboratories, Los Angeles, CA 90077, USA
| | - Kislay Parvatiyar
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Yao Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Hoda Gerami
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Ann-Jay Tong
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Laurent Vergnes
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Armin Takallou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Adel Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Xiaochao Wei
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Linda D. Chilin
- Center for Infectious Disease Research, School of Systems Biology, George Mason University Manassas, VA 20110, USA
| | - Yuntao Wu
- Center for Infectious Disease Research, School of Systems Biology, George Mason University Manassas, VA 20110, USA
| | - Clay F. Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110, USA
- Diabetic Cardiovascular Disease Center, Washington, University School of Medicine, St. Louis, MO 63110, USA
| | - Karen Reue
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Stephen T. Smale
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Benhur Lee
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
- Corresponding author. Tel.:+1 310 825 8896; fax: +1 310 206 5553.
| |
Collapse
|
12
|
de Chassey B, Morel E. [Role of mitochondrial morphodynamics and contact sites in the antiviral response]. Med Sci (Paris) 2021; 37:1166-1168. [PMID: 34928221 DOI: 10.1051/medsci/2021171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Benoit de Chassey
- ENYO Pharma SA, BIOSERRA 1, Bâtiment B, 60 avenue Rockefeller, 69008 Lyon, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), Inserm U1151-CNRS 8253, Université de Paris, 160 rue de Vaugirard, 75015 Paris, France
| |
Collapse
|
13
|
Hassan Z, Kumar ND, Reggiori F, Khan G. How Viruses Hijack and Modify the Secretory Transport Pathway. Cells 2021; 10:2535. [PMID: 34685515 PMCID: PMC8534161 DOI: 10.3390/cells10102535] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/28/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Eukaryotic cells contain dynamic membrane-bound organelles that are constantly remodeled in response to physiological and environmental cues. Key organelles are the endoplasmic reticulum, the Golgi apparatus and the plasma membrane, which are interconnected by vesicular traffic through the secretory transport route. Numerous viruses, especially enveloped viruses, use and modify compartments of the secretory pathway to promote their replication, assembly and cell egression by hijacking the host cell machinery. In some cases, the subversion mechanism has been uncovered. In this review, we summarize our current understanding of how the secretory pathway is subverted and exploited by viruses belonging to Picornaviridae, Coronaviridae, Flaviviridae,Poxviridae, Parvoviridae and Herpesviridae families.
Collapse
Affiliation(s)
- Zubaida Hassan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
- Department of Microbiology, School of Life Sciences, Modibbo Adama University, Yola PMB 2076, Nigeria
| | - Nilima Dinesh Kumar
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands
| | - Fulvio Reggiori
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (N.D.K.); (F.R.)
| | - Gulfaraz Khan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates;
| |
Collapse
|
14
|
Kotsev SV, Miteva D, Krayselska S, Shopova M, Pishmisheva-Peleva M, Stanilova SA, Velikova T. Hypotheses and facts for genetic factors related to severe COVID-19. World J Virol 2021; 10:137-155. [PMID: 34367930 PMCID: PMC8316875 DOI: 10.5501/wjv.v10.i4.137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/19/2021] [Accepted: 05/23/2021] [Indexed: 02/06/2023] Open
Abstract
Genome-wide association analysis allows the identification of potential candidate genes involved in the development of severe coronavirus disease 2019 (COVID-19). Hence, it seems that genetics matters here, as well. Nevertheless, the virus's nature, including its RNA structure, determines the rate of mutations leading to new viral strains with all epidemiological and clinical consequences. Given these observations, we herein comment on the current hypotheses about the possible role of the genes in association with COVID-19 severity. We discuss some of the major candidate genes that have been identified as potential genetic factors associated with the COVID-19 severity and infection susceptibility: HLA, ABO, ACE2, TLR7, ApoE, TYK2, OAS, DPP9, IFNAR2, CCR2, etc. Further study of genes and genetic variants will be of great benefit for the prevention and assessment of the individual risk and disease severity in different populations. These scientific data will serve as a basis for the development of clinically applicable diagnostic and prognostic tests for patients at high risk of COVID-19.
Collapse
Affiliation(s)
- Stanislav Vasilev Kotsev
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, Pazardzhik 4400, Bulgaria
| | - Dimitrina Miteva
- Department of Genetics, Sofia University “St. Kliment Ohridski”, Sofia 1000, Bulgaria
| | | | - Martina Shopova
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, Pazardzhik 4400, Bulgaria
| | - Maria Pishmisheva-Peleva
- Department of Infectious Diseases, Pazardzhik Multiprofile Hospital for Active Treatment, Pazardzhik 4400, Bulgaria
| | - Spaska Angelova Stanilova
- Department of Molecular Biology, Immunology and Medical Genetics, Medical Faculty, Trakia University, Stara Zagora 6000, Bulgaria
| | - Tsvetelina Velikova
- Department of Clinical Immunology, University Hospital Lozenetz, Sofia 1407, Bulgaria
- Medical Faculty, Sofia University “St. Kliment Ohridski”, Sofia 1407, Bulgaria
| |
Collapse
|
15
|
Renz A, Widerspick L, Dräger A. Genome-Scale Metabolic Model of Infection with SARS-CoV-2 Mutants Confirms Guanylate Kinase as Robust Potential Antiviral Target. Genes (Basel) 2021; 12:796. [PMID: 34073716 PMCID: PMC8225150 DOI: 10.3390/genes12060796] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 12/17/2022] Open
Abstract
The current SARS-CoV-2 pandemic is still threatening humankind. Despite first successes in vaccine development and approval, no antiviral treatment is available for COVID-19 patients. The success is further tarnished by the emergence and spreading of mutation variants of SARS-CoV-2, for which some vaccines have lower efficacy. This highlights the urgent need for antiviral therapies even more. This article describes how the genome-scale metabolic model (GEM) of the host-virus interaction of human alveolar macrophages and SARS-CoV-2 was refined by incorporating the latest information about the virus's structural proteins and the mutant variants B.1.1.7, B.1.351, B.1.28, B.1.427/B.1.429, and B.1.617. We confirmed the initially identified guanylate kinase as a potential antiviral target with this refined model and identified further potential targets from the purine and pyrimidine metabolism. The model was further extended by incorporating the virus' lipid requirements. This opened new perspectives for potential antiviral targets in the altered lipid metabolism. Especially the phosphatidylcholine biosynthesis seems to play a pivotal role in viral replication. The guanylate kinase is even a robust target in all investigated mutation variants currently spreading worldwide. These new insights can guide laboratory experiments for the validation of identified potential antiviral targets. Only the combination of vaccines and antiviral therapies will effectively defeat this ongoing pandemic.
Collapse
Affiliation(s)
- Alina Renz
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
| | - Lina Widerspick
- Bernhard Nocht Institute for Tropical Medicine, Virus Immunology, 20359 Hamburg, Germany;
| | - Andreas Dräger
- Department of Computer Science, University of Tübingen, 72076 Tübingen, Germany;
- Cluster of Excellence ‘Controlling Microbes to Fight Infections’, University of Tübingen, 72076 Tübingen, Germany
- Computational Systems Biology of Infections and Antimicrobial-Resistant Pathogens, Institute for Bioinformatics and Medical Informatics (IBMI), University of Tübingen, 72076 Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Amiar S, Husby ML, Wijesinghe KJ, Angel S, Bhattarai N, Gerstman BS, Chapagain PP, Li S, Stahelin RV. Lipid-specific oligomerization of the Marburg virus matrix protein VP40 is regulated by two distinct interfaces for virion assembly. J Biol Chem 2021; 296:100796. [PMID: 34019871 PMCID: PMC8191294 DOI: 10.1016/j.jbc.2021.100796] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 02/03/2023] Open
Abstract
Marburg virus (MARV) is a lipid-enveloped virus harboring a negative-sense RNA genome, which has caused sporadic outbreaks of viral hemorrhagic fever in sub-Saharan Africa. MARV assembles and buds from the host cell plasma membrane where MARV matrix protein (mVP40) dimers associate with anionic lipids at the plasma membrane inner leaflet and undergo a dynamic and extensive self-oligomerization into the structural matrix layer. The MARV matrix layer confers the virion filamentous shape and stability but how host lipids modulate mVP40 oligomerization is mostly unknown. Using in vitro and cellular techniques, we present a mVP40 assembly model highlighting two distinct oligomerization interfaces: the (N-terminal domain [NTD] and C-terminal domain [CTD]) in mVP40. Cellular studies of NTD and CTD oligomerization interface mutants demonstrate the importance of each interface in matrix assembly. The assembly steps include protein trafficking to the plasma membrane, homo-multimerization that induced protein enrichment, plasma membrane fluidity changes, and elongations at the plasma membrane. An ascorbate peroxidase derivative (APEX)-transmission electron microscopy method was employed to closely assess the ultrastructural localization and formation of viral particles for wildtype mVP40 and NTD and CTD oligomerization interface mutants. Taken together, these studies present a mechanistic model of mVP40 oligomerization and assembly at the plasma membrane during virion assembly that requires interactions with phosphatidylserine for NTD–NTD interactions and phosphatidylinositol-4,5-bisphosphate for proper CTD–CTD interactions. These findings have broader implications in understanding budding of lipid-enveloped viruses from the host cell plasma membrane and potential strategies to target protein–protein or lipid–protein interactions to inhibit virus budding.
Collapse
Affiliation(s)
- Souad Amiar
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Monica L Husby
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Kaveesha J Wijesinghe
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Stephanie Angel
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA
| | - Nisha Bhattarai
- Department of Physics, Florida International University, Miami, Florida, USA
| | - Bernard S Gerstman
- Department of Physics, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Prem P Chapagain
- Department of Physics, Florida International University, Miami, Florida, USA; Biomolecular Sciences Institute, Florida International University, Miami, Florida, USA
| | - Sheng Li
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Robert V Stahelin
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, West Lafayette, Indiana, USA.
| |
Collapse
|
17
|
Valosin-containing protein/p97 plays critical roles in the Japanese encephalitis virus life cycle. J Virol 2021; 95:JVI.02336-20. [PMID: 33731458 PMCID: PMC8139707 DOI: 10.1128/jvi.02336-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Host factors provide critical support for every aspect of the virus life cycle. We recently identified the valosin-containing protein (VCP)/p97, an abundant cellular ATPase with diverse cellular functions, as a host factor important for Japanese encephalitis virus (JEV) replication. In cultured cells, using siRNA-mediated protein depletion and pharmacological inhibitors, we show that VCP is crucial for replication of three flaviviruses: JEV, Dengue, and West Nile viruses. An FDA-approved VCP inhibitor, CB-5083, extended survival of mice in the animal model of JEV infection. While VCP depletion did not inhibit JEV attachment on cells, it delayed capsid degradation, potentially through the entrapment of the endocytosed virus in clathrin-coated vesicles (CCVs). Early during infection, VCP-depleted cells showed an increased colocalization of JEV capsid with clathrin, and also higher viral RNA levels in purified CCVs. We show that VCP interacts with the JEV nonstructural protein NS5 and is an essential component of the virus replication complex. The depletion of the major VCP cofactor UFD-1 also significantly inhibited JEV replication. Mechanistically, thus, VCP affected two crucial steps of the JEV life cycle - nucleocapsid release and RNA replication. Our study establishes VCP as a common host factor with a broad antiviral potential against flaviviruses.ImportanceJEV is the leading cause of viral encephalitis epidemics in South-east Asia, affecting majorly children with high morbidity and mortality. Identification of host factors is thus essential for the rational design of anti-virals that are urgently need as therapeutics. Here we have identified the VCP protein as one such host-factor. This protein is highly abundant in cells and engages in diverse functions and cellular pathways by its ability to interact with different co-factors. Using siRNA mediated protein knockdown, we show that this protein is essential for release of the viral RNA into the cell so that it can initiate replication. The protein plays a second crucial role for the formation of the JEV replication complex. FDA-approved drugs targeting VCP show enhanced mouse survival in JE model of disease, suggesting that this could be a druggable target for flavivirus infections.
Collapse
|
18
|
Cabrera-Rodríguez R, Pérez-Yanes S, Estévez-Herrera J, Márquez-Arce D, Cabrera C, Espert L, Blanco J, Valenzuela-Fernández A. The Interplay of HIV and Autophagy in Early Infection. Front Microbiol 2021; 12:661446. [PMID: 33995324 PMCID: PMC8113651 DOI: 10.3389/fmicb.2021.661446] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
HIV/AIDS is still a global threat despite the notable efforts made by the scientific and health communities to understand viral infection, to design new drugs or to improve existing ones, as well as to develop advanced therapies and vaccine designs for functional cure and viral eradication. The identification and analysis of HIV-1 positive individuals that naturally control viral replication in the absence of antiretroviral treatment has provided clues about cellular processes that could interact with viral proteins and RNA and define subsequent viral replication and clinical progression. This is the case of autophagy, a degradative process that not only maintains cell homeostasis by recycling misfolded/old cellular elements to obtain nutrients, but is also relevant in the innate and adaptive immunity against viruses, such as HIV-1. Several studies suggest that early steps of HIV-1 infection, such as virus binding to CD4 or membrane fusion, allow the virus to modulate autophagy pathways preparing cells to be permissive for viral infection. Confirming this interplay, strategies based on autophagy modulation are able to inhibit early steps of HIV-1 infection. Moreover, autophagy dysregulation in late steps of the HIV-1 replication cycle may promote autophagic cell-death of CD4+ T cells or control of HIV-1 latency, likely contributing to disease progression and HIV persistence in infected individuals. In this scenario, understanding the molecular mechanisms underlying HIV/autophagy interplay may contribute to the development of new strategies to control HIV-1 replication. Therefore, the aim of this review is to summarize the knowledge of the interplay between autophagy and the early events of HIV-1 infection, and how autophagy modulation could impair or benefit HIV-1 infection and persistence, impacting viral pathogenesis, immune control of viral replication, and clinical progression of HIV-1 infected patients.
Collapse
Affiliation(s)
- Romina Cabrera-Rodríguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Silvia Pérez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Judith Estévez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Daniel Márquez-Arce
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| | - Cecilia Cabrera
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Lucile Espert
- Institut de Recherche en Infectiologie de Montpellier, Université de Montpellier, CNRS, Montpellier, France
| | - Julià Blanco
- AIDS Research Institute IrsiCaixa, Institut de Recerca en Ciències de la Salut Germans Trias i Pujol (IGTP), Barcelona, Spain.,Universitat de Vic-Central de Catalunya (UVIC-UCC), Catalonia, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, e IUETSPC de la Universidad de La Laguna, Campus de Ofra s/n, Tenerife, Spain
| |
Collapse
|
19
|
A surfactant polymer wound dressing protects human keratinocytes from inducible necroptosis. Sci Rep 2021; 11:4357. [PMID: 33623080 PMCID: PMC7902632 DOI: 10.1038/s41598-021-82260-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic wounds show necroptosis from which keratinocytes must be protected to enable appropriate wound re-epithelialization and closure. Poloxamers, a class of synthetic triblock copolymers, are known to be effective against plasma membrane damage (PMD). The purpose of this study is to evaluate the efficacy of a specific poloxamer, surfactant polymer dressing (SPD), which is currently used clinically as wound care dressing, against PMD in keratinocytes. Triton X-100 (TX100) at sub-lytic concentrations caused PMD as demonstrated by the efflux of calcein and by the influx of propidium iodide and FM1-43. TX100, an inducer of necroptosis, led to mitochondrial fragmentation, depletion of nuclear HMGB1, and activation of signaling complex associated with necroptosis (i.e., activation of RIP3 and phosphorylation of MLKL). All responses following exposure of human keratinocytes to TX100 were attenuated by pre- or co-treatment with SPD (100 mg/ml). The activation and translocation of phospho-MLKL to the plasma membrane, taken together with depletion of nuclear HMGB1, characterized the observed cell death as necroptosis. Thus, our findings show that TX100-induced plasma membrane damage and death by necroptosis were both attenuated by SPD, allowing keratinocyte survival. The significance of such protective effects of SPD on keratinocytes in wound re-epithelialization and closure warrant further studies.
Collapse
|
20
|
Pila-Castellanos I, Molino D, McKellar J, Lines L, Da Graca J, Tauziet M, Chanteloup L, Mikaelian I, Meyniel-Schicklin L, Codogno P, Vonderscher J, Delevoye C, Moncorgé O, Meldrum E, Goujon C, Morel E, de Chassey B. Mitochondrial morphodynamics alteration induced by influenza virus infection as a new antiviral strategy. PLoS Pathog 2021; 17:e1009340. [PMID: 33596274 PMCID: PMC7920353 DOI: 10.1371/journal.ppat.1009340] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/01/2021] [Accepted: 01/27/2021] [Indexed: 12/23/2022] Open
Abstract
Influenza virus infections are major public health threats due to their high rates of morbidity and mortality. Upon influenza virus entry, host cells experience modifications of endomembranes, including those used for virus trafficking and replication. Here we report that influenza virus infection modifies mitochondrial morphodynamics by promoting mitochondria elongation and altering endoplasmic reticulum-mitochondria tethering in host cells. Expression of the viral RNA recapitulates these modifications inside cells. Virus induced mitochondria hyper-elongation was promoted by fission associated protein DRP1 relocalization to the cytosol, enhancing a pro-fusion status. We show that altering mitochondrial hyper-fusion with Mito-C, a novel pro-fission compound, not only restores mitochondrial morphodynamics and endoplasmic reticulum-mitochondria contact sites but also dramatically reduces influenza replication. Finally, we demonstrate that the observed Mito-C antiviral property is directly connected with the innate immunity signaling RIG-I complex at mitochondria. Our data highlight the importance of a functional interchange between mitochondrial morphodynamics and innate immunity machineries in the context of influenza viral infection. Influenza virus infections cause significant diseases and socio-economic burden. The current therapeutic arsenal is restricted to drugs that essentially target two proteins of the virus. In this study, we investigated endomembrane modifications inside cells following influenza virus infection. We find remarkable elongation of mitochondria associated with a reduction in the number of contact sites between mitochondria and endoplasmic reticulum, platforms known to be critical for innate immunity regulation. We demonstrated that the sole expression of a fragment of the viral genome is sufficient to provoke these modifications and we identified how the main drivers of the mitochondria fusion/fission machinery behave to favor such an elongated state. We introduce potential application of Mito-C, a new drug that inhibits influenza virus replication by counteracting these membrane modifications. We finally demonstrated that the functional result of this action is a booster of the innate immune response of the cell. Thus, Mito-C has a broad spectrum potential to fight other RNA viruses, described or expected to induce similar membrane modifications (eg coronaviruses, flaviviruses, etc.).
Collapse
Affiliation(s)
- Irene Pila-Castellanos
- ENYO-Pharma, Lyon, France
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Diana Molino
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Joe McKellar
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR 9004—CNRS, Université de Montpellier, Montpellier, France
| | | | - Juliane Da Graca
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | - Marine Tauziet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), UMR 9004—CNRS, Université de Montpellier, Montpellier, France
| | | | - Ivan Mikaelian
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | - Patrice Codogno
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
| | | | - Cédric Delevoye
- Institut Curie, PSL Research University, CNRS, UMR144, Structure and Membrane Compartments Paris, France
- Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), Paris, France
| | - Olivier Moncorgé
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | | | - Caroline Goujon
- Université de Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon, France
| | - Etienne Morel
- Institut Necker-Enfants Malades (INEM), INSERM U1151-CNRS UMR 8253, Université de Paris, Paris, France
- * E-mail: (EM); (BC)
| | | |
Collapse
|
21
|
Mukherjee S, Bhattacharyya D, Bhunia A. Host-membrane interacting interface of the SARS coronavirus envelope protein: Immense functional potential of C-terminal domain. Biophys Chem 2020; 266:106452. [PMID: 32818817 PMCID: PMC7418743 DOI: 10.1016/j.bpc.2020.106452] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/01/2020] [Accepted: 08/01/2020] [Indexed: 12/12/2022]
Abstract
The Envelope (E) protein in SARS Coronavirus (CoV) is a small structural protein, incorporated as part of the envelope. A major fraction of the protein has been known to be associated with the host membranes, particularly organelles related to intracellular trafficking, prompting CoV packaging and propagation. Studies have elucidated the central hydrophobic transmembrane domain of the E protein being responsible for much of the viroporin activity in favor of the virus. However, newer insights into the organizational principles at the membranous compartments within the host cells suggest further complexity of the system. The lesser hydrophobic Carboxylic-terminal of the protein harbors interesting amino acid sequences- suggesting at the prevalence of membrane-directed amyloidogenic properties that remains mostly elusive. These highly conserved segments indicate at several potential membrane-associated functional roles that can redefine our comprehensive understanding of the protein. This should prompt further studies in designing and characterizing of effective targeted therapeutic measures. The SARS CoV Envelope protein is a small structural protein of the virus, responsible for viroporin like activity. Membrane- E protein interaction provides an useful insight into gaining mechanistic insight into its viroporin functions. The central hydrophobic transmembrane domain of E protein, known to affect ion-channel formation. The C-terminal region of the protein show further potential host-membrane directed functional roles. The highly conserved amyloidogenic amino acid stretches of the C-terminal suggest for its contribution to CoV propagation.
Collapse
Affiliation(s)
- Shruti Mukherjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Dipita Bhattacharyya
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII(M), Kolkata 700054, India.
| |
Collapse
|
22
|
Cannabinoid-Induced Immunomodulation during Viral Infections: A Focus on Mitochondria. Viruses 2020; 12:v12080875. [PMID: 32796517 PMCID: PMC7472050 DOI: 10.3390/v12080875] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review examines the impact of cannabinoids on viral infections, as well as its effects on the mitochondria of the nervous and immune system. The paper conveys information about the beneficial and negative impacts of cannabinoids on viral infections, especially HIV-1. These include effects on the inflammatory response as well as neuroprotective effects. We also explore non-apoptotic mitochondrial pathways modulated by the activity of cannabinoids, resulting in modifications to cellular functions. As a large part of the literature derives from studies of the nervous system, we first compile the information related to mitochondrial functions in this system, particularly through the CB1 receptor. Finally, we reflect on how this knowledge could complement what has been demonstrated in the immune system, especially in the context of the CB2 receptor and Ca2+ uptake. The overall conclusion of the review is that cannabinoids have the potential to affect a broad range of cell types through mitochondrial modulation, be it through receptor-specific action or not, and that this pathway has a potential implication in cases of viral infection.
Collapse
|
23
|
Delauzun V, Amigues B, Gaubert A, Leone P, Grange M, Gauthier L, Roussel A. Extracellular vesicles as a platform to study cell-surface membrane proteins. Methods 2020; 180:35-44. [PMID: 32156657 DOI: 10.1016/j.ymeth.2020.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/08/2023] Open
Abstract
Producing intact recombinant membrane proteins for structural studies is an inherently challenging task due to their requirement for a cell-lipid environment. Most of the procedures developed involve isolating the protein by solubilization with detergent and further reconstitutions into artificial membranes. These procedures are highly time consuming and suffer from further drawbacks, including low yields and high cost. We describe here an alternative method for rapidly obtaining recombinant cell-surface membrane proteins displayed on extracellular vesicles (EVs) derived from cells in culture. Interaction between these membrane proteins and ligands can be analyzed directly on EVs. Moreover, EVs can also be used for protein structure determination or immunization purposes.
Collapse
Affiliation(s)
- Vincent Delauzun
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Beatrice Amigues
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Anais Gaubert
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Philippe Leone
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | - Magali Grange
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France
| | | | - Alain Roussel
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, UMR 7257, 163 Avenue de Luminy, Case 932, 13009 Marseille, France.
| |
Collapse
|
24
|
Enhanced Production of Herpes Simplex Virus 1 Amplicon Vectors by Gene Modification and Optimization of Packaging Cell Growth Medium. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:491-496. [PMID: 32258212 PMCID: PMC7114837 DOI: 10.1016/j.omtm.2020.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 03/10/2020] [Indexed: 01/25/2023]
Abstract
Herpes simplex virus 1 (HSV-1)-derived amplicon vectors are unique in their ability to accommodate large DNA molecules allowing whole genomic loci to be included with all of their regulatory elements. Additional advantages of these amplicons include their minimal toxicity and ability to persist as episomes, with negligible risk of insertional mutagenesis, being particularly well-suited for gene therapy of neurological disorders due to their outstanding ability to deliver genes into neurons and other neural cells. However, extensive gene therapy application has been hindered by difficulties in vector production. This work improved HSV-1 amplicons production by genetic modification of the packaging cell line and optimization of the culture medium. A stably-transfected Vero 2-2 cell line overexpressing the anti-apoptotic Bcl-2 protein was generated, exhibiting an increased resistance to apoptosis, prolonged culture duration, and a significant improvement in viral vector production. Additionally, supplementation of the growth medium with antioxidants, polyamines, amino acids, and reduced glutathione further increased the yield of packaged amplicon vectors. With these modifications, HSV-1 amplicons could be isolated from culture supernatants instead of cell lysates, leading to vector preparations with higher titer and purity and paving the way for generation of stable cell lines that are capable of continuous herpesviral vector production.
Collapse
|
25
|
Vescovo T, Pagni B, Piacentini M, Fimia GM, Antonioli M. Regulation of Autophagy in Cells Infected With Oncogenic Human Viruses and Its Impact on Cancer Development. Front Cell Dev Biol 2020; 8:47. [PMID: 32181249 PMCID: PMC7059124 DOI: 10.3389/fcell.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
About 20% of total cancer cases are associated to infections. To date, seven human viruses have been directly linked to cancer development: high-risk human papillomaviruses (hrHPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and human T-lymphotropic virus 1 (HTLV-1). These viruses impact on several molecular mechanisms in the host cells, often resulting in chronic inflammation, uncontrolled proliferation, and cell death inhibition, and mechanisms, which favor viral life cycle but may indirectly promote tumorigenesis. Recently, the ability of oncogenic viruses to alter autophagy, a catabolic process activated during the innate immune response to infections, is emerging as a key event for the onset of human cancers. Here, we summarize the current understanding of the molecular mechanisms by which human oncogenic viruses regulate autophagy and how this negative regulation impacts on cancer development. Finally, we highlight novel autophagy-related candidates for the treatment of virus-related cancers.
Collapse
Affiliation(s)
- Tiziana Vescovo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Benedetta Pagni
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza," Rome, Italy
| | - Manuela Antonioli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| |
Collapse
|
26
|
COPII Vesicle Transport Is Required for Rotavirus NSP4 Interaction with the Autophagy Protein LC3 II and Trafficking to Viroplasms. J Virol 2019; 94:JVI.01341-19. [PMID: 31597778 DOI: 10.1128/jvi.01341-19] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/03/2019] [Indexed: 11/20/2022] Open
Abstract
Many viruses that replicate in the cytoplasm dramatically remodel and stimulate the accumulation of host cell membranes for efficient replication by poorly understood mechanisms. For rotavirus, a critical step in virion assembly requires the accumulation of membranes adjacent to virus replication centers called viroplasms. Early electron microscopy studies describe viroplasm-associated membranes as "swollen" endoplasmic reticulum (ER). We previously demonstrated that rotavirus infection initiates cellular autophagy and that membranes containing the autophagy marker protein LC3 and the rotavirus ER-synthesized transmembrane glycoprotein NSP4 traffic to viroplasms, suggesting that NSP4 must exit the ER. This study aimed to address the mechanism of NSP4 exit from the ER and determine whether the viroplasm-associated membranes are ER derived. We report that (i) NSP4 exits the ER in COPII vesicles, resulting in disrupted COPII vesicle transport and ER exit sites; (ii) COPII vesicles are hijacked by LC3 II, which interacts with NSP4; and (iii) NSP4/LC3 II-containing membranes accumulate adjacent to viroplasms. In addition, the ER transmembrane proteins SERCA and calnexin were not detected in viroplasm-associated membranes, providing evidence that the rotavirus maturation process of "budding" occurs through autophagy-hijacked COPII vesicle membranes. These findings reveal a new mechanism for rotavirus maturation dependent on intracellular host protein transport and autophagy for the accumulation of membranes required for virus replication.IMPORTANCE In a morphogenic step that is exceedingly rare for nonenveloped viruses, immature rotavirus particles assemble in replication centers called viroplasms, and bud through cytoplasmic cellular membranes to acquire the outer capsid proteins for infectious particle assembly. Historically, the intracellular membranes used for particle budding were thought to be endoplasmic reticulum (ER) because the rotavirus nonstructural protein NSP4, which interacts with the immature particles to trigger budding, is synthesized as an ER transmembrane protein. This present study shows that NSP4 exits the ER in COPII vesicles and that the NSP4-containing COPII vesicles are hijacked by the cellular autophagy machinery, which mediates the trafficking of NSP4 to viroplasms. Changing the paradigm for rotavirus maturation, we propose that the cellular membranes required for immature rotavirus particle budding are not an extension of the ER but are COPII-derived autophagy isolation membranes.
Collapse
|
27
|
Martirosyan A, Aminov R, Manukyan G. Environmental Triggers of Autoreactive Responses: Induction of Antiphospholipid Antibody Formation. Front Immunol 2019; 10:1609. [PMID: 31354742 PMCID: PMC6635959 DOI: 10.3389/fimmu.2019.01609] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 06/27/2019] [Indexed: 12/19/2022] Open
Abstract
Antiphospholipid antibodies (aPLs) comprise a diverse family of autoantibodies targeted against proteins with the affinity toward negatively charged phospholipids or protein-phospholipid complexes. Their clinical significance, including prothrombotic potential of anti-cardiolipin antibodies (aCLs), anti-β2-glycoprotein I antibodies (aβ2-GPIs), and lupus anti-coagulant (LA), is well-established. However, the ontogeny of these pathogenic aPLs remains less clear. While transient appearance of aPLs could be induced by various environmental factors, in genetically predisposed individuals these factors may eventually lead to the development of the antiphospholipid syndrome (APS). Since the first description of APS, it has been found that a wide variety of microbial and viral agents influence aPLs production and contribute to clinical manifestations of APS. Many theories attempted to explain the pathogenic potential of different environmental factors as well as a phenomenon termed molecular mimicry between β2-GPI molecule and infection-relevant structures. In this review, we summarize and critically assess the pathogenic and non-pathogenic formation of aPLs and its contribution to the development of APS.
Collapse
Affiliation(s)
- Anush Martirosyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology, Yerevan, Armenia.,Russian-Armenian (Slavonic) University, Yerevan, Armenia
| | - Rustam Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
| | - Gayane Manukyan
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology, Yerevan, Armenia.,Russian-Armenian (Slavonic) University, Yerevan, Armenia
| |
Collapse
|
28
|
Qiao W, Helpio EL, Falk BW. Two Crinivirus-Conserved Small Proteins, P5 and P9, Are Indispensable for Efficient Lettuce infectious yellows virus Infectivity in Plants. Viruses 2018; 10:E459. [PMID: 30154314 PMCID: PMC6163742 DOI: 10.3390/v10090459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/24/2018] [Accepted: 08/27/2018] [Indexed: 01/06/2023] Open
Abstract
Genomic analysis of Lettuce infectious yellows virus (LIYV) has revealed two short open reading frames (ORFs) on LIYV RNA2, that are predicted to encode a 5-kDa (P5) and a 9-kDa (P9) protein. The P5 ORF is part of the conserved quintuple gene block in the family Closteroviridae, while P9 orthologs are found in all Criniviruses. In this study, the expression of LIYV P5 and P9 proteins was confirmed; P5 is further characterized as an endoplasmic reticulum (ER)-localized integral transmembrane protein and P9 is a soluble protein. The knockout LIYV mutants presented reduced symptom severity and virus accumulation in Nicotiana benthamiana or lettuce plants, indicating their importance in efficient virus infection. The P5 mutant was successfully complemented by a dislocated P5 in the LIYV genome. The structural regions of P5 were tested and all were found to be required for the appropriate functions of P5. In addition, P5, as well as its ortholog P6, encoded by Citrus tristeza virus (CTV) and another ER-localized protein encoded by LIYV RNA1, were found to cause cell death when expressed in N. benthamiana plants from a TMV vector, and induce ER stress and the unfolded protein response (UPR).
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| | - Erin L Helpio
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| | - Bryce W Falk
- Department of Plant Pathology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
29
|
Glingston RS, Deb R, Kumar S, Nagotu S. Organelle dynamics and viral infections: at cross roads. Microbes Infect 2018; 21:20-32. [PMID: 29953921 PMCID: PMC7110583 DOI: 10.1016/j.micinf.2018.06.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 01/12/2023]
Abstract
Viruses are obligate intracellular parasites of the host cells. A commonly accepted view is the requirement of internal membranous structures for various aspects of viral life cycle. Organelles enable favourable intracellular environment for several viruses. However, studies reporting organelle dynamics upon viral infections are scant. In this review, we aim to summarize and highlight modulations caused to various organelles upon viral infection or expression of its proteins.
Collapse
Affiliation(s)
- R Sahaya Glingston
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Rachayeeta Deb
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sachin Kumar
- Viral Immunology Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Shirisha Nagotu
- Organelle Biology and Cellular Ageing Lab, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
30
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
31
|
Qiao W, Medina V, Falk BW. Inspirations on Virus Replication and Cell-to-Cell Movement from Studies Examining the Cytopathology Induced by Lettuce infectious yellows virus in Plant Cells. FRONTIERS IN PLANT SCIENCE 2017; 8:1672. [PMID: 29021801 PMCID: PMC5623981 DOI: 10.3389/fpls.2017.01672] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 05/06/2023]
Abstract
Lettuce infectious yellows virus (LIYV) is the type member of the genus Crinivirus in the family Closteroviridae. Like many other positive-strand RNA viruses, LIYV infections induce a number of cytopathic changes in plant cells, of which the two most characteristic are: Beet yellows virus-type inclusion bodies composed of vesicles derived from cytoplasmic membranes; and conical plasmalemma deposits (PLDs) located at the plasmalemma over plasmodesmata pit fields. The former are not only found in various closterovirus infections, but similar structures are known as 'viral factories' or viroplasms in cells infected with diverse types of animal and plant viruses. These are generally sites of virus replication, virion assembly and in some cases are involved in cell-to-cell transport. By contrast, PLDs induced by the LIYV-encoded P26 non-virion protein are not involved in replication but are speculated to have roles in virus intercellular movement. These deposits often harbor LIYV virions arranged to be perpendicular to the plasma membrane over plasmodesmata, and our recent studies show that P26 is required for LIYV systemic plant infection. The functional mechanism of how LIYV P26 facilitates intercellular movement remains unclear, however, research on other plant viruses provides some insights on the possible ways of viral intercellular movement through targeting and modifying plasmodesmata via interactions between plant cellular components and viral-encoded factors. In summary, beginning with LIYV, we review the studies that have uncovered the biological determinants giving rise to these cytopathological effects and their importance in viral replication, virion assembly and intercellular movement during the plant infection by closteroviruses, and compare these findings with those for other positive-strand RNA viruses.
Collapse
Affiliation(s)
- Wenjie Qiao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| | - Vicente Medina
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
| | - Bryce W. Falk
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
32
|
Tubbs E, Rieusset J. Metabolic signaling functions of ER-mitochondria contact sites: role in metabolic diseases. J Mol Endocrinol 2017; 58:R87-R106. [PMID: 27965371 DOI: 10.1530/jme-16-0189] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 12/13/2016] [Indexed: 12/16/2022]
Abstract
Beyond the maintenance of cellular homeostasis and the determination of cell fate, ER-mitochondria contact sites, defined as mitochondria-associated membranes (MAM), start to emerge as an important signaling hub that integrates nutrient and hormonal stimuli and adapts cellular metabolism. Here, we summarize the established structural and functional features of MAM and mainly focus on the latest breakthroughs highlighting a crucial role of organelle crosstalk in the control of metabolic homeostasis. Lastly, we discuss recent studies that have revealed the importance of MAM in not only metabolic diseases but also in other pathologies with disrupted metabolism, shedding light on potential common molecular mechanisms and leading hopefully to novel treatment strategies.
Collapse
Affiliation(s)
- Emily Tubbs
- Department of Clinical SciencesLund University Diabetes Centre, Malmö, Sweden
| | - Jennifer Rieusset
- INSERM UMR-1060CarMeN Laboratory, Lyon 1 University, INRA U1235, INSA of Lyon, Charles Merieux Lyon-Sud medical Universities, Lyon, France
| |
Collapse
|
33
|
Dengue virus induces mitochondrial elongation through impairment of Drp1-triggered mitochondrial fission. Virology 2016; 500:149-160. [PMID: 27816895 DOI: 10.1016/j.virol.2016.10.022] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 02/08/2023]
Abstract
Mitochondria are highly dynamic organelles that undergo continuous cycles of fission and fusion to maintain essential cellular functions. An imbalance between these two processes can result in many pathophysiological outcomes. Dengue virus (DENV) interacts with cellular organelles, including mitochondria, to successfully replicate in cells. This study used live-cell imaging and found an increase in mitochondrial length and respiration during DENV infection. The level of mitochondrial fission protein, Dynamin-related protein 1 (Drp1), was decreased on mitochondria during DENV infection, as well as Drp1 phosphorylated on serine 616, which is important for mitochondrial fission. DENV proteins NS4b and NS3 were also associated with subcellular fractions of mitochondria. Induction of fission through uncoupling of mitochondria or overexpression of Drp1 wild-type and Drp1 with a phosphomimetic mutation (S616D) significantly reduced viral replication. These results demonstrate that DENV infection causes an imbalance in mitochondrial dynamics by inhibiting Drp1-triggered mitochondrial fission, which promotes viral replication.
Collapse
|
34
|
de Armas-Rillo L, Valera MS, Marrero-Hernández S, Valenzuela-Fernández A. Membrane dynamics associated with viral infection. Rev Med Virol 2016; 26:146-60. [PMID: 26817660 PMCID: PMC5066672 DOI: 10.1002/rmv.1872] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/15/2022]
Abstract
Viral replication and spreading are fundamental events in the viral life cycle, accounting for the assembly and egression of nascent virions, events that are directly associated with viral pathogenesis in target hosts. These processes occur in cellular compartments that are modified by specialized viral proteins, causing a rearrangement of different cell membranes in infected cells and affecting the ER, mitochondria, Golgi apparatus, vesicles and endosomes, as well as processes such as autophagic membrane flux. In fact, the activation or inhibition of membrane trafficking and other related activities are fundamental to ensure the adequate replication and spreading of certain viruses. In this review, data will be presented that support the key role of membrane dynamics in the viral cycle, especially in terms of the assembly, egression and infection processes. By defining how viruses orchestrate these events it will be possible to understand how they successfully complete their route of infection, establishing viral pathogenesis and provoking disease. © 2015 The Authors Reviews in Medical Virology Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Laura de Armas-Rillo
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - María-Soledad Valera
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Sara Marrero-Hernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| | - Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Virología IUETSPC, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna (ULL), Tenerife, Spain
| |
Collapse
|