1
|
Tavakkoli Fard S, Thongrom B, Achazi K, Ma G, Haag R, Tzschucke CC. Photo-responsive hydrogels based on a ruthenium complex: synthesis and degradation. SOFT MATTER 2024; 20:1301-1308. [PMID: 38240363 DOI: 10.1039/d3sm01232h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
We report the synthesis of a photo responsive metallo-hydrogel based on a ruthenium(II) complex as a functional cross-linker. This metal complex contains reactive 4AAMP (= 4-(acrylamidomethyl)pyridine) ligands, which can be cleaved by light-induced ligand substitution. Ru[(bpy)2(4AAMP)2] cross-links 4-arm-PEG-SH macromonomers by thia-Michael-addition to the photocleavable 4AAMP ligand for the preparation of the hydrogel. Irradiation with green light at 529 nm leads to photodegradation of the metallo-hydrogel due to the ligand dissociation, which can be adjusted by adjusting the Ru[(bpy)2(4AAMP)2] concentration. The ligand substitution forming [Ru(bpy)2(L)2]2+ (L = H2O and CH3CN) can be monitored by 1H NMR spectroscopy and UV-visible absorption. The control of degradation by light irradiation plays a significant role in modulating the elasticity and stiffness of the light sensitive metallo-hydrogel network. The photo-responsive hydrogel is a viable substrate for cell cultures.
Collapse
Affiliation(s)
- Sara Tavakkoli Fard
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Boonya Thongrom
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Katharina Achazi
- Research Building SupraFAB, Freie Universität Berlin, 14195 Berlin, Germany
| | - Guoxin Ma
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| | - C Christoph Tzschucke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, 14195 Berlin, Germany.
| |
Collapse
|
2
|
Wang Y, Zhang L, Liu C, Luo Y, Chen D. Peptide-Mediated Nanocarriers for Targeted Drug Delivery: Developments and Strategies. Pharmaceutics 2024; 16:240. [PMID: 38399294 PMCID: PMC10893007 DOI: 10.3390/pharmaceutics16020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Effective drug delivery is essential for cancer treatment. Drug delivery systems, which can be tailored to targeted transport and integrated tumor therapy, are vital in improving the efficiency of cancer treatment. Peptides play a significant role in various biological and physiological functions and offer high design flexibility, excellent biocompatibility, adjustable morphology, and biodegradability, making them promising candidates for drug delivery. This paper reviews peptide-mediated drug delivery systems, focusing on self-assembled peptides and peptide-drug conjugates. It discusses the mechanisms and structural control of self-assembled peptides, the varieties and roles of peptide-drug conjugates, and strategies to augment peptide stability. The review concludes by addressing challenges and future directions.
Collapse
Affiliation(s)
- Yubo Wang
- Medical College, Guangxi University, Da-Xue-Dong Road No. 100, Nanning 530004, China;
| | - Lu Zhang
- School of Life Sciences, Xiamen University, Xiamen 361005, China;
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Chen Liu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| | - Yiming Luo
- Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, 55 Zhenhai Road, Xiamen 361003, China
- The School of Clinical Medicine, Fujian Medical University, Fuzhou 351002, China
| | - Dengyue Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361005, China;
| |
Collapse
|
3
|
Zhang K, Wu D, Chang L, Duan W, Wang Y, Li W, Qin J. Cellulose based self-healing hydrogel through Boronic Ester connections for wound healing and antitumor applications. Int J Biol Macromol 2023; 230:123294. [PMID: 36649869 DOI: 10.1016/j.ijbiomac.2023.123294] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The application of biodegradable hydrogels in medical field has drawn great attention because their networked structure provided ideal spaces for drug loading and cell growth. In this research, the boronic acid was coupled onto carboxyethyl cellulose (CMC) to synthesize boronic acid grafted CMC (CMC-BA) conveniently and self-healing hydrogel was fabricated with polyvinyl alcohol (PVA) crosslinking through dynamic boronic ester bond. The CMC-BA/PVA hydrogel showed good biocompatibility and could be degraded by cellulase and in vivo. The hydrogel formed fast fit for localized injection to cover the irregular wounds and localize the antitumor drugs to the tumor site. The in vivo wound repairing experiment revealed the hydrogel could form airtight adhesion to the wound site to reduce blood loss and accelerate the wound repairing rate. The hydrogel as a drug release carrier also reduced the acute in vivo toxicity of DOX with antitumor performance well preserved through a controlled release profile. Based on the above advantages, the CMC-based hydrogel with boronic ester connection should have great potential in biomedical areas with profitable future.
Collapse
Affiliation(s)
- Kaiyue Zhang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Di Wu
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Limin Chang
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Wenhao Duan
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Wenjuan Li
- Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding City, Hebei Province 071002, China; Key Laboratory of Pathogenesis Mechanism and Control of Inflammatory-Autoimmune Diseases in Hebei Province, Hebei University, Baoding City, Hebei Province 071002, China.
| |
Collapse
|
4
|
Aliakbar Ahovan Z, Esmaeili Z, Eftekhari BS, Khosravimelal S, Alehosseini M, Orive G, Dolatshahi-Pirouz A, Pal Singh Chauhan N, Janmey PA, Hashemi A, Kundu SC, Gholipourmalekabadi M. Antibacterial smart hydrogels: New hope for infectious wound management. Mater Today Bio 2022; 17:100499. [PMID: 36466959 PMCID: PMC9709163 DOI: 10.1016/j.mtbio.2022.100499] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 11/18/2022] [Indexed: 11/21/2022] Open
Abstract
Millions of people die annually due to uncured wound infections. Healthcare systems incur high costs to treat wound infections. Tt is predicted to become more challenging due to the rise of multidrug-resistant conditions. During the last decades, smart antibacterial hydrogels could attract attention as a promising solution, especially for skin wound infections. These antibacterial hydrogels are termed 'smart' due to their response to specific physical and chemical environmental stimuli. To deliver different drugs to particular sites in a controlled manner, various types of crosslinking strategies are used in the manufacturing process. Smart hydrogels are designed to provide antimicrobial agents to the infected sites or are built from polymers with inherent disinfectant properties. This paper aims to critically review recent pre-clinical and clinical advances in using smart hydrogels against skin wound infections and propose the next best thing for future trends. For this purpose, an introduction to skin wound healing and disease is presented and intelligent hydrogels responding to different stimuli are introduced. Finally, the most promising investigations are discussed in their related sections. These studies can pave the way for producing new biomaterials with clinical applications.
Collapse
Affiliation(s)
- Zahra Aliakbar Ahovan
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaeili
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Sadjad Khosravimelal
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Alehosseini
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain
- University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua). Vitoria-Gasteiz, Spain
- Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | | | | | - Paul A. Janmey
- Bioengineering Department, University of Pennsylvania, Philadelphia, USA
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradable and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Guimaraes, Portugal
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering & Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Xiao X, Teng F, Shi C, Chen J, Wu S, Wang B, Meng X, Essiet Imeh A, Li W. Polymeric nanoparticles—Promising carriers for cancer therapy. Front Bioeng Biotechnol 2022; 10:1024143. [PMID: 36277396 PMCID: PMC9585261 DOI: 10.3389/fbioe.2022.1024143] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/16/2022] [Indexed: 12/03/2022] Open
Abstract
Polymeric nanoparticles (NPs) play an important role in controlled cancer drug delivery. Anticancer drugs can be conjugated or encapsulated by polymeric nanocarriers, which are known as polymeric nanomedicine. Polymeric nanomedicine has shown its potential in providing sustained release of drugs with reduced cytotoxicity and modified tumor retention, but until now, few delivery systems loading drugs have been able to meet clinical demands, so more efforts are needed. This research reviews the current state of the cancer drug-loading system by exhibiting a series of published articles that highlight the novelty and functions from a variety of different architectures including micelles, liposomes, dendrimers, polymersomes, hydrogels, and metal–organic frameworks. These may contribute to the development of useful polymeric NPs to achieve different therapeutic purposes.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Fei Teng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Changkuo Shi
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Junyu Chen
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Shuqing Wu
- School of Pharmacy, Jilin Medical University, Jilin, China
| | - Bao Wang
- School of Chemistry and Environmental Engineering, Changchun University of Science and Technology, Changchun, China
| | - Xiang Meng
- School of Pharmacy, Jilin Medical University, Jilin, China
| | | | - Wenliang Li
- School of Pharmacy, Jilin Medical University, Jilin, China
- Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin, China
- *Correspondence: Wenliang Li,
| |
Collapse
|
6
|
Zafar M, Ijaz M, Iqbal T. Efficient Au nanostructures for NIR-responsive controlled drug delivery systems. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01465-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Liu LZ, Sun XY, Yan ZY, Ye BF. NIR responsive AuNR/pNIPAM/PEGDA inverse opal hydrogel microcarriers for controllable drug delivery. NEW J CHEM 2021. [DOI: 10.1039/d0nj06289h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel inverse opal microcarrier with both NIR-controlled release and visual color changes for drug delivery.
Collapse
Affiliation(s)
- L. Z. Liu
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - X. Y. Sun
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - Z. Y. Yan
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| | - B. F. Ye
- Key Laboratory of Biomedical Functional Materials
- School of Science
- China Pharmaceutical University
- Nanjing
- People's Republic of China
| |
Collapse
|
8
|
Yang M, Hu J, Meng J, Shan X. A thermo and photoresponsive dual performing hydrogel for multiple controlled release mechanisms. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00846-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Abstract
Peptides are one of the most important functional motifs for constructing smart drug delivery systems (DDSs). Functional peptides can be conjugated with drugs or carriers via covalent bonds, or assembled into DDSs via supramolecular forces, which enables the DDSs to acquire desired functions such as targeting and/or environmental responsiveness. In this mini review, we first introduce the different types of functional peptides that are commonly used for constructing DDSs, and we highlight representative strategies for designing smart DDSs by using functional peptides in the past few years. We also state the challenges of peptide-based DDSs and come up with prospects.
Collapse
Affiliation(s)
- Zheng Lian
- People's Public Security University of China, Beijing 100038, China
| | | |
Collapse
|
10
|
Li J, Wong WY, Tao XM. Recent advances in soft functional materials: preparation, functions and applications. NANOSCALE 2020; 12:1281-1306. [PMID: 31912063 DOI: 10.1039/c9nr07035d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Synthetic materials and biomaterials with elastic moduli lower than 10 MPa are generally considered as soft materials. Research studies on soft materials have been boosted due to their intriguing features such as light-weight, low modulus, stretchability, and a diverse range of functions including sensing, actuating, insulating and transporting. They are ideal materials for applications in smart textiles, flexible devices and wearable electronics. On the other hand, benefiting from the advances in materials science and chemistry, novel soft materials with tailored properties and functions could be prepared to fulfil the specific requirements. In this review, the current progress of soft materials, ranging from materials design, preparation and application are critically summarized based on three categories, namely gels, foams and elastomers. The chemical, physical and electrical properties and the applications are elaborated. This review aims to provide a comprehensive overview of soft materials to researchers in different disciplines.
Collapse
Affiliation(s)
- Jun Li
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| | - Xiao-Ming Tao
- Research Centre for Smart Wearable Technology, Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China.
| |
Collapse
|
11
|
Ma X, Lan X, Wu L, Wang L, Gu Q, Shi Y, Gu X, Luo Z. Photo-induced actuator using temperature and light dual responsive azobenzene containing ion gel in ionic liquid. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109446] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
12
|
Escudero-Duch C, Martin-Saavedra F, Prieto M, Sanchez-Casanova S, Lopez D, Sebastian V, Arruebo M, Santamaria J, Vilaboa N. Gold nanoparticles for the in situ polymerization of near-infrared responsive hydrogels based on fibrin. Acta Biomater 2019; 100:306-315. [PMID: 31568875 DOI: 10.1016/j.actbio.2019.09.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/16/2019] [Accepted: 09/26/2019] [Indexed: 12/01/2022]
Abstract
Non-invasiveness and relative safety of photothermal therapy, which enables local hyperthermia of target tissues using a near infrared (NIR) laser, has attracted increasing interest. Due to their biocompatibility, amenability of synthesis and functionalization, gold nanoparticles have been investigated as therapeutic photothermal agents. In this work, hollow gold nanoparticles (HGNP) were coated with poly-l-lysine through the use of COOH-Poly(ethylene glycol)-SH as a covalent linker. The functionalized HGNP, which peak their surface plasmon resonance at 800 nm, can bind thrombin. Thrombin-conjugated HGNP conduct in situ fibrin polymerization, facilitating the process of generating photothermal matrices. Interestingly, the metallic core of thrombin-loaded HGNP fragmentates at physiological temperature. During polymerization process, matrices prepared with thrombin-loaded HGNP were loaded with genetically-modified stem cells that harbour a heat-activated and ligand-dependent gene switch for regulating transgene expression. NIR laser irradiation of resulting cell constructs in the presence of ligand successfully triggered transgene expression in vitro and in vivo. STATEMENT OF SIGNIFICANCE: Current technological development allows synthesis of gold nanoparticles (GNP) in a wide range of shapes and sizes, consistently and at scale. GNP, stable and easily functionalized, show low cytotoxicity and high biocompatibility. Allied to that, GNP present optoelectronic properties that have been exploited in a range of biomedical applications. Following a layer-by-layer functionalization approach, we prepared hollow GNP coated with a positively charged copolymer that enabled thrombin conjugation. The resulting nanomaterial efficiently catalyzed the formation of fibrin hydrogels which convert energy of the near infrared (NIR) into heat. The resulting NIR-responsive hydrogels can function as scaffolding for cells capable of controlled gene expression triggered by optical hyperthermia, thus allowing the deployment of therapeutic gene products in desired spatiotemporal frameworks.
Collapse
Affiliation(s)
- Clara Escudero-Duch
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - Francisco Martin-Saavedra
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| | - Martin Prieto
- Departmento de Ingenieria Quimica, Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus Rio Ebro. Edificio I+D. C/ Mariano Esquillor s/n, Zaragoza 50018 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Instituto de Ciencia de Materiales de Aragon, Consejo Superior de Investigaciones Cientificas (ICMA-CSIC), Universidad de Zaragoza, Zaragoza 50009 Spain
| | - Silvia Sanchez-Casanova
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain
| | - Daniel Lopez
- Instituto de Ciencia y Tecnologia de Polimeros, Consejo Superior de Investigaciones Cientificas (ICTP-CSIC), C/ Juan de la Cierva 3, Madrid 28006 Spain
| | - Victor Sebastian
- Departmento de Ingenieria Quimica, Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus Rio Ebro. Edificio I+D. C/ Mariano Esquillor s/n, Zaragoza 50018 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Instituto de Ciencia de Materiales de Aragon, Consejo Superior de Investigaciones Cientificas (ICMA-CSIC), Universidad de Zaragoza, Zaragoza 50009 Spain
| | - Manuel Arruebo
- Departmento de Ingenieria Quimica, Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus Rio Ebro. Edificio I+D. C/ Mariano Esquillor s/n, Zaragoza 50018 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Instituto de Ciencia de Materiales de Aragon, Consejo Superior de Investigaciones Cientificas (ICMA-CSIC), Universidad de Zaragoza, Zaragoza 50009 Spain
| | - Jesus Santamaria
- Departmento de Ingenieria Quimica, Instituto de Nanociencia de Aragon (INA), Universidad de Zaragoza, Campus Rio Ebro. Edificio I+D. C/ Mariano Esquillor s/n, Zaragoza 50018 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain; Instituto de Ciencia de Materiales de Aragon, Consejo Superior de Investigaciones Cientificas (ICMA-CSIC), Universidad de Zaragoza, Zaragoza 50009 Spain
| | - Nuria Vilaboa
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, Madrid 28046 Spain; CIBER de Bioingenieria, Biomateriales y Nanomedicina, CIBER-BBN, Spain.
| |
Collapse
|
13
|
Liu C, Zhang Q, Zhu S, Liu H, Chen J. Preparation and applications of peptide-based injectable hydrogels. RSC Adv 2019; 9:28299-28311. [PMID: 35530460 PMCID: PMC9071167 DOI: 10.1039/c9ra05934b] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/04/2019] [Indexed: 01/17/2023] Open
Abstract
In situ injectable hydrogels have shown tremendous potential application in the biomedical field due to their significant drug accumulation at lesion sites, sustained release and markedly reduced systemic side effects. Specifically, peptide-based hydrogels, with unique biodegradation, biocompatibility, and bioactivity, are attractive molecular skeletons. In addition, peptides play a prominent role in normal metabolism, mimicking the natural tissue microenvironment and responding to stimuli in the lesion environment. Their advantages endow peptide-based hydrogels with great potential for application as biomedical materials. In this review, the fabrication and production of peptide-based hydrogels are presented. Several promising candidates, which are smart and environment-sensitive, are briefly reviewed. Then, the recent developments of these hydrogels for biomedical applications in tissue engineering, as drug/gene vehicles, and anti-bacterial agents are discussed. Finally, the development of peptide-based injectable hydrogels for biomedical applications in the future is surveyed.
Collapse
Affiliation(s)
- Chang Liu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Qingguo Zhang
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Song Zhu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Hong Liu
- School and Hospital of Stomatology, Jilin University Changchun 130021 P. R. China
| | - Jie Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 P. R. China
| |
Collapse
|
14
|
Bao Z, Xian C, Yuan Q, Liu G, Wu J. Natural Polymer-Based Hydrogels with Enhanced Mechanical Performances: Preparation, Structure, and Property. Adv Healthc Mater 2019; 8:e1900670. [PMID: 31364824 DOI: 10.1002/adhm.201900670] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/03/2019] [Indexed: 12/14/2022]
Abstract
Hydrogels based on natural polymers have bright application prospects in biomedical fields due to their outstanding biocompatibility and biodegradability. However, the poor mechanical performances of pure natural polymer-based hydrogels greatly limit their application prospects. Recently, a variety of strategies has been applied to prepare natural polymer-based hydrogels with enhanced mechanical properties, which generally exhibit stiffening, strengthening, and stretchable behaviors. This article summarizes the recent progress of natural polymer-based hydrogels with enhanced mechanical properties. From a structure point of view, four kinds of hydrogel are reviewed; double network hydrogels, nanocomposite hydrogels, click chemistry-based hydrogels, and supramolecular hydrogels. For each typical hydrogel, its preparation, structure, and mechanical performance are introduced in detail. At the end of this article, the current challenges and future prospects of hydrogels based on natural polymers are discussed and it is pointed out that 3D printing may offer a new platform for the development of natural polymer-based hydrogels.
Collapse
Affiliation(s)
- Ziting Bao
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Caihong Xian
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Qijuan Yuan
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Guiting Liu
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
| | - Jun Wu
- School of Biomedical EngineeringSun Yat‐sen University Guangzhou 510275 Guangdong P. R. China
- Research Institute of Sun Yat‐Sen University in Shenzhen Shenzhen 518057 Guangdong P. R. China
| |
Collapse
|
15
|
Işıklan N, Altınışık Z. Development and characterization of dual sensitive poly(N,N-diethyl acrylamide) grafted alginate microparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
|
17
|
Wu C, Liu J, Liu B, He S, Dai G, Xu B, Zhong W. NIR light-responsive short peptide/2D NbSe2 nanosheets composite hydrogel with controlled-release capacity. J Mater Chem B 2019. [DOI: 10.1039/c8tb03326a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design of light-responsive peptide hydrogels with controllable drug release characteristics is still a challenge.
Collapse
Affiliation(s)
- Can Wu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Jing Liu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Bin Liu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Suyun He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Guoru Dai
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Bo Xu
- Department of Physics
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
| | - Wenying Zhong
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- People's Republic of China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
18
|
Zhang Y, Chai D, Gao M, Xu B, Jiang G. Thermal ablation of separable microneedles for transdermal delivery of metformin on diabetic rats. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1517347] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Yang Zhang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, China
| | - Dongning Chai
- Xiamen Lin Qiaozhi Women’s and Children’s Hospital, Medical College, Xiamen University, Xiamen, Fujian, China
| | - Mengyue Gao
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bin Xu
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, China
| | - Guohua Jiang
- Department of Polymer Materials, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology (ATMT), Ministry of Education, Hangzhou, China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang), Hangzhou, China
- Institute of Smart Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
19
|
Hashemi M, Omidi M, Muralidharan B, Tayebi L, Herpin MJ, Mohagheghi MA, Mohammadi J, Smyth HD, Milner TE. Layer-by-layer assembly of graphene oxide on thermosensitive liposomes for photo-chemotherapy. Acta Biomater 2018; 65:376-392. [PMID: 29109030 DOI: 10.1016/j.actbio.2017.10.040] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 01/07/2023]
Abstract
Stimuli responsive polyelectrolyte nanoparticles have been developed for chemo-photothermal destruction of breast cancer cells. This novel system, called layer by layer Lipo-graph (LBL Lipo-graph), is composed of alternate layers of graphene oxide (GO) and graphene oxide conjugated poly (l-lysine) (GO-PLL) deposited on cationic liposomes encapsulating doxorubicin. Various concentrations of GO and GO-PLL were examined and the optimal LBL Lipo-graph was found to have a particle size of 267.9 ± 13 nm, zeta potential of +43.9 ± 6.9 mV and encapsulation efficiency of 86.4 ± 4.7%. The morphology of LBL Lipo-graph was examined by cryogenic-transmission electron microscopy (Cryo-TEM), atomic force microcopy (AFM) and scanning electron microscopy (SEM). The buildup of LBL Lipo-graph was confirmed via ultraviolet-visible (UV-Vis) spectrophotometry, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) analysis. Infra-red (IR) response suggests that four layers are sufficient to induce a gel-to-liquid phase transition in response to near infra-red (NIR) laser irradiation. Light-matter interaction of LBL Lipo-graph was studied by calculating the absorption cross section in the frequency domain by utilizing Fourier analysis. Drug release assay indicates that the LBL Lipo-graph releases much faster in an acidic environment than a liposome control. A cytotoxicity assay was conducted to prove the efficacy of LBL Lipo-graph to destroy MD-MB-231 cells in response to NIR laser emission. Also, image stream flow cytometry and two photon microcopy provide supportive data for the potential application of LBL Lipo-graph for photothermal therapy. Study results suggest the novel dual-sensitive nanoparticles allow intracellular doxorubin delivery and respond to either acidic environments or NIR excitation. STATEMENT OF SIGNIFICANCE Stimuli sensitive hybrid nanoparticles have been synthesized using a layer-by-layer technique and demonstrated for dual chemo-photothermal destruction of breast cancer cells. The hybrid nanoparticles are composed of alternating layers of graphene oxide and graphene oxide conjugated poly-l-lysine coating the surface of a thermosensitive cationic liposome containing doxorubicin as a core. Data suggests that the hybrid nanoparticles may offer many advantages for chemo-photothermal therapy. Advantages include a decrease of the initial burst release which may result in the reduction in systemic toxicity, increase in pH responsivity around the tumor environment and improved NIR light absorption.
Collapse
|
20
|
Matsuki D, Adewale O, Horie S, Okajima J, Komiya A, Oluwafemi O, Maruyama S, Mori S, Kodama T. Treatment of tumor in lymph nodes using near-infrared laser light-activated thermosensitive liposome-encapsulated doxorubicin and gold nanorods. JOURNAL OF BIOPHOTONICS 2017; 10:1676-1682. [PMID: 28417560 DOI: 10.1002/jbio.201600241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 06/07/2023]
Abstract
Tumor metastasis to lymph nodes is an important contributory factor for cancer-related deaths despite recent developments in cancer therapy. In this study, we demonstrate that tumor in the proper axillary lymph node (PALN) of the mouse can be treated by the application of external laser light to trigger the unloading of doxorubicin (DOX) encapsulated in thermosensitive liposomes (TSLs) administered together with gold nanorods (GNRs). GNRs + DOX-TSLs were injected into a mouse lymph node containing cancer cells (malignant fibrous histiocytoma-like cells) and intranodal DOX release was activated using near-infrared (NIR) laser irradiation. The temperature changes arising from the laser-irradiated GNRs triggered the release of DOX from the TSLs. A greater degree of inhibition of tumor growth was found in the co-therapy group compared to the other groups. The treatment effect was achieved by a combination of chemotherapy and NIR-activated hyperthermia. In vivo bioluminescence imaging and histological analysis confirmed tumor necrosis in response to combined treatment. This work presents a theranostic approach with excellent treatment results that has the potential to be developed into an alternative to surgery for the treatment of breast cancer metastasis.
Collapse
Affiliation(s)
- Daisuke Matsuki
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Oladipo Adewale
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Sachiko Horie
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Junnosuke Okajima
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Atsuki Komiya
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Oluwatobi Oluwafemi
- Department of Applied Chemistry, University of Johannesburg, Doornfontein Campus P.O. Box 17011, Doornfontein, 2028, South Africa
| | - Shigenao Maruyama
- Institute of Fluid Science, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan
| | - Shiro Mori
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Department of Oral and Maxillofacial Surgery, Tohoku University Hospital, 1-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| | - Tetsuya Kodama
- Laboratory of Biomedical Engineering for Cancer, Department of Biomedical Engineering, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
- Biomedical Engineering Cancer Research Center, Graduate School of Biomedical Engineering, Tohoku University, 4-1 Seiryo, Aoba, Sendai, 980-8575, Japan
| |
Collapse
|
21
|
Dual thermal- and pH-responsive polypeptide-based hydrogels. CHINESE JOURNAL OF POLYMER SCIENCE 2017. [DOI: 10.1007/s10118-017-1959-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Zhang H, Guo S, Fu S, Zhao Y. A Near-Infrared Light-Responsive Hybrid Hydrogel Based on UCST Triblock Copolymer and Gold Nanorods. Polymers (Basel) 2017; 9:polym9060238. [PMID: 30970915 PMCID: PMC6432410 DOI: 10.3390/polym9060238] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/13/2017] [Accepted: 06/17/2017] [Indexed: 11/22/2022] Open
Abstract
We report a near-infrared (NIR) light-responsive hydrogel that is capable of undergoing the gel to sol transition upon 785 nm light exposure based on a photothermal effect. The new hydrogel design relies on loading gold nanorods (AuNRs) in an ABA-type triblock copolymer, namely P(AAm–co–AN)–b–PDMA–b–P(AAm–co–AN), where P(AAm–co–AN) stands for a random copolymer of acrylamide and acrylonitrile that exhibits an upper critical solution temperature (UCST) in aqueous solution and PDMA is water-soluble polydimethylacrylamide. At solution temperature below UCST, the insoluble P(AAm–co–AN) blocks lead to formation of hydrogel of flower-like micelles. When the hydrogel is exposed to 785 nm NIR light, the absorption due to the longitudinal surface plasmon resonance of loaded AuNRs generates heat that raises the hydrogel temperature above UCST and, consequently, the gel-to-sol transition. The NIR light-triggered release of a protein loaded in the hydrogel was found to display a switchable fashion.
Collapse
Affiliation(s)
- Hu Zhang
- Département de Chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Shengwei Guo
- Département de Chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
- School of Material Science & Engineering, Beifang University of Nationalities, Yinchuan 750021, China.
| | - Shangyi Fu
- Département de Chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.
| |
Collapse
|
23
|
Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism. Colloids Surf B Biointerfaces 2017; 152:252-259. [DOI: 10.1016/j.colsurfb.2017.01.008] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/01/2017] [Accepted: 01/06/2017] [Indexed: 11/22/2022]
|
24
|
Patel M, Kaneko T, Matsumura K. Switchable release nano-reservoirs for co-delivery of drugs via a facile micelle–hydrogel composite. J Mater Chem B 2017; 5:3488-3497. [DOI: 10.1039/c7tb00701a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
25
|
Li P, Zhang J, Dong CM. Photosensitive poly(o-nitrobenzyloxycarbonyl-l-lysine)-b-PEO polypeptide copolymers: synthesis, multiple self-assembly behaviors, and the photo/pH-thermo-sensitive hydrogels. Polym Chem 2017. [DOI: 10.1039/c7py01574g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We synthesize a photosensitive poly(o-nitrobenzyloxycarbonyl-l-lysine)-b-poly(ethylene glycol) block copolymer and fabricate three kinds of dual-sensitive (i.e., photo/pH-thermo) polypeptide normal and reverse micellar hydrogels.
Collapse
Affiliation(s)
- Pan Li
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Jiacheng Zhang
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
26
|
Amaral AJR, Pasparakis G. Stimuli responsive self-healing polymers: gels, elastomers and membranes. Polym Chem 2017. [DOI: 10.1039/c7py01386h] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The development of responsive polymers with self-healing properties has expanded significantly which allow for the fabrication of complex materials in a highly controllable manner, for diverse uses in biomaterials science, electronics, sensors and actuators and coating technologies.
Collapse
|
27
|
Yu W, Jiang G, Zhang Y, Liu D, Xu B, Zhou J. Near-infrared light triggered and separable microneedles for transdermal delivery of metformin in diabetic rats. J Mater Chem B 2017; 5:9507-9513. [DOI: 10.1039/c7tb02236k] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We successfully developed a microneedle system integrated with a near-infrared light trigger and thermal ablation microneedles for transdermal delivery of metformin on diabetic rats.
Collapse
Affiliation(s)
- Weijiang Yu
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Guohua Jiang
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Yang Zhang
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Depeng Liu
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Bin Xu
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| | - Junyi Zhou
- Department of Polymer Materials
- Zhejiang Sci Tech University
- Hangzhou 310018
- China
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology (Zhejiang)
| |
Collapse
|
28
|
Negri GE, Deming TJ. Triggered Copolypeptide Hydrogel Degradation Using Photolabile Lysine Protecting Groups. ACS Macro Lett 2016; 5:1253-1256. [PMID: 35614735 DOI: 10.1021/acsmacrolett.6b00715] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have prepared a new l-lysine-based N-carboxyanhydride monomer containing a photolabile o-nitrobenzyloxycarbonyl protecting group. This monomer was used to prepare poly(l-lysine)-block-poly(oNB-l-lysine) block copolypeptides that formed hydrogels with tunable physical properties and the capability to be degraded by UV irradiation. In these materials, the oNB-lysine residues were found to be excellent surrogates for the hydrophobic residues typically used to form block copolypeptide hydrogels, thus adding functionality without adversely altering self-assembly characteristics. Upon irradiation, full cleavage of the o-nitrobenzyloxycarbonyl groups was observed, resulting in dissolution of the product, poly(l-lysine), and complete hydrogel disruption. When dye molecules were entrapped in the hydrogels, photolysis resulted in release and mixing of these molecules with the surrounding media.
Collapse
Affiliation(s)
- Graciela E. Negri
- Department of Chemistry and Biochemistry and ‡Department of
Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Timothy J. Deming
- Department of Chemistry and Biochemistry and ‡Department of
Bioengineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
29
|
Peng H, Rübsam K, Jakob F, Schwaneberg U, Pich A. Tunable Enzymatic Activity and Enhanced Stability of Cellulase Immobilized in Biohybrid Nanogels. Biomacromolecules 2016; 17:3619-3631. [DOI: 10.1021/acs.biomac.6b01119] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Huan Peng
- DWI-Leibniz Institute
for Interactive Materials e.V., Aachen, Germany
| | - Kristin Rübsam
- DWI-Leibniz Institute
for Interactive Materials e.V., Aachen, Germany
| | - Felix Jakob
- DWI-Leibniz Institute
for Interactive Materials e.V., Aachen, Germany
| | | | - Andrij Pich
- DWI-Leibniz Institute
for Interactive Materials e.V., Aachen, Germany
| |
Collapse
|
30
|
Dai QQ, Ren JL, Peng F, Chen XF, Gao CD, Sun RC. Synthesis of Acylated Xylan-Based Magnetic Fe₃O₄ Hydrogels and Their Application for H₂O₂ Detection. MATERIALS 2016; 9:ma9080690. [PMID: 28773811 PMCID: PMC5512512 DOI: 10.3390/ma9080690] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 07/30/2016] [Accepted: 08/08/2016] [Indexed: 11/16/2022]
Abstract
Acylated xylan-based magnetic Fe₃O₄ nanocomposite hydrogels (ACX-MNP-gels) were prepared by fabricating Fe₃O₄ nanoctahedra in situ within a hydrogel matrix which was synthesized by the copolymerization of acylated xylan (ACX) with acrylamide and N-isopropylacrylamide under ultraviolet irradiation. The size of the Fe₃O₄ fabricated within the hydrogel matrix could be adjusted through controlling the crosslinking concentrations (C). The magnetic hydrogels showed desirable magnetic and mechanical properties, which were confirmed by XRD, Raman spectroscopy, physical property measurement system, SEM, TGA, and compression test. Moreover, the catalytic performance of the magnetic hydrogels was explored. The magnetic hydrogels (C = 7.5 wt %) presented excellent catalytic activity and provided a sensitive response to H₂O₂ detection even at a concentration level of 5 × 10-6 mol·L-1. This approach to preparing magnetic hydrogels loaded with Fe₃O₄ nanoparticles endows xylan-based hydrogels with new promising applications in biotechnology and environmental chemistry.
Collapse
Affiliation(s)
- Qing-Qing Dai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Jun-Li Ren
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| | - Xiao-Feng Chen
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Cun-Dian Gao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Run-Cang Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
31
|
Zhang J, Du P, Xu D, Li Y, Peng W, Zhang G, Zhang F, Fan X. Near-Infrared Responsive MoS2/Poly(N-isopropylacrylamide) Hydrogels for Remote Light-Controlled Microvalves. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00432] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Junyang Zhang
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ping Du
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Danyun Xu
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yang Li
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guoliang Zhang
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Fengbao Zhang
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xiaobin Fan
- School of Chemical Engineering
and Technology, State Key Laboratory of Chemical Engineering, Collaborative
Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
32
|
Song HS, Kwon OS, Kim JH, Conde J, Artzi N. 3D hydrogel scaffold doped with 2D graphene materials for biosensors and bioelectronics. Biosens Bioelectron 2016; 89:187-200. [PMID: 27020065 DOI: 10.1016/j.bios.2016.03.045] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/11/2016] [Accepted: 03/17/2016] [Indexed: 12/20/2022]
Abstract
Hydrogels consisting of three-dimensional (3D) polymeric networks have found a wide range of applications in biotechnology due to their large water capacity, high biocompatibility, and facile functional versatility. The hydrogels with stimulus-responsive swelling properties have been particularly instrumental to realizing signal transduction in biosensors and bioelectronics. Graphenes are two-dimensional (2D) nanomaterials with unprecedented physical, optical, and electronic properties and have also found many applications in biosensors and bioelectronics. These two classes of materials present complementary strengths and limitations which, when effectively coupled, can result in significant synergism in their electrical, mechanical, and biocompatible properties. This report reviews recent advances made with hydrogel and graphene materials for the development of high-performance bioelectronics devices. The report focuses on the interesting intersection of these materials wherein 2D graphenes are hybridized with 3D hydrogels to develop the next generation biosensors and bioelectronics.
Collapse
Affiliation(s)
- Hyun Seok Song
- Korea Division of Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Yuseong, Daejeon 169-148, Republic of Korea
| | - Oh Seok Kwon
- BioNanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Yuseong, Daejeon 305-600, Republic of Korea
| | - Jae-Hong Kim
- Department of Chemical and Environmental Engineering, School of Engineering and Applied Science, Yale University, New Haven, CT 06511, USA
| | - João Conde
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, USA; School of Engineering and Materials Science, Queen Mary University of London, London, UK.
| | - Natalie Artzi
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medicine, Biomedical Engineering Division, Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
33
|
Shi K, Liu Z, Wei YY, Wang W, Ju XJ, Xie R, Chu LY. Near-Infrared Light-Responsive Poly(N-isopropylacrylamide)/Graphene Oxide Nanocomposite Hydrogels with Ultrahigh Tensibility. ACS APPLIED MATERIALS & INTERFACES 2015; 7:27289-27298. [PMID: 26580856 DOI: 10.1021/acsami.5b08609] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Novel near-infrared (NIR) light-responsive poly(N-isopropylacrylamide)/graphene oxide (PNIPAM-GO) nanocomposite hydrogels with ultrahigh tensibility are prepared by incorporating sparse chemical cross-linking of small molecules with physical cross-linking of graphene oxide (GO) nanosheets. Combination of the GO nanosheets and thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) polymeric networks provides the hydrogels with an excellent NIR light-responsive property. The ultrahigh tensibility of PNIPAM-GO nanocomposite hydrogels is achieved by simply using a very low concentration of N,N'-methylenebis(acrylamide) (BIS) molecules as chemical cross-linkers to generate a relatively homogeneous structure with flexible long polymer chains and rare chemically cross-linked dense clusters. Moreover, the oxidized groups of GO nanosheets enable the formation of a hydrogen bond interaction with the amide groups of PNIPAM chains, which could physically cross-link the PNIPAM chains to increase the toughness of the hydrogel networks. The prepared PNIPAM-GO nanocomposite hydrogels with ultrahigh tensibility exhibit rapid, reversible, and repeatable NIR light-responsive properties, which are highly promising for fabricating remote light-controlled devices, smart actuators, artificial muscles, and so on.
Collapse
Affiliation(s)
- Kun Shi
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Yun-Yan Wei
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University , Chengdu, Sichuan 610065, P. R. China
| |
Collapse
|
34
|
Affiliation(s)
- Marcelo A da Silva
- MNP, School of Physics and Astronomy; University of Leeds; 8.61 E.C. Stoner Building Leeds LS2 9JT UK
| | - Cécile A Dreiss
- King's College London, Institute of Pharmaceutical Sciences; 150 Stamford Street London SE1 9NH UK
| |
Collapse
|
35
|
Gumuscu B, Bomer JG, van den Berg A, Eijkel JCT. Photopatterning of Hydrogel Microarrays in Closed Microchips. Biomacromolecules 2015; 16:3802-10. [PMID: 26558488 DOI: 10.1021/acs.biomac.5b01104] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To date, optical lithography has been extensively used for in situ patterning of hydrogel structures in a scale range from hundreds of microns to a few millimeters. The two main limitations which prevent smaller feature sizes of hydrogel structures are (1) the upper glass layer of a microchip maintains a large spacing (typically 525 μm) between the photomask and hydrogel precursor, leading to diffraction of UV light at the edges of mask patterns, (2) diffusion of free radicals and monomers results in irregular polymerization near the illumination interface. In this work, we present a simple approach to enable the use of optical lithography to fabricate hydrogel arrays with a minimum feature size of 4 μm inside closed microchips. To achieve this, we combined two different techniques. First, the upper glass layer of the microchip was thinned by mechanical polishing to reduce the spacing between the photomask and hydrogel precursor, and thereby the diffraction of UV light at the edges of mask patterns. The polishing process reduces the upper layer thickness from ∼525 to ∼100 μm, and the mean surface roughness from 20 to 3 nm. Second, we developed an intermittent illumination technique consisting of short illumination periods followed by relatively longer dark periods, which decrease the diffusion of monomers. Combination of these two methods allows for fabrication of 0.4 × 10(6) sub-10 μm sized hydrogel patterns over large areas (cm(2)) with high reproducibility (∼98.5% patterning success). The patterning method is tested with two different types of photopolymerizing hydrogels: polyacrylamide and polyethylene glycol diacrylate. This method enables in situ fabrication of well-defined hydrogel patterns and presents a simple approach to fabricate 3-D hydrogel matrices for biomolecule separation, biosensing, tissue engineering, and immobilized protein microarray applications.
Collapse
Affiliation(s)
- Burcu Gumuscu
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Johan G Bomer
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Albert van den Berg
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Jan C T Eijkel
- BIOS Lab-on-a-Chip Group, MESA+ Institute for Nanotechnology, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| |
Collapse
|
36
|
Kim M, Yeo SJ, Highley CB, Burdick JA, Yoo PJ, Doh J, Lee D. One-Step Generation of Multifunctional Polyelectrolyte Microcapsules via Nanoscale Interfacial Complexation in Emulsion (NICE). ACS NANO 2015; 9:8269-78. [PMID: 26172934 DOI: 10.1021/acsnano.5b02702] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Polyelectrolyte microcapsules represent versatile stimuli-responsive structures that enable the encapsulation, protection, and release of active agents. Their conventional preparation methods, however, tend to be time-consuming, yield low encapsulation efficiency, and seldom allow for the dual incorporation of hydrophilic and hydrophobic materials, limiting their widespread utilization. In this work, we present a method to fabricate stimuli-responsive polyelectrolyte microcapsules in one step based on nanoscale interfacial complexation in emulsions (NICE) followed by spontaneous droplet hatching. NICE microcapsules can incorporate both hydrophilic and hydrophobic materials and also can be induced to trigger the release of encapsulated materials by changes in the solution pH or ionic strength. We also show that NICE microcapsules can be functionalized with nanomaterials to exhibit useful functionality, such as response to a magnetic field and disassembly in response to light. NICE represents a potentially transformative method to prepare multifunctional nanoengineered polyelectrolyte microcapsules for various applications such as drug delivery and cell mimicry.
Collapse
Affiliation(s)
- Miju Kim
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Seon Ju Yeo
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 440-746, Republic of Korea
| | - Christopher B Highley
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Pil J Yoo
- School of Chemical Engineering, Sungkyunkwan University (SKKU) , Suwon 440-746, Republic of Korea
| | - Junsang Doh
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH) , Pohang, Gyeongbuk 790-784, Republic of Korea
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
37
|
Luo RC, Lim ZH, Li W, Shi P, Chen CH. Near-infrared light triggerable deformation-free polysaccharide double network hydrogels. Chem Commun (Camb) 2015; 50:7052-5. [PMID: 24849317 DOI: 10.1039/c4cc02216e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To prepare a hydrogel with robust mechanical properties and programmable remotely-controlled releasing ability, we synthesized an agarose/alginate double network hydrogel incorporating polypyrrole (PPy) nanoparticles as a near-infrared (NIR) laser responsive releasing system. This hydrogel exhibited pulsatile releasing behaviours according to the laser switching while maintaining its morphology and mechanical strength.
Collapse
Affiliation(s)
- Rong-Cong Luo
- Department of Biomedical Engineering, Singapore Institute of Neurotechnology, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
38
|
Chen MC, Ling MH, Wang KW, Lin ZW, Lai BH, Chen DH. Near-Infrared Light-Responsive Composite Microneedles for On-Demand Transdermal Drug Delivery. Biomacromolecules 2015; 16:1598-607. [DOI: 10.1021/acs.biomac.5b00185] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mei-Chin Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Ming-Hung Ling
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Kuan-Wen Wang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Zhi-Wei Lin
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Bo-Hung Lai
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| | - Dong-Hwang Chen
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan, Republic of China
| |
Collapse
|
39
|
Remotely triggered release of small molecules from LaB6@SiO2-loaded polycaprolactone microneedles. Acta Biomater 2015; 13:344-53. [PMID: 25463507 DOI: 10.1016/j.actbio.2014.11.040] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/14/2014] [Accepted: 11/18/2014] [Indexed: 12/18/2022]
Abstract
We established near-infrared (NIR)-light-triggered transdermal delivery systems by encapsulating NIR absorbers, silica-coated lanthanum hexaboride (LaB6@SiO2) nanostructures and the cargo molecule to be released in biodegradable polycaprolactone (PCL) microneedles. Acting as a local heat source when exposed to an NIR laser, these nanostructures cause a phase transition of the microneedles, thereby increasing the mobility of the polymer chains and triggering drug release from the microneedles. On IR thermal images, the light-triggered melting behavior of the LaB6@SiO2-loaded microneedles was observed. By adjusting the irradiation time and the laser on/off cycles, the amount of molecules released was controlled accurately. Drug release was switched on and off for at least three cycles, and a consistent dose was delivered in each cycle with high reproducibility. The designed microneedles were remotely triggered by laser irradiation for the controlled release of a chemotherapeutic drug, doxorubicin hydrochloride, in vivo. This system would enable dosages to be adjusted accurately to achieve a desired effect, feature a low off-state drug leakage to minimize basal effects and can increase the flexibility of pharmacotherapy performed to treat various medical conditions.
Collapse
|
40
|
Eckmann DM, Composto RJ, Tsourkas A, Muzykantov VR. Nanogel Carrier Design for Targeted Drug Delivery. J Mater Chem B 2014; 2:8085-8097. [PMID: 25485112 PMCID: PMC4251498 DOI: 10.1039/c4tb01141d] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Polymer-based nanogel formulations offer features attractive for drug delivery, including ease of synthesis, controllable swelling and viscoelasticity as well as drug loading and release characteristics, passive and active targeting, and the ability to formulate nanogel carriers that can respond to biological stimuli. These unique features and low toxicity make the nanogels a favorable option for vascular drug targeting. In this review, we address key chemical and biological aspects of nanogel drug carrier design. In particular, we highlight published studies of nanogel design, descriptions of nanogel functional characteristics and their behavior in biological models. These studies form a compendium of information that supports the scientific and clinical rationale for development of this carrier for targeted therapeutic interventions.
Collapse
Affiliation(s)
- D M Eckmann
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - R J Composto
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A Tsourkas
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - V R Muzykantov
- Department of Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
41
|
Lian C, Zhi D, Xu S, Liu H. A Molecular Thermodynamic Model for Restricted Swelling Behaviors of Thermo-sensitive Hydrogel. Chin J Chem Eng 2014. [DOI: 10.1016/j.cjche.2014.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Zhu C, Ninh C, Bettinger CJ. Photoreconfigurable polymers for biomedical applications: chemistry and macromolecular engineering. Biomacromolecules 2014; 15:3474-94. [PMID: 25226507 DOI: 10.1021/bm500990z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimuli-responsive polymers play an important role in many biomedical technologies. Light responsive polymers are particularly desirable because the parameters of irradiated light and diverse photoactive chemistries produce a large number of combinations between functional materials and associated stimuli. This Review summarizes recent advances in utilizing photoactive chemistries in macromolecules for prospective use in biomedical applications. Special focus is granted to selection criterion when choosing photofunctional groups. Synthetic strategies to incorporate these functionalities into polymers and networks with different topologies are also highlighted herein. Prospective applications of these materials are discussed including programmable matrices for controlled release, dynamic scaffolds for tissue engineering, and functional coatings for medical devices. The article concludes by summarizing the state of the art in photoresponsive polymers for biomedical applications including current challenges and future opportunities.
Collapse
Affiliation(s)
- Congcong Zhu
- Department of Materials Science and Engineering and ‡Department of Biomedical Engineering Carnegie Mellon University , Pittsburgh, Pennsylvania 15213, United States
| | | | | |
Collapse
|
43
|
Zhu CH, Lu Y, Chen JF, Yu SH. Photothermal poly(N-isopropylacrylamide)/Fe3O4 nanocomposite hydrogel as a movable position heating source under remote control. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:2796-800, 2741. [PMID: 24677594 DOI: 10.1002/smll.201400477] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Indexed: 05/08/2023]
Abstract
Multifunctional nanocomposite hydrogel: swelling-shrink transition of the magnetic sensitive poly(N-isopropylacrylamide)/Fe3O4 (PNIPAM/Fe3O4) nanocomposite hydrogel can be controlled via near-infrared (NIR) laser exposure or non-exposure, which shows potential as a movable position heating source manipulated by combination of an external magnet and near-infrared laser irradiation.
Collapse
Affiliation(s)
- Chun-Hua Zhu
- Division of Nanomaterials and Chemistry, Hefei National Laboratory for Physical Sciences at MicroscaleCollaborative Innovation Center of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | | | | | | |
Collapse
|
44
|
Ninh C, Cramer M, Bettinger CJ. Photoresponsive hydrogel networks using melanin nanoparticle photothermal sensitizers. Biomater Sci 2014; 2:766-74. [PMID: 26828866 PMCID: PMC5877794 DOI: 10.1039/c3bm60321k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoreconfigurable and photodegradable polymeric networks have broad utility as functional biomaterials for many applications in medicine and biotechnology. The vast majority of these functional polymers are synthesized using chemical moieties that may be cytotoxic in vivo. Materials synthesized from these substituents also pose unknown risk upon implantation and thus will encounter significant regulatory challenges prior to use in vivo. This work describes a strategy to prepare photodegradable hydrogel networks that are composed of well-characterized synthetic polymers and natural melanin pigments found within the human body. Self-assembled networks of poly(l-lactide-co-glycolide)-poly(ethylene glycol) ABA triblock copolymers are doped with melanin nanoparticles to produce reconfigurable networks based on photothermal phase transitions. Self-assembled hydrogel networks with melanin nanoparticles exhibit a storage modulus ranging from 1.5 ± 0.6 kPa to 8.0 ± 7.5 kPa as measured by rheology. The rate of UV-induced photothermal heating was non-monotonic and varied as a function of melanin nanoparticle loading. A maximum steady state temperature increase of 20.5 ± 0.30 °C was measured. Experimental heating rates were in close agreement with predictions based on attenuation of light in melanins via photothermal absorption and Mie scattering. The implications of melanin nanoparticles on hydrogel network formation and light-induced disintegration were also characterized by rheology and dynamic light scattering. Taken together, this class of photoreconfigurable hydrogels represents a potential strategy for photodegradable polymers with increased likelihood for clinical translation.
Collapse
Affiliation(s)
- Chi Ninh
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Madeline Cramer
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Christopher J Bettinger
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA and McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
45
|
Affiliation(s)
- Michael J. A. Hore
- Center for Neutron Research, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Russell J. Composto
- Department
of Materials Science and Engineering and the Laboratory for Research
on the Structure of Matter, University of Pennsylvania, 3231 Walnut
Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
46
|
Shimoda K, Fujigaya T, Nakashima N, Niidome Y. Spontaneous Temperature Control Using Reversible Spectroscopic Responses of PNIPAM-coated Gold Nanorods. CHEM LETT 2013. [DOI: 10.1246/cl.130457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | - Tsuyohiko Fujigaya
- Department of Applied Chemistry, Kyushu University
- World Premier International (WPI) Research Center, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University
| | - Naotoshi Nakashima
- Department of Applied Chemistry, Kyushu University
- World Premier International (WPI) Research Center, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University
- JST-CREST
| | - Yasuro Niidome
- Department of Applied Chemistry, Kyushu University
- World Premier International (WPI) Research Center, International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University
| |
Collapse
|
47
|
Photolatently modulable hydrogels using unilamellar titania nanosheets as photocatalytic crosslinkers. Nat Commun 2013; 4:2029. [DOI: 10.1038/ncomms3029] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 05/22/2013] [Indexed: 11/09/2022] Open
|
48
|
Matteini P, Martina MR, Giambastiani G, Tatini F, Cascella R, Ratto F, Cecchi C, Caminati G, Dei L, Pini R. Light-responsive nanocomposite sponges for on demand chemical release with high spatial and dosage control. J Mater Chem B 2013; 1:1096-1100. [DOI: 10.1039/c2tb00310d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Yan B, Boyer JC, Habault D, Branda NR, Zhao Y. Near Infrared Light Triggered Release of Biomacromolecules from Hydrogels Loaded with Upconversion Nanoparticles. J Am Chem Soc 2012; 134:16558-61. [DOI: 10.1021/ja308876j] [Citation(s) in RCA: 357] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Bin Yan
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec,
Canada J1K 2R1
| | - John-Christopher Boyer
- 4D LABS,
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby,
British Columbia, Canada V5A 1S6
| | - Damien Habault
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec,
Canada J1K 2R1
| | - Neil R. Branda
- 4D LABS,
Department of Chemistry, Simon Fraser University, 8888 University Drive, Burnaby,
British Columbia, Canada V5A 1S6
| | - Yue Zhao
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec,
Canada J1K 2R1
| |
Collapse
|
50
|
Han D, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y. Two-Way CO2-Switchable Triblock Copolymer Hydrogels. Macromolecules 2012. [DOI: 10.1021/ma3015189] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Dehui Han
- Département
de chimie and ‡Département de médecine nucléaire et de radiobiologie
and Centre d’imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke,
QC, Canada J1K 2R1
| | - Olivier Boissiere
- Département
de chimie and ‡Département de médecine nucléaire et de radiobiologie
and Centre d’imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke,
QC, Canada J1K 2R1
| | - Surjith Kumar
- Département
de chimie and ‡Département de médecine nucléaire et de radiobiologie
and Centre d’imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke,
QC, Canada J1K 2R1
| | - Xia Tong
- Département
de chimie and ‡Département de médecine nucléaire et de radiobiologie
and Centre d’imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke,
QC, Canada J1K 2R1
| | - Luc Tremblay
- Département
de chimie and ‡Département de médecine nucléaire et de radiobiologie
and Centre d’imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke,
QC, Canada J1K 2R1
| | - Yue Zhao
- Département
de chimie and ‡Département de médecine nucléaire et de radiobiologie
and Centre d’imagerie moléculaire de Sherbrooke, Université de Sherbrooke, Sherbrooke,
QC, Canada J1K 2R1
| |
Collapse
|