1
|
Zhu Y, Wang T, He Z, Liu M, Zhang C, Sun G, Wang Q. Effect of graphene oxide in an injectable hydrogel on the osteogenic differentiation of mesenchymal stem cells. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2025; 36:152-168. [PMID: 39225005 DOI: 10.1080/09205063.2024.2397211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Graphene oxide (GO) is widely used in bone tissue engineering due to its good biocompatibility and proliferation, and is often used in combination with other hydrogels, which not only reduces the cytotoxicity of GO but also improves the mechanical properties of the hydrogels. We developed injectable carboxymethyl chitosan (CMC)/hydroxyethyl cellulose (HEC)/β-tricalcium phosphate (β-TCP)/GO hydrogel via hydrogen bonding cross-linked between (CMC) and (HEC), also, calcium cross-linked by β-TCP was also involved to further improvement of mechanical properties of the hydrogel, and incorporate different concentration of GO in these hydrogel systems. The characterization of the novel hydrogel was tested by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). The swelling ratio and mechanical properties were investigated, the results showed that the addition of GO was able to reduce the swelling rate of hydrogels and improve their mechanical properties, with the best effect in the case of 1 mg/mL content. In vivo experimental studies showed that the hydrogel significantly promoted the osteogenic differentiation of rat bone marrow mesenchymal stem cells (rBMSCs), with the best effect at a concentration of 2 mg/mL. The results of the cellular experiments were similar. Therefore, the novel environment-friendly and non-toxic injectable CMC/HEC/β-TCP/GO hydrogel system may have potential applications in bone tissue engineering.
Collapse
Affiliation(s)
- Yaru Zhu
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Wang
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen He
- School of Medicine, Tongji University, Shanghai, China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Chunfang Zhang
- Shanghai Pudong New Area Medical Emergency Center, Shanghai, China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Qidong Wang
- Department of Trauma Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Yadav N, Roy D, Misra SK. Intrinsically Antibacterial Carbon Nanoparticles Optimally Entangle into Polymeric Films to Produce Composite Packaging. ACS OMEGA 2024; 9:45104-45116. [PMID: 39554432 PMCID: PMC11561620 DOI: 10.1021/acsomega.4c05732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 11/19/2024]
Abstract
The quality of food, pharmaceutical, or sustainability products is generally maintained through optimal storage conditions or the use of packaging films. Herein, an intrinsically antibacterial and improvised polylactic acid-based film (hpp-PLA-film) has been produced by introducing a microwave-assisted synthesis process of carbon nanoparticles produced from hemp fibers (hf-CNPs). These high-performance packaging (hpp-PLA) films were produced with different percentages of loaded hf-CNPs, i.e., 0.05 and 0.5% (w/w), called hpp-PLA-0.05-film and hpp-PLA-0.5-film, respectively. The chemical entangling of hf-CNPs in PLA films was probed by various physicochemical, thermal, and mechanical characterization methods. The antibacterial properties of hpp-PLA-films could inhibit bacterial growth and outperform kanamycin, at least for longer time periods. Overall, it could be established that the produced hpp-PLA-0.05-film not only was better in mechanical, antibacterial, dissolution, and physical impact sustainability but also had biodegradation properties and may be a better alternative for regular PLA-based packaging composites in the near future.
Collapse
Affiliation(s)
- Neha Yadav
- Department
of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP 208016, India
- Directorate
of Nanomaterials, Defence Materials &
Stores Research & Development Establishment (DMSRDE), Kanpur, UP 208013, India
| | - Debmalya Roy
- Directorate
of Nanomaterials, Defence Materials &
Stores Research & Development Establishment (DMSRDE), Kanpur, UP 208013, India
| | - Santosh K. Misra
- Department
of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, UP 208016, India
- The
Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, UP 208016, India
| |
Collapse
|
3
|
Kumar S, Chatterjee N, Misra SK. Suitably Incorporated Hydrophobic, Redox-Active Drug in Poly Lactic Acid-Graphene Nanoplatelet Composite Generates 3D-Printed Medicinal Patch for Electrostimulatory Therapeutics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11858-11872. [PMID: 38801374 DOI: 10.1021/acs.langmuir.3c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Polymer carbon composites have been reported for improved mechanical, thermal and electrical properties to provide reduced side effect by 3D printing personalized biomedical drug delivery devices. But control on homogeneity in loading and release of dopants like carbon allotropes and drugs, respectively, in the bulk and on the surface has always been a challenge. Herein, we are reporting a methodological cascade to achieve a model, customizable, 3D printed, homogeneously layered and electrically stimulatory, PLA-Graphene nanoplatelet (hl-PLGR) based drug delivery device, called 3D-est-MediPatch. The medicinal patch has been prepared by 3D-printing a Nic-hl-PLGR composite obtained by incorporating a redox active model drug, niclosamide (Nic) in hl-PLGR. The composite of Nic-hl-PLGR was characterized in three sequentially complex forms─composite film, hot melt extruded (HME) filament, and 3D printed (3DP) patches to understand the effect of filament extrusion and 3D-printing processes on Nic-hl-PLGR composite and overall drug incorporation efficiency and control. The incorporation of graphene was found to improve the homogeneity of the drug, and the hot melt extrusion improved the dispersion of drug and graphene fillers in the composite. The electroresponsive drug release from the Nic-hl-PLGR composite was found to be controllably accelerated compared to the drug release by diffusion, in simulated buffer condition. The released drug concentration was found to reach within the IC50 range for malignant melanoma cell (A375) and showed in vitro selectively, with reduced effects in noncancerous, fibroblast cells (NIH3T3). Further, the feasibility of application for this system was assessed in generating personalized 3D-est-MediPatch for skin, liver and spleen tissues in ex-vivo scenario. It showed excellent feasibility and efficacy of the 3D-est-MediPatch in controlled and personalized release of drugs during electrostimulation. Thus, a model platform, 3D-est-MediPatch, could be achieved by suitably incorporating a hydrophobic, redox-active drug (niclosamide) in poly lactic acid-graphene nanoplatelet composite for electrostimulatory therapeutics with reduced side effects.
Collapse
Affiliation(s)
- Sandarbh Kumar
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, 208016, India
| | - Niranjan Chatterjee
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, 208016, India
| | - Santosh Kumar Misra
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, 208016, India
- The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, 208016, India
- Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, 208016, India
| |
Collapse
|
4
|
Zarepour A, Karasu Ç, Mir Y, Nematollahi MH, Iravani S, Zarrabi A. Graphene- and MXene-based materials for neuroscience: diagnostic and therapeutic applications. Biomater Sci 2023; 11:6687-6710. [PMID: 37646462 DOI: 10.1039/d3bm01114c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
MXenes and graphene are two-dimensional materials that have gained increasing attention in neuroscience, particularly in sensing, theranostics, and biomedical engineering. Various composites of graphene and MXenes with fascinating thermal, optical, magnetic, mechanical, and electrical properties have been introduced to develop advanced nanosystems for diagnostic and therapeutic applications, as exemplified in the case of biosensors for neurotransmitter detection. These biosensors display high sensitivity, selectivity, and stability, making them promising tools for neuroscience research. MXenes have been employed to create high-resolution neural interfaces for neuroelectronic devices, develop neuro-receptor-mediated synapse devices, and stimulate the electrophysiological maturation of neural circuits. On the other hand, graphene/derivatives exhibit therapeutic applicability in neuroscience, as exemplified in the case of graphene oxide for targeted delivery of therapeutic agents to the brain. While MXenes and graphene have potential benefits in neuroscience, there are also challenges/limitations associated with their use, such as toxicity, environmental impacts, and limited understanding of their properties. In addition, large-scale production and commercialization as well as optimization of reaction/synthesis conditions and clinical translation studies are very important aspects. Thus, it is important to consider the use of these materials in neuroscience research and conduct further research to obtain an in-depth understanding of their properties and potential applications. By addressing issues related to biocompatibility, long-term stability, targeted delivery, electrical interfaces, scalability, and cost-effectiveness, MXenes and graphene have the potential to greatly advance the field of neuroscience and pave the way for innovative diagnostic and therapeutic approaches for neurological disorders. Herein, recent advances in therapeutic and diagnostic applications of graphene- and MXene-based materials in neuroscience are discussed, focusing on important challenges and future prospects.
Collapse
Affiliation(s)
- Atefeh Zarepour
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| | - Çimen Karasu
- Cellular Stress Response and Signal Transduction Research Laboratory, Department of Medical Pharmacology, Faculty of Medicine, Gazi University, 06500 Ankara, Turkey
| | - Yousof Mir
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Hadi Nematollahi
- Applied Cellular and Molecular Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran.
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey.
| |
Collapse
|
5
|
Biswakarma D, Dey N, Bhattacharya S. Hydrogel Nanocomposite Towards Optical Sensing of Spermine in Biomedical and Real-Life Food Samples and Remediation of Toxic Dyes from Wastewater. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11610-11620. [PMID: 37605815 DOI: 10.1021/acs.langmuir.3c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Nanocomposites such as graphene oxide (GO) have been incorporated into hydrogels to enhance conventional hydrogels' properties and develop new functions. Unique and strong molecular interactions between GO and low molecular weight gelators allow the fabrication of various functional hydrogels suitable for different applications. In the present study, we report a stable and soft nanocomposite hydrogel comprising a pyrene-based chiral amphipath having an amino acid (l-phenylalanine) core with pendant oligo-oxyethylene hydrophilic chains and GO. The mechanical and viscoelastic properties of the nanocomposite hydrogel were thoroughly studied using various spectroscopic, microscopic, and mechanical techniques. Even without GO, native hydrogels could form a self-supported thermoreversible and thixotropic hydrogel composed of the fibrillar network. Unlike native hydrogels, the morphological investigation of nanocomposite gels shows the presence of cross-linked nanosheet-like structures. The combined effect of π-π stacking and H-bonding interactions is the driving force for the formation of such composite hydrogels. Moreover, the nanocomposite hydrogels possess significantly superior mechanical stiffness than the native hydrogels. Interestingly, the thixotropic properties observed with the parent gel were retained even in the presence of carbon nanomaterials (GO). The nanocomposite hydrogel could be employed in the optical sensing of a biogenic polyamine, spermine, resulting in a visible gel-to-sol transition. The superior electrostatic interaction between the GOs and spermine molecules might have led to the release of entrapped fluorogenic dyes from the hydrogel network and a turn-on emission response. The sensory system was employed to analyze spermine content in human urine samples and decomposed food items. A gel-coated paper strip was also developed for onsite detection of the spermine. The nanocomposite hydrogel was further utilized to remove toxic organic dyes such as methylene blue (MB) and rhodamine B (RhB) from the aqueous media. The nanocomposite hydrogel thus showed excellent dye removal capabilities and was also found to be recyclable. Calculations of different mechanical parameters suggest that the dye removal efficiency of the nanocomposite hydrogel was better for MB than for RhB.
Collapse
Affiliation(s)
- Dipen Biswakarma
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Sciences-Pilani, Hyderabad, Telangana 700078, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| |
Collapse
|
6
|
Edrisi F, Baheiraei N, Razavi M, Roshanbinfar K, Imani R, Jalilinejad N. Potential of graphene-based nanomaterials for cardiac tissue engineering. J Mater Chem B 2023; 11:7280-7299. [PMID: 37427687 DOI: 10.1039/d3tb00654a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cardiovascular diseases are the primary cause of death worldwide. Despite significant advances in pharmacological treatments and surgical interventions to restore heart function after myocardial infarction, it can progress to heart failure due to the restricted inherent potential of adult cardiomyocytes to self-regenerate. Hence, the evolution of new therapeutic methods is critical. Nowadays, novel approaches in tissue engineering have assisted in restoring biological and physical specifications of the injured myocardium and, hence, cardiac function. The incorporation of a supporting matrix that could mechanically and electronically support the heart tissue and stimulate the cells to proliferate and regenerate will be advantageous. Electroconductive nanomaterials can facilitate intracellular communication and aid synchronous contraction via electroactive substrate creation, preventing the issue of arrhythmia in the heart. Among a wide range of electroconductive materials, graphene-based nanomaterials (GBNs) are promising for cardiac tissue engineering (CTE) due to their outstanding features including high mechanical strength, angiogenesis, antibacterial and antioxidant properties, low cost, and scalable fabrication. In the present review, we discuss the effect of applying GBNs on angiogenesis, proliferation, and differentiation of implanted stem cells, their antibacterial and antioxidant properties, and their role in improving the electrical and mechanical properties of the scaffolds for CTE. Also, we summarize the recent research that has applied GBNs in CTE. Finally, we present a concise discussion on the challenges and prospects.
Collapse
Affiliation(s)
- Fatemeh Edrisi
- Modern Technologies in Engineering Group, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran.
| | - Mehdi Razavi
- Biionix (Bionic Materials, Implants & Interfaces) Cluster, Department of Medicine, University of Central Florida College of Medicine, Orlando, Florida 32827, USA
- Department of Material Sciences and Engineering, University of Central Florida, Orlando, Florida 32816, USA
| | - Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Muscle Research Center Erlangen (MURCE), 91054 Erlangen, Germany
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
| | - Negin Jalilinejad
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
7
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
8
|
Bhunia S, Saha P, Moitra P, Addicoat MA, Bhattacharya S. Efficacious and sustained release of an anticancer drug mitoxantrone from new covalent organic frameworks using protein corona. Chem Sci 2022; 13:7920-7932. [PMID: 35865887 PMCID: PMC9258399 DOI: 10.1039/d2sc00260d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
Solid porous and crystalline covalent organic frameworks (COFs) are characterized by their higher specific BET surface areas and functional pore walls, which allow the adsorption of various bioactive molecules inside the porous lattices. We have introduced a perylene-based COF, PER@PDA-COF-1, which acts as an effective porous volumetric reservoir for an anticancer drug, mitoxantrone (MXT). The drug-loaded COF (MXT-PER@PDA-COF-1) exhibited zero cellular release of MXT towards cancer cells, which can be attributed to the strong intercalation between the anthracene-dione motif of the drug and the perylene-based COF backbone. Here, we have introduced a strategy involving the serum-albumin-triggered intracellular release of mitoxantrone from MXT-PER@PDA-COF-1. The serum albumin acts as an exfoliating agent and as a colloidal stabilizer in PBS medium (pH = 7.4), rapidly forming a protein corona around the exfoliated COF crystallites and inducing the sustained release of MXT from the COF into tumorigenic cells.
Collapse
Affiliation(s)
- Subhajit Bhunia
- Department of Chemistry & Biochemistry, University of Texas at El Paso El Paso Texas 79968 USA
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Pranay Saha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| | - Parikshit Moitra
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Health Sciences Facility III Baltimore Maryland 21201 USA
| | - Matthew A Addicoat
- School of Science and Technology, Nottingham Trent University Nottingham NG11 8NS UK
| | - Santanu Bhattacharya
- Department of Organic Chemistry, Indian Institute of Science Bangalore 560012 India
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science Kolkata West Bengal 700032 India
| |
Collapse
|
9
|
Jeong WY, Choi HE, Kim KS. Graphene-Based Nanomaterials as Drug Delivery Carriers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:109-124. [DOI: 10.1007/978-981-16-4923-3_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Graphene-based nanomaterial system: a boon in the era of smart nanocarriers. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Bohloli A, Asli MD, Moniri E, Gh AB. Modification of WS2 nanosheets with beta-cyclodextrone and N-isopropylacrylamide polymers for tamoxifen adsorption and investigation of in vitro drug release. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04376-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Raslan A, Saenz Del Burgo L, Ciriza J, Pedraz JL. Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine. Int J Pharm 2020; 580:119226. [PMID: 32179151 DOI: 10.1016/j.ijpharm.2020.119226] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/09/2020] [Accepted: 03/12/2020] [Indexed: 02/07/2023]
Abstract
There is a vast and rapid increase in the applications of graphene oxide (GO) and reduced graphene oxide (rGO) in the biomedical field, including drug delivery, bio-sensing, and diagnostic tools. Among all the applications, the GO and rGO-based scaffolds are a very promising system that have attracted attention because of their great clinical projection in tissue regeneration therapies. Both GO and rGO have shown a strong impact on the proliferation and differentiation of implemented stem cells, but still need to overcome several challenges, such as cytotoxicity, biodistribution, biotransformation or immune response. However, there are still controversial hypothesises regarding the mechanisms involved in these issues that should be clarified in order to improve the applications of these compounds. 3D-scaffolds can help in solving some of those limitations when moving into preclinical studies in regenerative medicine. In this review, we will describe the application of GO and rGO within 3D scaffolds in bone, cardiac and neural regenerative medicine after analyzing the aforementioned challenges.
Collapse
Affiliation(s)
- Ahmed Raslan
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain
| | - Laura Saenz Del Burgo
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain
| | - Jesús Ciriza
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain.
| | - Jose Luis Pedraz
- NanoBioCel Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz 01006, Spain; Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, Spain.
| |
Collapse
|
13
|
ÖZKAN SA, DEDEOĞLU A, KARADAŞ BAKIRHAN N, ÖZKAN Y. Nanocarriers Used Most in Drug Delivery and Drug Release: Nanohydrogel, Chitosan, Graphene, and Solid Lipid. Turk J Pharm Sci 2019; 16:481-492. [PMID: 32454753 PMCID: PMC7227887 DOI: 10.4274/tjps.galenos.2019.48751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/01/2019] [Indexed: 12/01/2022]
Abstract
Over the past few years, nanocarriers have become an ideal solution for safe and efficient drug delivery and release. This is mainly due to the extraordinary characteristics that nanomaterials exhibit when compared with their larger scaled forms. A variety of these carriers are more popular due to their high biocompatibility, ensuring greater efficacy especially in cancer treatments. Nanocrystal, liposomal, and micelle designs of these materials as nanocarriers for drug delivery and release have been extensively researched throughout the past 50 years. Successful applications have not only ensured a greater focus on therapeutic development but also created a new solution available in the pharmaceutical market. Herein, a brief review of research studies focused on nanocarrier materials and designs to achieve superior benefits of drugs for disease treatments is presented. Nanohydrogels, chitosan, graphene oxide, and solid lipid nanoparticle nanocarrier designs and applications are selectively given due to the great attention they have gained from being highly biocompatible and easy-to-manipulate nanocarrier options from organic and inorganic nanocarrier materials. Each summary exhibits the progress that has been achieved to date. With greater understanding of the current state in the development process of these nanomaterials, there is a rising chance to provide better treatment to patients, which is a desperate need in pharmaceutical technologies.
Collapse
Affiliation(s)
- Sibel Ayşıl ÖZKAN
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Aylin DEDEOĞLU
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Nurgül KARADAŞ BAKIRHAN
- University of Health Sciences, Gülhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Yalçın ÖZKAN
- University of Health Sciences, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| |
Collapse
|
14
|
Suhrland C, Truman J, Obeid LM, Sitharaman B. Delivery of long chain C16and C24ceramide in HeLa cells using oxidized graphene nanoribbons. J Biomed Mater Res B Appl Biomater 2019; 108:1141-1156. [DOI: 10.1002/jbm.b.34465] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/24/2019] [Accepted: 07/13/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Cassandra Suhrland
- Department of Biomedical EngineeringStony Brook University Stony Brook New York
| | - Jean‐Philip Truman
- Department of Medicine and the Stony Brook Cancer Center, Health Science CenterStony Brook University Stony Brook New York
| | - Lina M. Obeid
- Department of Medicine and the Stony Brook Cancer Center, Health Science CenterStony Brook University Stony Brook New York
| | - Balaji Sitharaman
- Department of Biomedical EngineeringStony Brook University Stony Brook New York
| |
Collapse
|
15
|
Orthogonal self-assembly of an organoplatinum(II) metallacycle and cucurbit[8]uril that delivers curcumin to cancer cells. Proc Natl Acad Sci U S A 2018; 115:8087-8092. [PMID: 30038010 DOI: 10.1073/pnas.1803800115] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Curcumin (Cur) is a naturally occurring anticancer drug isolated from the Curcuma longa plant. It is known to exhibit anticancer properties via inhibiting the STAT3 phosphorylation process. However, its poor water solubility and low bioavailability impede its clinical application. Herein, we used organoplatinum(II) ← pyridyl coordination-driven self-assembly and a cucurbit[8]uril (CB[8])-mediated heteroternary host-guest complex formation in concert to produce an effective delivery system that transports Cur into the cancer cells. Specifically, a hexagon 1, containing hydrophilic methyl viologen (MV) units and 3,4,5-Tris[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]benzoyl groups alternatively at the vertices, has been synthesized and characterized by several spectroscopic techniques. The MV units of 1 underwent noncovalent complexation with CB[8] to yield a host-guest complex 4. Cur can be encapsulated in 4, via a 1:1:1 heteroternary complex formation, resulting in a water-soluble host-guest complex 5. The host-guest complex 5 exhibited ca 100-fold improved IC50 values relative to free Cur against human melanoma (C32), melanoma of rodents (B16F10), and hormone-responsive (MCF-7) and triple-negative (MDA-MB231) breast cancer cells. Moreover, strong synergisms of Cur with 1 and 4 with combinatorial indexes of <1 across all of the cell lines were observed. An induced apoptosis with fragmented DNA pattern and inhibited expression of phosphor-STAT3 supported the improved therapeutic potential of Cur in heteroternary complex 5.
Collapse
|
16
|
Banerjee AN. Graphene and its derivatives as biomedical materials: future prospects and challenges. Interface Focus 2018; 8:20170056. [PMID: 29696088 PMCID: PMC5915658 DOI: 10.1098/rsfs.2017.0056] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2018] [Indexed: 01/20/2023] Open
Abstract
Graphene and its derivatives possess some intriguing properties, which generates tremendous interests in various fields, including biomedicine. The biomedical applications of graphene-based nanomaterials have attracted great interests over the last decade, and several groups have started working on this field around the globe. Because of the excellent biocompatibility, solubility and selectivity, graphene and its derivatives have shown great potential as biosensing and bio-imaging materials. Also, due to some unique physico-chemical properties of graphene and its derivatives, such as large surface area, high purity, good bio-functionalizability, easy solubility, high drug loading capacity, capability of easy cell membrane penetration, etc., graphene-based nanomaterials become promising candidates for bio-delivery carriers. Besides, graphene and its derivatives have also shown interesting applications in the fields of cell-culture, cell-growth and tissue engineering. In this article, a comprehensive review on the applications of graphene and its derivatives as biomedical materials has been presented. The unique properties of graphene and its derivatives (such as graphene oxide, reduced graphene oxide, graphane, graphone, graphyne, graphdiyne, fluorographene and their doped versions) have been discussed, followed by discussions on the recent efforts on the applications of graphene and its derivatives in biosensing, bio-imaging, drug delivery and therapy, cell culture, tissue engineering and cell growth. Also, the challenges involved in the use of graphene and its derivatives as biomedical materials are discussed briefly, followed by the future perspectives of the use of graphene-based nanomaterials in bio-applications. The review will provide an outlook to the applications of graphene and its derivatives, and may open up new horizons to inspire broader interests across various disciplines.
Collapse
Affiliation(s)
- Arghya Narayan Banerjee
- School of Mechanical Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan-Si 712-749, South Korea
| |
Collapse
|
17
|
Maiti B, Kumar K, Moitra P, Kondaiah P, Bhattacharya S. Reduction Responsive Nanovesicles Derived from Novel α-Tocopheryl-Lipoic Acid Conjugates for Efficacious Drug Delivery to Sensitive and Drug Resistant Cancer Cells. Bioconjug Chem 2018; 29:255-266. [PMID: 29268009 DOI: 10.1021/acs.bioconjchem.7b00497] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two novel α-tocopheryl-lipoic acid conjugates (TL1 and TL2) were synthesized for the anticancer drug, doxorubicin (DOX), delivery. Both conjugates were able to form stable nanovesicles. The critical aggregation concentration (CAC) was determined using 4-(N,N-dimethylamino)cinnamaldehyde (DMACA) as a fluorescence probe. Formation of highly packed nanovesicles was characterized by 1,6-diphenyl-1,3,5-hexatriene (DPH) fluorescence anisotropy and microviscosity measurements. The morphologies of nanovesicles were visualized by transmission electron microscopy (TEM) and atomic force microscopy (AFM). The response of nanovesicles to reducing environment of cells was probed by the addition of dithiothreitol (DTT), which was followed by the increase in the hydrodynamic diameter under dynamic light scattering (DLS) measurements. The encapsulation efficiency of a commonly used anticancer drug, doxorubicin (DOX), in nanovesicles was found to be ∼60% and ∼55% for TL1 and TL2, respectively (TL1-DOX and TL2-DOX). Also, the cumulative drug (DOX) release from DOX-encapsulated nanovesicles in response to biological reducing agent glutathione (GSH) was ∼50% and ∼40% for TL1-DOX and TL2-DOX, respectively, over a period of 10 h. Both TL1-DOX and TL2-DOX delivered the anticancer drug, doxorubicin (DOX), across the DOX-sensitive and DOX-resistant HeLa (HeLa-DOXR) cells in an efficient manner and significantly more efficaciously than the drug alone treatments, especially in HeLa-DOXR cells. The nanovesicle mediated DOX treatment also showed significantly higher cell death when compared to DOX alone treatment in HeLa-DOXR cells. Blood compatibility of the nanovesicles was supported from clotting time, hemolysis, and red blood cell (RBC) aggregation experiments for their potential in vivo applications. Concisely, we present biocompatible and responsive nanovesicles for efficacious drug delivery to drug-sensitive and drug-resistant cancer cells.
Collapse
Affiliation(s)
- Bappa Maiti
- Department of Organic Chemistry and ‡Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science , Bangalore 560012, India.,Director's Research Unit and ∥Technical Research Centre, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Krishan Kumar
- Department of Organic Chemistry and ‡Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science , Bangalore 560012, India.,Director's Research Unit and ∥Technical Research Centre, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Parikshit Moitra
- Department of Organic Chemistry and ‡Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science , Bangalore 560012, India.,Director's Research Unit and ∥Technical Research Centre, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Paturu Kondaiah
- Department of Organic Chemistry and ‡Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science , Bangalore 560012, India.,Director's Research Unit and ∥Technical Research Centre, Indian Association for the Cultivation of Science , Kolkata 700032, India
| | - Santanu Bhattacharya
- Department of Organic Chemistry and ‡Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science , Bangalore 560012, India.,Director's Research Unit and ∥Technical Research Centre, Indian Association for the Cultivation of Science , Kolkata 700032, India
| |
Collapse
|
18
|
Williams AT, Donno R, Tirelli N, Dryfe RA. Phospholipid-mediated exfoliation as a facile preparation method for graphene suspensions. RSC Adv 2018; 8:19220-19225. [PMID: 35539657 PMCID: PMC9080625 DOI: 10.1039/c8ra03365j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/16/2018] [Indexed: 11/25/2022] Open
Abstract
This paper deals with simple, inexpensive and ‘green’ methods of production for graphene in colloidal dispersion. Herein, we report on such a method by preparing aqueous graphene dispersions via ultrasonic exfoliation in the presence of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). The product predominantly consists of few-layer graphene flakes coated by DOPC with a lateral size of a few tens to hundreds of nm, as confirmed by Raman and X-ray photoelectron spectroscopies, thermogravimetric analysis (TGA), dynamic light scattering (DLS) and atomic force microscopy (AFM). The novelty of this method lies in its dependence on a typical soft matter property: the fluidity of the hydrophobic chains. Stiffer phospholipids such as 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC, which possesses two palmitoyl chains) or 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC, one palmitoyl, one oleyl chain) are ineffective at dispersing graphene; however, in the presence of cholesterol these phospholipids also become effective mediators. The phospholipid coating renders the flakes compatible with biological environments. A simple, inexpensive and ‘green’ method of production for graphene in colloidal dispersion.![]()
Collapse
Affiliation(s)
| | - Roberto Donno
- Laboratory of Polymers and Biomaterials
- Fondazione Istituto Italiano di Tecnologia
- Genoa
- Italy
| | - Nicola Tirelli
- Laboratory of Polymers and Biomaterials
- Fondazione Istituto Italiano di Tecnologia
- Genoa
- Italy
- NorthWest Centre for Advanced Drug Delivery
| | | |
Collapse
|
19
|
Bag BG, Ghorai S, Panja SK, Dinda SK, Paul K. First in situ vesicular self-assembly of ‘binols’ generated by a two-component aerobic oxidation reaction. RSC Adv 2018; 8:29155-29163. [PMID: 35547996 PMCID: PMC9084448 DOI: 10.1039/c8ra06488a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 11/25/2022] Open
Abstract
Generation of vesicular self-assemblies from natural and synthetic components has been in the frontiers of research in recent years for an improved understanding of the self-assembly process and also because of its prospective and realized applications in the areas of advanced materials, biotechnology and medicine. In the present work, we report the first example of the in situ generation of vesicular self-assemblies during an aerobic coupling reaction. The two precursor 2-naphthol units, having hydrogen bond donor–acceptor groups with appended alkyl chains, yielded binol (2,2′-dihydroxy-1,1′-binaphthyl) derivatives by aerobic coupling that spontaneously self-assembled in situ, yielding vesicular self-assemblies and gels. The morphology of the self-assemblies has been characterized by various optical, electron and atomic force microscopic techniques. The vesicular self-assemblies obtained in the liquids were capable of entrapping fluorophores such as rhodamine-B and carboxy fluorescein including the anticancer drug doxorubicin. The entrapped fluorophores could also be released by sonication or by rupture of vesicles. The supramolecular gels obtained in binary solvent mixtures showed improved gelation abilities with increase in the alkyl chain lengths as reflected by their minimum gelator concentration (mgcs) values, gel to sol transition temperatures (Tgel) and rheology properties. The results described here are also the first demonstration of gelation during an aerobic coupling reaction. Binol derivatives, obtained by aerobic coupling of two 2-naphthol derivatives having H-bond donor–acceptor groups and appended alkyl chains, spontaneously self-assembled in situ yielding vesicular self-assemblies and gels.![]()
Collapse
Affiliation(s)
- Braja G. Bag
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| | - Subrata Ghorai
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| | - Saikat K. Panja
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| | - Shaishab K. Dinda
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| | - Koushik Paul
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 721102
- India
| |
Collapse
|
20
|
Graphene oxide nanoribbons as nanomaterial for bone regeneration: Effects on cytotoxicity, gene expression and bactericidal effect. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 78:341-348. [DOI: 10.1016/j.msec.2017.03.278] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/28/2017] [Accepted: 03/28/2017] [Indexed: 11/18/2022]
|
21
|
Kumar P, Kumar R, Singh B, Malik R, Sharma G, Chitkara D, Katare OP, Raza K. Biocompatible Phospholipid-Based Mixed Micelles for Tamoxifen Delivery: Promising Evidences from In - Vitro Anticancer Activity and Dermatokinetic Studies. AAPS PharmSciTech 2017; 18:2037-2044. [PMID: 27966177 DOI: 10.1208/s12249-016-0681-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/22/2016] [Indexed: 11/30/2022] Open
Abstract
Tamoxifen (TAM) is frequently prescribed for the management breast cancer, but is associated with the challenges like compromised aqueous solubility and poor bioavailability to the target site. It was envisioned to develop phospholipid-based mixed micelles to explore the promises offered by the biocompatible carriers. Various compositions were prepared, employing soya lecithin, polysorbate 80, sodium chloride/dextrose, and water, by self-assembled technique. The formulations were characterized for micromeritics and evaluated for in vitro drug release, hemolysis study, dermatokinetic studies on rodents, and cytotoxicity on MCF-7 cell lines. Cellular uptake of the system was also studied using confocal laser scanning microscopy. The selected composition was of sub-micron range (28.81 ± 2.1 nm), with spherical morphology. During in-vitro studies, the mixed micelles offered controlled drug release than that of conventional gel. Cytotoxicity was significantly enhanced and IC50 value was reduced that of the naïve drug. The bioavailability in epidermis and dermis skin layers was enhanced approx. fivefold and threefold, respectively. The developed nanosystem not only enhanced the efficacy of the drug but also maintained the integrity of skin, as revealed by histological studies. The developed TAM-nanocarrier possesses potential promises for safe and better delivery of TAM.
Collapse
|
22
|
Muazim K, Hussain Z. Graphene oxide — A platform towards theranostics. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:1274-1288. [DOI: 10.1016/j.msec.2017.02.121] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 02/02/2017] [Accepted: 02/24/2017] [Indexed: 11/24/2022]
|
23
|
Bag BG, Barai AC, Wijesekera K, Kittakoop P. First Vesicular Self-Assembly of Crotocembraneic Acid, a Nano-Sized Fourteen Membered Macrocyclic Diterpenic Acid. ChemistrySelect 2017. [DOI: 10.1002/slct.201700500] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Braja G. Bag
- Department of Chemistry and Chemical Technology; Vidyasagar University; Midnapore 721102, West Bengal India
| | - Abir C. Barai
- Department of Chemistry and Chemical Technology; Vidyasagar University; Midnapore 721102, West Bengal India
| | - Kanchana Wijesekera
- Chulabhorn Graduate Institute; Chemical Biology Program; Chulabhorn Royal Academy; Laksi Bangkok 10210 Thailand
| | - Prasat Kittakoop
- Chulabhorn Graduate Institute; Chemical Biology Program; Chulabhorn Royal Academy; Laksi Bangkok 10210 Thailand
- Chulabhorn Research Institute, Laksi; Bangkok 10210 Thailand
- Center of Excellence on Environmental Health and Toxicology (EHT), CHE; Ministry of Education Thailand
| |
Collapse
|
24
|
Bag BG, Majumdar R. Self-assembly of Renewable Nano-sized Triterpenoids. CHEM REC 2017; 17:841-873. [PMID: 28195390 DOI: 10.1002/tcr.201600123] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Braja Gopal Bag
- Department of Chemistry and Chemical Technology; Vidyasagar Univesity; Midnapore 721102, West Bengal India
| | - Rakhi Majumdar
- Department of Chemistry and Chemical Technology; Vidyasagar Univesity; Midnapore 721102, West Bengal India
| |
Collapse
|
25
|
Moitra P, Subramanian Y, Bhattacharya S. Concentration Dependent Self-Assembly of TrK-NGF Receptor Derived Tripeptide: New Insights from Experiment and Computer Simulations. J Phys Chem B 2017; 121:815-824. [DOI: 10.1021/acs.jpcb.6b10511] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Parikshit Moitra
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Yashonath Subramanian
- Solid
State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
- Condensed
Matter Theory Unit, Jawaharlal Nehru Center for Advanced Scientific Research, Bangalore 560064, India
| | - Santanu Bhattacharya
- Department
of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
- Director’s
Research Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
26
|
Ou L, Song B, Liang H, Liu J, Feng X, Deng B, Sun T, Shao L. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Part Fibre Toxicol 2016; 13:57. [PMID: 27799056 PMCID: PMC5088662 DOI: 10.1186/s12989-016-0168-y] [Citation(s) in RCA: 414] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 10/13/2016] [Indexed: 02/06/2023] Open
Abstract
Due to their unique physicochemical properties, graphene-family nanomaterials (GFNs) are widely used in many fields, especially in biomedical applications. Currently, many studies have investigated the biocompatibility and toxicity of GFNs in vivo and in intro. Generally, GFNs may exert different degrees of toxicity in animals or cell models by following with different administration routes and penetrating through physiological barriers, subsequently being distributed in tissues or located in cells, eventually being excreted out of the bodies. This review collects studies on the toxic effects of GFNs in several organs and cell models. We also point out that various factors determine the toxicity of GFNs including the lateral size, surface structure, functionalization, charge, impurities, aggregations, and corona effect ect. In addition, several typical mechanisms underlying GFN toxicity have been revealed, for instance, physical destruction, oxidative stress, DNA damage, inflammatory response, apoptosis, autophagy, and necrosis. In these mechanisms, (toll-like receptors-) TLR-, transforming growth factor β- (TGF-β-) and tumor necrosis factor-alpha (TNF-α) dependent-pathways are involved in the signalling pathway network, and oxidative stress plays a crucial role in these pathways. In this review, we summarize the available information on regulating factors and the mechanisms of GFNs toxicity, and propose some challenges and suggestions for further investigations of GFNs, with the aim of completing the toxicology mechanisms, and providing suggestions to improve the biological safety of GFNs and facilitate their wide application.
Collapse
Affiliation(s)
- Lingling Ou
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Bin Song
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Huimin Liang
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jia Liu
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Xiaoli Feng
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Bin Deng
- The General Hospital of People’s Liberation Army, Beijing, China
| | - Ting Sun
- The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| |
Collapse
|
27
|
Dubey P, Gopinath P. Functionalized Graphene Oxide Based Nanocarrier for Tumor-Targeted Combination Therapy to Elicit Enhanced Cytotoxicity against Breast Cancer CellsIn Vitro. ChemistrySelect 2016. [DOI: 10.1002/slct.201600886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Poornima Dubey
- Nanobiotechnology Laboratory; Centre for Nanotechnology; Indian Institute of Technology Roorkee; Roorkee Uttarakhand- 247667 India
| | - P. Gopinath
- Nanobiotechnology Laboratory; Centre for Nanotechnology; Indian Institute of Technology Roorkee; Roorkee Uttarakhand- 247667 India
- Department of Biotechnology; Indian Institute of Technology Roorkee; Roorkee Uttarakhand- 247667 India
| |
Collapse
|
28
|
Mishra RK, Shalom Y, Kumar VB, Luong JHT, Gedanken A, Banin E. Surfactant-free synthesis of a water-soluble PEGylated nanographeneoxide/metal-oxide nanocomposite as engineered antimicrobial weaponry. J Mater Chem B 2016; 4:6706-6715. [DOI: 10.1039/c6tb01728b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ZnCuO NPs deposited on NGO-PEG are non-toxic, exhibit high antimicrobial activity and show excellent dispersal in water, salt-rich and protein-rich solutions.
Collapse
Affiliation(s)
| | - Yakov Shalom
- The Mina and Everard Goodman Faculty of Life Sciences
- Institute for Nanotechnology and Advanced Materials
- Bar Ilan University
- Ramat-Gan 5290002
- Israel
| | | | - John H. T. Luong
- Innovative Chromatography Group
- Irish Separation Science Cluster (ISSC)
- Department of Chemistry and Analytical
- Biological Chemistry Research Facility (ABCRF)
- University College Cork
| | - Aharon Gedanken
- Department of Chemistry
- Bar-Ilan University
- Ramat-Gan 52900
- Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences
- Institute for Nanotechnology and Advanced Materials
- Bar Ilan University
- Ramat-Gan 5290002
- Israel
| |
Collapse
|
29
|
Lammel T, Boisseaux P, Navas JM. Potentiating effect of graphene nanomaterials on aromatic environmental pollutant-induced cytochrome P450 1A expression in the topminnow fish hepatoma cell line PLHC-1. ENVIRONMENTAL TOXICOLOGY 2015; 30:1192-1204. [PMID: 24706484 DOI: 10.1002/tox.21991] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/18/2014] [Accepted: 03/23/2014] [Indexed: 06/03/2023]
Abstract
Graphene and its derivatives are an emerging class of carbon nanomaterial with great potential for a broad range of industrial and consumer applications. However, their increasing production and use is expected to result in release of nano-sized graphene platelets into the environment, where they may interact with chemical pollutants modifying their fate and toxic potential. The objective of this study was to assess whether graphene nanoplatelets can act as vector for aromatic environmental pollutants increasing their cellular uptake and associated hazardous effects in vitro. For this purpose, cell cultures of the topminnow fish (Poeciliopsis lucida) hepatoma cell line PLHC-1 were simultaneously (and successively) exposed to graphene nanoplatelets (graphene oxide (GO) or carboxyl graphene (CXYG)) and an aryl hydrocarbon receptor (AhR) agonist (β-naphthoflavone (β-NF), benzo(k)fluoranthene (BkF) or 3,3',4,4',5,5'-hexachlorobiphenyl (PCB169)). Following exposure cytochrome P450 1A (Cyp1A) induction was assessed by measuring cyp1A mRNA expression levels using reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and Cyp1A-dependent ethoxyresorufin-O-deethylase (EROD) activity. It was observed that pre- and co-exposure of cells to GO and CXYG nanoplatelets had a potentiating effect on β-NF, BkF, and PCB169-dependent Cyp1A induction suggesting that graphene nanoplatelets increase the effective concentration of AhR agonists by facilitating their passive diffusion into the cells by damaging the cells' plasma membrane and/or by transporting them over the plasma membrane via a Trojan horse-like mechanism. The results demonstrate the existence of combination effects between nanomaterials and environmental pollutants and stress the importance of considering these effects when evaluating their respective hazard.
Collapse
Affiliation(s)
- Tobias Lammel
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain
| | - Paul Boisseaux
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain
| | - José M Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente, Carretera de la Coruña Km 7.5, 28040, Madrid, Spain
| |
Collapse
|
30
|
Ding X, Liu H, Fan Y. Graphene-Based Materials in Regenerative Medicine. Adv Healthc Mater 2015; 4:1451-68. [PMID: 26037920 DOI: 10.1002/adhm.201500203] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 04/18/2015] [Indexed: 12/13/2022]
Abstract
Graphene possesses many unique properties such as two-dimensional planar structure, super conductivity, chemical and mechanical stability, large surface area, and good biocompatibility. In the past few years, graphene-based materials have risen as a shining star on the path of researchers seeking new materials for future regenerative medicine. Herein, the recent research advances made in graphene-based materials mostly utilizing the mechanical and electrical properties of graphene are described. The most exciting findings addressing the impact of graphene-based materials on regenerative medicine are highlighted, with particular emphasis on their applications including nerve, bone, cartilage, skeletal muscle, cardiac, skin, adipose tissue regeneration, and their effects on the induced pluripotent stem cells. Future perspectives and emerging challenges are also addressed in this Review article.
Collapse
Affiliation(s)
- Xili Ding
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education; International Research Center for Implantable and Interventional Medical Devices; School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 P. R. China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education; International Research Center for Implantable and Interventional Medical Devices; School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 P. R. China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education; International Research Center for Implantable and Interventional Medical Devices; School of Biological Science and Medical Engineering; Beihang University; Beijing 100191 P. R. China
- National Research Center for Rehabilitation Technical Aids; Beijing 100176 P. R. China
| |
Collapse
|
31
|
Misra SK, Jensen TW, Pan D. Enriched inhibition of cancer and stem-like cancer cells via STAT-3 modulating niclocelles. NANOSCALE 2015; 7:7127-7132. [PMID: 25785368 DOI: 10.1039/c5nr00403a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe for the first time a therapeutic strategy to target stem-like cancer cells via STAT-3 modulation using a nanomedicine approach. Niclocelle, a niclosamide loaded rigid core mixed micelle, was synthesized from a self-assembled well-defined amphiphilic diblock copolymer and an FDA-approved signal transducer and activator of transcription factor 3. Followed by a rigorous physico-chemical characterization, niclocelles were evaluated biologically for cytotoxicity and apoptosis in human melanoma (C32) and breast cancer (MDA-MB231 and MCF-7) cells. Niclocelles were found to selectively reduce the CD44+ stem cell population in C32 cells via STAT-3 modulation.
Collapse
Affiliation(s)
- Santosh K Misra
- Department of Bioengineering, Materials Science and Engineering and Beckman Institute, University of Illinois at Urbana-Champaign and Carle Cancer Center, 502 N. Busey, Urbana, IL 61801, USA.
| | | | | |
Collapse
|
32
|
Mishra RK, Segal E, Lipovsky A, Natan M, Banin E, Gedanken A. New life for an old antibiotic. ACS APPLIED MATERIALS & INTERFACES 2015; 7:7324-7333. [PMID: 25768259 DOI: 10.1021/acsami.5b00563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Restoring the antibacterial properties of existing antibiotics is of great concern. Herein, we present, for the first time, the formation and deposition of stable antibiotic nanoparticles (NPs) on graphene oxide (GO) sheets by a facile one-step sonochemical technique. Sonochemically synthesized graphene oxide/tetracycline (GO/TET) composite shows enhanced activity against both sensitive and resistant Staphylococcus aureus (S. aureus). The size and deposition of tetracycline (TET) nanoparticles on GO can be controlled by varying the sonication time. The synthesized NPs ranged from 21 to 180 nm. Moreover, ultrasonic irradiation does not cause any structural and chemical changes to the TET molecule as confirmed by Fourier transform infrared spectroscopy (FTIR). The virtue of π-π stacking between GO and TET additionally facilitate the coating of TET NPs upon GO. A time dependent release kinetics of TET NPs from the GO surface is also monitored providing important insights regarding the mechanism of antibacterial activity of GO/TET composites. Our results show that the GO/TET composite is bactericidal in nature, resulting in similar values of minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). This composite is found to be active against TET resistant S. aureus at a concentration four times lower than the pristine TET. The sensitive S. aureus follows the same trend showing six times lower MIC values compared to pristine TET. GO shows no activity against both sensitive and resistant S. aureus even at a concentration as high as 1 mg/mL but influences the biocidal activity of the GO/TET composite. We propose that the unique structure and composition manifested by GO/TET composites may be further utilized for different formulations of antibiotics with GO. The sonochemical method used in this work can be precisely tailored for the stable deposition of a variety of antibiotics on the GO surface to reduce health risks and increase the spectrum of applications.
Collapse
Affiliation(s)
- Rahul Kumar Mishra
- †Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Elad Segal
- †Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Anat Lipovsky
- †Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Michal Natan
- ∥The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Ehud Banin
- ∥The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Aharon Gedanken
- †Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
- §Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| |
Collapse
|
33
|
Orecchioni M, Cabizza R, Bianco A, Delogu LG. Graphene as cancer theranostic tool: progress and future challenges. Am J Cancer Res 2015; 5:710-23. [PMID: 25897336 PMCID: PMC4402495 DOI: 10.7150/thno.11387] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/04/2015] [Indexed: 12/18/2022] Open
Abstract
Nowadays cancer remains one of the main causes of death in the world. Current diagnostic techniques need to be improved to provide earlier diagnosis and treatment. Traditional therapy approaches to cancer are limited by lack of specificity and systemic toxicity. In this scenario nanomaterials could be good allies to give more specific cancer treatment effectively reducing undesired side effects and giving at the same time accurate diagnosis and successful therapy. In this context, thanks to its unique physical and chemical properties, graphene, graphene oxide (GO) and reduced graphene (rGO) have recently attracted tremendous interest in biomedicine including cancer therapy. Herein we analyzed all studies presented in literature related to cancer fight using graphene and graphene-based conjugates. In this context, we aimed at the full picture of the state of the art providing new inputs for future strategies in the cancer theranostic by using of graphene. We found an impressive increasing interest in the material for cancer therapy and/or diagnosis. The majority of the works (73%) have been carried out on drug and gene delivery applications, following by photothermal therapy (32%), imaging (31%) and photodynamic therapy (10%). A 27% of the studies focused on theranostic applications. Part of the works here discussed contribute to the growth of the theranostic field covering the use of imaging (i.e. ultrasonography, positron electron tomography, and fluorescent imaging) combined to one or more therapeutic modalities. We found that the use of graphene in cancer theranostics is still in an early but rapidly growing stage of investigation. Any technology based on nanomaterials can significantly enhance their possibility to became the real revolution in medicine if combines diagnosis and therapy at the same time. We performed a comprehensive summary of the latest progress of graphene cancer fight and highlighted the future challenges and the innovative possible theranostic applications.
Collapse
|
34
|
Bhattacharjee S, Samanta SK, Moitra P, Pramoda K, Kumar R, Bhattacharya S, Rao CNR. Nanocomposite Made of an Oligo(p-phenylenevinylene)-Based Trihybrid Thixotropic Metallo(organo)gel Comprising Nanoscale Metal-Organic Particles, Carbon Nanohorns, and Silver Nanoparticles. Chemistry 2015; 21:5467-76. [DOI: 10.1002/chem.201405522] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Indexed: 01/23/2023]
|
35
|
Yadav K, Bhargava P, Bansal S, Singh M, Gupta S, Sandhu G, Kumar S, Sreekanth V, Bajaj A. Nature of the charged head group dictates the anticancer potential of lithocholic acid-tamoxifen conjugates for breast cancer therapy. MEDCHEMCOMM 2015. [DOI: 10.1039/c4md00289j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Anticancer drug Tamoxifen is modified to charged lithocholic acid derived amphiphile for enhanced cytotoxicity against breast cancer cells.
Collapse
Affiliation(s)
- Kavita Yadav
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
- Research Scholar
| | - Priyanshu Bhargava
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Sandhya Bansal
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Manish Singh
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Siddhi Gupta
- Department of Chemistry
- Indian Institute of Science Education and Research
- Bhopal
- India
| | - Geeta Sandhu
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Sandeep Kumar
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| | - Vedagopuram Sreekanth
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
- Research Scholar
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology
- Regional Centre for Biotechnology
- Gurgaon-122016
- India
| |
Collapse
|
36
|
Hollanda L, Lobo A, Lancellotti M, Berni E, Corat E, Zanin H. Graphene and carbon nanotube nanocomposite for gene transfection. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 39:288-98. [DOI: 10.1016/j.msec.2014.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 01/26/2014] [Accepted: 03/01/2014] [Indexed: 01/08/2023]
|
37
|
Hu YH. The first magnetic-nanoparticle-free carbon-based contrast agent of magnetic-resonance imaging-fluorinated graphene oxide. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:1451-1452. [PMID: 24376224 DOI: 10.1002/smll.201303644] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Indexed: 06/03/2023]
Affiliation(s)
- Yun Hang Hu
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, Michigan, 49931, USA
| |
Collapse
|
38
|
Zanin H, Hollanda LM, Ceragioli HJ, Ferreira MS, Machado D, Lancellotti M, Catharino RR, Baranauskas V, Lobo AO. Carbon nanoparticles for gene transfection in eukaryotic cell lines. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 39:359-70. [PMID: 24863237 DOI: 10.1016/j.msec.2014.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 02/18/2014] [Accepted: 03/04/2014] [Indexed: 10/25/2022]
Abstract
For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests.
Collapse
Affiliation(s)
- H Zanin
- Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13083-852 Campinas, SP, Brazil.
| | - L M Hollanda
- Laboratory of Biotechnology, Department of Biochemistry, Institute of Biology at UNICAMP, Rua Monteiro Lobato 255, Campinas, SP CEP 13083-862, Brazil.
| | - H J Ceragioli
- Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13083-852 Campinas, SP, Brazil
| | - M S Ferreira
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, UNICAMP, Rua Cinco de Junho, 350, Campinas, São Paulo CEP 13083-877, Brazil
| | - D Machado
- Laboratory of Biotechnology, Department of Biochemistry, Institute of Biology at UNICAMP, Rua Monteiro Lobato 255, Campinas, SP CEP 13083-862, Brazil
| | - M Lancellotti
- Laboratory of Biotechnology, Department of Biochemistry, Institute of Biology at UNICAMP, Rua Monteiro Lobato 255, Campinas, SP CEP 13083-862, Brazil
| | - R R Catharino
- Innovare Biomarkers Laboratory, Medicine and Experimental Surgery Nucleus, UNICAMP, Rua Cinco de Junho, 350, Campinas, São Paulo CEP 13083-877, Brazil
| | - V Baranauskas
- Departamento de Semicondutores, Instrumentos e Fotônica, Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas, 13083-852 Campinas, SP, Brazil
| | - A O Lobo
- Laboratory of Biomedical Nanotechnology (NANOBIO), Universidade do Vale do Paraiba (UNIVAP), Av. Shishima Hifumi 2911, Sao Jose dos Campos 12224-000, SP, Brazil
| |
Collapse
|
39
|
Maity AR, Chakraborty A, Mondal A, Jana NR. Carbohydrate coated, folate functionalized colloidal graphene as a nanocarrier for both hydrophobic and hydrophilic drugs. NANOSCALE 2014; 6:2752-2758. [PMID: 24464363 DOI: 10.1039/c3nr05431d] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Although graphene based drug delivery has gained significant recent interest, the synthesis of colloidal graphene based nanocarriers with high drug loading capacities and with targeting ligands at the outer surface is a challenging issue. We have synthesized carbohydrate coated and folate functionalized colloidal graphene which can be used as a nanocarrier for a wide variety of hydrophobic and hydrophilic drugs. The synthesized colloidal graphene is loaded with paclitaxol, camptothecin, doxorubicin, curcumin and used for their targeted delivery to cancer cells. We demonstrate that this drug loaded functional graphene nanocarrier can successfully deliver drugs into target cells and offers an enhanced therapeutic performance. The reported approach can be extended to the cellular delivery of other hydrophobic and hydrophilic drugs and the simultaneous delivery of multiple drugs.
Collapse
Affiliation(s)
- Amit Ranjan Maity
- Centre for Advanced Materials, Indian Association for the Cultivation of Science, Kolkata-700032, India.
| | | | | | | |
Collapse
|
40
|
Misra SK, Naz S, Kondaiah P, Bhattacharya S. A cationic cholesterol based nanocarrier for the delivery of p53-EGFP-C3 plasmid to cancer cells. Biomaterials 2014; 35:1334-46. [DOI: 10.1016/j.biomaterials.2013.10.062] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/20/2013] [Indexed: 01/10/2023]
|
41
|
Bag BG, Majumdar R. Vesicular self-assembly of a natural triterpenoid arjunolic acid in aqueous medium: study of entrapment properties and in situ generation of gel–gold nanoparticle hybrid material. RSC Adv 2014. [DOI: 10.1039/c4ra08710k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Formation of vesicular gel and gel–gold nanoparticle hybrid material from arjunolic acid extractable from the saw-dust of Terminalia arjuna.
Collapse
Affiliation(s)
- Braja Gopal Bag
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 72102, India
| | - Rakhi Majumdar
- Department of Chemistry and Chemical Technology
- Vidyasagar University
- Midnapore 72102, India
| |
Collapse
|
42
|
Moitra P, Kumar K, Kondaiah P, Bhattacharya S. Efficacious Anticancer Drug Delivery Mediated by a pH-Sensitive Self-Assembly of a Conserved Tripeptide Derived from Tyrosine Kinase NGF Receptor. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201307247] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Moitra P, Kumar K, Kondaiah P, Bhattacharya S. Efficacious Anticancer Drug Delivery Mediated by a pH-Sensitive Self-Assembly of a Conserved Tripeptide Derived from Tyrosine Kinase NGF Receptor. Angew Chem Int Ed Engl 2013; 53:1113-7. [DOI: 10.1002/anie.201307247] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 11/04/2013] [Indexed: 01/08/2023]
|
44
|
Liu J, Cui L, Losic D. Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 2013; 9:9243-57. [PMID: 23958782 DOI: 10.1016/j.actbio.2013.08.016] [Citation(s) in RCA: 722] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 08/07/2013] [Accepted: 08/09/2013] [Indexed: 01/17/2023]
Abstract
The biomedical applications of graphene-based materials, including drug delivery, have grown rapidly in the past few years. Graphene and graphene oxide have been extensively explored as some of the most promising biomaterials for biomedical applications due to their unique properties: two-dimensional planar structure, large surface area, chemical and mechanical stability, superb conductivity and good biocompatibility. These properties result in promising applications for the design of advanced drug delivery systems and delivery of a broad range of therapeutics. In this review we present an overview of recent advances in this field of research. We briefly describe current methods for the surface modification of graphene-based nanocarriers, their biocompatibility and toxicity, followed by a summary of the most appealing examples demonstrated for the delivery of anti-cancer drugs and genes. Additionally, new drug delivery concepts based on controlling mechanisms, including targeting and stimulation with pH, chemical interactions, thermal, photo- and magnetic induction, are discussed. Finally the review is summarized, with a brief conclusion of future prospects and challenges in this field.
Collapse
|
45
|
Detection of promyelocytic leukemia/retinoic acid receptor α (PML/RARα) fusion gene with functionalized graphene oxide. Int J Mol Sci 2013; 14:12863-72. [PMID: 23787474 PMCID: PMC3709817 DOI: 10.3390/ijms140612863] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/30/2013] [Accepted: 06/09/2013] [Indexed: 11/17/2022] Open
Abstract
An attempt was made to use functionalized graphene oxide (GO) to detect the Promyelocytic leukemia/Retinoic acid receptor α fusion gene (PML/RARα fusion gene), a marker gene of acute promyelocytic leukemia. The functionalized GO was prepared by chemical exfoliation method, followed by a polyethylene glycol grafting. It is found that the functionalized GO can selectively adsorb the fluorescein isothiocyanate (FITC)-labeled single-stranded DNA probe and quench its fluorescence. The probe can be displaced by the PML/RARα fusion gene to restore the fluorescence, which can be detected by laser confocal microscopy and flow cytometry. These can be used to detect the presence of the PML/RARα fusion gene. This detection method is verified to be fast, simple and reliable.
Collapse
|
46
|
Yang K, Li Y, Tan X, Peng R, Liu Z. Behavior and toxicity of graphene and its functionalized derivatives in biological systems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2013; 9:1492-1503. [PMID: 22987582 DOI: 10.1002/smll.201201417] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Indexed: 06/01/2023]
Abstract
Graphene, as a class of 2D carbon nanomaterial, has attracted tremendous interest in different areas in recent years including biomedicine. The toxicity and behavior of graphene in biological systems are thus important fundamental issues that require significant attention. In this article, the toxicity of graphene is reviewed by describing the behavior of graphene and its derivatives in microorganisms, cells, and animals. Despite certain inconsistencies in several detailed experimental results and hypotheses of toxicity mechanisms, results from numerous reports all agree that the physicochemical properties such as surface functional groups, charges, coatings, sizes, and structural defects of graphene may affect its in vitro/in vivo behavior as well as its toxicity in biological systems. It is hoped that this review article will provide an overview understanding of the impacts, behavior, and toxicology of graphene and its derivatives in various biological systems.
Collapse
Affiliation(s)
- Kai Yang
- Jiangsu Key Laboratory for Carbon-Based, Functional Materials & Devices, Institute of Functional Nano & Soft, Materials Laboratory (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | | | | | | | | |
Collapse
|
47
|
Zhi D, Zhang S, Cui S, Zhao Y, Wang Y, Zhao D. The Headgroup Evolution of Cationic Lipids for Gene Delivery. Bioconjug Chem 2013; 24:487-519. [DOI: 10.1021/bc300381s] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Defu Zhi
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shubiao Zhang
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Shaohui Cui
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | - Yinan Zhao
- State Ethnic Affairs Commission-Ministry
of Education Key Laboratory of Biotechnology and Bio-resources Utilization, Dalian Nationalities University, Dalian 116600, China
| | | | - Defeng Zhao
- State Key Laboratory of Fine
Chemicals, Dalian University of Technology, Dalian 116012, China
| |
Collapse
|
48
|
Feng L, Wu L, Qu X. New horizons for diagnostics and therapeutic applications of graphene and graphene oxide. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:168-86. [PMID: 23161646 DOI: 10.1002/adma.201203229] [Citation(s) in RCA: 418] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Indexed: 05/21/2023]
Abstract
Graphene, a one-atom-thick two-dimensional (2D) layer of sp(2) -bonded carbon, has received worldwide attention owing to its extraordinary physical and chemical properties. Recently, great efforts have been devoted to explore potential applications of graphene and its oxide in life science, especially in disease-related diagnostics, near-Infrared (NIR) phototherapy and imaging. Here we will introduce recent advances and new horizons in this area, and focus on the rising progress on NIR photothermal therapy for cancer and Alzheimer's disease (AD), human telomerase detection, stem cell proliferation and differentiation on graphene substrate, diagnosis of cancer cell and related biomarkers, drug/nucleotide/peptide delivery and cell imaging, which have not been comprehensively reviewed. We hope to provide an outlook to the applications of graphene and its oxide, especially on the new horizons in this field, and inspire broader interests across various disciplines.
Collapse
Affiliation(s)
- Lingyan Feng
- Division of Biological Inorganic Chemistry, State Key Laboratory of Rare Earth Resource Utilization, Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | | | | |
Collapse
|
49
|
Wang Y, Chang H, Wu H, Liu H. Bioinspired prospects of graphene: from biosensing to energy. J Mater Chem B 2013; 1:3521-3534. [DOI: 10.1039/c3tb20524j] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
50
|
Liu Z, Hu C, Li S, Zhang W, Guo Z. Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy. Anal Chem 2012; 84:10338-44. [PMID: 23092505 DOI: 10.1021/ac3023907] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hybridization of metal nanoparticles with graphene oxide for high performance surface-enhanced Raman scattering (SERS) has attracted overwhelming attention in recent years. Herein, a one-pot green route for intracellular synthesis of gold nanostructures assisted by poly(vinylpyrrolidone) (PVP)-functionalized graphene oxide (GO) was proposed. The hybrids obtained [GO/PVP/intracellularly grown gold nanoparticles (IGAuNs)] randomly scattered throughout the cell. Compared with the IGAuNs, the growth of GO/PVP/IGAuNs was remarkably accelerated, which could be attributed to the coordination of PVP enriched on GO. GO/PVP/IGAuNs could serve as excellent SERS probes for ultrasensitive detection of cellular components of cancer cells located in the cytoplasm, nucleoplasm, and nucleolus. The random intracellular distribution of GO/PVP/IGAuNs facilitated the effective Raman characterization of cellular components, which was confirmed by the uniform distribution of SERS signals in the Raman image. The SERS signals induced by GO/PVP/IGAuNs could be collected as early as 15 h, which allowed rapid detection of tumor cells. In conclusion, this facile and green strategy for fast intracellular growth of GO/PVP/IGAuNs offered great potential for biomedical applications.
Collapse
Affiliation(s)
- Zhiming Liu
- MOE Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | | | | | | | | |
Collapse
|