1
|
Miao K, Xia X, Zou Y, Shi B. Small Scale, Big Impact: Nanotechnology-Enhanced Drug Delivery for Brain Diseases. Mol Pharm 2024; 21:3777-3799. [PMID: 39038108 DOI: 10.1021/acs.molpharmaceut.4c00387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Central nervous system (CNS) diseases, ranging from brain cancers to neurodegenerative disorders like dementia and acute conditions such as strokes, have been heavily burdening healthcare and have a direct impact on patient quality of life. A significant hurdle in developing effective treatments is the presence of the blood-brain barrier (BBB), a highly selective barrier that prevents most drugs from reaching the brain. The tight junctions and adherens junctions between the endothelial cells and various receptors expressed on the cells make the BBB form a nonfenestrated and highly selective structure that is crucial for brain homeostasis but complicates drug delivery. Nanotechnology offers a novel pathway to circumvent this barrier, with nanoparticles engineered to ferry drugs across the BBB, protect drugs from degradation, and deliver medications to the designated area. After years of development, nanoparticle optimization, including sizes, shapes, surface modifications, and targeting ligands, can enable nanomaterials tailored to specific brain drug delivery settings. Moreover, smart nano drug delivery systems can respond to endogenous and exogenous stimuli that control subsequent drug release. Here, we address the importance of the BBB in brain disease treatment, summarize different delivery routes for brain drug delivery, discuss the cutting-edge nanotechnology-based strategies for brain drug delivery, and further offer valuable insights into how these innovations in nanoparticle technology could revolutionize the treatment of CNS diseases, presenting a promising avenue for noninvasive, targeted therapeutic interventions.
Collapse
Affiliation(s)
- Kaiting Miao
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xue Xia
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yan Zou
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Bingyang Shi
- Macquarie Medical School, Faculty of Medicine, Human Health Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
2
|
Wang H. A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells 2024; 13:1277. [PMID: 39120308 PMCID: PMC11311607 DOI: 10.3390/cells13151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulating gene expression. Dysfunction in miRNAs can lead to various diseases, including cancers, neurological disorders, and cardiovascular conditions. To date, approximately 2000 miRNAs have been identified in humans. These small molecules have shown promise as disease biomarkers and potential therapeutic targets. Therefore, identifying miRNA biomarkers for diseases and developing effective miRNA drug delivery systems are essential. Nanotechnology offers promising new approaches to addressing scientific and medical challenges. Traditional miRNA detection methods include next-generation sequencing, microarrays, Northern blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Nanotechnology can serve as an effective alternative to Northern blotting and RT-qPCR for miRNA detection. Moreover, nanomaterials exhibit unique properties that differ from larger counterparts, enabling miRNA therapeutics to more effectively enter target cells, reduce degradation in the bloodstream, and be released in specific tissues or cells. This paper reviews the application of nanotechnology in miRNA detection and drug delivery systems. Given that miRNA therapeutics are still in the developing stages, nanotechnology holds great promise for accelerating miRNA therapeutics development.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Walweel N, Aydin O. Enhancing Therapeutic Efficacy in Cancer Treatment: Integrating Nanomedicine with Autophagy Inhibition Strategies. ACS OMEGA 2024; 9:27832-27852. [PMID: 38973850 PMCID: PMC11223161 DOI: 10.1021/acsomega.4c02234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/01/2024] [Accepted: 05/30/2024] [Indexed: 07/09/2024]
Abstract
The complicated stepwise lysosomal degradation process known as autophagy is in charge of destroying and eliminating damaged organelles and defective cytoplasmic components. This mechanism promotes metabolic adaptability and nutrition recycling. Autophagy functions as a quality control mechanism in cells that support homeostasis and redox balance under normal circumstances. However, the role of autophagy in cancer is controversial because, mostly depending on the stage of the tumor, it may either suppress or support the disease. While autophagy delays the onset of tumors and slows the dissemination of cancer in the early stages of tumorigenesis, numerous studies demonstrate that autophagy promotes the development and spread of tumors as well as the evolution and development of resistance to several anticancer drugs in advanced cancer stages. In this Review, we primarily emphasize the therapeutic role of autophagy inhibition in improving the treatment of multiple cancers and give a broad overview of how its inhibition modulates cancer responses. There have been various attempts to inhibit autophagy, including the use of autophagy inhibitor drugs, gene silencing therapy (RNA interference), and nanoparticles. In this Review, all these topics are thoroughly covered and illustrated by recent studies and field investigations.
Collapse
Affiliation(s)
- Nada Walweel
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
| | - Omer Aydin
- Department
of Biomedical Engineering, Erciyes University, Kayseri 38039, Turkey
- NanoThera
Lab, ERFARMA-Drug Application and Research Center, Erciyes University, Kayseri 38280, Turkey
- ERNAM-Nanotechnology
Research and Application Center, Erciyes
University, Kayseri 38039, Turkey
- ERKAM-Clinical-Engineering
Research and Implementation Center, Erciyes
University, Kayseri 38030, Turkey
| |
Collapse
|
4
|
Cho H, Yoo M, Pongkulapa T, Rabie H, Muotri AR, Yin PT, Choi J, Lee K. Magnetic Nanoparticle-Assisted Non-Viral CRISPR-Cas9 for Enhanced Genome Editing to Treat Rett Syndrome. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306432. [PMID: 38647391 PMCID: PMC11200027 DOI: 10.1002/advs.202306432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/23/2024] [Indexed: 04/25/2024]
Abstract
The CRISPR-Cas9 technology has the potential to revolutionize the treatment of various diseases, including Rett syndrome, by enabling the correction of genes or mutations in human patient cells. However, several challenges need to be addressed before its widespread clinical application. These challenges include the low delivery efficiencies to target cells, the actual efficiency of the genome-editing process, and the precision with which the CRISPR-Cas system operates. Herein, the study presents a Magnetic Nanoparticle-Assisted Genome Editing (MAGE) platform, which significantly improves the transfection efficiency, biocompatibility, and genome-editing accuracy of CRISPR-Cas9 technology. To demonstrate the feasibility of the developed technology, MAGE is applied to correct the mutated MeCP2 gene in induced pluripotent stem cell-derived neural progenitor cells (iPSC-NPCs) from a Rett syndrome patient. By combining magnetofection and magnetic-activated cell sorting, MAGE achieves higher multi-plasmid delivery (99.3%) and repairing efficiencies (42.95%) with significantly shorter incubation times than conventional transfection agents without size limitations on plasmids. The repaired iPSC-NPCs showed similar characteristics as wild-type neurons when they differentiated into neurons, further validating MAGE and its potential for future clinical applications. In short, the developed nanobio-combined CRISPR-Cas9 technology offers the potential for various clinical applications, particularly in stem cell therapies targeting different genetic diseases.
Collapse
Affiliation(s)
- Hyeon‐Yeol Cho
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107South Korea
- Department of Bio and Fermentation Convergence TechnologyKookmin UniversitySeoul02707South Korea
| | - Myungsik Yoo
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and NeuroscienceRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Thanapat Pongkulapa
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Hudifah Rabie
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| | - Alysson R. Muotri
- School of MedicineDepartment of Pediatrics/Rady Children's Hospital San DiegoDepartment of Cellular and Molecular MedicineStem Cell ProgramLa JollaCA92093USA
| | - Perry T. Yin
- Department of Biomedical EngineeringRutgersThe State University of New JerseyPiscatawayNJ08854USA
| | - Jeong‐Woo Choi
- Department of Chemical and Biomolecular EngineeringSogang UniversitySeoul04107South Korea
| | - Ki‐Bum Lee
- Department of Chemistry and Chemical BiologyRutgers, The State University of New JerseyPiscatawayNJ08854USA
| |
Collapse
|
5
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
6
|
Emerging trends in the nanomedicine applications of functionalized magnetic nanoparticles as novel therapies for acute and chronic diseases. J Nanobiotechnology 2022; 20:393. [PMID: 36045375 PMCID: PMC9428876 DOI: 10.1186/s12951-022-01595-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/13/2022] [Indexed: 11/10/2022] Open
Abstract
High-quality point-of-care is critical for timely decision of disease diagnosis and healthcare management. In this regard, biosensors have revolutionized the field of rapid testing and screening, however, are confounded by several technical challenges including material cost, half-life, stability, site-specific targeting, analytes specificity, and detection sensitivity that affect the overall diagnostic potential and therapeutic profile. Despite their advances in point-of-care testing, very few classical biosensors have proven effective and commercially viable in situations of healthcare emergency including the recent COVID-19 pandemic. To overcome these challenges functionalized magnetic nanoparticles (MNPs) have emerged as key players in advancing the biomedical and healthcare sector with promising applications during the ongoing healthcare crises. This critical review focus on understanding recent developments in theranostic applications of functionalized magnetic nanoparticles (MNPs). Given the profound global economic and health burden, we discuss the therapeutic impact of functionalized MNPs in acute and chronic diseases like small RNA therapeutics, vascular diseases, neurological disorders, and cancer, as well as for COVID-19 testing. Lastly, we culminate with a futuristic perspective on the scope of this field and provide an insight into the emerging opportunities whose impact is anticipated to disrupt the healthcare industry.
Collapse
|
7
|
Nowak-Jary J, Machnicka B. Pharmacokinetics of magnetic iron oxide nanoparticles for medical applications. J Nanobiotechnology 2022; 20:305. [PMID: 35761279 PMCID: PMC9235206 DOI: 10.1186/s12951-022-01510-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Magnetic iron oxide nanoparticles (MNPs) have been under intense investigation for at least the last five decades as they show enormous potential for many biomedical applications, such as biomolecule separation, MRI imaging and hyperthermia. Moreover, a large area of research on these nanostructures is concerned with their use as carriers of drugs, nucleic acids, peptides and other biologically active compounds, often leading to the development of targeted therapies. The uniqueness of MNPs is due to their nanometric size and unique magnetic properties. In addition, iron ions, which, along with oxygen, are a part of the MNPs, belong to the trace elements in the body. Therefore, after digesting MNPs in lysosomes, iron ions are incorporated into the natural circulation of this element in the body, which reduces the risk of excessive storage of nanoparticles. Still, one of the key issues for the therapeutic applications of magnetic nanoparticles is their pharmacokinetics which is reflected in the circulation time of MNPs in the bloodstream. These characteristics depend on many factors, such as the size and charge of MNPs, the nature of the polymers and any molecules attached to their surface, and other. Since the pharmacokinetics depends on the resultant of the physicochemical properties of nanoparticles, research should be carried out individually for all the nanostructures designed. Almost every year there are new reports on the results of studies on the pharmacokinetics of specific magnetic nanoparticles, thus it is very important to follow the achievements on this matter. This paper reviews the latest findings in this field. The mechanism of action of the mononuclear phagocytic system and the half-lives of a wide range of nanostructures are presented. Moreover, factors affecting clearance such as hydrodynamic and core size, core morphology and coatings molecules, surface charge and technical aspects have been described.
Collapse
Affiliation(s)
- Julia Nowak-Jary
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland.
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Gora, Prof. Z. Szafrana 1, 65-516, Zielona Gora, Poland
| |
Collapse
|
8
|
Li MX, Weng JW, Ho ES, Chow SF, Tsang CK. Brain delivering RNA-based therapeutic strategies by targeting mTOR pathway for axon regeneration after central nervous system injury. Neural Regen Res 2022; 17:2157-2165. [PMID: 35259823 PMCID: PMC9083176 DOI: 10.4103/1673-5374.335830] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Injuries to the central nervous system (CNS) such as stroke, brain, and spinal cord trauma often result in permanent disabilities because adult CNS neurons only exhibit limited axon regeneration. The brain has a surprising intrinsic capability of recovering itself after injury. However, the hostile extrinsic microenvironment significantly hinders axon regeneration. Recent advances have indicated that the inactivation of intrinsic regenerative pathways plays a pivotal role in the failure of most adult CNS neuronal regeneration. Particularly, substantial evidence has convincingly demonstrated that the mechanistic target of rapamycin (mTOR) signaling is one of the most crucial intrinsic regenerative pathways that drive axonal regeneration and sprouting in various CNS injuries. In this review, we will discuss the recent findings and highlight the critical roles of mTOR pathway in axon regeneration in different types of CNS injury. Importantly, we will demonstrate that the reactivation of this regenerative pathway can be achieved by blocking the key mTOR signaling components such as phosphatase and tensin homolog (PTEN). Given that multiple mTOR signaling components are endogenous inhibitory factors of this pathway, we will discuss the promising potential of RNA-based therapeutics which are particularly suitable for this purpose, and the fact that they have attracted substantial attention recently after the success of coronavirus disease 2019 vaccination. To specifically tackle the blood-brain barrier issue, we will review the current technology to deliver these RNA therapeutics into the brain with a focus on nanoparticle technology. We will propose the clinical application of these RNA-mediated therapies in combination with the brain-targeted drug delivery approach against mTOR signaling components as an effective and feasible therapeutic strategy aiming to enhance axonal regeneration for functional recovery after CNS injury.
Collapse
Affiliation(s)
- Ming-Xi Li
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| | - Jing-Wen Weng
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Eric S Ho
- Department of Biology and Department of Computer Science, Lafayette College, Easton, PA, USA
| | - Shing Fung Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chi Kwan Tsang
- Clinical Neuroscience Institute, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, China
| |
Collapse
|
9
|
Arrizabalaga JH, Casey JS, Becca JC, Liu Y, Jensen L, Hayes DJ. Development of Magnetic Nanoparticles for the Intracellular Delivery of miR-148b in Non-Small Cell Lung Cancer. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
10
|
Md S, Alhakamy NA, Karim S, Gabr GA, Iqubal MK, Murshid SSA. Signaling Pathway Inhibitors, miRNA, and Nanocarrier-Based Pharmacotherapeutics for the Treatment of Lung Cancer: A Review. Pharmaceutics 2021; 13:2120. [PMID: 34959401 PMCID: PMC8708027 DOI: 10.3390/pharmaceutics13122120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is one of the most commonly diagnosed cancers and is responsible for a large number of deaths worldwide. The pathogenic mechanism of lung cancer is complex and multifactorial in origin. Thus, various signaling pathways as targets for therapy are being examined, and many new drugs are in the pipeline. However, both conventional and target-based drugs have been reported to present significant adverse effects, and both types of drugs can affect the clinical outcome in addition to patient quality of life. Recently, miRNA has been identified as a promising target for lung cancer treatment. Therefore, miRNA mimics, oncomiRs, or miRNA suppressors have been developed and studied for possible anticancer effects. However, these miRNAs also suffer from the limitations of low stability, biodegradation, thermal instability, and other issues. Thus, nanocarrier-based drug delivery for the chemotherapeutic drug delivery in addition to miRNA-based systems have been developed so that existing limitations can be resolved, and enhanced therapeutic outcomes can be achieved. Thus, this review discusses lung cancer's molecular mechanism, currently approved drugs, and their adverse effects. We also discuss miRNA biosynthesis and pathogenetic role, highlight pre-clinical and clinical evidence for use of miRNA in cancer therapy, and discussed limitations of this therapy. Furthermore, nanocarrier-based drug delivery systems to deliver chemotherapeutic drugs and miRNAs are described in detail. In brief, the present review describes the mechanism and up-to-date possible therapeutic approaches for lung cancer treatment and emphasizes future prospects to bring these novel approaches from bench to bedside.
Collapse
Affiliation(s)
- Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shahid Karim
- Department of Pharmacology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Gamal A Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Satam Bin Abdulaziz University, Al-Kharj 16278, Saudi Arabia;
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India;
- Sentiss Research Centre, Product Development Department, Sentiss Pharma Pvt Ltd., Gurugram 122001, India
| | - Samar S. A. Murshid
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
11
|
Gedefaw L, Ullah S, Lee TMH, Yip SP, Huang CL. Targeting Inflammasome Activation in COVID-19: Delivery of RNA Interference-Based Therapeutic Molecules. Biomedicines 2021; 9:1823. [PMID: 34944639 PMCID: PMC8698532 DOI: 10.3390/biomedicines9121823] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/22/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Mortality and morbidity associated with COVID-19 continue to be significantly high worldwide, owing to the absence of effective treatment strategies. The emergence of different variants of SARS-CoV-2 is also a considerable source of concern and has led to challenges in the development of better prevention and treatment strategies, including vaccines. Immune dysregulation due to pro-inflammatory mediators has worsened the situation in COVID-19 patients. Inflammasomes play a critical role in modulating pro-inflammatory cytokines in the pathogenesis of COVID-19 and their activation is associated with poor clinical outcomes. Numerous preclinical and clinical trials for COVID-19 treatment using different approaches are currently underway. Targeting different inflammasomes to reduce the cytokine storm, and its associated complications, in COVID-19 patients is a new area of research. Non-coding RNAs, targeting inflammasome activation, may serve as an effective treatment strategy. However, the efficacy of these therapeutic agents is highly dependent on the delivery system. MicroRNAs and long non-coding RNAs, in conjunction with an efficient delivery vehicle, present a potential strategy for regulating NLRP3 activity through various RNA interference (RNAi) mechanisms. In this regard, the use of nanomaterials and other vehicle types for the delivery of RNAi-based therapeutic molecules for COVID-19 may serve as a novel approach for enhancing drug efficacy. The present review briefly summarizes immune dysregulation and its consequences, the roles of different non-coding RNAs in regulating the NLRP3 inflammasome, distinct types of vectors for their delivery, and potential therapeutic targets of microRNA for treatment of COVID-19.
Collapse
Affiliation(s)
- Lealem Gedefaw
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Sami Ullah
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Thomas M. H. Lee
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China;
| | - Shea Ping Yip
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
| | - Chien-Ling Huang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (L.G.); (S.U.)
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
12
|
Unak P, Hepton R, Harper M, Yasakci V, Pearce G, Russell S, Aras O, Akin O, Wong J. Toxicity testing of indocyanine green and fluorodeoxyglucose conjugated iron oxide nanoparticles with and without exposure to a magnetic field. ASIAN JOURNAL OF NANOSCIENCE AND MATERIALS 2021; 4:229-239. [PMID: 38192303 PMCID: PMC10773553 DOI: 10.26655/ajnanomat.2021.3.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Iron nanoparticles (MNPs) are known to induce membrane damage and apoptosis of cancer cells. In our study we determined whether FDG coupled with iron oxide magnetic nanoparticles can exert the same destructive effect on cancer cells. This research study presents data involving NIC-H727 human lung, bronchus epithelial cells exposed to conjugated fluorodeoxyglucose conjugated with iron-oxide magnetic nanoparticles and indocyanine green (ICG) dye (FDG-MNP-ICG), with and without the application of a magnetic field. Cell viability inferred from MTT assay revealed that FDG-MNPs had no significant toxicity towards noncancerous NIC-H727 human lung, bronchus epithelial cells. However, percentage cell death was much higher using a magnetic field, for the concentration of FDG-MNP-ICC used in our experiments. Magnetic field was able to destroy cells containing MNPs, while MNPs alone had significantly lower effects. Additionally, MNPs alone in these low concentrations had less adverse effects on healthy (non-target) cells.
Collapse
Affiliation(s)
- Perihan Unak
- Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, Bornova Izmir, 35100, Turkey
| | - Rachel Hepton
- Aston University, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Max Harper
- Aston University, School of Engineering and Applied Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Volkan Yasakci
- Ege University, Institute of Nuclear Sciences, Department of Nuclear Applications, Bornova Izmir, 35100, Turkey
| | - Gillian Pearce
- Aston University, School of Engineering and Applied Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Steve Russell
- Aston University, School of Life and Health Sciences, Aston Triangle, Birmingham, B4 7ET, United Kingdom
| | - Omer Aras
- Memorial Sloan Kettering Cancer Centre, Department of Radiology, New York, USA
| | - Oguz Akin
- Memorial Sloan Kettering Cancer Centre, Department of Radiology, New York, USA
| | - Julian Wong
- University Hospital Singapore, Cardiothoracic and Vascular Surgery Department, Singapore
| |
Collapse
|
13
|
Aránega AE, Lozano-Velasco E, Rodriguez-Outeiriño L, Ramírez de Acuña F, Franco D, Hernández-Torres F. MiRNAs and Muscle Regeneration: Therapeutic Targets in Duchenne Muscular Dystrophy. Int J Mol Sci 2021; 22:ijms22084236. [PMID: 33921834 PMCID: PMC8072594 DOI: 10.3390/ijms22084236] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 04/15/2021] [Indexed: 12/17/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNAs required for the post-transcriptional control of gene expression. MicroRNAs play a critical role in modulating muscle regeneration and stem cell behavior. Muscle regeneration is affected in muscular dystrophies, and a critical point for the development of effective strategies for treating muscle disorders is optimizing approaches to target muscle stem cells in order to increase the ability to regenerate lost tissue. Within this framework, miRNAs are emerging as implicated in muscle stem cell response in neuromuscular disorders and new methodologies to regulate the expression of key microRNAs are coming up. In this review, we summarize recent advances highlighting the potential of miRNAs to be used in conjunction with gene replacement therapies, in order to improve muscle regeneration in the context of Duchenne Muscular Dystrophy (DMD).
Collapse
Affiliation(s)
- Amelia Eva Aránega
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Correspondence:
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Lara Rodriguez-Outeiriño
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Felicitas Ramírez de Acuña
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
| | - Francisco Hernández-Torres
- Department of Experimental Biology, Faculty of Experimental Sciences, University of Jaen, Paraje Las Lagunillas s/n, 23009 Jaen, Spain; (E.L.-V.); (L.R.-O.); (F.R.d.A.); (D.F.); (F.H.-T.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento 34, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, University of Granada, Avda. de la Investigación 11, 18016 Granada, Spain
| |
Collapse
|
14
|
Radmanesh F, Sadeghi Abandansari H, Ghanian MH, Pahlavan S, Varzideh F, Yakhkeshi S, Alikhani M, Moradi S, Braun T, Baharvand H. Hydrogel-mediated delivery of microRNA-92a inhibitor polyplex nanoparticles induces localized angiogenesis. Angiogenesis 2021; 24:657-676. [PMID: 33742265 DOI: 10.1007/s10456-021-09778-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/01/2021] [Indexed: 01/07/2023]
Abstract
Localized stimulation of angiogenesis is an attractive strategy to improve the repair of ischemic or injured tissues. Several microRNAs (miRNAs) such as miRNA-92a (miR-92a) have been reported to negatively regulate angiogenesis in ischemic disease. To exploit the clinical potential of miR-92a inhibitors, safe and efficient delivery needs to be established. Here, we used deoxycholic acid-modified polyethylenimine polymeric conjugates (PEI-DA) to deliver a locked nucleic acid (LNA)-based miR-92a inhibitor (LNA-92a) in vitro and in vivo. The positively charged PEI-DA conjugates condense the negatively charged inhibitors into nano-sized polyplexes (135 ± 7.2 nm) with a positive net charge (34.2 ± 10.6 mV). Similar to the 25 kDa-branched PEI (bPEI25) and Lipofectamine RNAiMAX, human umbilical vein endothelial cells (HUVECs) significantly internalized PEI-DA/LNA-92a polyplexes without any obvious cytotoxicity. Down-regulation of miR-92a following the polyplex-mediated delivery of LNA-92a led to a substantial increase in the integrin subunit alpha 5 (ITGA5), the sirtuin-1 (SIRT1) and Krüppel-like factors (KLF) KLF2/4 expression, formation of capillary-like structures by HUVECs, and migration rate of HUVECs in vitro. Furthermore, PEI-DA/LNA-92a resulted in significantly enhanced capillary density in a chicken chorioallantoic membrane (CAM) model. Localized angiogenesis was substantially induced in the subcutaneous tissues of mice by sustained release of PEI-DA/LNA-92a polyplexes from an in situ forming, biodegradable hydrogel based on clickable poly(ethylene glycol) (PEG) macromers. Our results indicate that PEI-DA conjugates efficiently deliver LNA-92a to improve angiogenesis. Localized delivery of RNA interference (RNAi)-based therapeutics via hydrogel-laden PEI-DA polyplex nanoparticles appears to be a safe and effective approach for different therapeutic targets.
Collapse
Affiliation(s)
- Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hamid Sadeghi Abandansari
- Department of Cancer Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Babol, Iran
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sara Pahlavan
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fahimeh Varzideh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Saeed Yakhkeshi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Thomas Braun
- Max-Planck Institute for Heart and Lung Research, Department of Cardiac Development and Remodeling, Bad Nauheim, Germany
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran.
| |
Collapse
|
15
|
Lin G, Revia RA, Zhang M. Inorganic Nanomaterial-Mediated Gene Therapy in Combination with Other Antitumor Treatment Modalities. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007096. [PMID: 34366761 PMCID: PMC8336227 DOI: 10.1002/adfm.202007096] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Indexed: 05/05/2023]
Abstract
Cancer is a genetic disease originating from the accumulation of gene mutations in a cellular subpopulation. Although many therapeutic approaches have been developed to treat cancer, recent studies have revealed an irrefutable challenge that tumors evolve defenses against some therapies. Gene therapy may prove to be the ultimate panacea for cancer by correcting the fundamental genetic errors in tumors. The engineering of nanoscale inorganic carriers of cancer therapeutics has shown promising results in the efficacious and safe delivery of nucleic acids to treat oncological diseases in small-animal models. When these nanocarriers are used for co-delivery of gene therapeutics along with auxiliary treatments, the synergistic combination of therapies often leads to an amplified health benefit. In this review, an overview of the inorganic nanomaterials developed for combinatorial therapies of gene and other treatment modalities is presented. First, the main principles of using nucleic acids as therapeutics, inorganic nanocarriers for medical applications and delivery of gene/drug payloads are introduced. Next, the utility of recently developed inorganic nanomaterials in different combinations of gene therapy with each of chemo, immune, hyperthermal, and radio therapy is examined. Finally, current challenges in the clinical translation of inorganic nanomaterial-mediated therapies are presented and outlooks for the field are provided.
Collapse
Affiliation(s)
- Guanyou Lin
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Richard A Revia
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Yang L, Kim TH, Cho HY, Luo J, Lee JM, Chueng STD, Hou Y, Yin PTT, Han J, Kim JH, Chung BG, Choi JW, Lee KB. Hybrid Graphene-Gold Nanoparticle-based Nucleic Acid Conjugates for Cancer-Specific Multimodal Imaging and Combined Therapeutics. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2006918. [PMID: 33776614 PMCID: PMC7996391 DOI: 10.1002/adfm.202006918] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Indexed: 05/06/2023]
Abstract
Nanoparticle-based nucleic acid conjugates (NP-NACs) hold great promise for theragnostic (diagnostic and therapeutic) applications. However, several limitations have hindered the realization of their full potential in the clinical treatment of cancer and other diseases. In diagnosis, NP-NACs, combined with conventional optical sensing systems, have been applied for cancer detection in vitro, but low signal-to-noise ratios limit their broad in vivo applications. Meanwhile, the efficiency of NP-NAC-mediated cancer therapies has been limited through the adaptation of alternative pro-survival pathways in cancer cells. The recent emergence of personalized and precision medicine has outlined the importance of both accurate diagnosis and efficient therapeutics in a single platform. As such, we report the controlled assembly of hybrid graphene oxide/gold nanoparticle-based cancer-specific NACs (Au@GO NP-NACs) for multimodal imaging and combined therapeutics. Our developed Au@GO NP-NACs shows excellent surface-enhanced Raman scattering (SERS)-mediated live-cell cancer detection and multimodal synergistic cancer therapy through the use of photothermal, genetic, and chemotherapeutic strategies. Synergistic and selective killing of cancer cells were then demonstrated by using in vitro microfluidic models and nine different cancer cell lines by further incorporating near-infrared photothermal hyperthermia, a Topoisomerase II anti-cancer drug, and cancer targeting peptides. Moreover, with distinctive advantages of the Au@GO NP-NACs for cancer theragnostics, we further demonstrated precision cancer treatment through the detection of cancer cells in vivo using SERS followed by efficient ablation of the tumor. Therefore, our Au@GO NP-NACs could pave a new road for the advanced theragnostics of cancer as well as many other diseases.
Collapse
Affiliation(s)
- Letao Yang
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Tae-Hyung Kim
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Hyeon-Yeol Cho
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jeffrey Luo
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jong-Min Lee
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Sy-Tsong Dean Chueng
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Yannan Hou
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Perry To-Tien Yin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Jiyou Han
- College of Life Sciences & Biotechnology, Science Campus, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02741, Republic of Korea
| | - Jong Hoon Kim
- College of Life Sciences & Biotechnology, Science Campus, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02741, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
18
|
Z-scan method to measure the nonlinear optical behavior of cells for evaluating the cytotoxic effects of chemotherapy and hyperthermia treatments. Lasers Med Sci 2020; 36:1067-1075. [PMID: 32968961 DOI: 10.1007/s10103-020-03148-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 09/16/2020] [Indexed: 10/23/2022]
Abstract
The effects of new treatments must be investigated in vitro before using clinically or in vivo. The aim of this study was to introduce the Z-scan technique as a fast, accurate, inexpensive, and safe in vitro method to distinguish the cytotoxic effects of various treatments. C6 and OLN-93 cell lines were prepared and treated with Temozolomide (TMZ), radiofrequency hyperthermia (HT), and chemo-hyperthermia (HT+TMZ). The cytotoxic effects of different treatments on both cell lines were evaluated using colony formation assay and Z-scan method. The results of colony assay showed that the surviving fraction (SF) of C6 cells treated with TMZ, HT, and HT + TMZ were significantly decreased compared to the control group. Whereas, hyperthermia treatment had no significant effect on the SF of OLN-93 cells. The results of Z-scan technique indicated that the control group of C6 cells had the negative nonlinear refractive index (n2). Whereas, the C6 cells treated with HT, TMZ, and HT + TMZ had the positive n2 index. The sign of n2 index in the control and HT groups of OLN-93 cells was positive but treatment of cells with TMZ and HT + TMZ changed the sign of it. Moreover, with increasing the cytotoxic effects of different treatments, the SF value of both cell lines decreased and the magnitude of n2 index increased. The results of Z-scan technique were completely in line with the results of colony assay. Therefore, Z-scan method could distinguish the cytotoxic effects of various treatments by examining the nonlinear optical properties of the samples.
Collapse
|
19
|
Etemadi H, Plieger PG. Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000061] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| | - Paul G. Plieger
- School of Fundamental Sciences Massey University Palmerston North 4474 New Zealand
| |
Collapse
|
20
|
Optimization of the Preparation of Magnetic Liposomes for the Combined Use of Magnetic Hyperthermia and Photothermia in Dual Magneto-Photothermal Cancer Therapy. Int J Mol Sci 2020; 21:ijms21155187. [PMID: 32707876 PMCID: PMC7432522 DOI: 10.3390/ijms21155187] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 12/24/2022] Open
Abstract
In this work, we aimed to develop liposomal nanocomposites containing citric-acid-coated iron oxide magnetic nanoparticles (CMNPs) for dual magneto-photothermal cancer therapy induced by alternating magnetic field (AMF) and near-infrared (NIR) lasers. Toward this end, CMNPs were encapsulated in cationic liposomes to form nano-sized magnetic liposomes (MLs) for simultaneous magnetic hyperthermia (MH) in the presence of AMF and photothermia (PT) induced by NIR laser exposure, which amplified the heating efficiency for dual-mode cancer cell killing and tumor therapy. Since the heating capability is directly related to the amount of entrapped CMNPs in MLs, while the liposome size is important to allow internalization by cancer cells, response surface methodology was utilized to optimize the preparation of MLs by simultaneously maximizing the encapsulation efficiency (EE) of CMNPs in MLs and minimizing the size of MLs. The experimental design was performed based on the central composite rotatable design. The accuracy of the model was verified from the validation experiments, providing a simple and effective method for fabricating the best MLs, with an EE of 87% and liposome size of 121 nm. The CMNPs and the optimized MLs were fully characterized from chemical and physical perspectives. In the presence of dual AMF and NIR laser treatment, a suspension of MLs demonstrated amplified heat generation from dual hyperthermia (MH)–photothermia (PT) in comparison with single MH or PT. In vitro cell culture experiments confirmed the efficient cellular uptake of the MLs from confocal laser scanning microscopy due to passive accumulation in human glioblastoma U87 cells originated from the cationic nature of MLs. The inducible thermal effects mediated by MLs after endocytosis also led to enhanced cytotoxicity and cumulative cell death of cancer cells in the presence of AMF–NIR lasers. This functional nanocomposite will be a potential candidate for bimodal MH–PT dual magneto-photothermal cancer therapy.
Collapse
|
21
|
Li J, Wang X, Shen M, Shi X. Polyethylenimine-Assisted Generation of Optical Nanoprobes for Biosensing Applications. ACS APPLIED BIO MATERIALS 2020; 3:3935-3955. [PMID: 35025470 DOI: 10.1021/acsabm.0c00536] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detection of analytes in biological systems is pivotal to explore their physiological roles and provide diagnostic and treatment options for related diseases, which however remains a great challenge. Optical nanoprobes that exhibit absorption or fluorescence signal changes in response to the targets of interest have emerged as a versatile class of biosensors in the field. Polyethylenimine (PEI) with abundant amine groups plays indispensable roles in the construction of optical nanoprobes and mediating the sensing processes. After interaction with analytes, PEI-based optical nanoprobes can be induced to form aggregates, be disassembled or separated into individual units, or undergo structure/component alterations. As such, the optical properties of these nanoprobes have corresponding changes, allowing for sensitive and selective detection of a wide variety of analytes in biological environment. Up to now, detections of reactive oxygen species, pH, metal ions, biothiols, neurotransmitters, therapeutic agents, oxygen levels, enzyme activities, and virus/bacteria have been successfully demonstrated using PEI-based optical nanoprobes. Herein, we summarize the recent developments of PEI-based optical nanoprobes for biosensing applications and highlight the probe designs and sensing mechanisms. The existing challenges and prospects regarding biosensing applications of PEI-based optical nanoprobes are also briefly discussed.
Collapse
Affiliation(s)
- Jingchao Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiaoying Wang
- Xuhui District Center for Disease Control and Prevention, Shanghai 200237, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,CQM-Centro de Quimica da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
22
|
Lee TJ, Yuan X, Kerr K, Yoo JY, Kim DH, Kaur B, Eltzschig HK. Strategies to Modulate MicroRNA Functions for the Treatment of Cancer or Organ Injury. Pharmacol Rev 2020; 72:639-667. [PMID: 32554488 PMCID: PMC7300323 DOI: 10.1124/pr.119.019026] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cancer and organ injury-such as that occurring in the perioperative period, including acute lung injury, myocardial infarction, and acute gut injury-are among the leading causes of death in the United States and impose a significant impact on quality of life. MicroRNAs (miRNAs) have been studied extensively during the last two decades for their role as regulators of gene expression, their translational application as diagnostic markers, and their potential as therapeutic targets for disease treatment. Despite promising preclinical outcomes implicating miRNA targets in disease treatment, only a few miRNAs have reached clinical trials. This likely relates to difficulties in the delivery of miRNA drugs to their targets to achieve efficient inhibition or overexpression. Therefore, understanding how to efficiently deliver miRNAs into diseased tissues and specific cell types in patients is critical. This review summarizes current knowledge on various approaches to deliver therapeutic miRNAs or miRNA inhibitors and highlights current progress in miRNA-based disease therapy that has reached clinical trials. Based on ongoing advances in miRNA delivery, we believe that additional therapeutic approaches to modulate miRNA function will soon enter routine medical treatment of human disease, particularly for cancer or perioperative organ injury. SIGNIFICANCE STATEMENT: MicroRNAs have been studied extensively during the last two decades in cancer and organ injury, including acute lung injury, myocardial infarction, and acute gut injury, for their regulation of gene expression, application as diagnostic markers, and therapeutic potentials. In this review, we specifically emphasize the pros and cons of different delivery approaches to modulate microRNAs, as well as the most recent exciting progress in the field of therapeutic targeting of microRNAs for disease treatment in patients.
Collapse
Affiliation(s)
- Tae Jin Lee
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Xiaoyi Yuan
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Keith Kerr
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Ji Young Yoo
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Dong H Kim
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Balveen Kaur
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Holger K Eltzschig
- Departments of Neurosurgery (T.J.L., K.K., J.Y.Y., D.H.K., B.K.) and Anesthesiology (X.Y., H.K.E.), McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| |
Collapse
|
23
|
Vilas-Boas V, Carvalho F, Espiña B. Magnetic Hyperthermia for Cancer Treatment: Main Parameters Affecting the Outcome of In Vitro and In Vivo Studies. Molecules 2020; 25:E2874. [PMID: 32580417 PMCID: PMC7362219 DOI: 10.3390/molecules25122874] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/22/2022] Open
Abstract
Magnetic hyperthermia (MHT) is being investigated as a cancer treatment since the 1950s. Recent advancements in the field of nanotechnology have resulted in a notable increase in the number of MHT studies. Most of these studies explore MHT as a stand-alone treatment or as an adjuvant therapy in a preclinical context. However, despite all the scientific effort, only a minority of the MHT-devoted nanomaterials and approaches made it to clinical context. The outcome of an MHT experiment is largely influenced by a number of variables that should be considered when setting up new MHT studies. This review highlights and discusses the main parameters affecting the outcome of preclinical MHT, aiming to provide adequate assistance in the design of new, more efficient MHT studies.
Collapse
Affiliation(s)
- Vânia Vilas-Boas
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| | - Félix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (V.V.-B.); (F.C.)
| | - Begoña Espiña
- International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga, Portugal
| |
Collapse
|
24
|
Azizi S, Nosrati H, Danafar H. Simple surface functionalization of magnetic nanoparticles with methotrexate‐conjugated bovine serum albumin as a biocompatible drug delivery vehicle. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5479] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sedigheh Azizi
- Zanjan Pharmaceutical Nanotechnology Research CenterZanjan University of Medical Sciences Zanjan Iran
| | - Hamed Nosrati
- Zanjan Pharmaceutical Nanotechnology Research CenterZanjan University of Medical Sciences Zanjan Iran
- Department of Pharmaceutical Biomaterials, School of PharmacyZanjan University of Medical Sciences Zanjan Iran
| | - Hossein Danafar
- Zanjan Pharmaceutical Nanotechnology Research CenterZanjan University of Medical Sciences Zanjan Iran
- Department of Pharmaceutical Biomaterials, School of PharmacyZanjan University of Medical Sciences Zanjan Iran
| |
Collapse
|
25
|
Titze-de-Almeida SS, Soto-Sánchez C, Fernandez E, Koprich JB, Brotchie JM, Titze-de-Almeida R. The Promise and Challenges of Developing miRNA-Based Therapeutics for Parkinson's Disease. Cells 2020; 9:cells9040841. [PMID: 32244357 PMCID: PMC7226753 DOI: 10.3390/cells9040841] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are small double-stranded RNAs that exert a fine-tuning sequence-specific regulation of cell transcriptome. While one unique miRNA regulates hundreds of mRNAs, each mRNA molecule is commonly regulated by various miRNAs that bind to complementary sequences at 3’-untranslated regions for triggering the mechanism of RNA interference. Unfortunately, dysregulated miRNAs play critical roles in many disorders, including Parkinson’s disease (PD), the second most prevalent neurodegenerative disease in the world. Treatment of this slowly, progressive, and yet incurable pathology challenges neurologists. In addition to L-DOPA that restores dopaminergic transmission and ameliorate motor signs (i.e., bradykinesia, rigidity, tremors), patients commonly receive medication for mood disorders and autonomic dysfunctions. However, the effectiveness of L-DOPA declines over time, and the L-DOPA-induced dyskinesias commonly appear and become highly disabling. The discovery of more effective therapies capable of slowing disease progression –a neuroprotective agent–remains a critical need in PD. The present review focus on miRNAs as promising drug targets for PD, examining their role in underlying mechanisms of the disease, the strategies for controlling aberrant expressions, and, finally, the current technologies for translating these small molecules from bench to clinics.
Collapse
Affiliation(s)
- Simoneide S. Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, FAV, University of Brasilia, Brasília 70910-900, Brazil;
| | - Cristina Soto-Sánchez
- Neuroprosthetics and Visual Rehabilitation Research Unit, Bioengineering Institute, Miguel Hernández University, 03202 Alicante, Spain; (C.S.-S.); (E.F.)
| | - Eduardo Fernandez
- Neuroprosthetics and Visual Rehabilitation Research Unit, Bioengineering Institute, Miguel Hernández University, 03202 Alicante, Spain; (C.S.-S.); (E.F.)
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine—CIBER-BBN, 28029 Madrid, Spain
| | - James B. Koprich
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada; (J.B.K.); (J.M.B.)
| | - Jonathan M. Brotchie
- Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, Ontario M5T 2S8, Canada; (J.B.K.); (J.M.B.)
| | - Ricardo Titze-de-Almeida
- Technology for Gene Therapy Laboratory, Central Institute of Sciences, FAV, University of Brasilia, Brasília 70910-900, Brazil;
- Correspondence: ; Tel.: +55-61-3107-7222
| |
Collapse
|
26
|
Yang J, Shi Z, Liu R, Wu Y, Zhang X. Combined-therapeutic strategies synergistically potentiate glioblastoma multiforme treatment via nanotechnology. Theranostics 2020; 10:3223-3239. [PMID: 32194864 PMCID: PMC7053190 DOI: 10.7150/thno.40298] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/06/2019] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive and devastating brain tumor characterized by poor prognosis and high rates of recurrence. Numerous therapeutic strategies and delivery systems are developed to prolong the survival time. They exhibit enhanced therapeutic effects in animal models, whereas few of them is applied in clinical trials. Taking into account the drug-resistance and high recurrence of GBM, combined-therapeutic strategies are exploited to maximize therapeutic efficacy. The combined therapies demonstrate superior results than those of single therapies against GBM. The co-therapeutic agents, the timing of therapeutic strategies and the delivery systems greatly affect the overall outcomes. Herein, the current advances in combined therapies for glioblastoma via systemic administration are exhibited in this review. And we will discuss the pros and cons of these combined-therapeutic strategies via nanotechnology, and provide the guidance for developing rational delivery systems to optimize treatments against GBM and other malignancies in central nervous system.
Collapse
|
27
|
Shen H, Huang X, Min J, Le S, Wang Q, Wang X, Dogan AA, Liu X, Zhang P, Draz MS, Xiao J. Nanoparticle Delivery Systems for DNA/RNA and their Potential Applications in Nanomedicine. Curr Top Med Chem 2020; 19:2507-2523. [PMID: 31775591 DOI: 10.2174/1568026619666191024170212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 02/04/2023]
Abstract
The rapid development of nanotechnology has a great influence on the fields of biology, physiology, and medicine. Over recent years, nanoparticles have been widely presented as nanocarriers to help the delivery of gene, drugs, and other therapeutic agents with cellular targeting ability. Advances in the understanding of gene delivery and RNA interference (RNAi)-based therapy have brought increasing attention to understanding and tackling complex genetically related diseases, such as cancer, cardiovascular and pulmonary diseases, autoimmune diseases and infections. The combination of nanocarriers and DNA/RNA delivery may potentially improve their safety and therapeutic efficacy. However, there still exist many challenges before this approach can be practiced in the clinic. In this review, we provide a comprehensive summary on the types of nanoparticle systems used as nanocarriers, highlight the current use of nanocarriers in recombinant DNA and RNAi molecules delivery, and the current landscape of gene-based nanomedicine-ranging from diagnosis to therapeutics. Finally, we briefly discuss the biosafety concerns and limitations in the preclinical and clinical development of nanoparticle gene systems.
Collapse
Affiliation(s)
- Hua Shen
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China.,Department of Cardiovascular Surgery, Institute of Cardiac Surgery, PLA General Hospital, Beijing, China
| | - Xiaoyi Huang
- Department of Pathology, Changhai Hospital, Second Military Medical University, Changhai Road 168#, Shanghai 200433, China
| | - Jie Min
- Department of Cardiothoracic Surgery, Bethune International Peace Hospital, Shijiazhuang, China
| | - Shiguan Le
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Qing Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Xi Wang
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| | - Asli Aybike Dogan
- Department of Bioengineering, Graduate School of Natural and Applied Sciences, Ege University, 35100 Bornova-Izmir, Turkey
| | - Xiangsheng Liu
- California NanoSystems Institute, University of California, Los Angeles, CA 90095, United States
| | - Pengfei Zhang
- Department of Central Laboratory, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Mohamed S Draz
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, United States.,Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St., Cambridge, MA 02138, United States.,Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Jian Xiao
- Department of Cardiothoracic Surgery, Changzheng Hospital, Second Military Medical University, Fengyang Road 415#, Shanghai 200003, China
| |
Collapse
|
28
|
Lee SWL, Paoletti C, Campisi M, Osaki T, Adriani G, Kamm RD, Mattu C, Chiono V. MicroRNA delivery through nanoparticles. J Control Release 2019; 313:80-95. [PMID: 31622695 PMCID: PMC6900258 DOI: 10.1016/j.jconrel.2019.10.007] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/14/2022]
Abstract
MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine.
Collapse
Affiliation(s)
- Sharon Wei Ling Lee
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy; Singapore-MIT Alliance for Research & Technology (SMART), BioSystems and Micromechanics (BioSyM), Singapore, Singapore(3); Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore(3); Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore, Singapore(3)
| | - Camilla Paoletti
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Marco Campisi
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| | - Tatsuya Osaki
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA; Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan(3)
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research, Singapore, Singapore(3); Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, Singapore, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research & Technology (SMART), BioSystems and Micromechanics (BioSyM), Singapore, Singapore(3); Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Room NE47-321, Cambridge, MA, 02139, USA
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy.
| | - Valeria Chiono
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca Degli Abruzzi 24, 10129 Torino, Italy
| |
Collapse
|
29
|
Shrestha B, Tang L, Romero G. Nanoparticles‐Mediated Combination Therapies for Cancer Treatment. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900076] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Binita Shrestha
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Liang Tang
- Department of Biomedical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| | - Gabriela Romero
- Department of Chemical Engineering University of Texas at San Antonio One UTSA Circle San Antonio TX 78249 USA
| |
Collapse
|
30
|
Paulmurugan R, Malhotra M, Massoud TF. The protean world of non-coding RNAs in glioblastoma. J Mol Med (Berl) 2019; 97:909-925. [PMID: 31129756 DOI: 10.1007/s00109-019-01798-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Non-coding ribonucleic acids (ncRNAs) are a diverse group of RNA molecules that are mostly not translated into proteins following transcription. We review the role of ncRNAs in the pathobiology of glioblastoma (GBM), and their potential applications for GBM therapy. Significant advances in our understanding of the protean manifestations of ncRNAs have been made, allowing us to better decipher the molecular complexity of GBM. A large number of regulatory ncRNAs appear to have a greater influence on the molecular pathology of GBM than thought previously. Importantly, also, a range of therapeutic approaches are emerging whereby ncRNA-based systems may be used to molecularly target GBM. The most successful of these is RNA interference, and some of these strategies are being evaluated in ongoing clinical trials. However, a number of limitations exist in the clinical translation of ncRNA-based therapeutic systems, such as delivery mechanisms and cytotoxicity; concerted research endeavors are currently underway in an attempt to overcome these. Ongoing and future studies will determine the potential practical role for ncRNA-based therapeutic systems in the clinical management of GBM. These applications may be especially promising, given that current treatment options are limited and prognosis remains poor for this challenging malignancy.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 3155 Porter Drive, Palo Alto, CA, 94305, USA.
| | - Meenakshi Malhotra
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-031, Stanford, CA, 94305-5105, USA
| | - Tarik F Massoud
- Laboratory of Experimental and Molecular Neuroimaging (LEMNI), Molecular Imaging Program at Stanford, Stanford University School of Medicine, 300 Pasteur Drive, Grant S-031, Stanford, CA, 94305-5105, USA.
| |
Collapse
|
31
|
Thorat ND, Townely H, Brennan G, Parchur AK, Silien C, Bauer J, Tofail SA. Progress in Remotely Triggered Hybrid Nanostructures for Next-Generation Brain Cancer Theranostics. ACS Biomater Sci Eng 2019; 5:2669-2687. [DOI: 10.1021/acsbiomaterials.8b01173] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Nanasaheb D. Thorat
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Helen Townely
- Nuffield Department of Obstetrics and Gynaecology, Medical Science Division, John Radcliffe Hospital University of Oxford, Oxford OX3 9DU United Kingdom
| | - Grace Brennan
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Abdul K. Parchur
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Avenue, Milwaukee, Wisconsin 53226, United States
| | - Christophe Silien
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| | - Joanna Bauer
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, wybrzeże Stanisława Wyspiańskiego 27, Wrocław 50-370, Poland
| | - Syed A.M. Tofail
- Modelling Simulation and Innovative Characterisation (MOSAIC), Department of Physics and Bernal Institute, University of Limerick, Limerick, V94 T9PX, Ireland
| |
Collapse
|
32
|
Cova TFGG, Bento DJ, Nunes SCC. Computational Approaches in Theranostics: Mining and Predicting Cancer Data. Pharmaceutics 2019; 11:E119. [PMID: 30871264 PMCID: PMC6471740 DOI: 10.3390/pharmaceutics11030119] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 02/26/2019] [Accepted: 03/07/2019] [Indexed: 02/02/2023] Open
Abstract
The ability to understand the complexity of cancer-related data has been prompted by the applications of (1) computer and data sciences, including data mining, predictive analytics, machine learning, and artificial intelligence, and (2) advances in imaging technology and probe development. Computational modelling and simulation are systematic and cost-effective tools able to identify important temporal/spatial patterns (and relationships), characterize distinct molecular features of cancer states, and address other relevant aspects, including tumor detection and heterogeneity, progression and metastasis, and drug resistance. These approaches have provided invaluable insights for improving the experimental design of therapeutic delivery systems and for increasing the translational value of the results obtained from early and preclinical studies. The big question is: Could cancer theranostics be determined and controlled in silico? This review describes the recent progress in the development of computational models and methods used to facilitate research on the molecular basis of cancer and on the respective diagnosis and optimized treatment, with particular emphasis on the design and optimization of theranostic systems. The current role of computational approaches is providing innovative, incremental, and complementary data-driven solutions for the prediction, simplification, and characterization of cancer and intrinsic mechanisms, and to promote new data-intensive, accurate diagnostics and therapeutics.
Collapse
Affiliation(s)
- Tânia F G G Cova
- Coimbra Chemistry Centre, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Daniel J Bento
- Coimbra Chemistry Centre, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| | - Sandra C C Nunes
- Coimbra Chemistry Centre, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, 3004-535 Coimbra, Portugal.
| |
Collapse
|
33
|
Gessner I, Yu X, Jüngst C, Klimpel A, Wang L, Fischer T, Neundorf I, Schauss AC, Odenthal M, Mathur S. Selective Capture and Purification of MicroRNAs and Intracellular Proteins through Antisense-vectorized Magnetic Nanobeads. Sci Rep 2019; 9:2069. [PMID: 30765836 PMCID: PMC6375918 DOI: 10.1038/s41598-019-39575-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding nucleotides playing a crucial role in posttranscriptional expression and regulation of target genes in nearly all kinds of cells. In this study, we demonstrate a reliable and efficient capture and purification of miRNAs and intracellular proteins using magnetic nanoparticles functionalized with antisense oligonucleotides. For this purpose, a tumor suppressor miRNA (miR-198), deregulated in several human cancer types, was chosen as the model oligonucleotide. Magnetite nanoparticles carrying the complementary sequence of miR-198 (miR-198 antisense) on their surface were delivered into cells and subsequently used for the extracellular transport of miRNA and proteins. The successful capture of miR-198 was demonstrated by isolating RNA from magnetic nanoparticles followed by real-time PCR quantification. Our experimental data showed that antisense-coated particles captured 5-fold higher amounts of miR-198 when compared to the control nanoparticles. Moreover, several proteins that could play a significant role in miR-198 biogenesis were found attached to miR-198 conjugated nanoparticles and analyzed by mass spectrometry. Our findings demonstrate that a purpose-driven vectorization of magnetic nanobeads with target-specific recognition ligands is highly efficient in selectively transporting miRNA and disease-relevant proteins out of cells and could become a reliable and useful tool for future diagnostic, therapeutic and analytical applications.
Collapse
Affiliation(s)
- Isabel Gessner
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Xiaojie Yu
- Institute for Pathology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Christian Jüngst
- Cluster of Excellence - Cellular Stress Responses in Aging-Associated Diseases (CECAD), Imaging Facility, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Annika Klimpel
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, 50674, Cologne, Germany
| | - Lingyu Wang
- Institute for Pathology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany
| | - Thomas Fischer
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany
| | - Ines Neundorf
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, 50674, Cologne, Germany
| | - Astrid C Schauss
- Cluster of Excellence - Cellular Stress Responses in Aging-Associated Diseases (CECAD), Imaging Facility, University of Cologne, Joseph-Stelzmann-Str. 26, 50931, Cologne, Germany
| | - Margarete Odenthal
- Institute for Pathology, University Hospital of Cologne, Kerpener Str. 62, 50924, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Robert-Koch-Straße 21, 50931, Cologne, Germany.,Center of Integrative Oncology, University Clinic of Cologne and Bonn, Cologne and Bonn, Germany
| | - Sanjay Mathur
- Institute of Inorganic Chemistry, University of Cologne, Greinstr. 6, 50939, Cologne, Germany.
| |
Collapse
|
34
|
Tomitaka A, Kaushik A, Kevadiya BD, Mukadam I, Gendelman HE, Khalili K, Liu G, Nair M. Surface-engineered multimodal magnetic nanoparticles to manage CNS diseases. Drug Discov Today 2019; 24:873-882. [PMID: 30660756 DOI: 10.1016/j.drudis.2019.01.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/26/2018] [Accepted: 01/11/2019] [Indexed: 01/21/2023]
Abstract
Advanced central nervous system (CNS) therapies exhibited high efficacy but complete treatment of CNS diseases remains challenging owing to limited delivery of therapeutic agents to the brain. Multifunctional magnetic nanoparticles are investigated not only for site-specific drug delivery but also for theranostic applications aiming for an effective CNS therapy. Recently, surface engineering of magnetic nanoparticles was recognized as a crucial area of research to achieve precise therapy and imaging at molecular and cellular levels. This review reports state-of-the-art advancement in the development of surface-engineered magnetic nanoparticles targeting CNS diagnostics and therapies. The challenges and future prospects of magnetic theranostics are also discussed by considering the translation from bench to bedside. Successful translation of magnetic theranostics to the clinical setting will enable precise and efficient diagnostics and therapy to manage CNS diseases.
Collapse
Affiliation(s)
- Asahi Tomitaka
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ajeet Kaushik
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Insiya Mukadam
- Department of Pharmacology and Experimental Neuroscience, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kamel Khalili
- Department of Neuroscience, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
| | - Madhavan Nair
- Department of Immunology and Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
35
|
Assali A, Akhavan O, Mottaghitalab F, Adeli M, Dinarvand R, Razzazan S, Arefian E, Soleimani M, Atyabi F. Cationic graphene oxide nanoplatform mediates miR-101 delivery to promote apoptosis by regulating autophagy and stress. Int J Nanomedicine 2018; 13:5865-5886. [PMID: 30319254 PMCID: PMC6171513 DOI: 10.2147/ijn.s162647] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Introduction MicroRNA-101 (miR-101) is an intense cancer suppressor with special algorithm to target a wide range of pathways and genes which indicates the ability to regulate apoptosis, cellular stress, metastasis, autophagy, and tumor growth. Silencing of some genes such as Stathmin1 with miR-101 can be interpreted as apoptotic accelerator and autophagy suppressor. It is hypothesized that hybrid microRNA (miRNA) delivery structures based on cationized graphene oxide (GO) could take superiority of targeting and photothermal therapy to suppress the cancer cells. Materials and methods In this study, GO nanoplatforms were covalently decorated with polyethylene glycol (PEG) and poly-l-arginine (P-l-Arg) that reduced the surface of GO and increased the near infrared absorption ~7.5-fold higher than nonreduced GO. Results The prepared nanoplatform [GO-PEG-(P-l-Arg)] showed higher miRNA payload and greater internalization and facilitated endosomal scape into the cytoplasm in comparison with GO-PEG. Furthermore, applying P-l-Arg, as a targeting agent, greatly improved the selective transfection of nanoplatform in cancer cells (MCF7, MDA-MB-231) in comparison with immortalized breast cells and fibroblast primary cells. Treating cancer cells with GO-PEG-(P-l-Arg)/miR-101 and incorporating near infrared laser irradiation induced 68% apoptosis and suppressed Stathmin1 protein. Conclusion The obtained results indicated that GO-PEG-(P-l-Arg) would be a suitable targeted delivery system of miR-101 transfection that could downregulate autophagy and conduct thermal stress to activate apoptotic cascades when combined with photothermal therapy.
Collapse
Affiliation(s)
- Akram Assali
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, Iran
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mohsen Adeli
- Department of Biology, Chemistry, Pharmacy, Institute of Chemistry and Biochemistry, Freie University Berlin, Berlin, Germany
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Shayan Razzazan
- Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ehsan Arefian
- Molecular Virology Lab, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Masoud Soleimani
- Hematology Department, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Atyabi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|
36
|
Yin PT, Pongkulapa T, Cho HY, Han J, Pasquale NJ, Rabie H, Kim JH, Choi JW, Lee KB. Overcoming Chemoresistance in Cancer via Combined MicroRNA Therapeutics with Anticancer Drugs Using Multifunctional Magnetic Core-Shell Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:26954-26963. [PMID: 30028120 DOI: 10.1021/acsami.8b09086] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we report the use of a multifunctional magnetic core-shell nanoparticle (MCNP), composed of a highly magnetic zinc-doped iron oxide (ZnFe2O4) core nanoparticle and a biocompatible mesoporous silica (mSi) shell, for the simultaneous delivery of let-7a microRNA (miRNA) and anticancer drugs (e.g., doxorubicin) to overcome chemoresistance in breast cancer. Owing to the ability of let-7a to repress DNA repair mechanisms (e.g., BRCA1 and BRCA2) and downregulate drug efflux pumps (e.g., ABCG2), delivery of let-7a could sensitize chemoresistant breast cancer cells (MDA-MB-231) to subsequent doxorubicin chemotherapy both in vitro and in vivo. Moreover, the multifunctionality of our MCNPs allows for the monitoring of in vivo delivery via magnetic resonance imaging. In short, we have developed a multifunctional MCNP-based therapeutic approach to provide an attractive method with which to enhance our ability not only to deliver combined miRNA therapeutics with small-molecule drugs in both selective and effective manner but also to sensitize cancer cells for the enhanced treatment via the combination of miRNA replacement therapy using a single nanoplatform.
Collapse
Affiliation(s)
| | | | - Hyeon-Yeol Cho
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Jiyou Han
- Division of Biotechnology, Laboratory of Stem Cells and Tissue Regeneration, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
- Department of Biological Sciences, Laboratory of Stem Cell Research and Biotechnology , Hyupsung University , Hwaseong-si 18330 , Republic of Korea
| | | | | | - Jong-Hoon Kim
- Division of Biotechnology, Laboratory of Stem Cells and Tissue Regeneration, College of Life Sciences and Biotechnology , Korea University , Seoul 02841 , Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering , Sogang University , Seoul 04107 , Republic of Korea
| | - Ki-Bum Lee
- College of Pharmacy , Kyung Hee University , 26 Kyungheedae-ro , Dongdaemun-gu, Seoul 02447 , Republic of Korea
| |
Collapse
|
37
|
Orellana EA, Tenneti S, Rangasamy L, Lyle LT, Low PS, Kasinski AL. FolamiRs: Ligand-targeted, vehicle-free delivery of microRNAs for the treatment of cancer. Sci Transl Med 2018; 9:9/401/eaam9327. [PMID: 28768807 DOI: 10.1126/scitranslmed.aam9327] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 06/16/2017] [Indexed: 12/20/2022]
Abstract
MicroRNAs are small RNAs that negatively regulate gene expression posttranscriptionally. Because changes in microRNA expression can promote or maintain disease states, microRNA-based therapeutics are being evaluated extensively. Unfortunately, the therapeutic potential of microRNA replacement is limited by deficient delivery vehicles. In this work, microRNAs are delivered in the absence of a protective vehicle. The method relies on direct attachment of microRNAs to folate (FolamiR), which mediates delivery of the conjugated microRNA into cells that overexpress the folate receptor. We show that the tumor-suppressive FolamiR, FolamiR-34a, is quickly taken up both by triple-negative breast cancer cells in vitro and in vivo and by tumors in an autochthonous model of lung cancer and slows their progression. This method delivers microRNAs directly to tumors in vivo without the use of toxic vehicles, representing an advance in the development of nontoxic, cancer-targeted therapeutics.
Collapse
Affiliation(s)
- Esteban A Orellana
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.,PULSe Graduate Program, Purdue University, West Lafayette, IN 47907, USA
| | - Srinivasarao Tenneti
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,Department of Chemistry and Biochemistry, Ohio State University, Columbus, OH 43202, USA
| | | | - L Tiffany Lyle
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - Philip S Low
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA.,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Andrea L Kasinski
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA. .,Purdue Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
38
|
Cho HY, Lee T, Yoon J, Han Z, Rabie H, Lee KB, Su WW, Choi JW. Magnetic Oleosome as a Functional Lipophilic Drug Carrier for Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2018; 10:9301-9309. [PMID: 29488744 DOI: 10.1021/acsami.7b19255] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In the present study, we fabricated magnetic oleosomes functionalized with recombinant proteins as a new carrier for oil-based lipophilic drugs for cancer treatment. The bioengineered oleosome is composed of neutral lipids surrounded by a phospholipid monolayer with embedded oleosin fusion proteins. The oleosin was genetically fused to a nanobody of a green fluorescent protein (GFP). A recombinant protein consisting of immunoglobulin-binding protein LG fused to GFP was used to couple the oleosome to an antibody for targeted delivery to breast cancer cells. The lipid core of the oleosome was loaded with magnetic nanoparticles and carmustine as the lipophilic drug. The magnetic oleosome was characterized using transmission electron microscopy and dynamic light scattering. Moreover, the specific delivery of oleosome into the target cancer cell was investigated via confocal microscopy. To examine the cell viability of the delivered oleosome, a conventional 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was carried out. Furthermore, an animal study was conducted to confirm the effect resulting from the delivery of the anticancer drug-loaded oleosomes. Taken together, the fabricated lipophilic drug-loaded magnetic oleosome can be a powerful tool for oil-based drug delivery agent for cancer therapy.
Collapse
Affiliation(s)
- Hyeon-Yeol Cho
- Department of Chemical & Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Taek Lee
- Department of Chemical & Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
- Department of Chemical Engineering , Kwangwoon University , Seoul 01897 , Korea
| | - Jinho Yoon
- Department of Chemical & Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
| | - Zhenlin Han
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Hudifah Rabie
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers , The State University of New Jersey , Piscataway , New Jersey 08854 , United States
- College of Pharmacy , Kyung Hee University , Seoul 02447 , Korea
| | - Wei Wen Su
- Department of Molecular Biosciences and Bioengineering , University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - Jeong-Woo Choi
- Department of Chemical & Biomolecular Engineering , Sogang University , Seoul 04107 , Korea
| |
Collapse
|
39
|
Combining CXCR4-targeted and nontargeted nanoparticles for effective unassisted in vitro magnetic hyperthermia. Biointerphases 2018; 13:011005. [PMID: 29402091 DOI: 10.1116/1.5009989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of targeted nanoparticles for magnetic hyperthermia (MHT) increases MHT selectivity, but often at the expense of its effectiveness. Consequently, targeted MHT is typically used in combination with other treatment modalities. This work describes an implementation of a highly effective monotherapeutic in vitro MHT treatment based on two populations of magnetic particles. Cells were sequentially incubated with two populations of magnetic particles: nonfunctionalized superparamagnetic nanoparticles and anti-CXCR4-functionalized particles. After removing the excess of free particles, an alternating magnetic field (AMF) was applied to produce MHT. The induced cytotoxicity was assessed at different time-points after AMF application. Complete loss of cell viability was observed 72 h after MHT when the iron loading of the anti-CXCR4-functionalized particles was boosted by that of a nontargeted population. Additionally, induction of necrosis resulted in more efficient cell death than did induction of apoptosis. Achieving a uniquely high effectiveness in monotherapeutic MHT demonstrates the potential of this approach to achieve complete loss of viability of cancer cells while avoiding the side effects of dual-treatment strategies that use MHT only as a sensitizing therapy.
Collapse
|
40
|
Wu M, Huang S. Magnetic nanoparticles in cancer diagnosis, drug delivery and treatment. Mol Clin Oncol 2017; 7:738-746. [PMID: 29075487 PMCID: PMC5649002 DOI: 10.3892/mco.2017.1399] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 05/17/2017] [Indexed: 12/25/2022] Open
Abstract
In recent years, magnetic nanoparticles (MNPs) have demonstrated marked progress in the field of oncology. General nanoparticles are widely used in tumor targeting, and the intrinsic magnetic property of MNPs makes them the most promising nanomaterial to be used as contrast agents for magnetic resonance imaging (MRI) and induced magnetic hyperthermia. The properties of MNPs are fully exploited when they are used as drug delivery agents, wherein drugs may be targeted to the desired specific location in vivo by application of an external magnetic field. Early diagnosis of cancer may be achieved by MRI, therefore, individualized treatment may be combined with MRI, so as to achieve the precise definition and appropriate treatment. In the present review, research on MNPs in cancer diagnosis, drug delivery and treatment has been summarized. Furthermore, the future perspectives and challenges of MNPs in the field of oncology are also discussed.
Collapse
Affiliation(s)
- Meijia Wu
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| | - Shengwu Huang
- Department of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, P.R. China
| |
Collapse
|
41
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
42
|
Jurj A, Braicu C, Pop LA, Tomuleasa C, Gherman CD, Berindan-Neagoe I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des Devel Ther 2017; 11:2871-2890. [PMID: 29033548 PMCID: PMC5628667 DOI: 10.2147/dddt.s142337] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
In the last few years, nanostructures have gained considerable interest for the safe delivery of therapeutic agents. Several therapeutic approaches have been reported, such as molecular diagnosis, disease detection, nanoscale immunotherapy and anticancer drug delivery that could be integrated into clinical use. The current paper aims to highlight the background that supports the use of nanoparticles conjugated with different types of therapeutic agents, applicable in targeted therapy and cancer research, with a special emphasis on hematological malignancies. A particular key point is the functional characterization of nonviral delivery systems, such as gold nanoparticles, liposomes and dendrimers. The paper also presents relevant published data related to microRNA and RNA interference delivery using nanoparticles in cancer therapy.
Collapse
Affiliation(s)
- Ancuta Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Laura-Ancuta Pop
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Hematology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
| | - Claudia Diana Gherman
- Practical Abilities, Department of Medical Education, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Medical Education, University of Medicine and Pharmacy “Iuliu Hatieganu”, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
- Department of Functional Genomics and Experimental Pathology, The Oncology Institute “Prof Dr Ion Chiricuta”, Cluj-Napoca, Romania
- MedFuture Research Center for Advanced Medicine, University of Medicine and Pharmacy “Iuliu-Hatieganu”, Cluj-Napoca, Romania
| |
Collapse
|
43
|
Kudr J, Haddad Y, Richtera L, Heger Z, Cernak M, Adam V, Zitka O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E243. [PMID: 28850089 PMCID: PMC5618354 DOI: 10.3390/nano7090243] [Citation(s) in RCA: 240] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/19/2022]
Abstract
The increasing number of scientific publications focusing on magnetic materials indicates growing interest in the broader scientific community. Substantial progress was made in the synthesis of magnetic materials of desired size, morphology, chemical composition, and surface chemistry. Physical and chemical stability of magnetic materials is acquired by the coating. Moreover, surface layers of polymers, silica, biomolecules, etc. can be designed to obtain affinity to target molecules. The combination of the ability to respond to the external magnetic field and the rich possibilities of coatings makes magnetic materials universal tool for magnetic separations of small molecules, biomolecules and cells. In the biomedical field, magnetic particles and magnetic composites are utilized as the drug carriers, as contrast agents for magnetic resonance imaging (MRI), and in magnetic hyperthermia. However, the multifunctional magnetic particles enabling the diagnosis and therapy at the same time are emerging. The presented review article summarizes the findings regarding the design and synthesis of magnetic materials focused on biomedical applications. We highlight the utilization of magnetic materials in separation/preconcentration of various molecules and cells, and their use in diagnosis and therapy.
Collapse
Affiliation(s)
- Jiri Kudr
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Mirko Cernak
- CEPLANT R&D Centre for Low-Cost Plasma and Nanotechnology Surface Modifications, Masaryk University, Kotlarska 2, CZ-61137 Brno, Czech Republic.
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-61300 Brno, Czech Republic.
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-61600 Brno, Czech Republic.
| |
Collapse
|
44
|
MicroRNA-26a inhibits the growth and invasiveness of malignant melanoma and directly targets on MITF gene. Cell Death Discov 2017; 3:17028. [PMID: 28698805 PMCID: PMC5502303 DOI: 10.1038/cddiscovery.2017.28] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/19/2022] Open
Abstract
Metastatic melanoma is the most aggressive form of skin cancer and is refractory to therapy. MicroRNAs have been recently discovered as novel molecules that provide therapeutic benefits against melanoma. This work aims to examine the effects of miR-26a and let-7a on the growth and invasiveness of malignant melanoma in vitro and in vivo. In addition, we elucidate the mechanism of action by identifying the target gene of miR-26a. Both miR-26a and let-7a inhibited proliferation and invasiveness and halted the cell cycle at the G1/G0 phase in SKMEL-28 and WM1552C malignant melanoma cell lines. Moreover, miR-26a potently induced apoptosis and downregulated the expressions of microphthalmia-associated transcription factor (MITF) and MAP4K3 in both cell lines. The luciferase reporter assay demonstrated that miR-26a suppresses MITF expression by binding the 3′-UTR, suggesting that MITF is a bona fide target of miR-26a. SiRNA knockdown of the MITF gene confirmed that miR-26a reduced cell viability and induced apoptosis by regulating MITF. Using a murine model, we also found miR-26a significantly retarded the growth of melanoma tumors in vivo. In conclusion, miR-26a and let-7a suppressed the growth and invasiveness of melanoma cells, suggesting that miR-26a and let-7a may represent novel therapies for malignant melanoma.
Collapse
|
45
|
Belyanina I, Kolovskaya O, Zamay S, Gargaun A, Zamay T, Kichkailo A. Targeted Magnetic Nanotheranostics of Cancer. Molecules 2017; 22:E975. [PMID: 28604617 PMCID: PMC6152710 DOI: 10.3390/molecules22060975] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 06/02/2017] [Accepted: 06/06/2017] [Indexed: 12/31/2022] Open
Abstract
Current advances in targeted magnetic nanotheranostics are summarized in this review. Unique structural, optical, electronic and thermal properties of magnetic materials in nanometer scale are attractive in the field of biomedicine. Magnetic nanoparticles functionalized with therapeutic molecules, ligands for targeted delivery, fluorescent and other chemical agents can be used for cancer diagnostic and therapeutic purposes. High selectivity, small size, and low immunogenicity of synthetic nucleic acid aptamers make them attractive delivery agents for therapeutic purposes. Properties, production and functionalization of magnetic nanoparticles and aptamers as ligands for targeted delivery are discussed herein. In recent years, magnetic nanoparticles have been widely used in diagnostic methods, such as scintigraphy, single photon emission computed tomography (SPECT), positron emission tomography (PET), magnetic resonance imaging (MRI), and Raman spectroscopy. Therapeutic purposes of magnetic nanoconstructions are also promising. They are used for effective drug delivery, magnetic mediated hypertermia, and megnetodynamic triggering of apoptosis. Thus, magnetic nanotheranostics opens a new venue for complex differential diagnostics, and therapy of metastatic cancer.
Collapse
Affiliation(s)
- Irina Belyanina
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
| | - Olga Kolovskaya
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Sergey Zamay
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Ana Gargaun
- Independent Researcher Vancouver, Vancouver, BC V6K 1C4, Canada.
| | - Tatiana Zamay
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| | - Anna Kichkailo
- Krasnoyarsk State Medical University named after prof. V.F. Voino-Yaseneckii, 660022 Krasnoyarsk, Russia.
- Federal Research Center, KSC Siberian Branch of Russian Academy of Science, 660022 Krasnoyarsk, Russia.
| |
Collapse
|
46
|
Rajendrakumar SK, Uthaman S, Cho CS, Park IK. Trigger-Responsive Gene Transporters for Anticancer Therapy. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E120. [PMID: 28587119 PMCID: PMC5485767 DOI: 10.3390/nano7060120] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/05/2017] [Accepted: 05/19/2017] [Indexed: 12/22/2022]
Abstract
In the current era of gene delivery, trigger-responsive nanoparticles for the delivery of exogenous nucleic acids, such as plasmid DNA (pDNA), mRNA, siRNAs, and miRNAs, to cancer cells have attracted considerable interest. The cationic gene transporters commonly used are typically in the form of polyplexes, lipoplexes or mixtures of both, and their gene transfer efficiency in cancer cells depends on several factors, such as cell binding, intracellular trafficking, buffering capacity for endosomal escape, DNA unpacking, nuclear transportation, cell viability, and DNA protection against nucleases. Some of these factors influence other factors adversely, and therefore, it is of critical importance that these factors are balanced. Recently, with the advancements in contemporary tools and techniques, trigger-responsive nanoparticles with the potential to overcome their intrinsic drawbacks have been developed. This review summarizes the mechanisms and limitations of cationic gene transporters. In addition, it covers various triggers, such as light, enzymes, magnetic fields, and ultrasound (US), used to enhance the gene transfer efficiency of trigger-responsive gene transporters in cancer cells. Furthermore, the challenges associated with and future directions in developing trigger-responsive gene transporters for anticancer therapy are discussed briefly.
Collapse
Affiliation(s)
- Santhosh Kalash Rajendrakumar
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Saji Uthaman
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| | - Chong Su Cho
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.
| | - In-Kyu Park
- Department of Biomedical Science and BK21 PLUS Center for Creative Biomedical Scientists at Chonnam National University, Chonnam National University Medical School, Gwangju 61469, Korea.
| |
Collapse
|
47
|
Thorat ND, Bohara RA, Tofail SAM, Alothman ZA, Shiddiky MJA, A Hossain MS, Yamauchi Y, Wu KCW. Superparamagnetic Gadolinium Ferrite Nanoparticles with Controllable Curie Temperature - Cancer Theranostics for MR-Imaging-Guided Magneto-Chemotherapy. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600706] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nanasaheb D. Thorat
- Department of Physics & Energy; University of Limerick; Limerick Ireland
- Material and Surface Science Institute; Bernal Institute; University of Limerick; Limerick Ireland
- Center for Interdisciplinary Research; D. Y. Patil University; 416006 Kolhapur India
| | - Raghvendra A. Bohara
- Center for Interdisciplinary Research; D. Y. Patil University; 416006 Kolhapur India
| | - Syed A. M. Tofail
- Department of Physics & Energy; University of Limerick; Limerick Ireland
- Material and Surface Science Institute; Bernal Institute; University of Limerick; Limerick Ireland
| | - Zeid Abdullah Alothman
- Department of Chemistry; College of Science; King Saud University; 11451 Riyadh Saudi Arabia
| | | | - Md. Shahriar A Hossain
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way 2500 North Wollongong NSW Australia
| | - Yusuke Yamauchi
- Australian Institute for Innovative Materials (AIIM); University of Wollongong; Squires Way 2500 North Wollongong NSW Australia
- International Center for Materials Nanoarchitectonics (MANA); National Institute for Materials Science (NIMS); 1-1 Namiki 305-0044 Tsukuba Ibaraki Japan
| | - Kevin C.-W. Wu
- Department of Chemical Engineering; National Taiwan University; Roosevelt Road 10617 Taipei Taiwan
- Division of Medical Engineering Research; National Health Research Institutes; Keyan Road 350 Zhunan Miaoli County Taiwan
| |
Collapse
|
48
|
Oh Y, Lee N, Kang HW, Oh J. In vitro study on apoptotic cell death by effective magnetic hyperthermia with chitosan-coated MnFe₂O₄. NANOTECHNOLOGY 2016; 27:115101. [PMID: 26871973 DOI: 10.1088/0957-4484/27/11/115101] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Magnetic nanoparticles (MNPs) have been widely investigated as a hyperthermic agent for cancer treatment. In this study, thermally responsive Chitosan-coated MnFe2O4 (Chitosan-MnFe2O4) nanoparticles were developed to conduct localized magnetic hyperthermia for cancer treatment. Hydrophobic MnFe2O4 nanoparticles were synthesized via thermal decomposition and modified with 2,3-dimercaptosuccinic acid (DMSA) for further conjugation of chitosan. Chitosan-MnFe2O4 nanoparticles exhibited high magnetization and excellent biocompatibility along with low cell cytotoxicity. During magnetic hyperthermia treatment (MHT) with Chitosan-MnFe2O4 on MDA-MB 231 cancer cells, the targeted therapeutic temperature was achieved by directly controlling the strength of the external AC magnetic fields. In vitro Chitosan-MnFe2O4-assisted MHT at 42 °C led to drastic and irreversible changes in cell morphology and eventual cellular death in association with the induction of apoptosis through heat dissipation from the excited magnetic nanoparticles. Therefore, the Chitosan-MnFe2O4 nanoparticles with high biocompatibility and thermal capability can be an effective nano-mediated agent for MHT on cancer.
Collapse
Affiliation(s)
- Yunok Oh
- Center for Marine-integrated Biotechnology program (BK21 Plus), Pukyong National University, Busan, 48547, Korea
| | | | | | | |
Collapse
|
49
|
Conde J, Oliva N, Atilano M, Song HS, Artzi N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. NATURE MATERIALS 2016; 15:353-63. [PMID: 26641016 PMCID: PMC6594154 DOI: 10.1038/nmat4497] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 10/26/2015] [Indexed: 05/04/2023]
Abstract
The therapeutic potential of miRNA (miR) in cancer is limited by the lack of efficient delivery vehicles. Here, we show that a self-assembled dual-colour RNA-triple-helix structure comprising two miRNAs-a miR mimic (tumour suppressor miRNA) and an antagomiR (oncomiR inhibitor)-provides outstanding capability to synergistically abrogate tumours. Conjugation of RNA triple helices to dendrimers allows the formation of stable triplex nanoparticles, which form an RNA-triple-helix adhesive scaffold upon interaction with dextran aldehyde, the latter able to chemically interact and adhere to natural tissue amines in the tumour. We also show that the self-assembled RNA-triple-helix conjugates remain functional in vitro and in vivo, and that they lead to nearly 90% levels of tumour shrinkage two weeks post-gel implantation in a triple-negative breast cancer mouse model. Our findings suggest that the RNA-triple-helix hydrogels can be used as an efficient anticancer platform to locally modulate the expression of endogenous miRs in cancer.
Collapse
Affiliation(s)
- João Conde
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
- Correspondence and requests for materials should be addressed to J.C. or N.A. ;
| | - Nuria Oliva
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
| | - Mariana Atilano
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Grup d’Enginyeria de Materials, Institut Quimic de Sarria-Universitat Ramon Llull, Barcelona 08017, Spain
| | - Hyun Seok Song
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Yuseong, Daejeon 169-148, Republic of Korea
| | - Natalie Artzi
- Massachusetts Institute of Technology, Institute for Medical Engineering and Science, Harvard-MIT Division for Health Sciences and Technology, Cambridge, Massachusetts 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
- Department of Medicine, Biomedical Engineering Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Correspondence and requests for materials should be addressed to J.C. or N.A. ;
| |
Collapse
|
50
|
Yin PT, Han E, Lee KB. Engineering Stem Cells for Biomedical Applications. Adv Healthc Mater 2016; 5:10-55. [PMID: 25772134 PMCID: PMC5810416 DOI: 10.1002/adhm.201400842] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 02/14/2015] [Indexed: 12/19/2022]
Abstract
Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.
Collapse
Affiliation(s)
- Perry T Yin
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Edward Han
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, ON, M5S 3G9, Canada
| | - Ki-Bum Lee
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ, 08854, USA
| |
Collapse
|