1
|
Kasparavičius E, Franckevičius M, Driukas S, Gulbinas V. Charge Carrier Dynamics at the Perovskite Interface with Self-Assembled Monolayers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59477-59487. [PMID: 39423047 PMCID: PMC11533155 DOI: 10.1021/acsami.4c10223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Self-assembled monolayers (SAMs) deposited on the hole-collecting electrodes of p-i-n perovskite solar cells effectively replace bulky hole transporting layers. However, the mechanism by which monolayers control the electronic processes and how they depend on the properties of the monolayer molecules remain poorly understood. In this study, we developed a simplified perovskite solar cell imitator with blocked electron extraction to investigate the photocurrent dynamics between the perovskite and the hole-collecting ITO electrode. We investigated the photoluminescence and photovoltage dynamics under short laser pulse excitation and addressed the influence of bulky and monomolecular hole transport layers. Our findings reveal that the photovoltage dynamics is significantly affected by the properties of the transport and perovskite layers, which in turn depend on the methods of sample preparation and exploration. Photocurrent dynamics is determined by several processes, including charge carrier displacement in the local electric field, hole transport to ITO, trapping of holes in interface trap states, and electron-hole recombination at the interface. We propose a model that takes into account molecular dipole moments and their ionization potentials to partially explain the different influences of different monolayers on the hole extraction and interfacial recombination rates. Additionally, the photovoltage dynamics also strongly depends on the illumination of the sample and shows memory effects that persist over minutes and hours and are attributed to the redistribution of ions.
Collapse
Affiliation(s)
| | - Marius Franckevičius
- Center for Physical Sciences
and Technology, Saulėtekio av.3, Vilnius 10257, Lithuania
| | - Simonas Driukas
- Center for Physical Sciences
and Technology, Saulėtekio av.3, Vilnius 10257, Lithuania
| | - Vidmantas Gulbinas
- Center for Physical Sciences
and Technology, Saulėtekio av.3, Vilnius 10257, Lithuania
| |
Collapse
|
2
|
Flavell T, Zhao D, Aljuaid FA, Liu X, Saiani A, Preobrajenski AB, Generalov AV, Spencer BF, Walton AS, Thomas AG, Flavell WR. Toward Water-Resistant, Tunable Perovskite Absorbers Using Peptide Hydrogel Additives. ACS APPLIED ENERGY MATERIALS 2024; 7:8376-8390. [PMID: 39421276 PMCID: PMC11480935 DOI: 10.1021/acsaem.4c01089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/23/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024]
Abstract
In recent years, hydrogels have been demonstrated as simple and cheap additives to improve the optical properties and material stability of organometal halide perovskites (OHPs), with most research centered on the use of hydrophilic, petrochemical-derived polymers. Here, we investigate the role of a peptide hydrogel in passivating defect sites and improving the stability of methylammonium lead iodide (MAPI, CH3NH3PbI3) using closely controlled, in situ X-ray photoelectron spectroscopy (XPS) techniques under realistic pressures. Optical measurements reveal that a reduction in the density of defect sites is achieved by incorporating peptide into the precursor solution during the conventional one-step MAPI fabrication approach. Increasing the concentration of peptide is shown to reduce the MAPI crystallite size, attributed to a reduction in hydrogel pore size, and a concomitant increase in the optical bandgap is shown to be consistent with that expected due to quantum size effects. Encapsulation of MAPI crystallites is further evidenced by XPS quantification, which demonstrates that the surface stoichiometry differs little from the expected nominal values for a homogeneously mixed system. In situ XPS demonstrates that thermally induced degradation in a vacuum is reduced by the inclusion of peptide, and near-ambient pressure XPS (NAP-XPS) reveals that this enhancement is partially retained at 9 mbar water vapor pressure, with a reduced loss of methylammonium (MA+) from the surface following heating achieved using 3 wt % peptide loading. A maximum power conversion efficiency (PCE) of 16.6% was achieved with a peptide loading of 3 wt %, compared with 15.9% from a 0 wt % device, the former maintaining 81% of its best efficiency over 480 h storage at 35% relative humidity (RH), compared with 48% maintained by a 0 wt % device.
Collapse
Affiliation(s)
- Tom Flavell
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department
of Physics and Astronomy, University of
Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Dawei Zhao
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department
of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Fahad A. Aljuaid
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department
of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Xuzhao Liu
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department
of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alberto Saiani
- Manchester
Institute of Biotechnology, University of
Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Division
of Pharmacy and Optometry, School of Health Sciences, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | | | | | - Ben F. Spencer
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Henry
Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Alex S. Walton
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Andrew G. Thomas
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department
of Materials, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Henry
Royce Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Wendy R. Flavell
- Photon
Science Institute, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department
of Physics and Astronomy, University of
Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
3
|
Lee YR, Chung YT, Chiang TY, Hsieh T, Su YH, Wang JK. Unraveling Halogen Role in Two-Step Solution Growth of Organic-Inorganic Hybrid Mixed-Halide Perovskites: Guidelines of Fabricating Single-Phase Perovskites with Predictable Stoichiometry. ACS OMEGA 2024; 9:26439-26449. [PMID: 38911784 PMCID: PMC11190909 DOI: 10.1021/acsomega.4c02650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/13/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024]
Abstract
The challenge faced in optoelectronic applications of halide perovskites is their degradation. Minimizing material imperfections is critical to averting cascade degradation processes. Identifying causes of such imperfections is, however, hindered by mystified growth processes and is particularly urgent for mixed-halide perovskites because of inhomogeneity in growth and phase segregation under stresses. To unravel two-step solution growth of MAPbBr x I3-x , we monitored the evolution of Br composition and found that the construction of perovskite lattice is contributed by iodine from PbI2 substrate and Br from MABr solution with a 1:1 ratio rather than a 2:1 ratio originally thought. Kinetic analysis based on a derived three-stage model extracted activation energies of perovskite construction and anion exchange. This model is applicable to the growth of PbI2 reacting with a mixed solution of MABr and MAI. Two guidelines of fabricating single-phase MAPbBr x I3-x with predictable stoichiometry thus developed help strategizing protocols to reproducibly fabricate mixed-halide perovskite films tailored to specific optoelectronic applications.
Collapse
Affiliation(s)
- Ya-Rong Lee
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Yun-Ting Chung
- Department
of Physics, National Taiwan University, Taipei 106, Taiwan
| | - Tsung-Yu Chiang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Ta−Li Hsieh
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Yi-Hang Su
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
| | - Juen-Kai Wang
- Institute
of Atomic and Molecular Sciences, Academia
Sinica, Taipei 10617, Taiwan
- Center
for Condensed Matter Sciences, National
Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
4
|
Wu H, Hou Y, Yoon J, Knoepfel AM, Zheng L, Yang D, Wang K, Qian J, Priya S, Wang K. Down-selection of biomolecules to assemble "reverse micelle" with perovskites. Nat Commun 2024; 15:772. [PMID: 38278790 PMCID: PMC10817902 DOI: 10.1038/s41467-024-44881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Biological molecule-semiconductor interfacing has triggered numerous opportunities in applied physics such as bio-assisted data storage and computation, brain-computer interface, and advanced distributed bio-sensing. The introduction of electronics into biological embodiment is being quickly developed as it has great potential in providing adaptivity and improving functionality. Reciprocally, introducing biomaterials into semiconductors to manifest bio-mimetic functionality is impactful in triggering new enhanced mechanisms. In this study, we utilize the vulnerable perovskite semiconductors as a platform to understand if certain types of biomolecules can regulate the lattice and endow a unique mechanism for stabilizing the metastable perovskite lattice. Three tiers of biomolecules have been systematically tested and the results reveal a fundamental mechanism for the formation of a "reverse-micelle" structure. Systematic exploration of a large set of biomolecules led to the discovery of guiding principle for down-selection of biomolecules which extends the classic emulsion theory to this hybrid systems. Results demonstrate that by introducing biomaterials into semiconductors, natural phenomena typically observed in biological systems can also be incorporated into semiconducting crystals, providing a new perspective to engineer existing synthetic materials.
Collapse
Affiliation(s)
- Haodong Wu
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Yuchen Hou
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jungjin Yoon
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Abbey Marie Knoepfel
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Luyao Zheng
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA
| | - Dong Yang
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Dalian, 116023, China
| | - Ke Wang
- Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Jin Qian
- Huanjiang Laboratory, Zhuji, 311800, China
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, 310027, China
| | - Shashank Priya
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
- Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Kai Wang
- Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, 16802, USA.
- Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA.
- Huanjiang Laboratory, Zhuji, 311800, China.
- School of Aeronautics and Astronautics, Zhejiang University, Hangzhou, 310027, China.
| |
Collapse
|
5
|
Sabbah H, Abdel Baki Z, Mezher R, Arayro J. SCAPS-1D Modeling of Hydrogenated Lead-Free Cs 2AgBiBr 6 Double Perovskite Solar Cells with a Remarkable Efficiency of 26.3. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:48. [PMID: 38202505 PMCID: PMC10780520 DOI: 10.3390/nano14010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/11/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
In this investigation, we employ a numerical simulation approach to model a hydrogenated lead-free Cs2AgBiBr6 double perovskite solar cell with a p-i-n inverted structure, utilizing SCAPS-1D. Contrary to traditional lead-based perovskite solar cells, the Cs2AgBiBr6 double perovskite exhibits reduced toxicity and enhanced stability, boasting a maximum power conversion efficiency of 6.37%. Given its potential for improved environmental compatibility, achieving higher efficiency is imperative for its practical implementation in solar cells. This paper offers a comprehensive quantitative analysis of the hydrogenated lead-free Cs2AgBiBr6 double perovskite solar cell, aiming to optimize its structural parameters. Our exploration involves an in-depth investigation of various electron transport layer materials to augment efficiency. Variables that affect the photovoltaic efficiency of the perovskite solar cell are closely examined, including the absorber layer's thickness and doping concentration, the hole transport layer, and the absorber defect density. We also investigate the impact of the doping concentration of the electron transport layer and the energy level alignment between the absorber and the interface on the photovoltaic output of the cell. After careful consideration, zinc oxide is chosen to serve as the electron transport layer. This optimized configuration surpasses the original structure by over four times, resulting in an impressive power conversion efficiency of 26.3%, an open-circuit voltage of 1.278 V, a fill factor of 88.21%, and a short-circuit current density of 23.30 mA.cm-2. This study highlights the critical role that numerical simulations play in improving the chances of commercializing Cs2AgBiBr6 double perovskite solar cells through increased structural optimization and efficiency.
Collapse
Affiliation(s)
- Hussein Sabbah
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait; (Z.A.B.); (R.M.); (J.A.)
| | | | | | | |
Collapse
|
6
|
Guo Y, Huang L, Wang C, Liu S, Huang J, Liu X, Zhang J, Hu Z, Zhu Y. Advances on the Application of Wide Band-Gap Insulating Materials in Perovskite Solar Cells. SMALL METHODS 2023; 7:e2300377. [PMID: 37254269 DOI: 10.1002/smtd.202300377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Indexed: 06/01/2023]
Abstract
In recent years, the development of perovskite solar cells (PSCs) is advancing rapidly with their recorded photoelectric conversion efficiency reaching 25.8%. However, for the commercialization of PSCs, it is also necessary to solve their stability issue. In order to improve the device performance, various additives and interface modification strategies have been proposed. While, in many cases, they can guarantee a significant increase in efficiency, but not ensure improved stability. Therefore, materials that improve the device efficiency and stability simultaneously are urgently needed. Some wide band-gap insulating materials with stable physical and chemical properties are promising alternative materials. In this review, the application of wide band-gap insulating materials in PSCs, including their preparation methods, working roles, and mechanisms are described, which will promote the commercial application of PSCs.
Collapse
Affiliation(s)
- Yi Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Like Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
- National Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Chaofeng Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Shuang Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jiajia Huang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Liu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jing Zhang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Ziyang Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Yuejin Zhu
- School of Information Engineering, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| |
Collapse
|
7
|
Meng Y, Zhang W, Zhang X, Deng Y, Zhang H, Zeng G, Liu G, Li X. Self-Assembled 1D/3D Perovskite Heterostructure for Stable All-Air-Processed Perovskite Solar Cells with Improved Open-Circuit Voltage. CHEMSUSCHEM 2023; 16:e202300257. [PMID: 37293844 DOI: 10.1002/cssc.202300257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 06/10/2023]
Abstract
Environmental instability and photovoltage loss induced by defects are inevitable obstacles in the development of all-air-processed perovskite solar cells (PSCs). In this study, the ionic liquid 1-ethyl-3-methylimidazolium iodide ([EMIM]I) is introduced into the hole transport layer/three-dimensional (3D) perovskite interface to form a self-assembled 1D/3D perovskite heterostructure, which significantly reduces iodine vacancy defects and modulates band energy alignment, resulting in pronouncedly improved open-circuit voltage (Voc ). As a result, the corresponding device exhibits a high power conversion efficiency with negligible hysteresis and a high Voc of 1.14 V. Most importantly, together with the high stability of the 1D perovskite, remarkable high environmental and thermal stabilities of the 1D/3D PSC devices are achieved, which maintain 89 % of unencapsulated device initial efficiency after 1320 h in air and retain 85 % of the initial efficiency when heated at 85 °C for 22 h. This study affords an effective strategy to fabricate high-performance all-air-processed PSCs with outstanding stability.
Collapse
Affiliation(s)
- Yan Meng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Wenyuan Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xiao Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Yaxin Deng
- BYD CO LTD, 3009 BYD Road, Pingshan New District, Shenzhen City, Guangdong Province, 518118, P. R. China
| | - Haolin Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Gangyi Zeng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Guangyao Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Xin Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| |
Collapse
|
8
|
Siripraparat A, Mittanonsakul P, Pansa-Ngat P, Seriwattanachai C, Kumnorkaew P, Kaewprajak A, Kanjanaboos P, Pakawatpanurut P. All green sulfolane-based solvent enhanced electrical conductivity and rigidity of perovskite crystalline layer. Sci Rep 2023; 13:9335. [PMID: 37291155 PMCID: PMC10250537 DOI: 10.1038/s41598-023-36440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/03/2023] [Indexed: 06/10/2023] Open
Abstract
Industrial commercialization of perovskite solar cells not only depends on sufficient device performance, but also requires complete elimination of hazardous solvents in the fabrication process to enable sustainable development of the technology. This work reports a new solvent system based on sulfolane, [Formula: see text]-butyrolactone (GBL), and acetic acid (AcOH) as a significantly greener alternative to common but more hazardous solvents. Interestingly, this solvent system not only resulted in densely-packed perovskite layer of bigger crystal size and better crystallinity, the grain boundaries were found to be more rigid and highly conductive to electrical current. The physical changes at the grain boundaries were due to the sulfolane-infused crystal interfaces, which were expected to facilitate better charge transfer and provide stronger barrier to moisture within the perovskite layer, yielding higher current density and longer performance of the device as a result. In fact, by using a mixed solvent system consisting of sulfolane, GBL, and AcOH in the volume ratio of 70.0:27.5:2.5, the device stability was better and the photovoltaic performance was statistically comparable with those prepared using DMSO-based solvent. Our report reflects unprecedented findings of enhanced electrical conductivity and rigidity of the perovskite layer simply by using an appropriate choice of the all-green solvent.
Collapse
Affiliation(s)
- Akarapitch Siripraparat
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pimolrat Mittanonsakul
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pimsuda Pansa-Ngat
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chaowaphat Seriwattanachai
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pisist Kumnorkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Khlong Luang District, Pathum Thani, 12120, Thailand
| | - Anusit Kaewprajak
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency, Thailand Science Park, Khlong Luang District, Pathum Thani, 12120, Thailand
| | - Pongsakorn Kanjanaboos
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
- School of Materials Science and Innovation, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Pasit Pakawatpanurut
- Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
9
|
Wei J, Li J, Duan C, Yuan L, Zou S, Pang Q, Yan K. High Efficiency Near-Infrared Perovskite Light Emitting Diodes With Reduced Rolling-Off by Surface Post-Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207769. [PMID: 36799192 DOI: 10.1002/smll.202207769] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Indexed: 05/18/2023]
Abstract
The rolling-off phenomenon of device efficiency at high current density caused by quenching of luminescence in perovskite light-emitting diodes (PeLED) is challenging to be solved. Here, 2-amino-5-iodopyrazine (AIPZ) is dissolved in a mixed solvent of chlorobenzene (CB)/isopropanol (IPA) (7:3 volume ratio) for surface post-treatment of FAPbI3 perovskite film. The interaction of AIPZ and perovskite surface not only balances the charge injection but also passivates defects to enhance radiative recombination in PeLED. Therefore, the PeLED champion yields peak external quantum efficiency reaching 23.2% at the current density of 45 mA cm-2 with a radiance brightness of 290 W sr-1 m-2 . More importantly, the rolling-off of device efficiency is significantly reduced. The lowest rolling-off devices can maintain 80% of peak EQE (22.1%) at a high current density of 460 mA cm-2 , whereas the control device only retains 25% of the peak EQE value. This work provides an effective strategy to improve performance and reduce the EQE rolling-off of PeLED for practical application.
Collapse
Affiliation(s)
- Jianwu Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Jiong Li
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Chenghao Duan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Ligang Yuan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Shibing Zou
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| | - Qi Pang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, 530004, P. R. China
| | - Keyou Yan
- School of Environment and Energy, State Key Lab of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, South China University of Technology, Guangzhou, 510000, P. R. China
| |
Collapse
|
10
|
Aminzare M, Jiang J, Mandl GA, Mahshid S, Capobianco JA, Dorval Courchesne NM. Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. NANOSCALE 2023; 15:2997-3031. [PMID: 36722934 DOI: 10.1039/d2nr05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.
Collapse
Affiliation(s)
- Masoud Aminzare
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Jennifer Jiang
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Macdonald Engineering Building, Room 355, Montréal, QC, H3A 0C3, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Noémie-Manuelle Dorval Courchesne
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| |
Collapse
|
11
|
Zhu P, Lin J, Liu M, Duan M, Luo D, Wu X, Zhang S. Nd2Sn2O7/Bi2Sn2O7/Ag3PO4 double Z-type heterojunction for antibiotic photodegradation under visible light irradiation: Mechanism, optimization and pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
12
|
Yin Z, Lu B, Chen Y, Guo C. Advances of Commercial and Biological Materials for Electron Transport Layers in Biological Applications. Front Bioeng Biotechnol 2022; 10:900269. [PMID: 35711642 PMCID: PMC9194854 DOI: 10.3389/fbioe.2022.900269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Electron transport layer (ETL), one of the important layers for high-performing perovskite solar cells (PSCs), also has great potential in bioengineering applications. It could be used for biological sensors, biological imaging, and biomedical treatments with high resolution or efficiency. Seldom research focused on the development of biological material for ETL and their application in biological uses. This review will introduce commercial and biological materials used in ETL to help readers understand the working mechanism of ETL. And the ways to prepare ETL at low temperatures will also be introduced to improve the performance of ETL. Then this review summarizes the latest research on material doping, material modification, and bilayer ETL structures to improve the electronic transmission capacity of ETLs. Finally, the application of ETLs in bioengineering will be also shown to demonstrate that ETLs and their used material have a high potential for biological applications.
Collapse
Affiliation(s)
- Zhifu Yin
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
- The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
| | - Biao Lu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, China
| | - Yanbo Chen
- The State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing, China
| | - Caixia Guo
- Presidents’ Office of China-Japan Union Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
13
|
Numerical Simulation of 30% Efficient Lead-Free Perovskite CsSnGeI 3-Based Solar Cells. MATERIALS 2022; 15:ma15093229. [PMID: 35591563 PMCID: PMC9102960 DOI: 10.3390/ma15093229] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 11/27/2022]
Abstract
A cesium tin−germanium triiodide (CsSnGeI3) perovskite-based solar cell (PSC) has been reported to achieve a high-power-conversion efficiency (PCE > 7%) and extreme air stability. A thorough understanding of the role of the interfaces in the perovskite solar cell, along with the optimization of different parameters, is still required for further improvement in PCE. In this study, lead-free CsSnGeI3 PSC has been quantitatively analyzed using a solar cell capacitance simulator (SCAPS−1D). Five electron transport layers (ETL) were comparatively studied, while keeping other layers fixed. The use of SnO2 as an ETL, which has the best band alignment with the perovskite layer, can increase the power conversion efficiency (PCE) of PSC by up to 30%. The defect density and thickness of the absorber layer has been thoroughly investigated. Results show that the device efficiency is highly governed by the defect density of the absorber layer. All the PSCs with a different ETL exhibit PCE exceeding 20% when the defect density of the absorber layer is in the range of 1014 cm−3−1016 cm−3, and degrade dramatically at higher values. With the optimized structure, the simulation found the highest PCE of CsSnGeI3-based PSCs to be 30.98%, with an open circuit voltage (Voc) of 1.22 V, short-circuit current density (Jsc) of 28.18 mA·cm−2, and fill factor (FF) of 89.52%. Our unprecedented results clearly demonstrate that CsSnGeI3-based PSC is an excellent candidate to become the most efficient single-junction solar cell technology soon.
Collapse
|
14
|
Hu B, Zhang J, Guo Z, Lu L, Li P, Chen M, Li C. Manipulating Ion Migration and Interfacial Carrier Dynamics via Amino Acid Treatment in Planar Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15840-15848. [PMID: 35319867 DOI: 10.1021/acsami.2c01640] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Instability caused by the migrating ions is one of the major obstacles toward the large-scale application of metal halide perovskite optoelectronics. Inactivating mobile ions/defects via chemical passivation, e.g., amino acid treatment, is a widely accepted approach to solve that problem. To investigate the detailed interplay, L-phenylalanine (PAA), a typical amino acid, is used to modify the SnO2/MAPbI3 interface. The champion device with PAA treatment maintains 80% of its initial power conversion efficiency (PCE) when stored after 528 h in an ambient condition with the relative humidity exceeding 70%. By employing a wide-field photoluminescence imaging microscope to visualize the ion movement and calculate ionic mobility quantitatively, we propose a model for enhanced stability in perspective of suppressed ion migration. Besides, we reveal that the PAA dipole layer facilitates charge transfer at the interface, enhancing the PCE of devices. Our work may provide an in-depth understanding toward high-efficiency and stable perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Beier Hu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Jing Zhang
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Zhongli Guo
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Lihua Lu
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Puyang Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
| | - Mengyu Chen
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
- Future Display Institute of Xiamen, Xiamen 361005, P.R. China
| | - Cheng Li
- School of Electronic Science and Engineering, Xiamen University, Xiamen 361005, P.R. China
- Future Display Institute of Xiamen, Xiamen 361005, P.R. China
| |
Collapse
|
15
|
Song K, Zhou P, Zong L, Yang Z, Li H, Chen Z. The visible light-triggered nonvolatile memory performances in melamine-decorated <110>-oriented lead halide perovskites: a photo-responsive structural evolution insight. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
Zhong H, Li W, Huang Y, Cao D, Zhang C, Bao H, Guo Z, Wan L, Zhang X, Zhang X, Li Y, Ren X, Wang X, Eder D, Wang K, Liu SF, Wang S. All-Inorganic Perovskite Solar Cells with Tetrabutylammonium Acetate as the Buffer Layer between the SnO 2 Electron Transport Film and CsPbI 3. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5183-5193. [PMID: 35073689 DOI: 10.1021/acsami.1c18375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
All-inorganic CsPbI3 perovskites have great potential in tandem cells in combination with other photovoltaic devices. However, CsPbI3 perovskite solar cells (PSCs) still face a huge challenge, resulting in a low power conversion efficiency (PCE) relative to organic-inorganic PSCs. In this work, we introduced tetrabutylammonium acetate (TBAAc) as a buffer layer between the SnO2 electron-transport layer (ETL) and CsPbI3 all-inorganic perovskite film interface for the first time. TBAAc not only improved the conductivity of SnO2 ETL but also formed a 1D TBAPbI3 layer between the SnO2 ETL and the 3D CsPbI3 all-inorganic perovskite film, thereby enhancing the stability and passivating the surface defects of the CsPbI3 perovskite to fabricate high-efficiency carbon-counter electrode (CE)-based CsPbI3 solar cells. We fabricated carbon-CE-based hole-transporting layer ( HTL)-free PSCs with an FTO/SnO2/TBAAc/CsPbI3/C structure. The open-circuit voltage (Voc), short circuit current density (Jsc), PCE, and fill factor of the champion CsPbI3 PSCs simultaneously enhanced to 1.08 V, 17.48 mA/cm2, 12.79, and 67.8%, respectively. This PCE is currently one of the high efficiencies reported for the above planar-structured carbon-CE-based CsPbI3 PSCs to date. Moreover, the optimized device exhibits excellent stability, which retained over 83% of its initial PCE after 350 h. This work provides a facile way of simultaneous optimization of the SnO2 ETL and the CsPbI3 perovskite layer to fabricate stable and high-efficiency carbon-CE-based CsPbI3 PSCs.
Collapse
Affiliation(s)
- Hang Zhong
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Wenbo Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Yin Huang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Duoling Cao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Congqiang Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Huaxi Bao
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Zhiguang Guo
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Li Wan
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xu Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiuhua Zhang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuebin Li
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xiaoming Ren
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Xianbao Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| | - Dominik Eder
- Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/165, Vienna 1060, Austria
| | - Kai Wang
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shengzhong Frank Liu
- Dalian National Laboratory for Clean Energy, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Shimin Wang
- Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Faculty of Materials Science and Engineering, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
17
|
Ummadisingu A, Mishra A, Kubicki DJ, LaGrange T, Dučinskas A, Siczek M, Bury W, Milić JV, Grätzel M, Emsley L. Multi-Length Scale Structure of 2D/3D Dion-Jacobson Hybrid Perovskites Based on an Aromatic Diammonium Spacer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104287. [PMID: 34816572 DOI: 10.1002/smll.202104287] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Indexed: 05/18/2023]
Abstract
Dion-Jacobson (DJ) iodoplumbates based on 1,4-phenylenedimethanammonium (PDMA) have recently emerged as promising light absorbers for perovskite solar cells. While PDMA is one of the simplest aromatic spacers potentially capable of forming a DJ structure based on (PDMA)An-1 Pbn I3n+1 composition, the crystallographic proof has not been reported so far. Single crystal structure of a DJ phase based on PDMA is presented and high-field solid-state NMR spectroscopy is used to characterize the structure of PDMA-based iodoplumbates prepared as thin films and bulk microcrystalline powders. It is shown that their atomic-level structure does not depend on the method of synthesis and that it is ordered and similar for all iodoplumbate homologues. Moreover, the presence of lower (n) homologues in thin films is identified through UV-Vis spectroscopy, photoluminescence spectroscopy, and X-ray diffraction measurements, complemented by cathodoluminescence mapping. A closer look using cathodoluminescence shows that the micron-scale microstructure corresponds to a mixture of different layered homologues that are well distributed throughout the film and the presence of layer edge states which dominate the emission. This work therefore determines the formation of DJ phases based on PDMA as the spacer cation and reveals their properties on a multi-length scale, which is relevant for their application in optoelectronics.
Collapse
Affiliation(s)
- Amita Ummadisingu
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Aditya Mishra
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Dominik J Kubicki
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Thomas LaGrange
- Laboratory for Ultrafast Microscopy and Electron Scattering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Algirdas Dučinskas
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Miłosz Siczek
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław, 50-383, Poland
| | - Wojciech Bury
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, Wrocław, 50-383, Poland
| | - Jovana V Milić
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland
| |
Collapse
|
18
|
Liu L, Pan K, Xu K, Zhang JZ. Impact of Molecular Ligands in the Synthesis and Transformation between Metal Halide Perovskite Quantum Dots and Magic Sized Clusters. ACS PHYSICAL CHEMISTRY AU 2022; 2:156-170. [PMID: 36855569 PMCID: PMC9718301 DOI: 10.1021/acsphyschemau.1c00047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Metal halide perovskite quantum dots (PQDs) and perovskite magic sized clusters (PMSCs) exhibit interesting size- and composition-dependent optoelectronic properties that are promising for emerging applications including photovoltaic solar cells and light-emitting diodes (LEDs). Much work has focused on developing new synthesis strategies to improve their structural stability and property tunability. In this paper, we review recent progress in the synthesis and characterization of PQDs and PMSCs, with a focus on the impact of different molecular ligands on their surface passivation and interconversion. Moreover, the effect of capping ligands on ion exchange during synthesis and doping is discussed. Finally, we present some perspectives on challenges and opportunities in fundamental studies and potential applications of both PQDs and PMSCs.
Collapse
Affiliation(s)
- Li Liu
- Research Institute
of Agricultural Quality Standards and Testing Technology, Hubei Academy of Agricultural Science, Wuhan 430064, P.R. China,Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Keliang Pan
- Hubei Institute
of Geosciences, Wuhan 430034, P.R. China,Hubei Key Laboratory
of Resource and Ecological Environment Geology, Wuhan 430034, P.R. China,
| | - Ke Xu
- Multiscale Crystal Materials Research Center, Shenzhen
Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Jin Z. Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States,
| |
Collapse
|
19
|
Wang J, Wang W, Chen Y, Song L, Huang W. Growth and Degradation Kinetics of Organic-Inorganic Hybrid Perovskite Films Determined by In Situ Grazing-Incidence X-Ray Scattering Techniques. SMALL METHODS 2021; 5:e2100829. [PMID: 34928020 DOI: 10.1002/smtd.202100829] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/09/2021] [Indexed: 06/14/2023]
Abstract
Organic-inorganic halide perovskite (OIHP) solar cells hold a great promise for commercial breakthrough since their power conversion efficiency has been pushed beyond the mark of 25%, making them capable of competing with traditional crystalline silicon solar cells. The key to achieve efficient and stable perovskite solar cells is inherently related to the film morphology. The understanding of the kinetic processes of film formation and degradation opens up possibilities to tailor the film morphology via the regulation of precursor and processing parameters. In situ grazing-incidence X-ray scattering (GIXS) techniques allow for tracking the morphology evolution of thin films at different length scales and with high temporal resolution. In this review, the selected examples for application of in situ grazing-incidence wide-angle X-ray scattering and grazing-incidence small-angle X-ray scattering techniques to the growth and stability of OIHPs are summarized after a brief introduction to both techniques, highlighting particularly the morphological evolution of perovskite films over time. Then the correlated mathematical models are reviewed to give a toolbox for analyzing the mechanisms of film formation and degradation. Thus, an overview on the in situ GIXS methods is linked to the research of OIHP kinetics.
Collapse
Affiliation(s)
- Jian Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yonghua Chen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
| | - Lin Song
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing, Jiangsu, 211816, China
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), and Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
20
|
Zhuang J, Chen Z, Wang K, Zhang Y, An Q. Significant Aggregation-Enhanced Carrier Separation in Nanoscopic Catalysts Heterojunction Stacks. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56620-56629. [PMID: 34786937 DOI: 10.1021/acsami.1c09050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanoscopic heterojunction stacks are prevalent in nature as well as in artificial material systems, such as the nanoscopically blended components in soil or artificial catalytic layers on device surfaces. Despite the enormous attention placed on studying individual heterojunctions, the advantageous catalytic performance of heterojunction aggregates has not been recognized. In this study, we employ the ordered N-doped TiO2 nanosheets and Au nanoparticle heterojunction multilayers obtained by a layer-by-layer technique to investigate the functional merits stemmed from heterojunction aggregates. The study demonstrates that nanoscopic heterojunction stacks promote the internal electric field that stemmed from charge separation and boost carrier separations. The aggregate-enhanced carrier separation can be harnessed in chemical conversions. The enhancement effect is influenced by both the dimensions of the entire aggregates as well as the dimensions of the nanoscopic building units. We expect the study to promote the understanding of heterojunction catalysts and corresponding matter conversion from the individual particulate level to the nanoscopic aggregate level and facilitate better harnessing of the photovoltaic effects or catalytic power in nanoscopic heterojunction aggregates.
Collapse
Affiliation(s)
- Jialin Zhuang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhensheng Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Keli Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| | - Qi An
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Sciences and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
21
|
Lin CT, Xu W, Macdonald TJ, Ngiam J, Kim JH, Du T, Xu S, Tuladhar PS, Kang H, Lee K, Durrant JR, McLachlan MA. Correlating the Active Layer Structure and Composition with the Device Performance and Lifetime of Amino-Acid-Modified Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43505-43515. [PMID: 34472327 DOI: 10.1021/acsami.1c08279] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Additive engineering is emerging as a powerful strategy to further enhance the performance of perovskite solar cells (PSCs), with the incorporation of bulky cations and amino acid (AA) derivatives being shown as a promising strategy for enhanced device stability. However, the incorporation of such additives typically results in photocurrent losses owing to their saturated carbon backbones, hindering charge transport and collection. Here, we investigate the use of AAs with varying carbon chain lengths as zwitterionic additives to enhance the PSC device stability, in air and nitrogen, under illumination. We, however, discovered that the device stability is insensitive to the chain length as the anticipated photocurrent drops as the chain length increases. Using glycine as an additive results in an improvement in the open circuit voltage from 1.10 to 1.14 V and a resulting power conversion efficiency of 20.2% (20.1% stabilized). Using time-of-flight secondary ion mass spectrometry, we confirm that the AAs reside at the surfaces and interfaces of our perovskite films and propose the mechanisms by which stability is enhanced. We highlight this with glycine as an additive, whereby an 8-fold increase in the device lifetime in ambient air at 1 sun illumination is recorded. Short-circuit photoluminescence quenching of complete devices is reported, which reveals that the loss in photocurrent density observed with longer carbon chain AAs results from the inefficient charge extraction from the perovskite absorber layer. These combined results demonstrate new fundamental understandings about the photophysical processes of additive engineering using AAs and provide a significant step forward in improving the stability of high-performance PSCs.
Collapse
Affiliation(s)
- Chieh-Ting Lin
- Department of Materials and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Weidong Xu
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Thomas J Macdonald
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Jonathan Ngiam
- Department of Materials and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Ju-Hyeon Kim
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Tian Du
- Department of Materials and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Shengda Xu
- Department of Materials and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Pabitra Shakya Tuladhar
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| | - Hongkyu Kang
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Kwanghee Lee
- Heeger Center for Advanced Materials and Research Institute for Solar and Sustainable Energies, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - James R Durrant
- Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
- SPECIFIC IKC, College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, U.K
| | - Martyn A McLachlan
- Department of Materials and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K
| |
Collapse
|
22
|
Li H, Hao X, Chang B, Li Z, Wang L, Pan L, Chen X, Yin L. Stiffening the Pb-X Framework through a π-Conjugated Small-Molecule Cross-Linker for High-Performance Inorganic CsPbI 2Br Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40489-40501. [PMID: 34405676 DOI: 10.1021/acsami.1c06533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Inorganic CsPbI2Br perovskites have witnessed incredible advances as a promising representative for translucent and tandem solar cells, but unfortunately, they are still plagued by serious energy losses and undesired phase instability. Herein, a new type of π-conjugated small molecule of 4-guanidinobenzoic-acid-hydrochloride (4-GBACl) is demonstrated to effectively cross-link the Pb-X framework of perovskites. The strong coordination between 4-GBACl and the [PbX6]4- octahedron of perovskites effectively stiffens the Pb-X framework to suppress the ion migration, thus stabilizing the perovskite phase structure against light and thermal conditions. Apart from the physical barrier for phase instability resulting from the hydrophobic benzene ring at grain boundaries (GBs), guanidinium cations and -COOH and Cl- groups can simultaneously afford the passivation of positively and negatively charged defects at the GBs and surface, including undercoordinated halide species and undercoordinated Pb2+ ions, thereby effectively inhibiting the charge trapping/recombination centers. Two-dimensional confocal-fluorescence mapping images provide a visualized sight into the significantly suppressed nonradiative recombination and the prolonged carrier lifetime. It is suggested that the 4-GBACl additive plays multiple roles in grain cross-linking to regulate crystallization, distinctly reducing the trap-state density, ion migration inhibition, and moisture barrier in CsPbI2Br films. Consequently, the 4-GBACl-treated device exhibits a champion power conversion efficiency (PCE) of 15.59% accompanied with a considerably improved Voc of 1.28 V and maintains 88% of the initial PCE value after 1200 h aging under 20% relative humidity.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Xiaotao Hao
- State Key Laboratory of Crystal Materials, School of Physics, Shandong University, Jinan 250100, P. R.China
| | - Bohong Chang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Zihao Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Lian Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Lu Pan
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| | - Xihan Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, P. R.China
| | - Longwei Yin
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan 250061, P. R.China
| |
Collapse
|
23
|
Hu W, Wen Z, Yu X, Qian P, Lian W, Li X, Shang Y, Wu X, Chen T, Lu Y, Wang M, Yang S. In Situ Surface Fluorination of TiO 2 Nanocrystals Reinforces Interface Binding of Perovskite Layer for Highly Efficient Solar Cells with Dramatically Enhanced Ultraviolet-Light Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004662. [PMID: 34026459 PMCID: PMC8132056 DOI: 10.1002/advs.202004662] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Low-temperature solution-processed TiO2 nanocrystals (LT-TiO2) have been extensively applied as electron transport layer (ETL) of perovskite solar cells (PSCs). However, the low electron mobility, high density of electronic trap states, and considerable photocatalytic activity of TiO2 result in undesirable charge recombination at the ETL/perovskite interface and notorious instability of PSCs under ultraviolet (UV) light. Herein, LT-TiO2 nanocrystals are in situ fluorinated via a simple nonhydrolytic method, affording formation of Ti─F bonds, and consequently increase electron mobility, decrease density of electronic trap states, and inhibit photocatalytic activity. Upon applying fluorinated TiO2 nanocrystals (F-TiO2) as ETL, regular-structure planar heterojunction PSC (PHJ-PSC) achieves a champion power conversion efficiency (PCE) of 22.68%, which is among the highest PCEs for PHJ-PSCs based on LT-TiO2 ETLs. Flexible PHJ-PSC devices based on F-TiO2 ETL exhibit the best PCE of 18.26%, which is the highest value for TiO2-based flexible devices. The bonded F atoms on the surface of TiO2 promote the formation of Pb─F bonds and hydrogen bonds between F- and FA/MA organic cations, reinforcing interface binding of perovskite layer with TiO2 ETL. This contributes to effective passivation of the surface trap states of perovskite film, resulting in enhancements of device efficiency and stability especially under UV light.
Collapse
Affiliation(s)
- Wanpei Hu
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhiling Wen
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Xin Yu
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Peisen Qian
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Weitao Lian
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Xingcheng Li
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Yanbo Shang
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Yalin Lu
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Mingtai Wang
- Institute of Solid State PhysicsHefei Institutes of Physical ScienceChinese Academy of SciencesHefei230031China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at MicroscaleCAS Key Laboratory of Materials for Energy ConversionAnhui Laboratory of Advanced Photon Science and TechnologyDepartment of Materials Science and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
24
|
Gourmet powder functionalization of SnO2 for high-performance perovskite solar cells made in air. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.137812] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
25
|
Patel PK. Device simulation of highly efficient eco-friendly CH 3NH 3SnI 3 perovskite solar cell. Sci Rep 2021; 11:3082. [PMID: 33542464 PMCID: PMC7862250 DOI: 10.1038/s41598-021-82817-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 01/18/2021] [Indexed: 11/09/2022] Open
Abstract
Photoexcited lead-free perovskite CH3NH3SnI3 based solar cell device was simulated using a solar cell capacitance simulator. It was modeled to investigate its output characteristics under AM 1.5G illumination. Simulation efforts are focused on the thickness, acceptor concentration and defect density of absorber layer on photovoltaic properties of solar cell device. In addition, the impact of various metal contact work function was also investigated. The simulation results indicate that an absorber thickness of 500 nm is appropriate for a good photovoltaic cell. Oxidation of Sn2+ into Sn4+ was considered and it is found that the reduction of acceptor concentration of absorber layer significantly improves the device performance. Further, optimizing the defect density (1014 cm-3) of the perovskite absorber layer, encouraging results of the Jsc of 40.14 mA/cm2, Voc of 0.93 V, FF of 75.78% and PCE of 28.39% were achieved. Finally, an anode material with a high work function is necessary to get the device's better performance. The high-power conversion efficiency opens a new avenue for attaining clean energy.
Collapse
Affiliation(s)
- Piyush K Patel
- Renewable Energy Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal, M. P., India.
| |
Collapse
|
26
|
Arumugam GM, Karunakaran SK, Liu C, Zhang C, Guo F, Wu S, Mai Y. Inorganic hole transport layers in inverted perovskite solar cells: A review. NANO SELECT 2021. [DOI: 10.1002/nano.202000200] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Gowri Manohari Arumugam
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Santhosh Kumar Karunakaran
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science and Engineering Sun Yat‐sen University Guangzhou 510275 P.R. China
- Key Laboratory of Polymeric Composite and Functional Materials of Ministry of Education Sun Yat‐Sen University Guangzhou 510275 P.R. China
| | - Chong Liu
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Cuiling Zhang
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Fei Guo
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Shaohang Wu
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| | - Yaohua Mai
- Institute of New Energy Technology College of Information Science and Technology Jinan University Guangzhou 510632 China
| |
Collapse
|
27
|
Galatopoulos F, Papadas IT, Ioakeimidis A, Eleftheriou P, Choulis SA. Surface Treatment of Cu:NiOx Hole-Transporting Layer Using β-Alanine for Hysteresis-Free and Thermally Stable Inverted Perovskite Solar Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1961. [PMID: 33019734 PMCID: PMC7599611 DOI: 10.3390/nano10101961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 09/25/2020] [Accepted: 09/30/2020] [Indexed: 11/17/2022]
Abstract
Inverted perovskite solar cells (PSCs) using a Cu:NiOx hole transporting layer (HTL) often exhibit stability issues and in some cases J/V hysteresis. In this work, we developed a β-alanine surface treatment process on Cu:NiOx HTL that provides J/V hysteresis-free, highly efficient, and thermally stable inverted PSCs. The improved device performance due to β-alanine-treated Cu:NiOx HTL is attributed to the formation of an intimate Cu:NiOx/perovskite interface and reduced charge trap density in the bulk perovskite active layer. The β-alanine surface treatment process on Cu:NiOx HTL eliminates major thermal degradation mechanisms, providing 40 times increased lifetime performance under accelerated heat lifetime conditions. By using the proposed surface treatment, we report optimized devices with high power conversion efficiency (PCE) (up to 15.51%) and up to 1000 h lifetime under accelerated heat lifetime conditions (60 °C, N2).
Collapse
Affiliation(s)
| | | | | | | | - Stelios A. Choulis
- Molecular Electronics and Photonics Research Unit, Department of Mechanical Engineering and Materials Science and Engineering, Cyprus University of Technology, 3603 Limassol, Cyprus; (F.G.); (I.T.P.); (A.I.); (P.E.)
| |
Collapse
|
28
|
Lin H, Lee J, Han J, Lee C, Seo S, Tan S, Lee HM, Choi EJ, Strano MS, Yang Y, Maruyama S, Jeon I, Matsuo Y, Oh J. Denatured M13 Bacteriophage-Templated Perovskite Solar Cells Exhibiting High Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2000782. [PMID: 33101847 PMCID: PMC7578877 DOI: 10.1002/advs.202000782] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/28/2020] [Indexed: 06/01/2023]
Abstract
The M13 bacteriophage, a nature-inspired environmentally friendly biomaterial, is used as a perovskite crystal growth template and a grain boundary passivator in perovskite solar cells. The amino groups and carboxyl groups of amino acids on the M13 bacteriophage surface function as Lewis bases, interacting with the perovskite materials. The M13 bacteriophage-added perovskite films show a larger grain size and reduced trap-sites compared with the reference perovskite films. In addition, the existence of the M13 bacteriophage induces light scattering effect, which enhances the light absorption particularly in the long-wavelength region around 825 nm. Both the passivation effect of the M13 bacteriophage coordinating to the perovskite defect sites and the light scattering effect intensify when the M13 virus-added perovskite precursor solution is heated at 90 °C prior to the film formation. Heating the solution denatures the M13 bacteriophage by breaking their inter- and intra-molecular bondings. The denatured M13 bacteriophage-added perovskite solar cells exhibit an efficiency of 20.1% while the reference devices give an efficiency of 17.8%. The great improvement in efficiency comes from all of the three photovoltaic parameters, namely short-circuit current, open-circuit voltage, and fill factor, which correspond to the perovskite grain size, trap-site passivation, and charge transport, respectively.
Collapse
Affiliation(s)
- Hao‐Sheng Lin
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Department of Chemical EngineeringMassachusetts Insititute of TechonologyCambridgeMA02139USA
| | - Jong‐Min Lee
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Jiye Han
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Changsoo Lee
- Department of Materials Science and EngineeringKAIST291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seungju Seo
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
| | - Shaun Tan
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Hyuck Mo Lee
- Department of Materials Science and EngineeringKAIST291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Eun Jung Choi
- Research Center for BIT Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| | - Michael S. Strano
- Department of Chemical EngineeringMassachusetts Insititute of TechonologyCambridgeMA02139USA
| | - Yang Yang
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
| | - Shigeo Maruyama
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Energy NanoEngineering LaboratoryNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305‐8564Japan
| | - Il Jeon
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Department of Materials Science and Engineering and California Nano Systems InstituteUniversity of CaliforniaLos AngelesCA90095USA
- Department of Chemistry EducationGraduate School of Chemical MaterialsInstitute for Plastic Information and Energy MaterialsPusan National University63‐2 Busandaehak‐roBusan46241Republic of Korea
| | - Yutaka Matsuo
- Department of Mechanical EngineeringSchool of EngineeringThe University of TokyoTokyo113‐8656Japan
- Institutes of Innovation for Future SocietyNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Jin‐Woo Oh
- Research Center for Energy Convergence and TechnologyPusan National UniversityBusan46241Republic of Korea
- Department of Nano Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
- Research Center for BIT Fusion TechnologyPusan National UniversityBusan46241Republic of Korea
| |
Collapse
|
29
|
Ali J, Li Y, Gao P, Hao T, Song J, Zhang Q, Zhu L, Wang J, Feng W, Hu H, Liu F. Interfacial and structural modifications in perovskite solar cells. NANOSCALE 2020; 12:5719-5745. [PMID: 32118223 DOI: 10.1039/c9nr10788f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The rapid and continuous progress made in perovskite solar cell (PSC) technology has drawn considerable attention from the photovoltaic research community, and the application of perovskites in other electronic devices (such as photodetectors, light-emitting diodes, and batteries) has become imminent. Because of the diversity in device configurations, optimization of film deposition, and exploration of material systems, the power conversion efficiency (PCE) of PSCs has been certified to be as high as 25.2%, making this type of solar cells the fastest advancing technology until now. As demonstrated by researchers worldwide, controlling the morphology and defects in perovskite films is essential for attaining high-performance PSCs. In this regard, interface engineering has proven to be a very efficient way to address these issues, obtaining better charge collection efficiency, and reducing recombination losses. In this review, the interfacial modification between perovskite films and charge-transport layers (CTLs) as well as CTLs and electrodes of PSCs has been widely summarized. Grain boundary (GB) engineering and stress engineering are also included since they are closely related to the improvement in device performance and stability.
Collapse
Affiliation(s)
- Jazib Ali
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Yu Li
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Peng Gao
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Tianyu Hao
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Jingnan Song
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Quanzeng Zhang
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Lei Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jing Wang
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China.
| | - Wei Feng
- State Key Laboratory of Fluorinated Materials, Zibo City, Shandong Province 256401, China
| | - Hailin Hu
- Instituto de Energías Renovables, UNAM, Priv. Xochicalco S/N, Temixco, Morelos 62580, Mexico
| | - Feng Liu
- School of Physics and Astronomy, and Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, 200240, Shanghai, China. and Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China and Center for Advanced Electronic Materials and Devices, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
30
|
|
31
|
Chen J, Park NG. Causes and Solutions of Recombination in Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803019. [PMID: 30230045 DOI: 10.1002/adma.201803019] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/10/2018] [Indexed: 05/20/2023]
Abstract
Organic-inorganic hybrid perovskite materials are receiving increasing attention and becoming star materials on account of their unique and intriguing optical and electrical properties, such as high molar extinction coefficient, wide absorption spectrum, low excitonic binding energy, ambipolar carrier transport property, long carrier diffusion length, and high defects tolerance. Although a high power conversion efficiency (PCE) of up to 22.7% is certified for perovskite solar cells (PSCs), it is still far from the theoretical Shockley-Queisser limit efficiency (30.5%). Obviously, trap-assisted nonradiative (also called Shockley-Read-Hall, SRH) recombination in perovskite films and interface recombination should be mainly responsible for the above efficiency distance. Here, recent research advancements in suppressing bulk SRH recombination and interface recombination are systematically investigated. For reducing SRH recombination in the films, engineering perovskite composition, additives, dimensionality, grain orientation, nonstoichiometric approach, precursor solution, and post-treatment are explored. The focus herein is on the recombination at perovskite/electron-transporting material and perovskite/hole-transporting material interfaces in normal or inverted PSCs. Strategies for suppressing bulk and interface recombination are described. Additionally, the effect of trap-assisted nonradiative recombination on hysteresis and stability of PSCs is discussed. Finally, possible solutions and reasonable prospects for suppressing recombination losses are presented.
Collapse
Affiliation(s)
- Jiangzhao Chen
- School of Chemical Engineering, Sungkyunkwan Univeristy (SKKU), Suwon, 440-746, Korea
| | - Nam-Gyu Park
- School of Chemical Engineering, Sungkyunkwan Univeristy (SKKU), Suwon, 440-746, Korea
| |
Collapse
|
32
|
Yao X, Zheng L, Zhang X, Xu W, Hu W, Gong X. Efficient Perovskite Solar Cells through Suppressed Nonradiative Charge Carrier Recombination by a Processing Additive. ACS APPLIED MATERIALS & INTERFACES 2019; 11:40163-40171. [PMID: 31593427 DOI: 10.1021/acsami.9b15607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It has been reported that nonradiative charge carrier recombination in hybrid perovskite materials restricts the device performance of perovskite solar cells. In this study, we report efficient perovskite solar cells through suppressed nonradiative charge carrier recombination by a processing additive, aminopropanoic acid. It is found that aminopropanoic acid not only modulates the crystal growth processes but also minimizes the defects of CH3NH3PbI3 thin films. Moreover, the CH3NH3PbI3 thin films processed with the addition of aminopropanoic acid exhibit both enhanced photoluminescence and electroluminescence and elongated charge carrier lifetime, indicating that nonradiative charge carrier recombination within the CH3NH3PbI3 thin films is drastically suppressed. As a result, perovskite solar cells fabricated using the CH3NH3PbI3 thin films processed with the addition of aminopropanoic acid exhibit approximately 15% enhanced efficiency as compared with those made with pristine CH3NH3PbI3 thin films. All of these results demonstrate that our findings provide a facile way to improve the efficiency of perovskite solar cells.
Collapse
Affiliation(s)
- Xiang Yao
- Institute of Molecular Plus , Tianjin University , Tianjin 300072 , P. R. China
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science , Tianjin University and Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Luyao Zheng
- Department of Polymer Engineering, College of Polymer Science and Polymer Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Xiaotao Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science , Tianjin University and Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Wenzhan Xu
- Department of Polymer Engineering, College of Polymer Science and Polymer Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, School of Science , Tianjin University and Collaborative Innovation Centre of Chemical Science and Engineering , Tianjin 300072 , P. R. China
| | - Xiong Gong
- Department of Polymer Engineering, College of Polymer Science and Polymer Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
33
|
Alanazi AQ, Kubicki DJ, Prochowicz D, Alharbi EA, Bouduban MEF, Jahanbakhshi F, Mladenović M, Milić JV, Giordano F, Ren D, Alyamani AY, Albrithen H, Albadri A, Alotaibi MH, Moser JE, Zakeeruddin SM, Rothlisberger U, Emsley L, Grätzel M. Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR. J Am Chem Soc 2019; 141:17659-17669. [PMID: 31593456 DOI: 10.1021/jacs.9b07381] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical doping of inorganic-organic hybrid perovskites is an effective way of improving the performance and operational stability of perovskite solar cells (PSCs). Here we use 5-ammonium valeric acid iodide (AVAI) to chemically stabilize the structure of α-FAPbI3. Using solid-state MAS NMR, we demonstrate the atomic-level interaction between the molecular modulator and the perovskite lattice and propose a structural model of the stabilized three-dimensional structure, further aided by density functional theory (DFT) calculations. We find that one-step deposition of the perovskite in the presence of AVAI produces highly crystalline films with large, micrometer-sized grains and enhanced charge-carrier lifetimes, as probed by transient absorption spectroscopy. As a result, we achieve greatly enhanced solar cell performance for the optimized AVA-based devices with a maximum power conversion efficiency (PCE) of 18.94%. The devices retain 90% of the initial efficiency after 300 h under continuous white light illumination and maximum-power point-tracking measurement.
Collapse
Affiliation(s)
- Anwar Q Alanazi
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Dominik J Kubicki
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Daniel Prochowicz
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Essa A Alharbi
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Marine E F Bouduban
- Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering, Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne CH-1015 Lausanne , Switzerland
| | - Farzaneh Jahanbakhshi
- Laboratory of Computational Chemistry and Biochemistry (LCBC) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marko Mladenović
- Laboratory of Computational Chemistry and Biochemistry (LCBC) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland.,Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade , University of Belgrade , Pregrevica 118 , 11080 Belgrade , Serbia
| | - Jovana V Milić
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Fabrizio Giordano
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Dan Ren
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ahmed Y Alyamani
- National Center for Nanotechnology , King Abdulaziz City for Science and Technology , P.O. Box 6086, Riyadh 11442 , Saudi Arabia
| | - Hamad Albrithen
- National Center for Nanotechnology , King Abdulaziz City for Science and Technology , P.O. Box 6086, Riyadh 11442 , Saudi Arabia.,Physics and Astronomy Department-Research Chair for Tribology, Surface and Interface Sciences, College of Science, and King Abdullah Institute for Nanotechnology-Aramco Laboratory for Applied Sensing Research , King Saud University , P.O. Box 2455, Riyadh 11451 , Saudi Arabia
| | - Abdulrahman Albadri
- National Center for Nanotechnology , King Abdulaziz City for Science and Technology , P.O. Box 6086, Riyadh 11442 , Saudi Arabia
| | - Mohammad Hayal Alotaibi
- National Center for Nanotechnology , King Abdulaziz City for Science and Technology , P.O. Box 6086, Riyadh 11442 , Saudi Arabia
| | - Jacques-E Moser
- Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering, Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne CH-1015 Lausanne , Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry (LCBC) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| |
Collapse
|
34
|
Ngo TT, Masi S, Mendez PF, Kazes M, Oron D, Seró IM. PbS quantum dots as additives in methylammonium halide perovskite solar cells: the effect of quantum dot capping. NANOSCALE ADVANCES 2019; 1:4109-4118. [PMID: 36132121 PMCID: PMC9417732 DOI: 10.1039/c9na00475k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 05/31/2023]
Abstract
Colloidal PbS quantum dots (QDs) have been successfully employed as additives in halide perovskite solar cells (PSCs) acting as nucleation centers in the perovskite crystallization process. For this strategy, the surface functionalization of the QDs, controlled via the use of different capping ligands, is likely of key importance. In this work, we examine the influence of the PbS QD capping on the photovoltaic performance of methylammonium lead iodide PSCs. We test PSCs fabricated with PbS QD additives with different capping ligands including methylammonium lead iodide (MAPI), cesium lead iodide (CsPI) and 4-aminobenzoic acid (ABA). Both the presence of PbS QDs and the specific capping used have a significant effect on the properties of the deposited perovskite layer, which affects, in turn, the photovoltaic performance. For all capping ligands used, the inclusion of PbS QDs leads to the formation of perovskite films with larger grain size, improving, in addition, the crystalline preferential orientation and the crystallinity. Yet, differences between the capping agents were observed. The use of QDs with ABA capping had a higher impact on the morphological properties while the employment of the CsPI ligand was more effective in improving the optical properties of the perovskite films. Taking advantage of the improved properties, PSCs based on the perovskite films with embedded PbS QDs exhibit an enhanced photovoltaic performance, showing the highest increase with ABA capping. Moreover, bulk recombination via trap states is reduced when the ABA ligand is used for capping of the PbS QD additives in the perovskite film. We demonstrate how surface chemistry engineering of PbS QD additives in solution-processed perovskite films opens a new approach towards the design of high quality materials, paving the way to improved optoelectronic properties and more efficient photovoltaic devices.
Collapse
Affiliation(s)
- Thi Tuyen Ngo
- Institute of Advanced Materials (INAM), Jaume I University 12006 Castellón Spain
| | - Sofia Masi
- Institute of Advanced Materials (INAM), Jaume I University 12006 Castellón Spain
| | - Perla F Mendez
- Institute of Advanced Materials (INAM), Jaume I University 12006 Castellón Spain
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, Cd. Universitaria Av. de las Américas y Josefa Ortiz S/N 80000 Culiacán Sinaloa Mexico
| | - Miri Kazes
- Department of Physics of Complex Systems, Weizmann Institute of Science Rehovot 76100 Israel
| | - Dan Oron
- Department of Physics of Complex Systems, Weizmann Institute of Science Rehovot 76100 Israel
| | - Iván Mora Seró
- Institute of Advanced Materials (INAM), Jaume I University 12006 Castellón Spain
| |
Collapse
|
35
|
Yang Y, Liu C, Ding Y, Arain Z, Wang S, Liu X, Hayat T, Alsaedi A, Dai S. Eliminating Charge Accumulation via Interfacial Dipole for Efficient and Stable Perovskite Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34964-34972. [PMID: 31482702 DOI: 10.1021/acsami.9b11229] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elimination of interfacial charge trapping is still a challenge for promoting both efficiency and operational stability of organic-inorganic perovskite solar cells (PSCs). Herein, an effective interface dipole, trimethylamine oxide (TMAO) regarded as a connecting bridge, is inserted between the electron transport layer (ETL) and the perovskite layer to suppress charge accumulation and fabricate highly efficient and stable PSCs. As demonstrated by energy level alignment and morphology characterization, TMAO dipoles could achieve a decreased energetic barrier of electron transport and substantial padding of perovskite in the mesoporous ETL. Thus, they facilitate the charge transfer and reduce trapped charge densities as well as recombination centers at the interface between perovskite and ETL. These desirable properties improve the device efficiency to 21.77% and weaken the hysteresis index almost to 0. More importantly, the stability of the unencapsulated PSCs is remarkably enhanced. The findings provide valuable insights into the role of a dipolar molecule in boosting the performance of PSC devices.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources , North China Electric Power University , Beijing 102206 , P. R. China
| | - Cheng Liu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources , North China Electric Power University , Beijing 102206 , P. R. China
| | - Yong Ding
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources , North China Electric Power University , Beijing 102206 , P. R. China
| | - Zulqarnain Arain
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources , North China Electric Power University , Beijing 102206 , P. R. China
- Energy System Engineering Department , Sukkur IBA University , Sukkur 65200 , Pakistan
| | - Shiqiang Wang
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources , North China Electric Power University , Beijing 102206 , P. R. China
| | - Xuepeng Liu
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources , North China Electric Power University , Beijing 102206 , P. R. China
| | - Tasawar Hayat
- NAAM Research Group, Department of Mathematics, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | - Ahmed Alsaedi
- NAAM Research Group, Department of Mathematics, Faculty of Science , King Abdulaziz University , Jeddah 21589 , Saudi Arabia
| | - Songyuan Dai
- State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources , North China Electric Power University , Beijing 102206 , P. R. China
| |
Collapse
|
36
|
Zhao JS, Wang HY, Yu M, Hao MY, Yuan S, Qin Y, Fu LM, Zhang JP, Ai XC. Charge carrier recombination dynamics in a bi-cationic perovskite solar cell. Phys Chem Chem Phys 2019; 21:5409-5415. [PMID: 30785439 DOI: 10.1039/c8cp07461e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The compositional engineering is of great importance to tune the electrical and optical properties of perovskite and improve the photovoltaic performance of perovskite solar cells. The exploration of the corresponding photoelectric conversion processes, especially the carrier recombination dynamics, will contribute to the optimization of the devices. In this work, perovskite with mixed methylammonium (MA) and formamidinium (FA) as organic cations, MA0.4FA0.6PbI3, is fabricated to study the influence of the bi-cation on the charge carrier recombination dynamics. X-ray diffraction analysis indicates the existence of the MAPbI3-FAPbI3 phase segregation in the bi-cationic perovskite crystal. The time-resolved photoluminescence dynamics presents a relatively fast carrier recombination process ascribed to the charge transfer from MAPbI3 to FAPbI3 in the bi-cationic perovskite film. The carrier recombination dynamics investigated by transient photovoltage measurements reveals a biphasic trap-assisted carrier recombination mechanism in the bi-cationic device, which involves carrier recombination in the MAPbI3 phase and FAPbI3 phase, respectively. The ultimate presentation of the carrier recombination process is closely related to the charge transfer between the two perovskite phases.
Collapse
Affiliation(s)
- Jia-Shang Zhao
- Department of Chemistry, Renmin University of China, Beijing 100872, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hu W, Zhou W, Lei X, Zhou P, Zhang M, Chen T, Zeng H, Zhu J, Dai S, Yang S, Yang S. Low-Temperature In Situ Amino Functionalization of TiO 2 Nanoparticles Sharpens Electron Management Achieving over 21% Efficient Planar Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1806095. [PMID: 30633399 DOI: 10.1002/adma.201806095] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/06/2018] [Indexed: 06/09/2023]
Abstract
Titanium oxide (TiO2 ) has been commonly used as an electron transport layer (ETL) of regular-structure perovskite solar cells (PSCs), and so far the reported PSC devices with power conversion efficiencies (PCEs) over 21% are mostly based on mesoporous structures containing an indispensable mesoporous TiO2 layer. However, a high temperature annealing (over 450 °C) treatment is mandatory, which is incompatible with low-cost fabrication and flexible devices. Herein, a facile one-step, low-temperature, nonhydrolytic approach to in situ synthesizing amino-functionalized TiO2 nanoparticles (abbreviated as NH2 -TiO2 NPs) is developed by chemical bonding of amino (-NH2 ) groups, via TiN bonds, onto the surface of TiO2 NPs. NH2 -TiO2 NPs are then incorporated as an efficient ETL in n-i-p planar heterojunction (PHJ) PSCs, affording PCE over 21%. Cs0.05 FA0.83 MA0.12 PbI2.55 Br0.45 (abbreviated as CsFAMA) PHJ PSC devices based on NH2 -TiO2 ETL exhibit the best PCE of 21.33%, which is significantly higher than that of the devices based on the pristine TiO2 ETL (19.82%) and is close to the record PCE for devices with similar structures and fabrication procedures. Besides, due to the passivation of the surface trap states of perovskite film, the hysteresis of current-voltage response is significantly suppressed, and the ambient stability of devices is improved upon amino functionalization.
Collapse
Affiliation(s)
- Wanpei Hu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Weiran Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Xunyong Lei
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Pengcheng Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Mengmeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Hualing Zeng
- International Center for Quantum Design of Functional Materials (ICQD), Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| | - Jun Zhu
- Key Lab of Special Display Technology, Ministry of Education, National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology, Hefei, 230009, China
| | - Songyuan Dai
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University, Beijing, 102206, China
| | - Shihe Yang
- Guangdong Key Lab of Nano-Micro Material Research, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China (USTC), Hefei, 230026, China
| |
Collapse
|
38
|
Chen J, Kim SG, Park NG. FA 0.88 Cs 0.12 PbI 3-x (PF 6 ) x Interlayer Formed by Ion Exchange Reaction between Perovskite and Hole Transporting Layer for Improving Photovoltaic Performance and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1801948. [PMID: 30141262 DOI: 10.1002/adma.201801948] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/05/2018] [Indexed: 05/06/2023]
Abstract
Interface engineering to form an interlayer via ion exchange reaction is reported. A FA0.88 Cs0.12 PbI3 formamidinium (FA) perovskite layer is first prepared, then FAPF6 solution with different concentrations is spin-coated on top of the perovskite film, which leads to a partial substitution of iodide by PF6- ion. The second phase with nominal composition of FA0.88 Cs0.12 PbI3-x (PF6 )x is grown at the grain boundary, which has island morphology and its size depends on the FAPF6 solution concentration. The lattice is expanded and bandgap is reduced due to inclusion of larger PF6- ions. The power conversion efficiency (PCE) is significantly enhanced from 17.8% to 19.3% as a consequence of improved fill factor and open-circuit voltage (Voc ). In addition, current-voltage hysteresis is reduced. Post-treatment with FAPF6 reduces defect density and enhances carrier lifetime, which is responsible for the improved photovoltaic performance and reduced hysteresis. The unencapsulated device with post-treated perovskite film demonstrates better stability than the pristine perovskite, where the initial PCE retains over 80% after 528 h exposure under relative humidity of around 50-70% in the dark and 92% after 360 h under one sun illumination.
Collapse
Affiliation(s)
- Jiangzhao Chen
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, South Korea
| | - Seul-Gi Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, South Korea
| | - Nam-Gyu Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 440-746, South Korea
| |
Collapse
|
39
|
Shih YC, Wang L, Hsieh HC, Lin KF. Effect of Fullerene Passivation on the Charging and Discharging Behavior of Perovskite Solar Cells: Reduction of Bound Charges and Ion Accumulation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:11722-11731. [PMID: 29557169 DOI: 10.1021/acsami.8b03116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ion accumulation of organometal halide perovskites (OHPs) induced by electrode polarization of perovskite solar cells (PSCs) under illumination has been intensely studied and associated with a widely observed current-voltage hysteresis behavior. This work is dedicated to the investigation of the behavior of charged species at the compact TiO2/OHP interface with respect to electrode polarization in PSC devices. By providing a comprehensive discussion of open-circuit voltage ( VOC) buildup and VOC decay under illumination and in the dark for the PSCs modified with [6,6]-phenyl-C61 butyric acid methyl ester (PCBM) at the TiO2/OHP interface and their corresponding electrochemical impedance spectroscopies (EISs), a justified mechanism is proposed attempting to elucidate the dynamics of interfacial species with respect to the time and frequency domains. Our results demonstrate that the retarded VOC buildup and decay observed in PSC devices are related to the formation of bound charges in TiO2, which is essential to neutralize the oppositely charged ions accumulating at the OHP side. Besides, inserting a thicker PCBM at the TiO2/OHP interface as a passivation layer can alleviate the electrode polarization more efficiently as verified by the low dielectric constant measured from EIS. Moreover, photoluminescence measurements indicate that PCBM at the TiO2/OHP interface is capable of passivating a trap state and improving charge transfer. However, with respect to the time scale investigated in this work, the reduction of the hysteresis behavior on a millisecond scale is more likely due to less bound charge formation at the interface rather than shallow trap-state passivation by PCBM. After all, this work comprehensively demonstrates the interfacial properties of PSCs associated with PCBM passivation and helps to further understand its impact on charging/discharging as well as device performance.
Collapse
|
40
|
Zhou W, Zhou P, Lei X, Fang Z, Zhang M, Liu Q, Chen T, Zeng H, Ding L, Zhu J, Dai S, Yang S. Phase Engineering of Perovskite Materials for High-Efficiency Solar Cells: Rapid Conversion of CH 3NH 3PbI 3 to Phase-Pure CH 3NH 3PbCl 3 via Hydrochloric Acid Vapor Annealing Post-Treatment. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1897-1908. [PMID: 29271198 DOI: 10.1021/acsami.7b15008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Organometal halide CH3NH3PbI3 (MAPbI3) has been commonly used as the light absorber layer of perovskite solar cells (PSCs), and, especially, another halide element chlorine (Cl) has been often incorporated to assist the crystallization of perovskite film. However, in most cases, a predominant MAPbI3 phase with trace of Cl- is obtained ultimately and the role of Cl involvement remains unclear. Herein, we develop a low-cost and facile method, named hydrochloric acid vapor annealing (HAVA) post-treatment, and realize a rapid conversion of MAPbI3 to phase-pure MAPbCl3, demonstrating a new concept of phase engineering of perovskite materials toward efficiency enhancement of PSCs for the first time. The average grain size of perovskite film after HAVA post-treatment increases remarkably through an Ostwald ripening process, leading to a denser and smoother perovskite film with reduced trap states and enhanced crystallinity. More importantly, the generation of MAPbCl3 secondary phase via phase engineering is beneficial for improving the carrier mobility with a more balanced carrier transport rate and enlarging the band gap of perovskite film along with optimized energy level alignment. As a result, under the optimized HAVA post-treatment time (2 min), we achieved a significant enhancement of the power conversion efficiency (PCE) of the MAPbI3-based planar heterojunction-PSC device from 14.02 to 17.40% (the highest PCE reaches 18.45%) with greatly suppressed hysteresis of the current-voltage response.
Collapse
Affiliation(s)
- Weiran Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Pengcheng Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Xunyong Lei
- ICQD, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Zhimin Fang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Mengmeng Zhang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Qing Liu
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Hualing Zeng
- ICQD, Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| | - Liming Ding
- National Center for Nanoscience and Technology , Beijing 100190, China
| | - Jun Zhu
- Key Laboratory of Special Display Technology, Ministry of Education, National Engineering Laboratory of Special Display Technology, State Key Laboratory of Advanced Display Technology, Academy of Opto-Electronic Technology, Hefei University of Technology , Hefei 230009, China
| | - Songyuan Dai
- Beijing Key Laboratory of Novel Thin-Film Solar Cells, North China Electric Power University , Beijing 102206, China
| | - Shangfeng Yang
- Hefei National Laboratory for Physical Sciences at Microscale, Key Laboratory of Materials for Energy Conversion, Chinese Academy of Sciences, Department of Materials Science and Engineering, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China (USTC) , Hefei 230026, China
| |
Collapse
|