1
|
Moon JY, Bae SH, Lee JH. Atomic Spalling of a van der Waals Nanomembrane. Acc Chem Res 2024; 57:2826-2835. [PMID: 39265143 PMCID: PMC11447815 DOI: 10.1021/acs.accounts.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
ConspectusThe vertical integration of van der Waals nanomembranes (vdW NMs), composed of two-dimensional (2D) layered materials and three-dimensional (3D) freestanding films with vdW surfaces, opens new avenues for exploring novel physical phenomena and offers a promising pathway for prototyping ultrathin, superior-performance electronic and optoelectronic applications with unique functionalities. Achieving the desired functionality through vdW integration necessitates the production of high-quality individual vdW NMs, which is a fundamental prerequisite. A profound understanding of the synthetic strategies for vdW NMs, along with their fundamental working principles, is crucial in guiding the experimental design toward 3D integrated heterostructures. The foremost synthetic challenges in fabricating high-quality vdW NMs are achieving exact control over thickness and ensuring surface planarity on the atomic scale. Despite the development of numerous chemical and mechanical approaches to tackle these issues, an all-encompassing solution has yet to be realized. To address these challenges, we have developed advanced spalling techniques, specifically known as atomic spalling or 2D material-based layer transfer, which emerge as a promising technology for achieving both atomically precise thickness-engineered and atomically smooth vdW NMs. These techniques involve engineering the interfacial fracture toughness and strain energy in the vdW system, allowing for precise control over the initiation and the propagation of cracks within the vdW material based on controlled spalling theory.In this Account, we summarize our recent advancements in the atomic precision spalling technique for the preparation of vdW NMs and their applications. We begin by introducing the fundamentals of advanced spalling techniques, which are based on spalling mode fracture in bilayer systems. Following this, we succinctly describe the preparation methods for source materials for vdW NMs, with a primary focus on chemical synthesis approaches. We then delve into the working principles underlying our recent contributions to advanced spalling techniques, providing insights into how this method attains unprecedented atomic-precision control compared to other fabrication methods with a particular emphasis on tuning the interface between the stressor and the vdW system. Subsequently, we highlight cutting-edge applications based on vdW heterostructures, which combine our spalled vdW NMs. Finally, we discuss the current challenges and future directions for advanced spalling techniques, underscoring their potential to be established as a robust methodology for the preparation of high-quality vdW NMs. Our advanced spalling strategy not only ensures the reliable production of vdW NMs with exceptional control over thickness and atomic-level flatness but also provides a robust theoretical framework essential for producing high-quality vdW NMs.
Collapse
Affiliation(s)
- Ji-Yun Moon
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Sang-Hoon Bae
- Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jae-Hyun Lee
- Department of Materials Science and Engineering, Ajou University, Suwon 16499, Republic of Korea
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
2
|
Zhang W, Chen X, Chen Y, Li HY, Liu H. Construction of semiconductor nanocomposites for room-temperature gas sensors. NANOSCALE 2024; 16:12883-12908. [PMID: 38919996 DOI: 10.1039/d4nr00441h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Gas sensors are essential for ensuring public safety and improving quality of life. Room-temperature gas sensors are notable for their potential economic benefits and low energy consumption, and their expected integration with wearable electronics, making them a focal point of contemporary research. Advances in nanomaterials and low-dimensional semiconductors have significantly contributed to the enhancement of room-temperature gas sensors. These advancements have focused on improving sensitivity, selectivity, and response/recovery times, with nanocomposites offering distinct advantages. The discussion here focuses on the use of semiconductor nanocomposites for gas sensing at room temperature, and provides a review of the latest synthesis techniques for these materials. This involves the precise adjustment of chemical compositions, microstructures, and morphologies. In addition, the design principles and potential functional mechanisms are examined. This is crucial for deepening the understanding and enhancing the operational capabilities of sensors. We also highlight the challenges faced in scaling up the production of nanocomposite materials. Looking ahead, semiconductor nanocomposites are expected to drive innovation in gas sensor technology due to their carefully crafted design and construction, paving the way for their extensive use in various sectors.
Collapse
Affiliation(s)
- Wenjian Zhang
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Xinyi Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Yuexi Chen
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| | - Hua-Yao Li
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
- Wenzhou Key Laboratory of Optoelectronic Materials and Devices Application, Wenzhou Advanced Manufacturing Institute of HUST, 1085 Meiquan Road, Wenzhou, Zhejiang 325035, P. R. China
| | - Huan Liu
- School of Integrated Circuits, Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, P. R. China.
| |
Collapse
|
3
|
Kumar A, Kim JH, Chang DW. Flexible and Ultra Low Weight Energy Harvesters Based on 2D Phosphorene or Black phosphorus (BP): Current and Futuristic Prospects. CHEMSUSCHEM 2024; 17:e202301718. [PMID: 38318655 DOI: 10.1002/cssc.202301718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
Phosphorene, or two-dimensional (2D) black phosphorus, has recently emerged as a competitor of graphene as it offers several advantages, including a tunable band gap, higher on/off current ratio, piezoelectric nature, and biocompatibility. Researchers have succeeded in obtaining several forms of phosphorene, such as nanosheets, nanorods, nanoribbons, and quantum dots, with satisfactory yields. Nanostructures with various controlled properties have been fabricated in multiple devices for energy production. These phosphorene-based devices are lightweight, flexible, and efficient, demonstrating great potential for energy-harvesting applications in sensors and nanogenerators. While ongoing exploration and advancements continue for these lightweight energy harvesters, it is essential to review the current progress in order to develop a future roadmap for the potential use of these phosphorene-based energy harvesters in space programs. They could be employed in applications such as wearable devices for astronauts, where ultralow weight is a vital component of any integrated device. This review also anticipates the growing significance of phosphorene in various emerging applications such as robots, information storage devices, and artificial intelligence.
Collapse
Affiliation(s)
- Avneesh Kumar
- Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| | - Joo Hyun Kim
- Department of Polymer Engineering and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| | - Dong Wook Chang
- Department of Industrial Chemistry and CECS Core Research Institute, Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
4
|
Goren AY, Gungormus E, Vatanpour V, Yoon Y, Khataee A. Recent Progress on Synthesis and Properties of Black Phosphorus and Phosphorene As New-Age Nanomaterials for Water Decontamination. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38604807 DOI: 10.1021/acsami.3c19230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Concerted efforts have been made in recent years to find solutions to water and wastewater treatment challenges and eliminate the difficulties associated with treatment methods. Various techniques are used to ensure the recycling and reuse of water resources. Owing to their excellent chemical, physical, and biological properties, nanomaterials play an important role when integrated into water/wastewater treatment technologies. Black phosphorus (BP) is a potential nanomaterial candidate for water and wastewater treatment, especially its monolayer 2D derivative called phosphorene. Phosphorene offers relative adjustability in its direct bandgap, high charge carrier mobility, and improved in-plane anisotropy compared to the most extensively studied 2D nanomaterials. In this study, we examined the physical and chemical characteristics and synthetic processes of BP and phosphorene. We provide an overview of the latest advancements in the main applications of BP and phosphorene in water/wastewater treatment, which are categorized as photocatalytic, adsorption, and membrane filtration processes. Additionally, we explore the existing difficulties in the integration of BP and phosphorene into water/wastewater treatment technologies and prospects for future research in this field. In summary, this review highlights the ongoing necessity for significant research efforts on the integration of BP and phosphorene in water and wastewater applications.
Collapse
Affiliation(s)
- A Yagmur Goren
- Department of Environmental Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Elif Gungormus
- Department of Chemical Engineering, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
| | - Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department & National Research Center on Membrane Technologies (MEM-TEK), Istanbul Technical University, Istanbul 34469, Turkey
| | - Yeojoon Yoon
- Department of Environmental and Energy Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Alireza Khataee
- Department of Chemical Engineering & ITU Synthetic Fuels and Chemicals Technology Center (ITU-SENTEK), Istanbul Technical University, Istanbul 34469, Turkey
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| |
Collapse
|
5
|
Lan X, Luo N, Li Z, Peng J, Cheng HM. Status and Prospect of Two-Dimensional Materials in Electrolytes for All-Solid-State Lithium Batteries. ACS NANO 2024; 18:9285-9310. [PMID: 38522089 DOI: 10.1021/acsnano.4c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Replacing liquid electrolytes and separators in conventional lithium-ion batteries with solid-state electrolytes (SSEs) is an important strategy to ensure both high energy density and high safety. Searching for fast ionic conductors with high electrochemical and chemical stability has been the core of SSE research and applications over the past decades. Based on the atomic-level thickness and infinitely expandable planar structure, numerous two-dimensional materials (2DMs) have been exploited and applied to address the most critical issues of low ionic conductivity of SSEs and lithium dendrite growth in all-solid-state lithium batteries. This review introduces the research process of 2DMs in SSEs, then summarizes the mechanisms and strategies of inert and active 2DMs toward Li+ transport to improve the ionic conductivity and enhance the electrode/SSE interfacial compatibility. More importantly, the main challenges and future directions for the application of 2DMs in SSEs are considered, including the importance of exploring the relationship between the anisotropic structure of 2DMs and Li+ diffusion behavior, the exploitation of more 2DMs, and the significance of in situ characterizations in elucidating the mechanisms of Li+ transport and interfacial reactions. This review aims to provide a comprehensive understanding to facilitate the application of 2DMs in SSEs.
Collapse
Affiliation(s)
- Xuexia Lan
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Na Luo
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhen Li
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jing Peng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hui-Ming Cheng
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Faculty of Materials Science and Energy Engineering, Shenzhen Institute of Advanced Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Energy Materials for Carbon Neutrality, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 1110016, China
| |
Collapse
|
6
|
Jia Z, Kong X, Liu Z, Zhao X, Zhao X, He F, Zhao Y, Zhang M, Yang P. State-of-the-Art Two-Dimensional Metal Phosphides for High Performance Lithium-ion Batteries: Progress and Prospects. CHEMSUSCHEM 2024; 17:e202301386. [PMID: 37953461 DOI: 10.1002/cssc.202301386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/02/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
Lithium-ion batteries (LIBs) with high energy density, long cycle life and safety have earned recognition as outstanding energy storage devices, and have been used in extensive applications, such as portable electronics and new energy vehicles. However, traditional graphite anodes deliver low specific capacity and inferior rate performance, which is difficult to satisfy ever-increasing demands in LIBs. Very recently, two-dimensional metal phosphides (2D MPs) emerge as the cutting-edge materials in LIBs due to their overwhelming advantages including high theoretical capacity, excellent conductivity and short lithium diffusion pathway. This review summarizes the up-to-date advances of 2D MPs from typical structures, main synthesis methods and LIBs applications. The corresponding lithium storage mechanism, and relationship between 2D structure and lithium storage performance is deeply discussed to provide new enlightening insights in application of 2D materials for LIBs. Several potential challenges and inspiring outlooks are highlighted to provide guidance for future research and applications of 2D MPs.
Collapse
Affiliation(s)
- Zhuoming Jia
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Xianglong Kong
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Zhiliang Liu
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Xiaohan Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Xudong Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Fei He
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Ying Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Milin Zhang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| | - Piaoping Yang
- College of Materials Science and Chemical Engineering, Harbin Engineering University, 150001, Harbin, P. R. China
| |
Collapse
|
7
|
Qu K, Zhang Y, Peng C, Riedel ZW, Won J, Zhang R, Woods TJ, Devereaux T, van der Zande AM, Shoemaker DP. Exfoliable Transition Metal Chalcogenide Semiconductor NbSe 2I 2. Inorg Chem 2024; 63:1119-1126. [PMID: 38174989 DOI: 10.1021/acs.inorgchem.3c03493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As the field of exfoliated van der Waals electronics grows to include complex heterostructures, the variety of available in-plane symmetries and geometries becomes increasingly valuable. In this work, we present an efficient chemical vapor transport synthesis of NbSe2I2 with the triclinic space group P1̅. This material contains Nb-Nb dimers and an in-plane crystallographic angle γ = 61.3°. We show that NbSe2I2 can be exfoliated down to few-layer and monolayer structures and use Raman spectroscopy to test the preservation of the crystal structure of exfoliated thin films. The crystal structure was verified by single-crystal and powder X-ray diffraction methods. Density functional theory calculations show triclinic NbSe2I2 to be a semiconductor with a band gap of around 1 eV, with similar band structure features for bulk and monolayer crystals. The physical properties of NbSe2I2 have been characterized by transport, thermal, optical, and magnetic measurements, demonstrating triclinic NbSe2I2 to be a diamagnetic semiconductor that does not exhibit any phase transformation below room temperature.
Collapse
Affiliation(s)
- Kejian Qu
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yue Zhang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Cheng Peng
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Zachary W Riedel
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Juyeon Won
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Rong Zhang
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Applied Physics, Stanford University, Stanford, California 94305, United States
| | - Toby J Woods
- George L. Clark X-Ray Facility and 3M Materials Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Tom Devereaux
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
- Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, United States
| | - Arend M van der Zande
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Daniel P Shoemaker
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Chen X, Zhang X, Xiang G. Recent advances in two-dimensional intrinsic ferromagnetic materials Fe 3X( X=Ge and Ga)Te 2 and their heterostructures for spintronics. NANOSCALE 2024; 16:527-554. [PMID: 38063022 DOI: 10.1039/d3nr04977a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Owing to their atomic thicknesses, atomically flat surfaces, long-range spin textures and captivating physical properties, two-dimensional (2D) magnetic materials, along with their van der Waals heterostructures (vdWHs), have attracted much interest for the development of next-generation spin-based materials and devices. As an emergent family of intrinsic ferromagnetic materials, Fe3X(X=Ge and Ga)Te2 has become a rising star in the fields of condensed matter physics and materials science owing to their high Curie temperature and large perpendicular magnetic anisotropy. Herein, we aim to comprehensively summarize the recent progress on 2D Fe3X(X=Ge and Ga)Te2 and their vdWHs and provide a panorama of their physical properties and underlying mechanisms. First, an overview of Fe3X(X=Ge and Ga)Te2 is presented in terms of crystalline and electronic structures, distinctive physical properties and preparation methods. Subsequently, the engineering of electronic and spintronic properties of Fe3X(X=Ge and Ga)Te2 by diverse means, including strain, gate voltage, substrate and patterning, is surveyed. Then, the latest advances in spintronic devices based on 2D Fe3X(X=Ge and Ga)Te2 vdWHs are discussed and elucidated in detail, including vdWH devices that exploit the exchange bias effect, magnetoresistance effect, spin-orbit torque effect, magnetic proximity effect and Dzyaloshinskii-Moriya interaction. Finally, the future outlook is given in terms of efficient large-scale fabrication, intriguing physics and important technological applications of 2D Fe3X(X=Ge and Ga)Te2 and their vdWHs. Overall, this study provides an overview to support further studies of emergent 2D Fe3X(X=Ge and Ga)Te2 materials and related vdWH devices for basic science and practical applications.
Collapse
Affiliation(s)
- Xia Chen
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Xi Zhang
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Gang Xiang
- College of Physics, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
9
|
Chen P, Pei X, Liu R, Wang J, Lu Y, Gu H, Tan L, Du X, Li D, Wang L. Synergy Between Surface Confinement and Heterointerfacial Regulations with Fast Electron/Ion Migration in InSe-PPy for Sodium-Ion Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304892. [PMID: 37691021 DOI: 10.1002/smll.202304892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Layered indium selenide (InSe) is a new 2D semiconductor material with high carrier mobility, widely adjustable bandgap, and high ductility. However, its ion storage behavior and related electrochemical reaction mechanism are rarely reported. In this study, InSe nanoflakes encapsulated in conductive polypyrrole (InSe@PPy) are designed in consideration of restraining the severe volume change in the electrochemical reaction and increasing conductivity via in situ chemical oxidation polymerization. Density functional theory calculations demonstrate that the construction of heterostructure can generate an internal electric field to accelerate electron transfer via additional driving forces, offering synergistically enhanced structural stability, electrical conductivity, and Na+ diffusion process. The resulting InSe@PPy composite shows outstanding electrochemical performance in the sodium ion batteries system, achieving a high reversible capacity of 336.4 mA h g-1 after 500 cycles at 1 A g-1 and a long-term cyclic stability with capacity of 274.4 mA h g-1 after 2800 cycles at 5 A g-1 . In particular, the investigation of capacity fluctuation within the first cycling reveals the alternating significance of intercalation and conversion reactions and evanescent alloying reaction. The combined reaction mechanism of insertion, conversion, and alloying of InSe@PPy is revealed by in situ X-ray diffraction, ex situ electrochemical impedance spectroscopy, and transmission electron microscopy.
Collapse
Affiliation(s)
- Penglei Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Xiangdong Pei
- Shanxi Supercomputing Center, Lvliang, 033000, P. R. China
| | - Ruyi Liu
- National Supercomputing Center in Zhengzhou, Zhengzhou, 450001, P. R. China
| | - Jinbao Wang
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Yuemeng Lu
- National Supercomputing Center in Zhengzhou, Zhengzhou, 450001, P. R. China
| | - Huaiqiang Gu
- School of Nuclear Science and Technology, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lei Tan
- Institute of Theoretical Physics, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Xin Du
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Dan Li
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan Province, 450001, P. R. China
| | - Luxiang Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, P. R. China
| |
Collapse
|
10
|
Mo X, Huang H, Sun C, Zhang Z, Wang J, Geng S, Chu PK, Yu XF, Liu W. Synthesis of germanium/germanium phosphide in-plane heterostructure with efficient photothermal and enhanced photodynamic effects in the second near-infrared biowindow. J Colloid Interface Sci 2023; 652:1228-1239. [PMID: 37657222 DOI: 10.1016/j.jcis.2023.08.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/03/2023]
Abstract
Inspired by the bifunctional phototherapy agents (PTAs), constructing compact PTAs with efficient photothermal therapy (PTT) and photodynamic therapy (PDT) effects in the near-infrared (NIR-II) biowindow is crucial for high therapeutic efficacy. Herein, none-layered germanium (Ge) is transformed to layered Ge/germanium phosphide (Ge/GeP) structure, and a novel two-dimensional sheet-like compact S-scheme Ge/GeP in-plane heterostructure with a large extinction coefficient of 15.66 L/g cm-1 at 1,064 nm is designed and demonstrated. In addition to the outstanding photothermal effects, biocompatibility and degradability, type I and type II PDT effects are activated by a single laser. Furthermore, enhanced reactive oxygen species generation under longer wavelength NIR laser irradiation is achieved, and production of singlet oxygen and superoxide radical upon 1,064 nm laser irradiation is more than double that under 660 nm laser irradiation. The S-scheme charge transfer mechanism between Ge and GeP, is demonstrated by photo-irradiated Kelvin probe force microscopy and electron spin resonance analysis. Thus, the obtained S-scheme Ge/GeP in-plane heterostructure shows synergistic therapeutic effects of PTT/PDT both in vitro and in vivo in the NIR-II biowindow and the novel nanoplatform with excellent properties has large clinical potential.
Collapse
Affiliation(s)
- Xianwei Mo
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524045, China
| | - Hao Huang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Caixia Sun
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; The First Clinical Medical School, Guangdong Medical University, Zhanjiang 524023, China
| | - Zhenyu Zhang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jiahong Wang
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Shengyong Geng
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Xue-Feng Yu
- Shenzhen Key Laboratory of Micro/Nano Biosensing, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Hubei Three Gorges Laboratory, Yichang, Hubei 443007, China
| | - Wenxin Liu
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang 524045, China.
| |
Collapse
|
11
|
Yu J, Wu S, Zhao X, Li Z, Yang X, Shen Q, Lu M, Xie X, Zhan D, Yan J. Progress on Two-Dimensional Transitional Metal Dichalcogenides Alloy Materials: Growth, Characterisation, and Optoelectronic Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2843. [PMID: 37947689 PMCID: PMC10649960 DOI: 10.3390/nano13212843] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Two-dimensional (2D) transitional metal dichalcogenides (TMDs) have garnered remarkable attention in electronics, optoelectronics, and hydrogen precipitation catalysis due to their exceptional physicochemical properties. Their utilisation in optoelectronic devices is especially notable for overcoming graphene's zero-band gap limitation. Moreover, TMDs offer advantages such as direct band gap transitions, high carrier mobility, and efficient switching ratios. Achieving precise adjustments to the electronic properties and band gap of 2D semiconductor materials is crucial for enhancing their capabilities. Researchers have explored the creation of 2D alloy phases through heteroatom doping, a strategy employed to fine-tune the band structure of these materials. Current research on 2D alloy materials encompasses diverse aspects like synthesis methods, catalytic reactions, energy band modulation, high-voltage phase transitions, and potential applications in electronics and optoelectronics. This paper comprehensively analyses 2D TMD alloy materials, covering their growth, preparation, optoelectronic properties, and various applications including hydrogen evolution reaction catalysis, field-effect transistors, lithium-sulphur battery catalysts, and lasers. The growth process and characterisation techniques are introduced, followed by a summary of the optoelectronic properties of these materials.
Collapse
Affiliation(s)
- Jia Yu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Shiru Wu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Xun Zhao
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Zhipu Li
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Xiaowei Yang
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Min Lu
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Xiaoji Xie
- Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211816, China
| | - Da Zhan
- Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Jiaxu Yan
- Changchun Institute of Optics, Fine Mechanics & Physics (CIOMP), Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
13
|
Liu L, Gao X, Cui X, Wang B, Hu F, Yuan T, Li J, Zu L, Lian H, Cui X. Chemical Vapor Transport Synthesis of Fibrous Red Phosphorus Crystal as Anodes for Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1060. [PMID: 36985955 PMCID: PMC10056364 DOI: 10.3390/nano13061060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Red phosphorus (RP) is considered to be the most promising anode material for lithium-Ion batteries (LIBs) due to its high theoretical specific capacity and suitable voltage platform. However, its poor electrical conductivity (10-12 S/m) and the large volume changes that accompany the cycling process severely limit its practical application. Herein, we have prepared fibrous red phosphorus (FP) that possesses better electrical conductivity (10-4 S/m) and a special structure by chemical vapor transport (CVT) to improve electrochemical performance as an anode material for LIBs. Compounding it with graphite (C) by a simple ball milling method, the composite material (FP-C) shows a high reversible specific capacity of 1621 mAh/g, excellent high-rate performance and long cycle life with a capacity of 742.4 mAh/g after 700 cycles at a high current density of 2 A/g, and coulombic efficiencies reaching almost 100% for each cycle.
Collapse
Affiliation(s)
- Lei Liu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xing Gao
- School of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuemei Cui
- Department of Mechanical and Materials Engineering, College of Engineering and Applied Science, University of Cincinnati, 2600 Clifton Ave, Cincinnati, OH 45221, USA
| | - Bofeng Wang
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Fangzheng Hu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Tianheng Yuan
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Jianhua Li
- Kailuan (Group) Limited Liability Corporation, Tangshan 064012, China
| | - Lei Zu
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Huiqin Lian
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Xiuguo Cui
- College of New Materials and Chemical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
14
|
Sim Y, Chae Y, Kwon SY. Recent advances in metallic transition metal dichalcogenides as electrocatalysts for hydrogen evolution reaction. iScience 2022; 25:105098. [PMID: 36157572 PMCID: PMC9490594 DOI: 10.1016/j.isci.2022.105098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Layered metallic transition metal dichalcogenides (MTMDs) exhibit distinctive electrical and catalytic properties to drive basal plane activity, and, therefore, they have emerged as promising alternative electrocatalysts for sustainable hydrogen evolution reactions (HERs). A key challenge for realizing MTMDs-based electrocatalysts is the controllable and scalable synthesis of high-quality MTMDs and the development of engineering strategies that allow tuning their electronic structures. However, the lack of a method for the direct synthesis of MTMDs retaining the structural stability limits optimizing the structural design for the next generation of robust electrocatalysts. In this review, we highlight recent advances in the synthesis of MTMDs comprising groups VB and VIB and various routes for structural engineering to enhance the HER catalytic performance. Furthermore, we provide insight into the potential future directions and the development of MTMDs with high durability as electrocatalysts to generate green hydrogen through water-splitting technology.
Collapse
Affiliation(s)
- Yeoseon Sim
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Yujin Chae
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| | - Soon-Yong Kwon
- Department of Materials Science and Engineering & Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea
| |
Collapse
|
15
|
Zhao X, Shi J, Yin Q, Dong Z, Zhang Y, Kang L, Yu Q, Chen C, Li J, Liu X, Zhang K. Controllable synthesis of high-quality two-dimensional tellurium by a facile chemical vapor transport strategy. iScience 2022; 25:103594. [PMID: 35005543 PMCID: PMC8718972 DOI: 10.1016/j.isci.2021.103594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
Recently, as an elementary material, tellurium (Te) has received widespread attention for its high carrier mobility, intriguing topological properties, and excellent environmental stability. However, it is difficult to obtain two-dimensional (2D) Te with high crystalline quality owing to its intrinsic helical chain structure. Herein, a facile strategy for controllable synthesis of high-quality 2D Te nanoflakes through chemical vapor transport in one step is reported. With carefully tuning the growth kinetics determined mainly by temperature, tellurium nanoflakes in lateral size of up to ∼40 μm with high crystallinity can be achieved. We also investigated the second harmonic generation of Te nanoflakes, which demonstrates that it can be used as frequency doubling crystals and has potential applications in nonlinear optical devices. In addition, field effect transistor devices based on the 2D Te nanoflakes were fabricated and exhibited excellent electrical properties with high mobility of 379 cm2 V−1 s−1. High-quality 2D Te nanoflakes were directly synthesized by CVT method The growth mechanisms of 2D Te nanoflakes were systematically studied 2D Te nanoflakes have potential applications in nonlinear optical devices 2D Te nanoflakes-based FETs exhibit high mobility of ∼379 cm2 V−1 s−1
Collapse
Affiliation(s)
- Xinxin Zhao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nanophotonic Materials and Devices and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Jianwei Shi
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Qin Yin
- CAS Key Laboratory of Nanophotonic Materials and Devices and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Zhuo Dong
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nanophotonic Materials and Devices and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Yan Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nanophotonic Materials and Devices and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Lixing Kang
- Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Qiang Yu
- CAS Key Laboratory of Nanophotonic Materials and Devices and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Cheng Chen
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Nanophotonic Materials and Devices and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
| | - Jie Li
- CAS Key Laboratory of Nanophotonic Materials and Devices and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- Corresponding author
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Corresponding author
| | - Kai Zhang
- CAS Key Laboratory of Nanophotonic Materials and Devices and Key Laboratory of Nanodevices and Applications, i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Suzhou 215123, China
- Corresponding author
| |
Collapse
|
16
|
Kagami S, Urakami N, Suzuki Y, Hashimoto Y. Solid-source vapor growth and optoelectronic properties of arsenic-based layered group-IV monopnictides. CrystEngComm 2022. [DOI: 10.1039/d2ce00302c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigated the preparation of SiAs and GeAs films using solid-source vapor growth. The shapes of the SiAs and GeAs films were rectangular, reflecting the thermally stable monoclinic phase (C2/m)...
Collapse
|
17
|
Zhang S, Ma S, Hao X, Liu Q, Hou Y, Kong Q, Chen Z, Ma H, Xi T, Xu Y, Cao B, Shang L, Han B, Xu B. Crystallization kinetics of amorphous red phosphorus to black phosphorus by chemical vapor transport. CrystEngComm 2022. [DOI: 10.1039/d1ce01425k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The aRP–P4-HP–BP three-stage phase transition revealed the crystallization kinetics and nucleation mechanism of the high-quality BP crystal synthesized by the CVT reaction in the aRP–Sn–I system.
Collapse
Affiliation(s)
- Shuai Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingming Liu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanyan Hou
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qingbo Kong
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhaoru Chen
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Hanyu Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ting Xi
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yang Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Ben Cao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lin Shang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, China
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
18
|
Yao J, Yang G. 2D Layered Material Alloys: Synthesis and Application in Electronic and Optoelectronic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103036. [PMID: 34719873 PMCID: PMC8728821 DOI: 10.1002/advs.202103036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/01/2021] [Indexed: 05/12/2023]
Abstract
2D layered materials (2DLMs) have come under the limelight of scientific and engineering research and broke new ground across a broad range of disciplines in the past decade. Nevertheless, the members of stoichiometric 2DLMs are relatively limited. This renders them incompetent to fulfill the multitudinous scenarios across the breadth of electronic and optoelectronic applications since the characteristics exhibited by a specific material are relatively monotonous and limited. Inspiringly, alloying of 2DLMs can markedly broaden the 2D family through composition modulation and it has ushered a whole new research domain: 2DLM alloy nano-electronics and nano-optoelectronics. This review begins with a comprehensive survey on synthetic technologies for the production of 2DLM alloys, which include chemical vapor transport, chemical vapor deposition, pulsed-laser deposition, and molecular beam epitaxy, spanning their development, as well as, advantages and disadvantages. Then, the up-to-date advances of 2DLM alloys in electronic devices are summarized. Subsequently, the up-to-date advances of 2DLM alloys in optoelectronic devices are summarized. In the end, the ongoing challenges of this emerging field are highlighted and the future opportunities are envisioned, which aim to navigate the coming exploration and fully exert the pivotal role of 2DLMs toward the next generation of electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Jiandong Yao
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology Research Center, School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou, Guangdong, 510275, P. R. China
| |
Collapse
|
19
|
Zhang S, Ma S, Hao X, Wang Y, Cao B, Han B, Zhang H, Kong X, Xu B. Controllable preparation of crystalline red phosphorus and its photocatalytic properties. NANOSCALE 2021; 13:18955-18960. [PMID: 34779477 DOI: 10.1039/d1nr06530k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Single-element phosphorus has received extensive attention in recent years because of its remarkable photocatalytic properties. In the present experiment, amorphous red phosphorus was controllably transformed into [P12(4)]P2[and Hittorf's phosphorus structures by performing bismuth catalysis. The temperature-controllable chemical vapor transport reaction realized the conversion of more than 90% of amorphous red phosphorus to single-phase crystalline red phosphorus. Under very mild ultrasonic treatment, the high-quality [P12(4)]P2[microbelts and Hittorf's phosphorus microrods were stripped into a few layers of nanobelts and sheet-like structures, respectively. As non-metallic catalysts, their rapid photocatalytic degradations of pollutants (methyl orange) and high hydrogen evolution rates revealed the rapid charge transfer and application potential of the crystalline red phosphorus catalyst. The results of this work could provide new ideas for the development of phosphorus-based crystalline photocatalytic systems.
Collapse
Affiliation(s)
- Shuai Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Yunting Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Ben Cao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Bin Han
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
| | - Hao Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Xingang Kong
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an 710021, Shaanxi, China.
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
20
|
Zeng Y, Guo Z. Synthesis and stabilization of black phosphorus and phosphorene: recent progress and perspectives. iScience 2021; 24:103116. [PMID: 34646981 PMCID: PMC8497852 DOI: 10.1016/j.isci.2021.103116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two-dimensional black phosphorus (BP) has triggered tremendous research interest owing to its unique crystal structure, high carrier mobility, and tunable direct bandgap. Preparation of few-layer BP with high quality and stability is very important for its related research and applications in biomedicine, electronics, and optoelectronics. In this review, the synthesis methods of BP, including the preparation of bulk BP crystal which is an important raw material for preparing few-layer BP, the popular top-down methods, and some direct growth strategies of few-layer BP are comprehensively overviewed. Then chemical ways to enhance the stability of few-layer BP are concretely introduced. Finally, we propose a selection rule of preparation methods of few-layer BP according to the requirement of specific BP properties for different applications. We hope this review would bring some insight for future researches on BP and contributes to the acceleration of BP's commercial progress.
Collapse
Affiliation(s)
- Yonghong Zeng
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Zhinan Guo
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
21
|
Fadhel MM, Ali N, Rashid H, Sapiee NM, Hamzah AE, Zan MSD, Aziz NA, Arsad N. A Review on Rhenium Disulfide: Synthesis Approaches, Optical Properties, and Applications in Pulsed Lasers. NANOMATERIALS 2021; 11:nano11092367. [PMID: 34578683 PMCID: PMC8471421 DOI: 10.3390/nano11092367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Rhenium Disulfide (ReS2) has evolved as a novel 2D transition-metal dichalcogenide (TMD) material which has promising applications in optoelectronics and photonics because of its distinctive anisotropic optical properties. Saturable absorption property of ReS2 has been utilized to fabricate saturable absorber (SA) devices to generate short pulses in lasers systems. The results were outstanding, including high-repetition-rate pulses, large modulation depth, multi-wavelength pulses, broadband operation and low saturation intensity. In this review, we emphasize on formulating SAs based on ReS2 to produce pulsed lasers in the visible, near-infrared and mid-infrared wavelength regions with pulse durations down to femtosecond using mode-locking or Q-switching technique. We outline ReS2 synthesis techniques and integration platforms concerning solid-state and fiber-type lasers. We discuss the laser performance based on SAs attributes. Lastly, we draw conclusions and discuss challenges and future directions that will help to advance the domain of ultrafast photonic technology.
Collapse
|
22
|
Bian R, Li C, Liu Q, Cao G, Fu Q, Meng P, Zhou J, Liu F, Liu Z. Recent progress in the synthesis of novel two-dimensional van der Waals materials. Natl Sci Rev 2021; 9:nwab164. [PMID: 35591919 PMCID: PMC9113016 DOI: 10.1093/nsr/nwab164] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/21/2021] [Accepted: 08/15/2021] [Indexed: 11/15/2022] Open
Abstract
Abstract
The last decade has witnessed the significant progress of physical fundamental research and great success of practical application in two-dimensional (2D) van der Waals (vdW) materials since the discovery of graphene in 2004. To date, vdW materials is still a vibrant and fast-expanding field, where tremendous reports have been published covering topics from cutting-edge quantum technology to urgent green energy, and so on. Here, we briefly review the emerging hot physical topics and intriguing materials, such as 2D topological materials, piezoelectric materials, ferroelectric materials, magnetic materials and twistronic heterostructures. Then, various vdW material synthetic strategies are discussed in detail, concerning the growth mechanisms, preparation conditions and typical examples. Finally, prospects and further opportunities in the booming field of 2D materials are addressed.
Collapse
Affiliation(s)
| | | | | | - Guiming Cao
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qundong Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- CNRS-International-NTU-Thales Research Alliance (CINTRA), Singapore 637553, Singapore
| | - Peng Meng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiadong Zhou
- Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, Beijing 100081, China
| | | | | |
Collapse
|
23
|
Anisotropic Optical Response of WTe 2 Single Crystals Studied by Ellipsometric Analysis. NANOMATERIALS 2021; 11:nano11092262. [PMID: 34578578 PMCID: PMC8468096 DOI: 10.3390/nano11092262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/19/2021] [Accepted: 08/27/2021] [Indexed: 11/23/2022]
Abstract
In this paper we report the crystal growth conditions and optical anisotropy properties of Tungsten ditelluride (WTe2) single crystals. The chemical vapor transport (CVT) method was used for the synthesis of large WTe2 crystals with high crystallinity and surface quality. These were structurally and morphologically characterized by means of X-ray diffraction, optical profilometry and Raman spectroscopy. Through spectroscopic ellipsometry analysis, based on the Tauc–Lorentz model, we identified a high refractive index value (~4) and distinct tri-axial anisotropic behavior of the optical constants, which opens prospects for surface plasmon activity, revealed by the dielectric function. The anisotropic physical nature of WTe2 shows practical potential for low-loss light modulation at the 2D nanoscale level.
Collapse
|
24
|
Wang Y, Pang J, Cheng Q, Han L, Li Y, Meng X, Ibarlucea B, Zhao H, Yang F, Liu H, Liu H, Zhou W, Wang X, Rummeli MH, Zhang Y, Cuniberti G. Applications of 2D-Layered Palladium Diselenide and Its van der Waals Heterostructures in Electronics and Optoelectronics. NANO-MICRO LETTERS 2021; 13:143. [PMID: 34138389 PMCID: PMC8203759 DOI: 10.1007/s40820-021-00660-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/11/2021] [Indexed: 05/07/2023]
Abstract
The rapid development of two-dimensional (2D) transition-metal dichalcogenides has been possible owing to their special structures and remarkable properties. In particular, palladium diselenide (PdSe2) with a novel pentagonal structure and unique physical characteristics have recently attracted extensive research interest. Consequently, tremendous research progress has been achieved regarding the physics, chemistry, and electronics of PdSe2. Accordingly, in this review, we recapitulate and summarize the most recent research on PdSe2, including its structure, properties, synthesis, and applications. First, a mechanical exfoliation method to obtain PdSe2 nanosheets is introduced, and large-area synthesis strategies are explained with respect to chemical vapor deposition and metal selenization. Next, the electronic and optoelectronic properties of PdSe2 and related heterostructures, such as field-effect transistors, photodetectors, sensors, and thermoelectric devices, are discussed. Subsequently, the integration of systems into infrared image sensors on the basis of PdSe2 van der Waals heterostructures is explored. Finally, future opportunities are highlighted to serve as a general guide for physicists, chemists, materials scientists, and engineers. Therefore, this comprehensive review may shed light on the research conducted by the 2D material community.
Collapse
Affiliation(s)
- Yanhao Wang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Jinbo Pang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China.
| | - Qilin Cheng
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Yufen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Xue Meng
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| | - Hongbin Zhao
- State Key Laboratory of Advanced Materials for Smart Sensing, GRINM Group Co. Ltd., Xinwai Street 2, Beijing, 100088, People's Republic of China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, People's Republic of China
| | - Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China.
- State Key Laboratory of Crystal Materials, Center of Bio and Micro/Nano Functional Materials, Shandong University, 27 Shandanan Road, Jinan, 250100, People's Republic of China.
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Shandong, Jinan, 250022, People's Republic of China
| | - Xiao Wang
- Shenzhen Institutes of Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen University Town, Shenzhen, 518055, People's Republic of China
| | - Mark H Rummeli
- College of Energy Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou, 215006, People's Republic of China
- Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou, 215006, People's Republic of China
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, M. Curie Sklodowskiej 34, 41-819, Zabrze, Poland
- Institute for Complex Materials, IFW Dresden 20 Helmholtz Strasse, 01069, Dresden, Germany
- Institute of Environmental Technology VŠB-Technical University of Ostrava, 17. listopadu 15, Ostrava, 708 33, Czech Republic
| | - Yu Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, People's Republic of China.
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials, Technische Universität Dresden, 01069, Dresden, Germany
- Center for Advancing Electronics Dresden, Technische Universität Dresden, 01069, Dresden, Germany
- Dresden Center for Computational Materials Science, Technische Universität Dresden, 01062, Dresden, Germany
- Dresden Center for Intelligent Materials (GCL DCIM), Technische Universität Dresden, 01062, Dresden, Germany
| |
Collapse
|
25
|
Izquierdo N, Myers JC, Golani P, De Los Santos A, Seaton NCA, Koester SJ, Campbell SA. Growth of black arsenic phosphorus thin films and its application for field-effect transistors. NANOTECHNOLOGY 2021; 32:325601. [PMID: 33906169 DOI: 10.1088/1361-6528/abfc09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Black arsenic phosphorus single crystals were grown using a short-way transport technique resulting in crystals up to 12 × 110μmand ranging from 200 nm to 2μmthick. The reaction conditions require tin, tin (IV) iodide, gray arsenic, and red phosphorus placed in an evacuated quartz ampule and ramped up to a maximum temperature of 630 °C. The crystal structure and elemental composition were characterized using Raman spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy, cross-sectional transmission microscopy, and electron backscatter diffraction. The data provides valuable insight into the growth mechanism. A previously developed b-P thin film growth technique can be adapted to b-AsP film growth with slight modifications to the reaction duration and reactant mass ratios. Devices fabricated from exfoliated bulk-b-AsP grown in the same reaction condition as the thin film growth process are characterized, showing an on-off current ratio of 102, a threshold voltage of -60 V, and a peak field-effect hole mobility of 23 cm2V-1s-1atVd= -0.9 V andVg= -60 V.
Collapse
Affiliation(s)
- Nezhueyotl Izquierdo
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, United States of America
| | - Jason C Myers
- Characterization Facility, University of Minnesota, Minneapolis, United States of America
| | - Prafful Golani
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, United States of America
| | - Adonica De Los Santos
- Department of Mechanical Engineering, University of Texas Rio Grande Valley, Edinburg, United States of America
| | - Nicholas C A Seaton
- Characterization Facility, University of Minnesota, Minneapolis, United States of America
| | - Steven J Koester
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, United States of America
| | - Stephen A Campbell
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, United States of America
| |
Collapse
|
26
|
An D, Fu J, Xie Z, Xing C, Zhang B, Wang B, Qiu M. Progress in the therapeutic applications of polymer-decorated black phosphorus and black phosphorus analog nanomaterials in biomedicine. J Mater Chem B 2021; 8:7076-7120. [PMID: 32648567 DOI: 10.1039/d0tb00824a] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Wonderful black phosphorus (BP) and some BP analogs (BPAs) have been increasingly studied for their biomedical applications owing to their fascinating properties and biodegradability, but opportunities and challenges have always coexisted in their study. Poor stability upon exposure to the natural environment is the major obstacle hampering their in vivo applications. BP/polymer and BPAs/polymer nanocomposites can not only efficiently prevent their oxidation and aggregation but also exhibit "biological activity" due to synergistic effects. In this review, we briefly describe the synthesis methods and stability strategies of BP/polymer and BPAs/polymer. Then, advances pertaining to their exciting therapeutic applications in various fields are systematically introduced, such as cancer therapy (phototherapy, drug delivery, and synergistic immunotherapy), bone regeneration, and neurogenesis. Some challenges for future clinical trials and possible directions for further study are finally discussed.
Collapse
Affiliation(s)
- Dong An
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Jianye Fu
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China. and Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| | - Zhongjian Xie
- Shenzhen International Institute for Biomedical Research, Shenzhen 518116, P. R. China
| | - Chenyang Xing
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bin Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Bing Wang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China.
| | - Meng Qiu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao, 266100, P. R. China.
| |
Collapse
|
27
|
Zhang Y, Fan T, Yang S, Wang F, Yang S, Wang S, Su J, Zhao M, Hu X, Zhang H, Zhai T. Recent Advances in 2D Layered Phosphorous Compounds. SMALL METHODS 2021; 5:e2001068. [PMID: 34927843 DOI: 10.1002/smtd.202001068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Indexed: 06/14/2023]
Abstract
2D layered phosphorous compounds (2D LPCs) have led to explosion of research interest in recent years. With the diversity of valence states of phosphorus, 2D LPCs exist in various material types and possess many novel physical and chemical properties. These properties, including widely adjustable range of bandgap, diverse electronic properties covering metal, semimetal, semiconductor and insulator, together with inherent magnetism and ferroelectricity at atomic level, render 2D LPCs greatly promising in the applications of electronics, spintronics, broad-spectrum optoelectronics, high-performance catalysts, and energy storage, etc. In this review, the recently research progress of 2D LPCs are presented in detail. First, the 2D LPCs are classified according to their elemental composition and the corresponding crystal structures are introduced, followed by their preparation methods. Then, the novel properties are summarized and the potential applications are discussed in detail. Finally, the conclusion and perspective of the promising 2D LPCs are discussed on the foundation of the latest research progress.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Taojian Fan
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Sijie Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Fakun Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Sanjun Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Shuzhe Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianwei Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Mei Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiaozong Hu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
28
|
Li X, Chen C, Yang Y, Lei Z, Xu H. 2D Re-Based Transition Metal Chalcogenides: Progress, Challenges, and Opportunities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002320. [PMID: 33304762 PMCID: PMC7709994 DOI: 10.1002/advs.202002320] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/22/2020] [Indexed: 05/16/2023]
Abstract
The rise of 2D transition-metal dichalcogenides (TMDs) materials has enormous implications for the scientific community and beyond. Among TMDs, ReX2 (X = S, Se) has attracted significant interest regarding its unusual 1T' structure and extraordinary properties in various fields during the past 7 years. For instance, ReX2 possesses large bandgaps (ReSe2: 1.3 eV, ReS2: 1.6 eV), distinctive interlayer decoupling, and strong anisotropic properties, which endow more degree of freedom for constructing novel optoelectronic, logic circuit, and sensor devices. Moreover, facile ion intercalation, abundant active sites, together with stable 1T' structure enable them great perspective to fabricate high-performance catalysts and advanced energy storage devices. In this review, the structural features, fundamental physicochemical properties, as well as all existing applications of Re-based TMDs materials are comprehensively introduced. Especially, the emerging synthesis strategies are critically analyzed and pay particular attention is paid to its growth mechanism with probing the assembly process of domain architectures. Finally, current challenges and future opportunities regarding the controlled preparation methods, property, and application exploration of Re-based TMDs are discussed.
Collapse
Affiliation(s)
- Xiaobo Li
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Chao Chen
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Yang Yang
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Zhibin Lei
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid ChemistryMinistry of EducationShaanxi Key Laboratory for Advanced Energy DevicesSchool of Materials Science and EngineeringShaanxi Normal UniversityXi'an710119P. R. China
| |
Collapse
|
29
|
Sarkar AS, Stratakis E. Recent Advances in 2D Metal Monochalcogenides. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001655. [PMID: 33173730 PMCID: PMC7610304 DOI: 10.1002/advs.202001655] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The family of emerging low-symmetry and structural in-plane anisotropic two-dimensional (2D) materials has been expanding rapidly in recent years. As an important emerging anisotropic 2D material, the black phosphorene analog group IVA-VI metal monochalcogenides (MMCs) have been surged recently due to their distinctive crystalline symmetries, exotic in-plane anisotropic electronic and optical response, earth abundance, and environmentally friendly characteristics. In this article, the recent research advancements in the field of anisotropic 2D MMCs are reviewed. At first, the unique wavy crystal structures together with the optical and electronic properties of such materials are discussed. The Review continues with the various methods adopted for the synthesis of layered MMCs including micromechanical and liquid phase exfoliation as well as physical vapor deposition. The last part of the article focuses on the application of the structural anisotropic response of 2D MMCs in field effect transistors, photovoltaic cells nonlinear optics, and valleytronic devices. Besides presenting the significant research in the field of this emerging class of 2D materials, this Review also delineates the existing limitations and discusses emerging possibilities and future prospects.
Collapse
Affiliation(s)
- Abdus Salam Sarkar
- Institute of Electronic Structure and LaserFoundation for Research and Technology‐HellasHeraklionCrete700 13Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and LaserFoundation for Research and Technology‐HellasHeraklionCrete700 13Greece
- Physics DepartmentUniversity of CreteHeraklionCrete710 03Greece
| |
Collapse
|
30
|
Li H, Liu J, Guo N, Xiao L, Zhang H, Zhou S, Wu Y, Fan S. Seeded growth of high-quality transition metal dichalcogenide single crystals via chemical vapor transport. CrystEngComm 2020. [DOI: 10.1039/d0ce01295e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Seeded chemical vapor transport growth gives high-quality and millimeter-sized transition metal dichalcogenide single crystals in a short period.
Collapse
Affiliation(s)
- Hao Li
- School of Materials Science and Engineering
- Tsinghua University
- Beijing
- P. R. China
- Tsinghua-Foxconn Nanotechnology Research Center
| | - Junku Liu
- Qian Xuesen Laboratory of Space Technology
- China Academy of Space Technology
- Beijing 100094
- P. R. China
| | - Nan Guo
- Qian Xuesen Laboratory of Space Technology
- China Academy of Space Technology
- Beijing 100094
- P. R. China
| | - Lin Xiao
- Qian Xuesen Laboratory of Space Technology
- China Academy of Space Technology
- Beijing 100094
- P. R. China
| | - Haoxiong Zhang
- State Key Laboratory of Low Dimensional Quantum Physics
- Department of Physics
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Shuyun Zhou
- State Key Laboratory of Low Dimensional Quantum Physics
- Department of Physics
- Tsinghua University
- Beijing 100084
- P. R. China
| | - Yang Wu
- Tsinghua-Foxconn Nanotechnology Research Center
- Tsinghua University
- Beijing
- P. R. China
- Department of Mechanical Engineering
| | - Shoushan Fan
- Tsinghua-Foxconn Nanotechnology Research Center
- Tsinghua University
- Beijing
- P. R. China
- State Key Laboratory of Low Dimensional Quantum Physics
| |
Collapse
|
31
|
Khurram M, Sun Z, Zhang Z, Yan Q. Chemical vapor transport growth of bulk black phosphorus single crystals. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00582g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent progress in growth of bulk black phosphorus single crystal by CVT method has been briefly reviewed with the emphasis on reaction system, nucleation and growth mechanism as well as advancement in growth of doped BP bulk single crystal.
Collapse
Affiliation(s)
| | - Zhaojian Sun
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Ziming Zhang
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| | - Qingfeng Yan
- Department of Chemistry
- Tsinghua University
- Beijing 100084
- China
| |
Collapse
|