1
|
Yu N, Su M, Wang J, Liu Y, Yang J, Zhang J, Wang M. Long-Term Exposure of Fresh and Aged Nano Zinc Oxide Promotes Hepatocellular Carcinoma Malignancy by Up-Regulating Claudin-2. Int J Nanomedicine 2024; 19:9989-10008. [PMID: 39371475 PMCID: PMC11453161 DOI: 10.2147/ijn.s478279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
Background Tumor development and progression is a long and complex process influenced by a combination of intrinsic (eg, gene mutation) and extrinsic (eg, environmental pollution) factors. As a detoxification organ, the liver plays an important role in human exposure and response to various environmental pollutants including nanomaterials (NMs). Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and remains a serious threat to human health. Whether NMs promote liver cancer progression remains elusive and assessing long-term exposure to subtoxic doses of nanoparticles (NPs) remains a challenge. In this study, we focused on the promotional effects of nano zinc oxide (nZnO) on the malignant progression of human HCC cells HepG2, especially aged nZnO that has undergone physicochemical transformation. Methods In in vitro experiments, we performed colony forming efficiency, soft agar colony formation, and cell migration/invasion assays on HepG2 cells that had been exposed to a low dose of nZnO (1.5 μg/mL) for 3 or 4 months. In in vivo experiments, we subcutaneously inoculated HepG2 cells that had undergone long-term exposure to nZnO for 4 months into BALB/c athymic nude mice and observed tumor formation. ZnCl2 was administered to determine the role of zinc ions. Results Chronic low-dose exposure to nZnO significantly intensified the malignant progression of HCC cells, whereas aged nZnO may exacerbate the severity of malignant progression. Furthermore, through transcriptome sequencing analysis and in vitro cellular rescue experiments, we demonstrated that the mechanism of nZnO-induced malignant progression of HCC could be linked to the activation of Claudin-2 (CLDN2), one of the components of cellular tight junctions, and the dysregulation of its downstream signaling pathways. Conclusion Long-term exposure of fresh and aged nZnO promotes hepatocellular carcinoma malignancy by up-regulating CLDN2. The implications of this work can be profound for cancer patients, as the use of various nanoproducts and unintentional exposure to environmentally transformed NMs may unknowingly hasten the progression of their cancers.
Collapse
Affiliation(s)
- Na Yu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Mingqin Su
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Juan Wang
- Department of Public Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Yakun Liu
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jingya Yang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Jingyi Zhang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| | - Meimei Wang
- Department of Pathophysiology, School of Basic Medical Science, Anhui Medical University, Hefei, 230032, People’s Republic of China
| |
Collapse
|
2
|
Fadeel B, Keller AA. Nanosafety: a Perspective on Nano-Bio Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310540. [PMID: 38597766 DOI: 10.1002/smll.202310540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/28/2024] [Indexed: 04/11/2024]
Abstract
Engineered nanomaterials offer numerous benefits to society ranging from environmental remediation to biomedical applications such as drug or vaccine delivery as well as clean and cost-effective energy production and storage, and the promise of a more sustainable way of life. However, as nanomaterials of increasing sophistication enter the market, close attention to potential adverse effects on human health and the environment is needed. Here a critical perspective on nanotoxicological research is provided; the authors argue that it is time to leverage the knowledge regarding the biological interactions of nanomaterials to achieve a more comprehensive understanding of the human health and environmental impacts of these materials. Moreover, it is posited that nanomaterials behave like biological entities and that they should be regulated as such.
Collapse
Affiliation(s)
- Bengt Fadeel
- Institute of Environmental Medicine, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Arturo A Keller
- Bren School of Environmental Science & Management, University of California Santa Barbara, California, CA, 93106, USA
| |
Collapse
|
3
|
Wei Q, Xue C, Li M, Wei J, Zheng L, Chen S, Duan Y, Deng H, Tang F, Xiong W, Zhou M. Ferroptosis: a critical mechanism of N 6-methyladenosine modification involved in carcinogenesis and tumor progression. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1119-1132. [PMID: 38811442 DOI: 10.1007/s11427-023-2474-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 12/23/2023] [Indexed: 05/31/2024]
Abstract
Ferroptosis is an iron-dependent regulatory cell necrosis induced by iron overload and lipid peroxidation. It occurs when multiple redox-active enzymes are ectopically expressed or show abnormal function. Hence, the precise regulation of ferroptosis-related molecules is mediated across multiple levels, including transcriptional, posttranscriptional, translational, and epigenetic levels. N6-methyladenosine (m6A) is a highly evolutionarily conserved epigenetic modification in mammals. The m6A modification is commonly linked to tumor proliferation, progression, and therapy resistance because it is involved in RNA metabolic processes. Intriguingly, accumulating evidence suggests that dysregulated ferroptosis caused by the m6A modification drives tumor development. In this review, we summarized the roles of m6A regulators in ferroptosis-mediated malignant tumor progression and outlined the m6A regulatory mechanism involved in ferroptosis pathways. We also analyzed the potential value and application strategies of targeting m6A/ferroptosis pathway in the clinical diagnosis and therapy of tumors.
Collapse
Affiliation(s)
- Qingqing Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Changning Xue
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Mengna Li
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Jianxia Wei
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Lemei Zheng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Shipeng Chen
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Yumei Duan
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Hongyu Deng
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Faqing Tang
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China
| | - Ming Zhou
- NHC Key Laboratory of Carcinogenesis, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
- Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha, 410078, China.
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Oncotarget Gene, Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China.
| |
Collapse
|
4
|
Hu W, Tan J, Lin Y, Tao Y, Zhou Q. Bibliometric and visual analysis of ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications from 2000 to 2023. Heliyon 2024; 10:e31405. [PMID: 38807880 PMCID: PMC11130665 DOI: 10.1016/j.heliyon.2024.e31405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Background The pathogenesis of diabetes and its microvascular complications are intimately associated with renin angiotensin system dysregulation. Evidence suggests the angiotensin converting enzyme 2 (ACE2)/angiotensin 1-7 (Ang 1-7)/Mas receptor (MasR) axis regulates metabolic imbalances, inflammatory responses, reduces oxidative stress, and sustains microvascular integrity, thereby strengthening defences against diabetic conditions. This study aims to conduct a comprehensive analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications over the past two decades, focusing on key contributors, research hotspots, and thematic trends. Methods This cross-sectional bibliometric analysis of 349 English-language publications was performed using HistCite, VOSviewer, CiteSpace, and Bibliometrix R for visualization and metric analysis. Primary analytical metrics included publication count and keyword trend dynamics. Results The United States, contributing 105 articles, emerged as the most productive country, with the University of Florida leading institutions with 18 publications. Benter IF was the most prolific author with 14 publications, and Clinical Science was the leading journal with 13 articles. A total of 151 of the 527 author's keywords with two or more occurrences clustered into four major clusters: diabetic microvascular pathogenesis, metabolic systems, type 2 diabetes, and coronavirus infections. Keywords such as "SARS", "ACE2", "coronavirus", "receptor" and "infection" displayed the strongest citation bursts. The thematic evolution in this field expanded from focusing on the renin angiotensin system (2002-2009) to incorporating ACE2 and diabetes metabolism (2010-2016). The latter period (2017-2023) witnessed a significant surge in diabetes research, reflecting the impact of COVID-19 and associated conditions such as diabetic retinopathy and cardiomyopathy. Conclusions This scientometric study offers a detailed analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications, providing valuable insights for future research directions.
Collapse
Affiliation(s)
- Weiwen Hu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jian Tan
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yeting Lin
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yulin Tao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
5
|
Lu A, Liu Z, Su G, Yang P. Global Research Status Regarding Uveitis in the Last Decade. Ocul Immunol Inflamm 2024; 32:326-335. [PMID: 36698094 DOI: 10.1080/09273948.2023.2170251] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/12/2023] [Accepted: 01/14/2023] [Indexed: 01/27/2023]
Abstract
PURPOSE To provide an overview on global uveitis research in the last decade in terms of countries/regions, organizations, scholars, journals, trending topics, and fundings. METHODS This cross-sectional bibliometric analysis yielded 10656 uveitis publications in English for subsequent bibliometric analysis. RESULTS In terms of the number of publications, the leading country/region was the USA (3007). The most productive organization was the University College London (420). The most productive research team was Professor Yang's group (146). A higher h-index was noted in University College London (48). Professor Rosenbaum was the first h-index holder (32). Keywords of interest included topics such as biologics, COVID and OCT. Publications by Ocular Immunology and Inflammation (968) ranked the first position. CONCLUSIONS The USA is the leading force in uveitis study. Asian countries/regions, such as China (mainland) and India, are exerting a substantial role worldwide. Trendy topics cover COVID-19, OCTA.
Collapse
Affiliation(s)
- Ao Lu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Zhangluxi Liu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Guannan Su
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| | - Peizeng Yang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing Branch (Municipality Division) of National Clinical Research Center for Ocular Diseases, Chongqing, People's Republic of China
| |
Collapse
|
6
|
Wang Y, Wang J, Cong J, Zhang H, Gong Z, Sun H, Wang L, Duan Z. Nanoplastics induce neuroexcitatory symptoms in zebrafish (Danio rerio) larvae through a manner contrary to Parkinsonian's way in proteomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166898. [PMID: 37683849 DOI: 10.1016/j.scitotenv.2023.166898] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Although nanoplastics (NPs) can penetrate the blood-brain barrier and accumulate in the brain, the neurotoxicity of these particles and the mechanisms associated with their unique physio-chemical properties have yet to be sufficiently ascertained. In this study, we assessed the neuroexcitatory symptoms of zebrafish (Danio rerio) larvae treated with polystyrene (PS) NPs based on an examination of locomotory behaviour, dopamine levels, and acetylcholinesterase activity. We found that PS NPs caused oxidative stress and inhibited atoh1a expression in the cerebellum of Tg(atoh1a:dTomato) transgenic zebrafish larvae, thereby indicating damage to the central nervous system. In contrast to the Parkinson's disease (PD) like effects induced by most types of nanoparticles, such as graphene oxide, we established that PS NPs influenced the neuronal proteomic profiles of zebrafish larvae in a manner contrary to the molecular pathways characteristic of PD-like effects, which could be explained by the molecular dynamic simulation. Unlike graphene oxide nanoparticles that promote significant change in the internal structure of neuroproteins, the complex macromolecular polymers of PS NPs promoted the coalescence and increased expression of neuroproteins, thereby plausibly contributing to the neuroexcitatory symptoms observed in treated zebrafish larvae. Consequently, compared with traditional nanoparticles, we believe that the unique physio-chemical properties of NPs could be a potential factor contributing to their toxicity.
Collapse
Affiliation(s)
- Yudi Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China; MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jing Wang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jiaoyue Cong
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Haihong Zhang
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Singapore
| | - Hongwen Sun
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lei Wang
- MOE Key Laboratory on Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Zhenghua Duan
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
7
|
Wang S, Yang J, Xiang R, Li C, Li J, Shen X, Liu W, Xu X. Research and publication trends on knee osteoarthritis and cellular senescence: a bibliometric analysis. Front Physiol 2023; 14:1269338. [PMID: 38046948 PMCID: PMC10691380 DOI: 10.3389/fphys.2023.1269338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/08/2023] [Indexed: 12/05/2023] Open
Abstract
Background: Cellular senescence is associated with age-related pathological changes, senescent cells promote the development of knee osteoarthritis. A better understanding between knee osteoarthritis and cellular senescence may enhance the effectiveness of therapies that aim to slow or stop the progression of this disease. Purpose: This study aimed to systematically analyze and visualize the publication trends, research frontiers and current research hotspots of knee osteoarthritis and cellular senescence by using bibliometrics. Methods: The publication search was performed on the Web of Science Core Collection database for documents published from 1992 to 2023. VOSviewer, Citespace, R package Bibliometrix and Microsoft Office Excel were used to study the characteristics of the publications. The publication number, countries, institutions, authors, journals, citations and co-citations, keywords were analyzed. Results: A total of 1,074 publications were analyzed, with an average annual growth rate of 29.89%. United States accounted for the biggest contributor, ranked first in publications and citations. Publications of this field were published in 420 journals, OSTEOARTHRITIS and CARTILAGE was the most influential. A total of 5,657 authors contributed to this research. The most productive author was Lotz, MK (n = 31, H-index = 22, Total citation = 2,619), followed by Loeser, R.F (n = 16, H-index = 14, Total citation = 2,825). However, the collaboration between authors was relatively weak. Out of the 1,556 institutions involved, 60% were from the United States. Scripps Research ranked first with 25 papers and a total of 2,538 citations. The hotspots of this field had focused on the pathomechanisms (e.g., expression, inflammation, apoptosis, autophagy, oxidative stress) and therapeutics (e.g., stem cell, platelet-rich plasma, transplantation, autologous chondrocytes, repair), and the exploration of Senolytics might be the important direction of future research. Conclusion: Research on the cross field of knee osteoarthritis and cellular senescence is flourishing. Age-related pathomechanism maps of various cells in the joint and the targeted medicines for the senescent cells may be the future trends. This bibliometric study provides a comprehensive analysis of this cross field and new insights into future research.
Collapse
Affiliation(s)
- Shuai Wang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyong Yang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruian Xiang
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Congcong Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junyi Li
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xingxing Shen
- The Fifth Clinical College of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wengang Liu
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Xuemeng Xu
- Department of Orthopedics, Guangdong Provincial Second Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
8
|
Zhang P, Cheng J, Lu Y, Zhang N, Wu X, Lin H, Li W, Wang J, Winnik MA, Gan Z, Hou Y. Hypersensitive MR angiography based on interlocking stratagem for diagnosis of cardiac-cerebral vascular diseases. Nat Commun 2023; 14:6149. [PMID: 37783733 PMCID: PMC10545789 DOI: 10.1038/s41467-023-41783-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/11/2023] [Indexed: 10/04/2023] Open
Abstract
Magnetic resonance (MR) angiography is one of the main diagnostic approaches for cardiac-cerebral vascular diseases. Nevertheless, the non-contrast-enhanced MR angiography suffers from its intrinsic problems derived from the blood flow-dependency, while the clinical Gd-chelating contrast agents are limited by their rapid vascular extravasation. Herein, we report a hypersensitive MR angiography strategy based on interlocking stratagem of zwitterionic Gd-chelate contrast agents (PAA-Gd). The longitudinal molar relaxivity of PAA-Gd was 4.6-times higher than that of individual Gd-chelates as well as appropriate blood half-life (73.8 min) and low immunogenicity, enabling sophisticated micro-vessels angiography with a resolution at the order of hundred micrometers. A series of animal models of cardiac-cerebrovascular diseases have been built for imaging studies on a 7.0 T MRI scanner, while the clinical translation potential of PAA-Gd has been evaluated on swine on a 3.0 T clinical MRI scanner. The current studies offer a promising strategy for precise diagnosis of vascular diseases.
Collapse
Affiliation(s)
- Peisen Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junwei Cheng
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yijie Lu
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Ni Zhang
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoai Wu
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hua Lin
- Department of Psychiatry, and Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wei Li
- Department of Nanomedicine & International Joint Cancer Institute, Naval Medical University, Shanghai, 200433, China.
| | - Jian Wang
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100021, China
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, ON, M5S 3H6, Canada
| | - Zhihua Gan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Yi Hou
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
9
|
Chen J, Chen G, Xu X, Chen L, Zhang J, Liu F. Bibliometric analysis and visualized study of research on autophagy in ischemic stroke. Front Pharmacol 2023; 14:1232114. [PMID: 37731738 PMCID: PMC10507179 DOI: 10.3389/fphar.2023.1232114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Aims: To summarize and clarify the current research status and indicate possible future directions in the field of autophagy in ischemic stroke, we performed a comprehensive and multidimensional bibliometric analysis of the literature in this field published from 2011 to 2022. Methods: We retrieved articles on the field of autophagy in ischemic stroke published between 2011 and 2022 from Web of Science Core Collection (WOSCC). VOSviewer (version 1.6.19) and CiteSpace (version 6.2.R2 Basic) were used to identify the leading topics as well as generate visual maps of Countries/regions, organizations, authors, journals, and keyword networks in the related field. Results: A total of 568 publications were contained in this research. The journal with the most publications were Front Pharmacol, Mol Neurobiol, and Neuroscience. China was the most productive country with respect to co-authorship, with the Capital Med Univ being the organization with the most. co-authorships. In terms of authorship analysis, eight of the top 10 most contributive authors were from China. The co-occurring author keywords can be divided into three main clusters, including "protective effect of autophagy in ischemic stroke," "autophagy-targeted therapy for ischemic stroke," and "mitochondrial function in cerebral ischemia-reperfusion injury". Conclusion: This bibliometric analysis helps us reveal the current research hotspots in the research field of autophagy in ischemic stroke and guide future research directions. Subsequent trends in this special field are likely to identify and develop novel autophagy-targeted therapy strategies to effectively prevent and treat ischemic stroke.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Gaijie Chen
- Health Management Center, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojing Xu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Chen
- Department of Operating Room, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiewen Zhang
- Department of Neurology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Liu
- Department of Nephrology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
10
|
Huang Y, Chang Z, Xia X, Zhao Z, Zhang X, Huang Z, Wu C, Pan X. Current and evolving knowledge domains of cubosome studies in the new millennium. JOURNAL OF NANOPARTICLE RESEARCH 2023; 25:176. [DOI: 10.1007/s11051-023-05823-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/11/2023] [Indexed: 06/25/2024]
|
11
|
Saliakas S, Damilos S, Karamitrou M, Trompeta AF, Milickovic TK, Charitidis C, Koumoulos EP. Integrating Exposure Assessment and Process Hazard Analysis: The Nano-Enabled 3D Printing Filament Extrusion Case. Polymers (Basel) 2023; 15:2836. [PMID: 37447482 DOI: 10.3390/polym15132836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/19/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Nanoparticles are being used in novel applications of the thermoplastics industry, including automotive parts, the sports industry and leisure and consumer goods, which can be produced nowadays through additive manufacturing. However, there is limited information on the health and safety aspects during the production of these new materials, mainly from recycled sources. This study covers the exposure assessment to nano- and micro-size particles emitted from the nanocomposites during the production of filaments for 3D printing through a compounding and extrusion pilot line using recycled (post-industrial) thermoplastic polyurethane (TPU) and recycled polyamide 12 (PA12), which have been also upcycled through reinforcement with iron oxide nanoparticles (Fe3O4 NPs), introducing matrix healing properties triggered by induction heating. The assessment protocol included near- and far-field measurements, considering the extruder as the primary emission source, and portable measuring devices for evaluating particulate emissions reaching the inhalable zone of the lab workers. A Failure Modes and Effects Analysis (FMEA) study for the extrusion process line was defined along with a Failure Tree Analysis (FTA) process in which the process deviations, their sources and the relations between them were documented. FTA allowed the identification of events that should take place in parallel (simultaneously) or in series for the failure modes to take place and the respective corrective actions to be proposed (additional to the existing control measures).
Collapse
Affiliation(s)
- Stratos Saliakas
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium
| | - Spyridon Damilos
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium
| | - Melpo Karamitrou
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece
| | - Aikaterini-Flora Trompeta
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece
| | - Tatjana Kosanovic Milickovic
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece
| | - Costas Charitidis
- Research Lab of Advanced, Composites, Nanomaterials and Nanotechnology (R-NanoLab), School of Chemical Engineering, National Technical University of Athens, Zographos, 15780 Athens, Greece
| | - Elias P Koumoulos
- Innovation in Research & Engineering Solutions (IRES), 1780 Wemmel, Belgium
| |
Collapse
|
12
|
Gao A, Yang J, Tian T, Wu Y, Sun X, Qi N, Tian N, Wang X, Wang J. Visual analysis based on CiteSpace software: a bibliometric study of atrial myxoma. Front Cardiovasc Med 2023; 10:1116771. [PMID: 37252126 PMCID: PMC10213645 DOI: 10.3389/fcvm.2023.1116771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Objective To use CiteSpace and VOSviewer visual metrology to analyze the research status, frontier hotspots, and trends in research on atrial myxoma. Methods The Web of Science core collection database was used to retrieve relevant literature on atrial myxoma from 2001 to 2022. CiteSpace software was used to analyze keywords with a co-occurrence network, co-polymerization class, and burst terms, and a corresponding visual atlas was drawn for analysis. Results A total of 893 valid articles were included. The country with the highest number of articles was the United States (n = 186). The organization with the highest number of articles was the Mayo Clinic (n = 15). The author with the highest number of articles was Yuan SM (n = 12). The highest cited author was Reynen K (n = 312). The highest cited journal was Annals of Thoracic Surgery (n = 1,067). The most frequently cited literature was published in the New England Journal of Medicine in 1995, which was cited 233 times. The keywords co-occurrence, copolymerization analysis, and Burst analysis revealed that the main research focuses were surgical methods, case reports, and genetic and molecular level studies on the pathogenesis of myxoma. Conclusions This bibliometric analysis revealed that the main research topics and hotspots in atrial myxoma included surgical methods, case reports, genetic and molecular studies.
Collapse
Affiliation(s)
- Ang Gao
- Department of Internal Medicine-Cardiovascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jinghua Yang
- Department of Internal Medicine-Cardiovascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tongru Tian
- Department of Gastroenterology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Wu
- Department of Internal Medicine-Cardiovascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoting Sun
- Department of Orthopedics, Zhengzhou Orthopedic Hospital, Zhengzhou, China
| | - Na Qi
- Department of Encephalology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Nan Tian
- Department of Internal Medicine-Cardiovascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xian Wang
- Department of Internal Medicine-Cardiovascular, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jisheng Wang
- Department of Andrology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Mohammadi P, Galera A. Occupational exposure to nanomaterials: A bibliometric study of publications over the last decade. Int J Hyg Environ Health 2023; 249:114132. [PMID: 36753856 DOI: 10.1016/j.ijheh.2023.114132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023]
Abstract
Owing to the increased use of nanomaterials, the number of employees and professionals who are exposed to these chemicals is on the rise, despite the paucity of organized data on the possible dangers associated with exposure to these compounds. Multiple studies reveal that the lack of nanosafety awareness among employees and businesses is a serious problem that must be addressed. This shortage of information may result from insufficient knowledge generation or transmission. Academic publications play a significant role in producing new knowledge. This study presents a comprehensive bibliometric analysis of published research on workplace nanosafety which this bibliometric analysis aims to establish the permeability and significance of nanosafety themes from an occupational safety and health viewpoint in academia, to gain a better understanding of the knowledge generation phase in the area, and detected advantages and disadvantages of the topic. Scopus was used as the data source in this study. A total of 1170 publications were gathered and analyzed. The results indicated that the United States is a leader in several aspects of nanosafety at the workplace. The synthesis of co-citation and author-keyword phrases provided insight into determining the focal points of the current study. Analysis of meta data indicates that the number of writers is rising. Nanomaterial toxicity, risk assessment, and occupational exposure are the three hottest topics in this field, according to the result. In addition, the findings included worldwide growth rate, collaborative research fields, keywords, journals, and funding agencies. The advantages and disadvantages of the knowledge creation phase of nanosafety at the workplace were examined in the conclusion.
Collapse
Affiliation(s)
| | - Asun Galera
- Polytechnic University of Catalonia, Barcelona, Spain.
| |
Collapse
|
14
|
Corsi I, Venditti I, Trotta F, Punta C. Environmental safety of nanotechnologies: The eco-design of manufactured nanomaterials for environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161181. [PMID: 36581299 DOI: 10.1016/j.scitotenv.2022.161181] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/09/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Nanosafety is paramount considering the risks associated with manufactured nanomaterials (MNMs) whose implications could outweigh their advantages for environmental applications. Although nanotechnology-based solutions to implement pollution control, remediation and prevention are incremental with clear benefits for public health and Earth' natural ecosystems, nanoremediation is having a setback due to the risks associated with the safety of MNMs for humans and the environment. MNMs are diverse, work differently and bionano-interactions occurring upon environmental exposure will guide their fate and hazardous outcomes. Here we propose a new ecologically-based design strategy (eco-design) having its roots in green nanoscience and LCA that will ground on an Ecological Risk Assessment approach, which introduces the evaluation of MNMs' ecotoxicity along with their performances and efficacies at the design stage. As such, the proposed eco-design strategy will allow recognition and design-out since the very beginning of material synthesis, those hazardous peculiar features that can be hazardous to living beings and the natural environment. A more ecologically sound eco-design strategy in which nanosafety is conceptually included in MNMs design will sustain safer nanotechnologies including those for the environment as remediation by leveraging any risks for humans and natural ecosystems.
Collapse
Affiliation(s)
- Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences, University of Siena, via Mattioli, 4, 53100 Siena, Italy.
| | - Iole Venditti
- Department of Sciences, Roma Tre University of Rome, via della Vasca Navale 79, 00146 Rome, Italy
| | - Francesco Trotta
- Department of Chemistry, University of Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering "G. Natta" and INSTM Local Unit, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano, Italy
| |
Collapse
|
15
|
Bleeker EAJ, Swart E, Braakhuis H, Fernández Cruz ML, Friedrichs S, Gosens I, Herzberg F, Jensen KA, von der Kammer F, Kettelarij JAB, Navas JM, Rasmussen K, Schwirn K, Visser M. Towards harmonisation of testing of nanomaterials for EU regulatory requirements on chemical safety - A proposal for further actions. Regul Toxicol Pharmacol 2023; 139:105360. [PMID: 36804527 DOI: 10.1016/j.yrtph.2023.105360] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023]
Abstract
Over the recent years, EU chemicals legislation, guidance and test guidelines have been developed or adapted for nanomaterials to facilitate safe use of nanomaterials. This paper provides an overview of the information requirements across different EU regulatory areas. For each information requirement, a group of 22 experts identified potential needs for further action to accommodate guidance and test guidelines to nanomaterials. Eleven different needs for action were identified, capturing twenty-two information requirements that are specific to nanomaterials and relevant to multiple regulatory areas. These were further reduced to three overarching issues: 1) resolve issues around nanomaterial dispersion stability and dosing in toxicity testing, in particular for human health endpoints, 2) further develop tests or guidance on degradation and transformation of organic nanomaterials or nanomaterials with organic components, and 3) further develop tests and guidance to measure (a)cellular reactivity of nanomaterials. Efforts towards addressing these issues will result in better fit-for-purpose test methods for (EU) regulatory compliance. Moreover, it secures validity of hazard and risk assessments of nanomaterials. The results of the study accentuate the need for a structural process of identification of information needs and knowledge generation, preferably as part of risk governance and closely connected to technological innovation policy.
Collapse
Affiliation(s)
- Eric A J Bleeker
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands.
| | - Elmer Swart
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - María Luisa Fernández Cruz
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Ctra. De la Coruña Km 7,5, 28040, Madrid, Spain
| | | | - Ilse Gosens
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Frank Herzberg
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Keld Alstrup Jensen
- The National Research Centre for the Working Environment (NRCWE), 105 Lersø Parkallé, DK-2100, Copenhagen, Denmark
| | - Frank von der Kammer
- University of Vienna, Centre for Microbiology and Environmental Systems Science, Department of Environmental Geosciences, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Jolinde A B Kettelarij
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| | - Jose María Navas
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), CSIC, Ctra. De la Coruña Km 7,5, 28040, Madrid, Spain
| | | | - Kathrin Schwirn
- German Environment Agency (UBA), Woerlitzer Platz 1, 06844, Dessau-Rosslau, Germany
| | - Maaike Visser
- National Institute for Public Health and the Environment (RIVM), P.O. Box 1, 3720 BA, Bilthoven, the Netherlands
| |
Collapse
|
16
|
Boraschi D, Canesi L, Drobne D, Kemmerling B, Pinsino A, Prochazkova P. Interaction between nanomaterials and the innate immune system across evolution. Biol Rev Camb Philos Soc 2023; 98:747-774. [PMID: 36639936 DOI: 10.1111/brv.12928] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
Interaction of engineered nanomaterials (ENMs) with the immune system mainly occurs with cells and molecules of innate immunity, which are present in interface tissues of living organisms. Immuno-nanotoxicological studies aim at understanding if and when such interaction is inconsequential or may cause irreparable damage. Since innate immunity is the first line of immune reactivity towards exogenous agents and is highly conserved throughout evolution, this review focuses on the major effector cells of innate immunity, the phagocytes, and their major sensing receptors, Toll-like receptors (TLRs), for assessing the modes of successful versus pathological interaction between ENMs and host defences. By comparing the phagocyte- and TLR-dependent responses to ENMs in plants, molluscs, annelids, crustaceans, echinoderms and mammals, we aim to highlight common recognition and elimination mechanisms and the general sufficiency of innate immunity for maintaining tissue integrity and homeostasis.
Collapse
Affiliation(s)
- Diana Boraschi
- Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Science (CAS), 1068 Xueyuan Blvd, 518071, Shenzhen, China.,Institute of Protein Biochemistry and Cell Biology (IBBC), CNR, Via Pietro Castellino 111, 80131, Naples, Italy.,Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80132, Napoli, Italy.,China-Italy Joint Laboratory of Pharmacobiotechnology for Medical Immunomodulation (SIAT, CNR, SZN), Napoli, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences, University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Damjana Drobne
- Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000, Ljubliana, Slovenia
| | - Birgit Kemmerling
- ZMBP - Center for Plant Molecular Biology, Plant Biochemistry, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Annalisa Pinsino
- Institute of Translational Pharmacology (IFT), National Research Council (CNR), Via Ugo La Malfa 153, 90146, Palermo, Italy
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Academy of Sciences of the Czech Republic, Vídeňská 1083, 142 20, Prague, Czech Republic
| |
Collapse
|
17
|
Zhu Y, Dai C, Lv D, Guan Y. Development of nonionic nanoemulsions to improve hydrophobic 9′-cis-bixin stability in acidic aqueous medium with in vitro cytosis and nanosafety evaluation. Food Chem 2023; 400:134076. [DOI: 10.1016/j.foodchem.2022.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/11/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
|
18
|
Yu Y, Cheng Q, Ji X, Chen H, Zeng W, Zeng X, Zhao Y, Mei L. Engineered drug-loaded cellular membrane nanovesicles for efficient treatment of postsurgical cancer recurrence and metastasis. SCIENCE ADVANCES 2022; 8:eadd3599. [PMID: 36490349 PMCID: PMC9733928 DOI: 10.1126/sciadv.add3599] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/02/2022] [Indexed: 05/26/2023]
Abstract
Cancer recurrence and metastasis are still common causes of postsurgery death in patients with solid tumors, suggesting that additional consolidation therapeutic strategies are necessary. We have previously found that oxaliplatin (OXA) treatment causes further up-regulation of CD155, which is abundantly expressed in tumors for resulting in increased sensitivity of cancer to anti-CD155 therapy. Here, we report O-TPNVs, which are TIGIT-expressing cell membrane and platelet cell membrane fusion nanovesicles (TPNVs) loaded with OXA. Platelet-derived membrane components enable O-TPNVs to target postsurgery wounds and interact with circulating tumor cells (CTCs). OXA directly kills residual tumor cells and CTCs, induces immunogenic cell death, and activates the immune system. TPNVs bind to CD155 on tumor cells, block the CD155/TIGIT pathway, and restore CD8+ T cell activity. In vivo analyses reveal that O-TPNVs achieve synergistic chemotherapeutic and immunotherapeutic effects, effectively inhibiting the recurrence and metastasis of triple-negative breast cancer (4T1) after surgery.
Collapse
Affiliation(s)
- Yongkang Yu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Qinzhen Cheng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Hongzhong Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Wenfeng Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Xiaowei Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, PR China
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| |
Collapse
|
19
|
Ren X, Pan C, Pan Z, Zhao S, Wu C, Chen W, Liu M, Han X, Kuang H, Qu M. Knowledge mapping of copper-induced cell death: A bibliometric study from 2012 to 2022. Medicine (Baltimore) 2022; 101:e31133. [PMID: 36397452 PMCID: PMC10662818 DOI: 10.1097/md.0000000000031133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 09/14/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The recent article Copper induces cell death by targeting lipoylated TCA cycle proteins has attracted much attention. Although copper-induced cell death has only recently been formally proposed, it has been studied much earlier. This study aims to undertake a bibliometric analysis of the literature on copper-induced cell death to understand the development of copper-induced cell death better and identify potential new research directions. METHODS With the help of Cite Space software, visual analysis is carried out on the annual number of published papers, countries/regions and institutions, journals co-citation, literature co-citation and reference burst, keywords co-occurrence, clustering, and burst. RESULTS A search of 770 articles published in English over the last ten years showed a fluctuating trend of increasing numbers of articles. China had the highest number of articles (190% or 24.68%), followed by the USA and India. Inflammation, biological evaluation, nanoparticle, and cu(ii) have been popular research themes in the last 4 years. The keyword clusters are summarized in 8 categories, including exposure, complexe, er stress, cleavage, paraptosis, cancer, glutamate, reactive oxygen species (ROS), expression. The hot topics are mainly focused on the exploration of mechanisms and related diseases, including induced apoptosis, aggregation, autophagy, endoplasmic reticulum stress, induced oxidative stress, and inflammation. Parkinson's disease and cancer are 2 diseases that are closely related to copper-induced cell death. CONCLUSION This study provides a visual analysis of copper-induced cell death trends and provides some hidden potentially useful information for future research directions.
Collapse
Affiliation(s)
- Xue Ren
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Ciming Pan
- Yunnan University of Chinese Medicine, Yunnan, China
| | - Zimeng Pan
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Shanshan Zhao
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Chen Wu
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Wan Chen
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Mengchen Liu
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Xingyue Han
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| | - Hongying Kuang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Hei Longjiang, China
| | - Miao Qu
- Hei Longjiang University of Chinese Medicine, Hei Longjiang, China
| |
Collapse
|
20
|
Li J, Ning M, Zhang Y, Liu Q, Liu K, Zhang H, Zhao Y, Chen C, Liu Y. The potential for nanomaterial toxicity affecting the male reproductive system. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1806. [DOI: 10.1002/wnan.1806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/15/2022] [Accepted: 04/05/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Jiangxue Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- University of Chinese Academy of Sciences Beijing China
| | - Manman Ning
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- School of Pharmaceutical Sciences of Zhengzhou University Zhengzhou China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- School of Henan Institute of Advanced Technology of Zhengzhou University Zhengzhou China
| | - Qianglin Liu
- Chengdu University of Traditional Chinese Medicine Chengdu Sichuan China
| | - Kai Liu
- Department of Chemistry Tsinghua University Beijing China
| | - Hongjie Zhang
- Department of Chemistry Tsinghua University Beijing China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- University of Chinese Academy of Sciences Beijing China
- GBA National Institute for Nanotechnology Innovation Guangdong China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- University of Chinese Academy of Sciences Beijing China
- GBA National Institute for Nanotechnology Innovation Guangdong China
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology of China Beijing China
- GBA National Institute for Nanotechnology Innovation Guangdong China
| |
Collapse
|
21
|
Ji C, Zhu S, Zhang E, Li W, Liu Y, Zhang W, Su C, Gu Z, Zhang H. Research progress and applications of silica-based aerogels - a bibliometric analysis. RSC Adv 2022; 12:14137-14153. [PMID: 35558845 PMCID: PMC9092642 DOI: 10.1039/d2ra01511k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022] Open
Abstract
Silica aerogels are three-dimensional porous materials that were initially produced in 1931. During the past nearly 90 years, silica aerogels have been applied extensively in many fields. In order to grasp the progress of silica-based aerogels, we utilize bibliometrics and visualization methods to analyze the research hotspots and the application of this important field. Firstly, we collect all the publications on silica-based aerogels and then analyze their research trends and performances by a bibliometric method regarding publication year/citation, country/institute, journals, and keywords. Following this, the major research hotspots of this area with a focus on synthesis, mechanical property regulation, and the applications for thermal insulation, adsorption, and Cherenkov detector radiators are identified and reviewed. Finally, current challenges and directions in the future regarding silica-based aerogels are also proposed.
Collapse
Affiliation(s)
- Chao Ji
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology Qingdao 266590 China
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences Beijing 100049 China
| | - Shuang Zhu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Enshuang Zhang
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| | - Wenjing Li
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| | - Yuanyuan Liu
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| | - Wanlin Zhang
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| | - Chunjian Su
- College of Mechanical and Electronic Engineering, Shandong University of Science and Technology Qingdao 266590 China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, Institute of High Energy Physics and National Center for Nanoscience and Technology of China, Chinese Academy of Sciences Beijing 100049 China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences Beijing 100049 China
| | - Hao Zhang
- Aerospace Institute of Advanced Material & Processing Technology Beijing 100074 P. R. China
| |
Collapse
|
22
|
Zu Y, Wang Y, Yao H, Yan L, Yin W, Gu Z. A Copper Peroxide Fenton Nanoagent-Hydrogel as an In Situ pH-Responsive Wound Dressing for Effectively Trapping and Eliminating Bacteria. ACS APPLIED BIO MATERIALS 2022; 5:1779-1793. [PMID: 35319859 DOI: 10.1021/acsabm.2c00138] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Bacterial infection has been a great threat to wounds due to the abuse of antibiotics and drug resistance. Elaborately constructing an efficient antibacterial strategy for accelerated healing of bacteria-infected wounds is of great importance. Herein, we develop a transferrin-conjugated copper peroxide nanoparticle-hydrogel (denoted as CP@Tf-hy) wound dressing with no toxicity to mammalian cells at a test dosage. When exposed to an initial acidic wound environment, the CP@Tf-hy simultaneously displays in situ self-supplied H2O2 and pH-responsive release of Fenton catalytic copper ions accompanied by highly toxic hydroxyl radical (•OH) generation against antibiotic-resistant bacteria. Meanwhile, the positively charged CP@Tf-hy can efficiently trap and restrain negatively charged bacteria to the range of •OH destruction to greatly overcome its intrinsic disadvantages of short life and diffusion distance. Importantly, the CP@Tf-hy consumes the bacterial overexpressed antioxidant glutathione while boosting Fenton catalytic copper(I) ions to generate more •OH. The synergistic effects of the enhanced Fenton reaction, responsive copper ion release, and bacterial trapping can achieve high bacterial elimination efficacy (7 log reduction). In vivo investigations demonstrate that the porous CP@Tf-hy significantly promotes hemostasis, cell proliferation, and migration of the wound, consequently accelerating bacteria-infected wound healing. The safe, low-cost, and all-in-one CP@Tf-hy holds great prospects as an antibacterial dressing for rapid resistant bacteria-infected purulent wound healing.
Collapse
Affiliation(s)
- Yan Zu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Wang
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Huiqin Yao
- College of Pharmacy, School of Basic Medicine, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Liang Yan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Wenyan Yin
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics and National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
23
|
Song Z, Liu T, Lai H, Meng X, Yang L, Su J, Chen T. A Universally EDTA-Assisted Synthesis of Polytypic Bismuth Telluride Nanoplates with a Size-Dependent Enhancement of Tumor Radiosensitivity and Metabolism In Vivo. ACS NANO 2022; 16:4379-4396. [PMID: 35175721 DOI: 10.1021/acsnano.1c10663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bismuth telluride (Bi2Te3) is an available thermoelectric material with the lowest band gap among bismuth chalcogenides, revealing a broad application in photocatalysis. Unfortunately, its size and morphology related to a radio-catalysis property have rarely been explored. Herein, an ethylenediaminetetraacetic acid (EDTA)-assisted hydrothermal strategy was introduced to synthesize polytypic Bi2Te3 nanoplates (BT NPs) that exhibit size-dependent radio-sensitization and metabolism characteristics in vivo. By simply varying the molar ratio of EDTA/Bi3+ during the reaction, BT NPs with different sizes and morphologies were obtained. EDTA acting as chelating agent and "capping" agent contributed to the homogeneous growth of BT NPs by eliminating dangling bonds and reducing the surface energy of different facets. Further analyzing the size-dependent radio-sensitization mechanism, larger-sized BT NPs generated holes that preferentially catalyzed the conversion of OH- to ·OH when irradiated with X-rays, while the smaller-sized BT NPs exhibited faster decay kinetics producing higher 1O2 levels to enhance radiotherapy effects. A metabolomic analysis revealed that larger-sized BT NPs were oxidized into Bi(Ox) in the liver via a citrate cycle pathway, whereas smaller-sized BT NPs accumulated in the kidney and were excreted in urine in the form of ions by regulating the metabolism of glutamate. In a cervical cancer model, BT NPs combined with X-ray irradiation significantly antagonized tumor suppression through the promotion of apoptosis in tumor cells. Consequently, in addition to providing a prospect of BT NPs as an efficient radio-sensitizer to boost the tumor radiosensitivity, we put forth a strategy that can be universally applied in synthesizing metal chalcogenides for catalysis-promoted radiotherapy.
Collapse
Affiliation(s)
- Zhenhuan Song
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Ting Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Haoqiang Lai
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaofeng Meng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Liu Yang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Jianyu Su
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Tianfeng Chen
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
24
|
May S, Hirsch C, Rippl A, Bürkle A, Wick P. Assessing Genotoxicity of Ten Different Engineered Nanomaterials by the Novel Semi-Automated FADU Assay and the Alkaline Comet Assay. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:220. [PMID: 35055238 PMCID: PMC8781421 DOI: 10.3390/nano12020220] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 01/16/2023]
Abstract
Increased engineered nanomaterial (ENM) production and incorporation in consumer and biomedical products has raised concerns about the potential adverse effects. The DNA damaging capacity is of particular importance since damaged genetic material can lead to carcinogenesis. Consequently, reliable and robust in vitro studies assessing ENM genotoxicity are of great value. We utilized two complementary assays based on different measurement principles: (1) comet assay and (2) FADU (fluorimetric detection of alkaline DNA unwinding) assay. Assessing cell viability ruled out false-positive results due to DNA fragmentation during cell death. Potential structure-activity relationships of 10 ENMs were investigated: three silica nanoparticles (SiO2-NP) with varying degrees of porosity, titanium dioxide (TiO2-NP), polystyrene (PS-NP), zinc oxide (ZnO-NP), gold (Au-NP), graphene oxide (GO) and two multi-walled carbon nanotubes (MWNT). SiO2-NPs, TiO2-NP and GO were neither cytotoxic nor genotoxic to Jurkat E6-I cells. Quantitative interference corrections derived from GO results can make the FADU assay a promising screening tool for a variety of ENMs. MWNT merely induced cytotoxicity, while dose- and time-dependent cytotoxicity of PS-NP was accompanied by DNA fragmentation. Hence, PS-NP served to benchmark threshold levels of cytotoxicity at which DNA fragmentation was expected. Considering all controls revealed the true genotoxicity for Au-NP and ZnO-NP at early time points.
Collapse
Affiliation(s)
- Sarah May
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (S.M.); (C.H.); (A.R.)
- Molecular Toxicology Group, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany;
| | - Cordula Hirsch
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (S.M.); (C.H.); (A.R.)
| | - Alexandra Rippl
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (S.M.); (C.H.); (A.R.)
| | - Alexander Bürkle
- Molecular Toxicology Group, University of Konstanz, Universitätsstrasse 10, 78464 Konstanz, Germany;
| | - Peter Wick
- Particles-Biology Interactions Lab, Swiss Federal Laboratories for Materials Science and Technology (EMPA), Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; (S.M.); (C.H.); (A.R.)
| |
Collapse
|
25
|
Liu H, Qiao Z, Jang YO, Kim MG, Zou Q, Lee HJ, Koo B, Kim SH, Yun K, Kim HS, Shin Y. Diatomaceous earth/zinc oxide micro-composite assisted antibiotics in fungal therapy. NANO CONVERGENCE 2021; 8:32. [PMID: 34694514 PMCID: PMC8542915 DOI: 10.1186/s40580-021-00283-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/05/2021] [Indexed: 05/27/2023]
Abstract
As the second wave of COVID-19 hits South Asia, an increasing deadly complication 'fungal infections (such as Mycosis, Candida and Aspergillus) outbreak' has been raised concern about the insufficient technologies and medicals for its diagnosis and therapy. Biosilica based nano-therapy can be used for therapeutic efficacy, yet their direct role as antibiotic agent with biocompatibility and stability remains unclear. Here, we report that a diatomaceous earth (DE) framework semiconductor composite conjugated DE and in-house synthesized zinc oxide (DE-ZnO), as an antibiotic agent for the enhancement of antibiotic efficacy and persistence. We found that the DE-ZnO composite had enhanced antibiotic activity against fungi (A. fumigatus) and Gram-negative bacteria (E. coli, S. enterica). The DE-ZnO composite provides enhancing large surface areas for enhancement of target pathogen binding affinity, as well as produces active ions including reactive oxygen species and metal ion for breaking the cellular network of fungi and Gram-negative bacteria. Additionally, the toxicity of DE-ZnO with 3 time less amount of dosage is 6 times lower than the commercial SiO2-ZnO. Finally, a synergistic effect of DE-ZnO and existing antifungal agents (Itraconazole and Amphotericin B) showed a better antifungal activity, which could be reduced the side effects due to the antifungal agents overdose, than a single antibiotic agent use. We envision that this DE-ZnO composite can be used to enhance antibiotic activity and its persistence, with less-toxicity, biocompatibility and high stability against fungi and Gram-negative bacteria which could be a valuable candidate in medical science and industrial engineering.
Collapse
Affiliation(s)
- Huifang Liu
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Zhen Qiao
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yoon Ok Jang
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Myoung Gyu Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Qingshuang Zou
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hyo Joo Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Bonhan Koo
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympicro-43gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do, Seongnam, 13120, Republic of Korea
| | - Hyun-Soo Kim
- INFUSIONTECH, Gyeonggi-do, 427 beon-gil, Dongan-gu, Anyang-si 14059, Republic of Korea
| | - Yong Shin
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| |
Collapse
|
26
|
Xiao J, Cao H, Guo S, Xiao S, Li N, Li M, Wu Y, Liu H. Long-term administration of low-dose selenium nanoparticles with different sizes aggravated atherosclerotic lesions and exhibited toxicity in apolipoprotein E-deficient mice. Chem Biol Interact 2021; 347:109601. [PMID: 34324854 DOI: 10.1016/j.cbi.2021.109601] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/10/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Exploration of long-term in vivo effects of nanomaterials, particularly those with potential biomedical applications, is quite important for better understanding and evaluating their biosafety. Selenium nanoparticles (SeNPs) has been considered as a good candidate in biomedical applications due to its high bioavailability, considerable biological activity, and low toxicity. However, its long-term biological effects and biosafety remain unknown. Our previous study demonstrated that 8-week supplementation with SeNPs (50 μg Se/kg/day) was safe and had an anti-atherosclerotic activity in apolipoprotein E-deficient (ApoE-/-) mice, a well-known animal model of atherosclerosis. As a chronic disease, atherosclerosis needs long-term drug therapy. The aim of this study is to investigate the long-term effects of SeNPs with different sizes on atherosclerotic lesions and their biosafety in ApoE-/- mice fed with a high fat diet. Unexpectedly, the results showed that 24-week administration of SeNPs even at a low dose (50 μg Se/kg/day) aggravated atherosclerotic lesions. Furthermore, SeNPs exacerbated oxidative stress by inhibiting the activities of antioxidant enzymes and the expression of antioxidant selenoenzymes. SeNPs also exacerbated hyperlipidaemia by inducing hepatic lipid metabolic disorder. In the meanwhile, SeNPs aggravated organ injury, especially liver and kidney injury. The above adverse effects of SeNPs were size dependent: SeNPs with the size of 40.4 nm showed the highest adverse effects among the SeNPs with three sizes (23.1 nm, 40.4 nm, and 86.8 nm). In conclusion, the present work shows that long-term administration of low-dose SeNPs aggravated atherosclerotic lesions by enhancing oxidative stress and hyperlipidaemia in ApoE-/- mice, indicative of cardiovascular toxicity. Moreover, long-term administration of SeNPs led to injury to liver and kidney. These results offer novel insights for better understanding the biosafety of SeNPs and other biomedical nanomaterials.
Collapse
Affiliation(s)
- Junying Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hui Cao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Siyu Guo
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shengze Xiao
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Na Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Min Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, 430074, China
| | - Hongmei Liu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China; Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan, 430074, China.
| |
Collapse
|
27
|
Mugaka BP, Zhang S, Li RQ, Ma Y, Wang B, Hong J, Hu YH, Ding Y, Xia XH. One-Pot Preparation of Peptide-Doped Metal-Amino Acid Framework for General Encapsulation and Targeted Delivery. ACS APPLIED MATERIALS & INTERFACES 2021; 13:11195-11204. [PMID: 33645961 DOI: 10.1021/acsami.0c22194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metal-organic frameworks (MOFs), especially those made by biological molecules (bio-MOFs), have been proved to be prospective candidates for biomedical applications. However, a simple and universal bio-MOF to load different substances for precise targeting is still lacking. In this work, we propose a facile one-pot method to prepare a peptide-doped bio-MOF for general encapsulation and targeted delivery. This bio-MOF is constructed by 9-fluorenylmethyloxycarbonyl-modified histidine (Fmoc-His) as a bridging linker that coordinates with Zn2+ ions, denoted as ZFH. The Fmoc-His-Asp-Gly-Arg peptide (Fmoc-HDGR) can be easily doped into the ZFH structure with different ratios to modulate the targeting ability of ZFH-DGR. Containing both hydrophobic Fmoc and hydrophilic His moieties, this framework is compatible with encapsulating various types of payloads, including hydrophobic chemotherapeutic, hydrophilic protein, and positively/negatively charged inorganic nanoparticles. It has also been proved to be highly biocompatible and stable in circulation, exhibit the capabilities to target ανβ3 integrin overexpressed on tumor cells, and trigger drug release in a low pH microenvironment at the tumor site. As a proof of concept, Doxorubicin (Dox)-loaded ZFH-DGR (ZFH-DGR/Dox) demonstrated high cell selectivity between liver hepatocellular carcinoma (HepG2) cells and normal liver (L02) cells, which express high and low ανβ3 integrin, respectively. This selectivity endows ZFH-DGR/Dox precise treatment and low toxicity in Heps-bearing liver cancer mice. This work develops a de novo approach to construct a peptide-doped bio-MOF system for universal load, precise delivery, and peptide drug combination therapy in the future.
Collapse
Affiliation(s)
- Benson Peter Mugaka
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Sheng Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Rui-Qi Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Biomedical Functional Materials, School of Sciences, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Yu Ma
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Bo Wang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Jin Hong
- Key Laboratory of Biomedical Functional Materials, School of Sciences, Ministry of Education, China Pharmaceutical University, Nanjing 211198, China
| | - Yi-Hui Hu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ya Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing 210009, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
28
|
Ruan F, Zeng J, Yin H, Jiang S, Cao X, Zheng N, Han C, Zhang C, Zuo Z, He C. RNA m6A Modification Alteration by Black Phosphorus Quantum Dots Regulates Cell Ferroptosis: Implications for Nanotoxicological Assessment. SMALL METHODS 2021; 5:e2001045. [PMID: 34927824 DOI: 10.1002/smtd.202001045] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Indexed: 06/14/2023]
Abstract
Nanosafety is a major concern for nanotechnology development. Evaluation of the transcriptome and the DNA methylome is proposed for nanosafety assessments. RNA m6A modification plays a crucial role in development, disease, and cell fate determination through regulating RNA stability and decay. Here, since black phosphorus quantum dots (BPQDs), among many other types of QDs, increase the global m6A level and decrease the demethylase ALKBH5 level in lung cells, the epitranscriptome is taken into consideration for the first time to evaluate nanosafety. Both the transcriptome and m6A epitranscriptome analyses show that BPQDs alter many biological processes, such as the response to selenium ions and the lipoxygenase pathway, indicating possible ferroptosis activation. The results further show that BPQDs cause lipid peroxidation, mitochondrial dysfunction, and iron overload. Recognition of these modified mRNAs by YTHDF2 leads to mRNAs' decay and eventually ferroptosis. This study shows that RNA m6A modification not only is a more sophisticated indicator for nanosafety assessment but also provides novel insight into the role of RNA m6A in regulating BPQD-induced ferroptosis, which may be broadly applicable to understanding the functions of RNA m6A under stress.
Collapse
Affiliation(s)
- Fengkai Ruan
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Jie Zeng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Hanying Yin
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Shengwei Jiang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, 518055, China
| | - Xisen Cao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Naying Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Changshun Han
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chuchu Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhenghong Zuo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| | - Chengyong He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
29
|
Teng W, Yang Z, Wang S, Xiong D, Chen Y, Wu Z. Toxicity evaluation of mesoporous silica particles Santa Barbara No. 15 amorphous in human umbilical vein endothelial cells: influence of particle morphology. J Appl Toxicol 2021; 41:1467-1478. [DOI: 10.1002/jat.4137] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/12/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022]
|
30
|
Liao Y, Wang D, Gu Z. Research Progress of Nanomaterials for Radioprotection. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21070319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Ma M, Liu Z, Gao N, Pi Z, Du X, Ren J, Qu X. Self-Protecting Biomimetic Nanozyme for Selective and Synergistic Clearance of Peripheral Amyloid-β in an Alzheimer’s Disease Model. J Am Chem Soc 2020; 142:21702-21711. [DOI: 10.1021/jacs.0c08395] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mengmeng Ma
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Anhui 230026, China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Anhui 230026, China
| | - Nan Gao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Zifeng Pi
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiubo Du
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Anhui 230026, China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|