1
|
Therapeutic Strategies for Attenuation of Retinal Ganglion Cell Injury in Optic Neuropathies: Concepts in Translational Research and Therapeutic Implications. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8397521. [PMID: 31828134 PMCID: PMC6885158 DOI: 10.1155/2019/8397521] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/07/2019] [Accepted: 10/28/2019] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the central and irreversible endpoint of optic neuropathies. Current management of optic neuropathies and glaucoma focuses on intraocular pressure-lowering treatment which is insufficient. As such, patients are effectively condemned to irreversible visual impairment. This review summarizes experimental treatments targeting RGCs over the last decade. In particular, we examine the various treatment modalities and determine their viability and limitations in translation to clinical practice. Experimental RGC treatment can be divided into (1) cell replacement therapy, (2) neuroprotection, and (3) gene therapy. For cell replacement therapy, difficulties remain in successfully integrating transplanted RGCs from various sources into the complex neural network of the human retina. However, there is significant potential for achieving full visual restoration with this technique. Neuroprotective strategies, in the form of pharmacological agents, nutritional supplementation, and neurotrophic factors, are viable strategies with encouraging results from preliminary noncomparative interventional case series. It is important to note, however, that most published studies are focused on glaucoma, with few treating optic neuropathies of other etiologies. Gene therapy, through the use of viral vectors, has shown promising results in clinical trials, particularly for diseases with specific genetic mutations like Leber's hereditary optic neuropathy. This treatment technique can be further extended to nonhereditary diseases, through transfer of genes promoting cell survival and neuroprotection. Crucially though, for gene therapy, teratogenicity remains a significant issue in translation to clinical practice.
Collapse
|
2
|
Mizia-Malarz A, Sobol-Milejska G. Assessment of Angiogenesis in Children with Acute Lymphoblastic Leukemia Based on Serum Vascular Endothelial Growth Factor Assay. Indian J Med Paediatr Oncol 2017; 38:321-325. [PMID: 29200682 PMCID: PMC5686975 DOI: 10.4103/ijmpo.ijmpo_109_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction Vascular endothelial growth factor A (VEGFA) is a key proangiogenic cytokine. The role of angiogenesis in acute lymphoblastic leukemia (ALL) is still unclear. The purpose of the study was to assess angiogenesis in children with ALL based on serum VEGFA level determined at diagnosis and at remission with further participant subdivision into different risk groups. Materials and Methods Forty children, aged 3-12 years (mean age: 8 years) with newly diagnosed ALL, were enrolled in the study. The control group (Group C) was twenty healthy children. According to the risk assessment, they were classified into a standard-risk group, an intermediate-risk group (IRG), or a high-risk group (HRG). Results The median serum VEGFA levels at diagnosis were significantly higher in IRG and HRG as compared to Group C. The VEGFA levels at remission were significantly higher in all study groups, as compared to Group C. The differences in median values of serum VEGFA levels between the study groups both at diagnosis and at remission were not statistically significant. Conclusions The angiogenesis in ALL seems to be intensified at diagnosis as a result of neoplasmatic bone marrow rebuilding and at remission as its intensive recovering.
Collapse
Affiliation(s)
- Agnieszka Mizia-Malarz
- Department of Paediatric Oncology, Haematology and Chemotherapy, Upper Silesian Children's Healthcare Centre, Medical University of Silesia, Katowice, Poland
| | - Grazyna Sobol-Milejska
- Department of Paediatric Oncology, Haematology and Chemotherapy, Upper Silesian Children's Healthcare Centre, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
3
|
Overview of retinal differentiation potential of mesenchymal stem cells: A promising approach for retinal cell therapy. Ann Anat 2016; 210:52-63. [PMID: 27986614 DOI: 10.1016/j.aanat.2016.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/10/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
Retinal disease caused by retinal cell apoptosis leads to irreversible vision loss. Stem cell investigation efforts have been made to solve and cure retinal disorders. There are several sources of stem cells which have been used in these experiments. Numerous studies demonstrated that transplanted stem cells can migrate into and integrate in different layers of retina. Among these, mesenchymal stem cells (MSCs) were considered a promising source for cell therapy. Here, we review the literature assessing the potential of MSCs to differentiate into retinal cells in vivo and in vitro as well as their clinical application. However, more investigation is required to define the protocols that optimize stem cell differentiation and their functional integration in the retina.
Collapse
|
4
|
Deschaseaux F, Remy-Martin JP, Keating A, Hervé P, Charbord P. Adhesion of Hematopoietic Precursors to Human Stroma: Studies Using Normal Marrow Stromal Myofibroblasts and a Stromal Cell Line Transformed by SV40. Hematology 2016; 3:401-17. [DOI: 10.1080/10245332.1998.11746415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Affiliation(s)
- Frederic Deschaseaux
- Laboratory for the Study of Hematopoiesis, Transfusion Center, Besançon, France
- Institut d'Etude et de Transfert de Gènes, Besançon, France
| | | | - Armand Keating
- Department of Medical Oncology and Hematology, the Toronto Hospital and Ontario Cancer Institute (Princess Margaret Hospital), Ontario, Canada
| | - Patrick Hervé
- Laboratory for the Study of Hematopoiesis, Transfusion Center, Besançon, France
- Institut d'Etude et de Transfert de Gènes, Besançon, France
| | - Pierre Charbord
- Laboratory for the Study of Hematopoiesis, Transfusion Center, Besançon, France
- Institut d'Etude et de Transfert de Gènes, Besançon, France
| |
Collapse
|
5
|
Yuan J, Yu JX. Gender difference in the neuroprotective effect of rat bone marrow mesenchymal cells against hypoxia-induced apoptosis of retinal ganglion cells. Neural Regen Res 2016; 11:846-53. [PMID: 27335573 PMCID: PMC4904480 DOI: 10.4103/1673-5374.182764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Bone marrow mesenchymal stem cells can reduce retinal ganglion cell death and effectively prevent vision loss. Previously, we found that during differentiation, female rhesus monkey bone marrow mesenchymal stem cells acquire a higher neurogenic potential compared with male rhesus monkey bone marrow mesenchymal stem cells. This suggests that female bone marrow mesenchymal stem cells have a stronger neuroprotective effect than male bone marrow mesenchymal stem cells. Here, we first isolated and cultured bone marrow mesenchymal stem cells from female and male rats by density gradient centrifugation. Retinal tissue from newborn rats was prepared by enzymatic digestion to obtain primary retinal ganglion cells. Using the transwell system, retinal ganglion cells were co-cultured with bone marrow mesenchymal stem cells under hypoxia. Cell apoptosis was detected by flow cytometry and caspase-3 activity assay. We found a marked increase in apoptotic rate and caspase-3 activity of retinal ganglion cells after 24 hours of hypoxia compared with normoxia. Moreover, apoptotic rate and caspase-3 activity of retinal ganglion cells significantly decreased with both female and male bone marrow mesenchymal stem cell co-culture under hypoxia compared with culture alone, with more significant effects from female bone marrow mesenchymal stem cells. Our results indicate that bone marrow mesenchymal stem cells exert a neuroprotective effect against hypoxia-induced apoptosis of retinal ganglion cells, and also that female cells have greater neuroprotective ability compared with male cells.
Collapse
Affiliation(s)
- Jing Yuan
- Eye Center, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Jian-Xiong Yu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
6
|
Abstract
Hematopoietic stem cells (HSCs) are capable to self-renew with multi-potency which generated much excitement in clinical therapy. However, the main obstacle of HSCs in clinical application was insufficient number of HSCs which were derived from either bone marrow, peripheral blood or umbilical cord blood. This review briefly discusses the indispensable utility of growth factors and cytokines, stromal cells, extracellular matrix, bionic scaffold and microenvironment aiming to control the hematopoiesis in all directions and provide a better and comprehensive understanding for in vitro expansion of hematopoietic stem cells.
Collapse
|
7
|
Neuroprotective and antiapoptotic activity of lineage-negative bone marrow cells after intravitreal injection in a mouse model of acute retinal injury. Stem Cells Int 2015; 2015:620364. [PMID: 25810725 PMCID: PMC4354968 DOI: 10.1155/2015/620364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 01/02/2015] [Indexed: 12/21/2022] Open
Abstract
We investigated effects of bone marrow-derived, lineage-negative cell (Lin(-)BMC) transplantation in acute retinal injury. Lin(-)BMCs were intravitreally injected into murine eyes at 24 h after NaIO3-induced injury. Morphology, function, and expression of apoptosis-related genes, including brain-derived neurotrophic factor (BDNF) and its receptor, were assessed in retinas at 7 days, 28 days, and 3 months after transplantation. Moreover, global gene expression at day 7 was analyzed by RNA arrays. We observed that Lin(-)BMCs integrated into outer retinal layers improving morphological retinal structure and induced molecular changes such as downregulation of proapoptotic caspase-3 gene, a decrease in BAX/BCL-2 gene ratio, and significant elevation of BDNF expression. Furthermore, transplanted Lin(-)BMCs differentiated locally into cells with a macrophage-like phenotype. Finally, Lin(-)BMCs treatment was associated with generation of two distinct transcriptomic patterns. The first relates to downregulated genes associated with regulation of neuron cell death and apoptosis, response to oxidative stress/hypoxia and external stimuli, and negative regulation of cell proliferation. The second relates to upregulated genes associated with neurological system processes and sensory perception. Collectively, our data demonstrate that transplanted Lin(-)BMCs exert neuroprotective function against acute retinal injury and this effect may be associated with their antiapoptotic properties and ability to express neurotrophic factors.
Collapse
|
8
|
Emre E, Yüksel N, Duruksu G, Pirhan D, Subaşi C, Erman G, Karaöz E. Neuroprotective effects of intravitreally transplanted adipose tissue and bone marrow-derived mesenchymal stem cells in an experimental ocular hypertension model. Cytotherapy 2015; 17:543-59. [PMID: 25618560 DOI: 10.1016/j.jcyt.2014.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 12/17/2022]
Abstract
BACKGROUND AIMS The purpose of this study was to investigate the neuroprotective effects of bone marrow bone marrow-derived and adipose tissue-derived mesenchymal stromal cells (MSCs) that were intravitreally transplanted in an experimental ocular hypertension (OHT) model. METHODS An OHT rat model was generated by means of intracameral injection of hyaluronic acid into the anterior chamber. MSCs labeled with green fluorescence protein were transplanted intravitreally 1 week after OHT induction. At the end of the second and fourth weeks, retinal ganglion cells were visualized with the use of a flat-mount retina method and were evaluated by means of immunofluorescence staining against green fluorescence protein, vimentin, CD105, and cytokines (interleukin [IL]-1Ra, prostaglandin E2 receptor, IL-6, transforming growth factor-β1, interferon-γ and tumor necrosis factor-α). RESULTS The retinal ganglion cell numbers per area were significantly improved in stem cell-treated OHT groups compared with that in the non-treated OHT group (P < 0.05). The results of immunohistochemical analyses indicated that a limited number of stem cells had integrated into the ganglion cell layer and the inner nuclear layer. The number of cells expressing proinflammatory cytokines (interferon-γ and tumor necrosis factor-α) decreased in the MSC-transferred group compared with that in the OHT group after 4 weeks (P < 0.01). On the other hand, IL-1Ra and prostaglandin E2 receptor expressions were increased in the rat bone marrow-derived MSC group but were more significant in the rat adipose tissue-derived MSC group (P < 0.01). CONCLUSIONS After intravitreal transplantation, MSCs showed a neuroprotective effect in the rat OHT model. Therefore, MSCs promise an alternative therapy approach for functional recovery in the treatment of glaucoma.
Collapse
Affiliation(s)
- Esra Emre
- Department of Ophthalmology, Çerkezköy State Hospital, Tekirdağ, Turkey.
| | - Nurşen Yüksel
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Gökhan Duruksu
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Dilara Pirhan
- Department of Ophthalmology, School of Medicine, Kocaeli University, Kocaeli, Turkey
| | - Cansu Subaşi
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| | - Gülay Erman
- Center for Stem Cell and Gene Therapies Research and Practice, Kocaeli University, Kocaeli, Turkey
| | - Erdal Karaöz
- Liv Hospital, Center for Regenerative Medicine and Stem Cell Research & Manufacturing (Liv MedCell) Istanbul, Turkey
| |
Collapse
|
9
|
Adipose tissue-derived mesenchymal stem cells cultured at high cell density express brain-derived neurotrophic factor and exert neuroprotective effects in a 6-hydroxydopamine rat model of Parkinson’s disease. Genes Genomics 2014. [DOI: 10.1007/s13258-014-0239-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
10
|
Seidel MF, Lane NE. Control of arthritis pain with anti-nerve-growth factor: risk and benefit. Curr Rheumatol Rep 2013; 14:583-8. [PMID: 22948388 DOI: 10.1007/s11926-012-0289-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Arthritis is characterized by pain and inflammation. Recently, attention has been focused on nerve-growth factor (NGF), a neurotrophin that is a key regulator of peripheral nociception because it mediates overexpression of proinflammatory neuron-derived molecules such as substance P, serotonin, and calcitonin gene-related peptide. Antibodies have been generated for NGF and its receptor that are effective in reducing pain in preclinical pain models, and clinical trials in patients with advanced knee and hip osteoarthritis and low-back pain. Results show pain reduction is rapid and sustained. Adverse events with anti-NGF included transient paraesthesia and edema, rapidly progressive OA, and, in a small number of patients treated with both anti-NGF and nonsteroidal anti-inflammatory drugs, osteonecrosis. Inhibition of the NGF-stimulated nociceptive pathway seems to be effective; however, the adverse effects require further investigation.
Collapse
Affiliation(s)
- Matthias F Seidel
- Section of Rheumatology, Medizinische Klinik und Poliklinik III, University Hospital, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | | |
Collapse
|
11
|
Payushina OV. Hematopoietic Microenvironment in the Fetal Liver: Roles of Different Cell Populations. ACTA ACUST UNITED AC 2012. [DOI: 10.5402/2012/979480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Hematopoiesis is the main function of the liver during a considerable period of mammalian prenatal development. Hematopoietic cells of the fetal liver exist in a specific microenvironment that controls their proliferation and differentiation. This microenvironment is created by different cell populations, including epitheliocytes, macrophages, various stromal elements (hepatic stellate cells, fibroblasts, myofibroblasts, vascular smooth muscle and endothelial cells, mesenchymal stromal cells), and also cells undergoing epithelial-to-mesenchymal transition. This paper considers the involvement of these cell types in the regulation of fetal liver hematopoiesis.
Collapse
Affiliation(s)
- Olga V. Payushina
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
12
|
Abstract
The role of the adrenergic, dopaminergic, and serotoninergic systems in the regulation of hemopoiesis was evaluated on various models of pathological processes (restraint stress, experimental neurosis, and cytostatic treatment). The proliferation, differentiation, and maturation of polypotent, multipotent, partially determined, and oligopotent hemopoietic precursors and functional activity of microenvironmental cells (stromal cells, macrophages, and Thy1,2(+) cells) were shown to be under the control of a complex system of monoaminergic regulation. Central monoamines have a direct or indirect (mediated by microenvironmental cells) regulatory effect on hemopoietic precursors of various classes, which is realized via specific receptors. The system of colony-stimulating factors is characterized by selective sensitivity to catecholamines. It should be emphasized that the effects of erythropoietin are mainly associated with serotonin. Irrespective of experimental conditions (hyperplasia of hemopoiesis, myelosuppression, and dysregulation of precursor cell proliferation and differentiation), the erythroid hemopoietic stem is more sensitive to serotoninergic influences. Granulocytopoiesis was revealed to be more sensitive to central catecholamines.
Collapse
|
13
|
Sun GW, Fujii M, Matsunaga T. Functional interaction between mesenchymal stem cells and spiral ligament fibrocytes. J Neurosci Res 2012; 90:1713-22. [DOI: 10.1002/jnr.23067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 03/03/2012] [Accepted: 03/20/2012] [Indexed: 01/15/2023]
|
14
|
Vascular endothelial growth factor levels in childhood acute lymphoblastic and myeloblastic leukemia. Indian J Hematol Blood Transfus 2011; 28:24-8. [PMID: 23449155 DOI: 10.1007/s12288-011-0102-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022] Open
Abstract
Angiogenesis has been associated with the growth, dissemination and metastasis and has been shown to be a prognostic. Although there are some data suggesting that angiogenesis may have a role in the pathophysiology of leukemia, its role in patient prognosis is yet to be defined. We analyzed the expression level of vascular endothelial growth factor (VEGF), an angiogenesis promoter and its possible- prognostic value in bone marrow samples at the time of diagnosis and remission of acute childhood leukemia patients. Besides 46 patients diagnosed as ALL or AML, 16 children were also included as a control group in the study. Our data have demonstrated that VEGF levels of AML patients were found higher than the control group statistically (P = 0.022). However we could not find any significant difference between VEGF levels of diagnosis and remission in both AML and ALL groups by blastic VEGF expression (P > 0.05). In this study the higher levels of VEGF in AML patients is one of the main findings although we were not able to assess any role of VEGF in predicting prognosis in pediatric leukemia patients by evaluating blastic cell VEGF expression. These results have demonstrated that the relationship between angiogenesis or angiogenesis promoters and hematological malignancies is not clear and simple as different methods or different cells beside different angiogenesis promotors are involved to these studies. So that not only tumor cells and their cytokines but also surrounding cells and their cytokines must be taken into consideration with the standardized study methods in the further studies to obtain a promising treatment approach.
Collapse
|
15
|
Prospective evaluation of the association between cardiac troponin T and markers of disturbed erythropoiesis in patients with heart failure. Am Heart J 2010; 160:1142-8. [PMID: 21146670 DOI: 10.1016/j.ahj.2010.07.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 07/30/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Elevated cardiac troponin T is a well-documented marker of cardiomyocyte damage and poor prognosis in patients with heart failure. We prospectively evaluated the relationship between this marker and hematopoietic disturbances in heart failure. METHODS Data were analyzed from 254 patients in the UNITE-HF Biomarker Registry, a prospective, observational, multicenter study of the clinical and biomarker correlates of anemia in heart failure. Logistic regression modeling assessed relationships between detectable troponin T and indices of hematologic function including anemia and red cell distribution width. RESULTS Anemia (hemoglobin≤12 g/dL) was present in 65 of the 254 study patients, and detectable troponin T was found in 39. Anemia was a significant independent predictor of detectable troponin T in models that considered a number of clinical characteristics including renal function, functional class, heart rate, and systolic blood pressure (odds ratio 2.57, 95% CI 1.09-6.09, P=.032). Likewise, detectable troponin T was directly and independently related to red cell distribution width in similar multivariable analyses (odds ratio 1.36 per unit increase, 95% CI 1.08-1.71, P=.008). CONCLUSIONS Anemia and increasing red cell distribution width were independently associated with elevated troponin T, a marker of cardiomyocyte injury or death in patients with heart failure.
Collapse
|
16
|
Sata M, Fukuda D. Crucial role of renin-angiotensin system in the pathogenesis of atherosclerosis. THE JOURNAL OF MEDICAL INVESTIGATION 2010; 57:12-25. [DOI: 10.2152/jmi.57.12] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Masataka Sata
- Department of Cardiovascular Medicine, Institute of Health Bioscience, the University of Tokushima Graduate School
| | - Daiju Fukuda
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School
| |
Collapse
|
17
|
Hung HS, Shyu WC, Tsai CH, Hsu SH, Lin SZ. Transplantation of Endothelial Progenitor Cells as Therapeutics for Cardiovascular Diseases. Cell Transplant 2009; 18:1003-12. [PMID: 19650968 DOI: 10.3727/096368909x12483162196683] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
With better understanding of endothelial progenitor cells (EPCs), many therapeutic approaches to cardiovascular diseases have been developed. This article will review novel research of EPCs in promoting angiogenesis, vasculogenesis, and endothelialization, as a design for future clinical treatment. Cell therapy has the potential to supply stem/progenitor cells and multiple angiogenic factors to the region of ischemia. The efficacy of EPC transplantation may be impaired by low survival rate, insufficient cell number, and impaired function in aging and diseases. Combination of EPCs or cells primed with growth factors or genetic modification may improve the therapeutic efficacy. The molecular mechanism involved in EPC repairing processes is essential. Thus, we have also addressed the molecular mechanism of mobilization, homing, and differentiation of EPCs. The potential of therapeutic neovascularization, angiogenic factor therapy, and cell transplantation have been elucidated. Based on past experience and actual knowledge, future strategies for EPC therapy will be proposed in order to fully exploit the potential of EPC transplantation with clinical relevance for cardiovascular disease applications.
Collapse
Affiliation(s)
- Huey-Shan Hung
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
| | - Woei-Cherng Shyu
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
| | - Chang-Hai Tsai
- Department of Pediatrics, China Medical University Hospital, Taichung, Taiwan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Shan-Hui Hsu
- Department of Chemical Engineering and Institute of Biomedical Engineering, National Chung Hsing University, Taichung, Taiwan
| | - Shinn-Zong Lin
- Center for Neuropsychiatry, China Medical University and Hospital, Taichung, Taiwan
- Graduate Institute of Immunology, China Medical University, Taichung, Taiwan
- China Medical University Beigang Hospital, Yunlin, Taiwan
| |
Collapse
|
18
|
Li N, Li XR, Yuan JQ. Effects of bone-marrow mesenchymal stem cells transplanted into vitreous cavity of rat injured by ischemia/reperfusion. Graefes Arch Clin Exp Ophthalmol 2008; 247:503-14. [PMID: 19084985 DOI: 10.1007/s00417-008-1009-y] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Revised: 11/05/2008] [Accepted: 11/06/2008] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE To examine the survival, migration, integration, differentiation and the expression of various neurotrophic factors of bone-marrow mesenchymal stem cells (BMSCs) transplanted into the vitreous cavity of rats injured by ischemia/reperfusion(I/R). METHODS The BMSCs were separated from rat marrow using the wall-sticking method, and cultured in vitro to expand. Flow cytometry detected the surface antigens of BMSCs. Ninety-six rats were randomly divided into four groups: normal control injected PBS(C+P), normal control injected BMSCs (C+B), ischemic/reperfusion injected PBS(I/R+P)and ischemic/reperfusion injected BMSCs(I/R+B). After retinal I/R injury was induced in each group by increasing intraocular pressure, 10 microl PBS and BMSC suspensions labeled by red fluorescence CM-Dil were immediately injected into the vitreous cavity. We observed the survival, migration and integration of BMSCs using confocal microscopy. The differentiation and expression of basic fibroblast growth factor (bFGF), brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF) of CM-Dil-labeled BMSCs were detected by immunofluorescent labeling and reserved by confocal microscopy. The expression of mRNA and proteins of bFGF, BDNF and CNTF were assayed by RT-PCR and Western Blot respectively. RESULTS After transplantation to normal eyes, BMSCs labeled by CM-Dil were mostly present in the vitreous cavity, and did not migrate. After transplantation to I/R eyes, BMSCs labeled by CM-Dil were mostly present along with the inner limiting membrane. Only a few cells were integrated into the ganglion cell layer. Two or 4 weeks after transplantation, a few BMSCs labeled by CM-Dil were observed to express markers of neuron- neurone specific enolase (NSE), neurofilament (NF) and various neurotrophic factors. The BMSC-injected I/R model eyes showed less reduction in the number of RGCs than that of the I/R eyes with PBS injection. CONCLUSIONS BMSC transplantation is a valuable neuroprotection tool for the treatment of retina and optic nerve diseases.
Collapse
Affiliation(s)
- Na Li
- Eye Center, Tianjin Medical University, Tianjin, 300070, China
| | | | | |
Collapse
|
19
|
Someya Y, Koda M, Dezawa M, Kadota T, Hashimoto M, Kamada T, Nishio Y, Kadota R, Mannoji C, Miyashita T, Okawa A, Yoshinaga K, Yamazaki M. Reduction of cystic cavity, promotion of axonal regeneration and sparing, and functional recovery with transplanted bone marrow stromal cell–derived Schwann cells after contusion injury to the adult rat spinal cord. J Neurosurg Spine 2008; 9:600-10. [DOI: 10.3171/spi.2008.9.08135] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Object
The authors previously reported that Schwann cells (SCs) could be derived from bone marrow stromal cells (BMSCs) in vitro and that they promoted axonal regeneration of completely transected rat spinal cords in vivo. The aim of the present study is to evaluate the efficacy of transplanted BMSC-derived SCs (BMSC-SCs) in a rat model of spinal cord contusion, which is relevant to clinical spinal cord injury.
Methods
Bone marrow stromal cells were cultured as plastic-adherent cells from the bone marrow of GFPtransgenic rats. The BMSC-SCs were derived from BMSCs in vitro with sequential treatment using beta-mercaptoethanol, all-trans-retinoic acid, forskolin, basic fibroblast growth factor, platelet derived–growth factor, and heregulin. Schwann cells were cultured from the sciatic nerve of neonatal, GFP-transgenic rats. Immunocytochemical analysis and the reverse transcriptase–polymerase chain reaction were performed to characterize the BMSC-SCs. For transplantation, contusions with the New York University impactor were delivered at T-9 in 10- to 11-week-old male Wistar rats. Four groups of rats received injections at the injury site 7 days postinjury: the first received BMSCSCs and matrigel, a second received peripheral SCs and matrigel, a third group received BMSCs and matrigel, and a fourth group received matrigel alone. Histological and immunohistochemical studies, electron microscopy, and functional assessments were performed to evaluate the therapeutic effects of BMSC-SC transplantation.
Results
Immunohistochemical analysis and reverse transcriptase–polymerase chain reaction revealed that BMSC-SCs have characteristics similar to SCs not only in their morphological characteristics but also in their immunocytochemical phenotype and genotype. Histological examination revealed that the area of the cystic cavity was significantly reduced in the BMSC-SC and SC groups compared with the control rats. Immunohistochemical analysis showed that transplanted BMSCs, BMSC-SCs, and SCs all maintained their original phenotypes. The BMSC-SC and SC groups had a larger number of tyrosine hydroxilase–positive fibers than the control group, and the BMSC-SC group had more serotonin-positive fibers than the BMSC or control group. The BMSC-SC group showed significantly better hindlimb functional recovery than in the BMSC and control group. Electron microscopy revealed that transplanted BMSC-SCs existed in association with the host axons.
Conclusions
Based on their findings, the authors concluded that BMSC-SC transplantation reduces the size of the cystic cavity, promotes axonal regeneration and sparing, results in hindlimb functional recovery, and can be a useful tool for spinal cord injury as a substitute for SCs.
Collapse
Affiliation(s)
| | - Masao Koda
- 3Department of Orthopaedic Surgery, Prefectural Togane Hospital, Chiba
| | - Mari Dezawa
- 4Department of Anatomy and Neurobiology, Kyoto University Graduate School of Medicine, Kyoto; and
| | - Tomoko Kadota
- 2Bioenvironmental Medicine, Chiba University Graduate School of Medicine, Chiba
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Chen JR, Cheng GY, Sheu CC, Tseng GF, Wang TJ, Huang YS. Transplanted bone marrow stromal cells migrate, differentiate and improve motor function in rats with experimentally induced cerebral stroke. J Anat 2008; 213:249-58. [PMID: 18647194 DOI: 10.1111/j.1469-7580.2008.00948.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bone marrow stromal cells are multipotential cells that can be induced to differentiate into osteoblasts, chondrocytes, myocytes and adipocytes in different microenvironments. Recent studies revealed that bone marrow stromal cells could improve neurological deficits of various damages or diseases of the central nervous system such as Parkinson's disease, brain trauma, spinal cord injury and multiple sclerosis, and promote glia-axonal remodeling in animal brain subjected to an experimentally induced stroke. In the present study, bone marrow stromal cells were intracerebrally transplanted into the cerebrum following a transient middle cerebral artery occlusion. Our aim was to find out whether the bone marrow stromal cells could survive and express neural phenotypic proteins and, in addition, whether they could restore the behavioral and functional deficits of the cerebral ischemic rats. Our results demonstrated that transplanted bone marrow stromal cells survived and migrated to areas around the lesion site. Some of them exhibited marker proteins of astrocytes and oligodendrocytes. Bone marrow stromal cell implantation significantly reduced the transient middle cerebral artery occlusion-induced cortical loss and thinning of the white matter and enhanced cortical beta-III-tubulin immunoreactivity. Rats implanted with bone marrow stromal cells showed significant improvement in their performance of elevated body swing test and forelimb footprint analysis and only transient recovery of the adhesive-removal test. Our data support bone marrow stromal cells as a valuable source of autologous or allogenic donor cells for transplantation to improve the outcome following cerebral ischemia.
Collapse
Affiliation(s)
- Jeng-Rung Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Chung-Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
21
|
Hon KLE, Ching GKW, Wong KY, Leung TF, Leung AKC. A pilot study to explore the usefulness of antibody array in childhood atopic dermatitis. J Natl Med Assoc 2008; 100:500-4. [PMID: 18507202 DOI: 10.1016/s0027-9684(15)31296-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The pathophysiology of childhood atopic dermatitis (AD) involves complex interactions among cellular, humoral, cytokine and chemokine systems. OBJECTIVE To evaluate protein expressions using antibody microarray. METHODS Severity-nine proteins were assayed using antibody microarray on AD patients age < 18 years. Disease severity was assessed with the SCORing Atopic Dermatitis (SCORAD) and Nottingham Eczema Severity Score (NESS), and quality of life with the Children Dermatology Life Quality Index (CDLQI). Serum IgE levels were also assessed. Normal subjects without atopy were used as controls. Cytokines, chemokines and a wide array of proteins were assayed with RayBio Human Cytokine Antibody Array V (RayBiotech, Norcross, GA). RESULTS Nine Chinese children with AD and four normal subjects were recruited. The median SCORAD was 60.7. Among the 79 proteins, the levels of BDNF, Fit-3 ligand, IL-8, IL-16, LIGHT, MIP-1beta, MIP-3alpha, NAP-2, PARC, TGF-beta2 and TIMP-2 were significantly different from the controls. Nevertheless, no significance was found when adjusted for multiple comparisons using p = 0.0006. Some of these markers showed significant correlations with various components of SCORAD, NESS and CDLQI. The serum IgE level as a marker of atopy correlates significantly with BDNF, LIGHT, PARC and TIMP-2. CONCLUSIONS The serum levels of BDNF, LIGHT, PARC and TIMP-2 correlate to IgE as a marker of atopy. Although targeting chemokines and chemokine receptors may offer new opportunities for therapeutic interventions in AD, protein assay with cytokine antibody array was generally not helpful in identifying specific molecules pertinent to AD activity.
Collapse
Affiliation(s)
- Kam-Lun Ellis Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong
| | | | | | | | | |
Collapse
|
22
|
Gimble JM, Guilak F, Nuttall ME, Sathishkumar S, Vidal M, Bunnell BA. In vitro Differentiation Potential of Mesenchymal Stem Cells. ACTA ACUST UNITED AC 2008; 35:228-238. [PMID: 21547120 DOI: 10.1159/000124281] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Accepted: 03/07/2008] [Indexed: 12/19/2022]
Abstract
SUMMARY: Mesenchymal stem cells (MSCs) represent a class of multipotent progenitor cells that have been isolated from multiple tissue sites. Of these, adipose tissue and bone marrow offer advantages in terms of access, abundance, and the extent of their documentation in the literature. This review focuses on the in vitro differentiation capability of cells derived from adult human tissue. Multiple, independent studies have demonstrated that MSCs can commit to mesodermal (adipocyte, chondrocyte, hematopoietic support, myocyte, osteoblast, tenocyte), ectodermal (epithelial, glial, neural), and endodermal (hepatocyte, islet cell) lineages. The limitations and promises of these studies in the context of tissue engineering are discussed.
Collapse
Affiliation(s)
- Jeffrey M Gimble
- Stem Cell Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | |
Collapse
|
23
|
Bouchez G, Sensebé L, Vourc'h P, Garreau L, Bodard S, Rico A, Guilloteau D, Charbord P, Besnard JC, Chalon S. Partial recovery of dopaminergic pathway after graft of adult mesenchymal stem cells in a rat model of Parkinson's disease. Neurochem Int 2008; 52:1332-42. [PMID: 18372079 DOI: 10.1016/j.neuint.2008.02.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/06/2008] [Indexed: 11/29/2022]
Abstract
Cellular therapy with adult stem cells appears as an opportunity for treatment of Parkinson's disease. To validate this approach, we studied the effects of transplantation of rat adult bone-marrow mesenchymal stem cells in a rat model of Parkinson's disease. Animals were unilaterally lesioned in the striatum with 6-hydroxydopamine. Two weeks later, group I did not undergo grafting, group II underwent sham grafting, group III was intra-striatal grafted with cells cultured in an enriched medium and group IV was intra-striatal grafted with cells cultured in a standard medium. Rotational amphetamine-induced behavior was measured weekly until animals were killed 6 weeks later. One week after graft, the number of rotations/min was stably decreased by 50% in groups III and IV as compared with groups I and II. At 8 weeks post-lesion, the density of dopaminergic markers in the nerve terminals and cell bodies, i.e. immunoreactive tyrosine hydroxylase, membrane dopamine transporter and vesicular monoamine transporter-2 was significantly higher in group III as compared with group I. Moreover, using microdialysis studies, we observed that while the rate of pharmacologically induced release of dopamine was significantly reduced in lesioned versus intact striatum in no grafted rats, it was similar in both sides in animals transplanted with mesemchymal stem cells. These data demonstrate that graft of adult mesemchymal stem cells reduces behavioral effects induced by 6-hydroxydopamine lesion and partially restores the dopaminergic markers and vesicular striatal pool of dopamine. This cellular approach might be a restorative therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Gaëlle Bouchez
- INSERM U930, Laboratory Biophysique médicale & pharmaceutique, UFR Pharmacie, 31 avenue Monge, Tours, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Fukuda D, Sata M. Role of bone marrow renin-angiotensin system in the pathogenesis of atherosclerosis. Pharmacol Ther 2008; 118:268-76. [PMID: 18439685 DOI: 10.1016/j.pharmthera.2008.02.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Accepted: 02/28/2008] [Indexed: 11/24/2022]
Abstract
The renin-angiotensin system (RAS) has been considered to be a circulating hormonal system that regulates blood pressure, blood flow, fluid volume and electrolyte balance. A growing body of evidence indicates local effects of an activated RAS, particularly in the cardiac, vascular, and renal systems. It is now well established that RAS, especially angiotensin II (Ang II) and Ang II type 1 receptor (AT1R) pathway, has significant pro-inflammatory actions on the vessel wall, leading to progression of atherosclerosis. Recent reports suggest that an activated RAS has local effects in bone marrow (BM), which contributes to the regulation of normal and malignant hematologic processes. We reported that AT1aR in BM cells participate in the pathogenesis of atherosclerosis by analyzing several BM chimeric mice whose BM cells were positive or negative for AT1aR. These results suggest that blockade of AT1R not only in vascular cells but also in BM could be an important strategy to prevent atherosclerosis. In this review, we overview recent findings on a role of RAS in the pathogenesis of atherosclerosis, and discuss functional contribution of a local RAS in BM to progression and destabilization of atherosclerotic plaque.
Collapse
Affiliation(s)
- Daiju Fukuda
- Department of Cardiovascular Medicine, University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan
| | | |
Collapse
|
25
|
Therapeutic effects of autologous bone marrow cells and metabolic intervention in the ischemic hindlimb of spontaneously hypertensive rats involve reduced cell senescence and CXCR4/Akt/eNOS pathways. J Cardiovasc Pharmacol 2007; 50:424-33. [PMID: 18049311 DOI: 10.1097/fjc.0b013e31812564e4] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peripheral arterial disease (PAD) is a major health problem, especially when associated with severe hypertension. Administration of autologous bone marrow cells (BMCs) is emerging as a novel intervention to induce neoangiogenesis in ischemic limb models and in patients with PAD. This study evaluates the neovascularization capacity of BMCs alone or in combination with metabolic cotreatment (0.8% vitamin E, 0.05% vitamin C, and 5% of L-arginine) in a rat model of ischemic hindlimbs of spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto rats (WKY). Molecular mechanisms were investigated in bone marrow-derived endothelial progenitor cells (BM-EPC) derived from rats. BMC therapy increased blood flow and capillary densities and Ki67 proliferative marker, and it decreased interstitial fibrosis. These effects were amplified by metabolic cotreatment, an intervention that induces vascular protection at least partly through the nitric oxide (NO)/endothelial nitric oxide synthase (eNOS) pathway, reduction of systemic oxidative stress, and macrophage activation. In addition, BMC therapy alone and, more consistently, in combination with metabolic treatment, ameliorated BM-EPC functional activity via decreased cellular senescence and improved homing capacity by increasing CXCR4-expression levels. These data suggest potential therapeutic effects of autologous BMCs and metabolic treatment in hypertensive PAD patients.
Collapse
|
26
|
Isele NB, Lee HS, Landshamer S, Straube A, Padovan CS, Plesnila N, Culmsee C. Bone marrow stromal cells mediate protection through stimulation of PI3-K/Akt and MAPK signaling in neurons. Neurochem Int 2006; 50:243-50. [PMID: 17050038 DOI: 10.1016/j.neuint.2006.08.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/02/2006] [Accepted: 08/14/2006] [Indexed: 02/07/2023]
Abstract
Application of adult bone marrow stromal cells (BMSC) improves functional outcome in animal models of cerebral ischemia, traumatic brain injury, and spinal cord injury. Accumulating evidence suggests that such functional recovery after BMSC treatment is mediated by enhanced trophic support of the injured neurons and improved neuronal plasticity rather than tissue replacement by bone marrow-derived stem cells. Therefore, the aim of the present study was to explore the potential of non-hematopoietic BMSC to stimulate signaling pathways in neurons that mediate trophic effects and neuroprotection. In primary embryonic rat neurons, BMSC conditioned medium (CM) attenuated staurosporine (STS) or amyloid-beta peptide-induced apoptosis in a concentration-dependent manner. The neuroprotective effect of CM required several hours of pretreatment and was abolished by heating over 90 degrees C. Immunoblot analyses revealed that CM enhanced Erk1/2 and Akt phosphorylation in neurons, and the specific MEK1 inhibitor PD98059 or the phosphoinositide-3 kinase (PI3-K) inhibitor Ly294002 abolished the neuroprotective effect of CM. Further, double-conditioned medium (DCM) obtained from BMSC previously stimulated by medium from STS-challenged neurons showed a more potent anti-apoptotic effect compared to the single-conditioned medium. Overall, these findings demonstrate that BMSC trigger endogenous survival signaling pathways in neurons that mediate protection against apoptotic insults. Moreover, the interaction between stressed neurons and BMSC further amplifies the observed neuroprotective effect.
Collapse
Affiliation(s)
- Nicola B Isele
- Department of Neurology, University Clinic Grosshadern, 81377 Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
27
|
de Nigris F, Williams-Ignarro S, Sica V, D'Armiento FP, Lerman LO, Byrns RE, Sica G, Fiorito C, Ignarro LJ, Napoli C. Therapeutic effects of concurrent autologous bone marrow cell infusion and metabolic intervention in ischemia-induced angiogenesis in the hypercholesterolemic mouse hindlimb. Int J Cardiol 2006; 117:238-43. [PMID: 16875745 DOI: 10.1016/j.ijcard.2006.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2006] [Accepted: 05/03/2006] [Indexed: 10/24/2022]
Abstract
Lower-limb ischemia is a major health problem especially when associated to hypercholesterolemia. Because of the absence of effective treatment in the advanced stages of the disease, amputation is undertaken to alleviate unbearable symptoms. Since tissue ischemia and hypercholesterolemia are associated with an overwhelming generation of oxygen radicals, metabolic intervention with antioxidants and l-arginine can induce beneficial effects beyond those achieved by a novel therapeutic approach represented by the use of autologous bone marrow cells (BMCs). The protective effect of BMCs and vascular protection by metabolic cotreatment (1.0% vitamin E added to the chow, 0.05% vitamin C and 6% l-arginine added to the drinking water) were examined in ischemia-induced angiogenesis in the hypercholesterolemic mouse hindlimb. Intravenous BMC therapy improved blood flow and increased capillary densities. This beneficial effect was amplified by metabolic cotreatment, an intervention inducing vascular protection, at least in part, through the nitric oxide pathway, reduction of systemic oxidative stress and macrophage activation.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of General Pathology, Division of Clinical Pathology and Excellence Research Center on Cardiovascular Diseases, 1st School of Medicine, II University of Naples, Naples 80138, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Yu S, Tanabe T, Dezawa M, Ishikawa H, Yoshimura N. Effects of bone marrow stromal cell injection in an experimental glaucoma model. Biochem Biophys Res Commun 2006; 344:1071-9. [PMID: 16643846 DOI: 10.1016/j.bbrc.2006.03.231] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2006] [Accepted: 03/28/2006] [Indexed: 12/18/2022]
Abstract
We investigated if bone marrow stromal cells (BMSCs) transplanted into the vitreous body of a glaucoma model eye could be integrated in the host retina and also whether they could rescue the retinal ganglion cells (RGCs) from death induced by the elevated intraocular pressure. Glaucoma was induced in the right eye of adult Wistar rats by ligating the episcleral veins. The GFP-expressing BMSCs (GFP-BMSCs) were injected into the vitreous body of both the control and the glaucomatous eyes. After transplantation, GFP-BMSCs were mostly present along with the inner limiting membrane and only a few cells were integrated into the ganglion cell layer. At 2 or 4 weeks after transplantation, GFP-BMSCs were observed to express various trophic factors. The BMSCs injected glaucoma model eyes showed less reduction in the number of RGCs compared to the glaucomatous eyes with PBS injection. This study suggests that BMSC transplantation may be worthy as a neuroprotective tool to treat glaucoma.
Collapse
Affiliation(s)
- Saiyuu Yu
- Department of Ophthalmology and Visual Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | |
Collapse
|
29
|
Napoli C, Williams-Ignarro S, de Nigris F, de Rosa G, Lerman LO, Farzati B, Matarazzo A, Sica G, Botti C, Fiore A, Byrns RE, Sumi D, Sica V, Ignarro LJ. Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb. Proc Natl Acad Sci U S A 2005; 102:17202-6. [PMID: 16286655 PMCID: PMC1288005 DOI: 10.1073/pnas.0508534102] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lower-limb ischemia is a major health problem. Because of the absence of effective treatment in the advanced stages of the disease, amputation is undertaken to alleviate unbearable symptoms. Novel therapeutic approaches include the intramuscular use of autologous bone marrow cells (BMCs). Because tissue ischemia is associated with an overwhelming generation of oxygen radicals and negative effects due to perturbed shear-stress, metabolic intervention with antioxidants and l-arginine could potentially induce beneficial effects beyond those achieved by BMCs. The protective effect of autologous BMCs and vascular protection by metabolic cotreatment (1.0% vitamin E added to the chow and 0.05% vitamin C and 6% l-arginine added to the drinking water) were examined in ischemia-induced angiogenesis in the mouse hindlimb, a model of extensive acute peripheral arterial occlusion. i.v. BMC therapy improved blood flow and increased capillary densities and expression of Ki-67, a proliferation-associated protein. This beneficial effect was amplified by metabolic cotreatment, an intervention inducing vascular protection, at least in part, through the nitric oxide pathway, reduction of systemic oxidative stress, and macrophage activation. Therefore, although a cautious approach is mandatory when experimental findings are extended to human diseases, autologous BMCs together with metabolic intervention could be an effective clinical treatment for peripheral arterial disease.
Collapse
Affiliation(s)
- Claudio Napoli
- Department of General Pathology, Division of Clinical Pathology and Excellence Research Center on Cardiovascular Diseases, School of Medicine, Second University of Naples, Naples 80138, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Sennikov SV, Injelevskaya TV, Krysov SV, Silkov AN, Kovinev IB, Dyachkova NJ, Zenkov AN, Loseva MI, Kozlov VA. Production of hemo- and immunoregulatory cytokines by erythroblast antigen+ and glycophorin A+ cells from human bone marrow. BMC Cell Biol 2004; 5:39. [PMID: 15488155 PMCID: PMC524510 DOI: 10.1186/1471-2121-5-39] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2004] [Accepted: 10/18/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Erythroid nuclear cells (ENC) of the bone marrow (BM) have not previously been considered as important producers of wide spectrum of haemo- and immunoregulatory cytokines. The aim of the current work was to confirm the production of the main hemo- and immunoregulatory cytokines in human ENC from BM. RESULTS We used native human BM ENC in our experiments. We for the first time have shown, that the unstimulated erythroblasts (Gl A+ or AG-EB+) produced a wide spectrum of immunoregulatory cytokines. Human BM ENC produce cytokines such as interleukin (IL)-1beta, IL-2, IL-4, IL-6, interferon (IFN)-gamma, transforming growth factor (TGF)-beta1, tumor necrosis factor (TNF)-alpha and IL-10. They can be sub-divided into glycophorin A positive (Gl A+) and erythroblast antigen positive (AG-EB+) cells. To study potential differences in cytokine expression between these subsets, ENC were isolated and purified using specific antibodies to Gl A and AG-EB and the separated cells were cultivated for 24 hours. The cytokine contents of the supernatant were measured by electrochemiluminescence immunoassay. Quantitative differences in TGF-beta1 and TNF-alpha production were found between Gl A+ and AG-EB+ BM ENC. Furthermore, in vitro addition of erythropoietin (EPO) reduced IFN-gamma and IL-2 production specifically by the AG-EB+ ENC. Thus, Gl A+ and AG-EB+ ENC produce IL-1beta, IL-2, IL-4, IL-6, IFN-gamma, TGF-beta1 and TNF-alpha. Gl A+ ENC also produce IL-10. CONCLUSION Cytokine production by erythroid nuclear cells suggests that these cells might be involved in regulating the proliferation and differentiation of hematopoietic and immunocompetent cells in human BM.
Collapse
Affiliation(s)
- Sergey V Sennikov
- Laboratory of the Regulation of Immunopoiesis, Institute of Clinical Immunology SB RAMS, Yadrintsevskaya 14, Novosibirsk, 630099, Russia
| | - Tatyana V Injelevskaya
- Laboratory of the Regulation of Immunopoiesis, Institute of Clinical Immunology SB RAMS, Yadrintsevskaya 14, Novosibirsk, 630099, Russia
| | - Sergey V Krysov
- Laboratory of the Regulation of Immunopoiesis, Institute of Clinical Immunology SB RAMS, Yadrintsevskaya 14, Novosibirsk, 630099, Russia
| | - Alexandr N Silkov
- Laboratory of the Regulation of Immunopoiesis, Institute of Clinical Immunology SB RAMS, Yadrintsevskaya 14, Novosibirsk, 630099, Russia
| | - Igor B Kovinev
- The Department of Haematology, Regional Haematological Center, Novosibirsk, Russia
| | - Natalya J Dyachkova
- The Department of Haematology, Regional Haematological Center, Novosibirsk, Russia
| | - Anton N Zenkov
- The Department of Haematology, Regional Haematological Center, Novosibirsk, Russia
| | - Mary I Loseva
- The Department of Haematology, Regional Haematological Center, Novosibirsk, Russia
| | - Vladimir A Kozlov
- Laboratory of the Regulation of Immunopoiesis, Institute of Clinical Immunology SB RAMS, Yadrintsevskaya 14, Novosibirsk, 630099, Russia
| |
Collapse
|
31
|
Hamilton DW, Maul TM, Vorp DA. Characterization of the Response of Bone Marrow-Derived Progenitor Cells to Cyclic Strain: Implications for Vascular Tissue-Engineering Applications. ACTA ACUST UNITED AC 2004; 10:361-9. [PMID: 15165453 DOI: 10.1089/107632704323061726] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One of the major failings in vascular tissue engineering is the limited capacity of autologous differentiated cells to reconstitute tissues. A logical solution is to use multipotent progenitor cells, which in vascular treatments have been underutilized. Although biochemical stimulation has been explored to differentiate bone marrow-derived progenitor cells (BMPCs) to smooth muscle cells (SMCs), the use of biomechanical forces in differentiation remains unexplored. The purpose of this work was to explore the effects of cyclic strain alone on BMPC morphology, proliferation, and differentiation. BMPCs were isolated from rat bone marrow and, after 7 days in culture, the cells grew in distinct multilayered colonies. BMPCs were stimulated with 10% strain at 1 Hz for 7 days. Observations showed that cyclic strain inhibited proliferation (p < 0.05) and caused alignment of the cells (p < 0.05) and of the F-actin cytoskeleton perpendicular to the direction of strain. In addition, cyclic strain resulted in expression by the cells of vascular smooth muscle alpha-actin and h1-calponin. This work demonstrates the potential of physiologic biomechanical stimulation in the differentiation of BMPCs to SMCs, and this could have important implications for vascular tissue engineering and other therapies in which cell sourcing is a major concern.
Collapse
Affiliation(s)
- Douglas W Hamilton
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
32
|
Basu S, Zhang HH, Quilici C, Dunn AR. Candida albicansCan Stimulate Stromal Cells Resulting in Enhanced Granulopoiesis. Stem Cells Dev 2004; 13:39-50. [PMID: 15068692 DOI: 10.1089/154732804773099245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Previously, we have reported that although unperturbed granulocyte colony-stimulating factor (GCSF)-deficient (G-CSF-/-) mice are neutropenic, when challenged with Candida albicans, they develop a profound neutrophilia. In an attempt to understand the basis of Candida-induced neutrophilia in G-CSF-deficient mice, we have modified the Dexter bone marrow culture system to produce an in vitro model that mimics emergency granulopoiesis in vivo. In this model, stromal cultures are overlaid with bone marrow cells in the presence or absence of heat-inactivated (HI) Candida. Irrespective of the genotype of mice used as a source of bone marrow-derived stromal cells, stimulation of these cultures with HI Candida led to a significantly greater recovery of cells compared to unstimulated stromal cultures. In addition, there was a marked increase in the number of colony-forming units granulocyte-macrophage (CFU-GM), as well as in the percentage of granulocytes in the population of nonadherent cells recovered from HI Candida-stimulated cultures. The conditioned medium generated from stromal cultures derived from either wild-type or G-CSF-/- mice exposed to HI Candida, when applied to bone marrow cells in a soft agar clonogenic assay stimulated M-, GM-, and G- type colonies. Interleukin-3 (IL-3) and GM-CSF could not be detected in the conditioned medium from either HI Candida stimulated or unstimulated stromal cultures. However, IL-6 was detected in the conditioned media from both wild-type and G-CSF-/- stromal cultures. Addition of anti-IL-6 antibody significantly impaired granulopoiesis in unstimulated and HI Candida-stimulated, wild type, and G-CSF-/- stromal cultures. Conditioned medium generated from G-CSF/IL-6-deficient stromal cells had the capacity to stimulate bone marrow cells to form colonies comprised of granulocytes and macrophages in soft agar clonogenic assay. This study demonstrates that stromal cells can be stimulated with HI Candida and gives an insight into Candida mediated granulopoiesis.
Collapse
Affiliation(s)
- Sunanda Basu
- Ludwig Institute for Cancer Research, Melbourne Tumor Biology Branch, Royal Melbourne Hospital, Victoria, Australia.
| | | | | | | |
Collapse
|
33
|
Wolf NS, Penn PE, Rao D, McKee MD. Intraclonal plasticity for bone, smooth muscle, and adipocyte lineages in bone marrow stroma fibroblastoid cells. Exp Cell Res 2003; 290:346-57. [PMID: 14567992 DOI: 10.1016/s0014-4827(03)00321-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bone marrow stroma fibroblastoid cells (BMSFC) develop from a single clone of cells within each of the in vitro fibroblastoid colonies (CFU-F) derived from either murine or human bone marrow. All of the clones represented by these colonies displayed antigenic and product markers for osteoblast, smooth muscle, and adipocyte lineages when tested separately for each marker. Separate sets of fibroblastoid colonies derived from the same individual donor's culture tested positive with antibodies specific for smooth muscle-specific heavy chain myosin (SMMHC), smooth muscle alpha actin-1, bone sialoprotein, osteocalcin, or alkaline phosphatase, and developed von Kossa-positive deposits shown by X-ray microanalysis and electron diffraction to be hydroxyapatite. Individual cells were positive for both SMMHC and osteocalcin. All cells in the multiple clones tested were capable of metabolizing a fatty acid to form intracellular lipid droplets. PCR transcripts obtained from the human cell cultures that provided these BMSFC clones were consistent with the immunocytochemical findings. Transcripts for PPAR (gamma)-2 and Cbfa-1 were dependent upon the culture medium content, suggesting an osteoblast/adipocyte differentiation switch point. Cell lineage specificity for markers and RNA transcripts was determined by comparison to skin fibroblast controls. These findings demonstrate a high degree of interlineage plasticity in vitro for BMSFC.
Collapse
Affiliation(s)
- Norman S Wolf
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | | | | | | |
Collapse
|
34
|
Benekli M, Baer MR, Baumann H, Wetzler M. Signal transducer and activator of transcription proteins in leukemias. Blood 2003; 101:2940-54. [PMID: 12480704 DOI: 10.1182/blood-2002-04-1204] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Signal transducer and activator of transcription (STAT) proteins are a 7-member family of cytoplasmic transcription factors that contribute to signal transduction by cytokines, hormones, and growth factors. STAT proteins control fundamental cellular processes, including survival, proliferation, and differentiation. Given the critical roles of STAT proteins, it was hypothesized that inappropriate or aberrant activation of STATs might contribute to cellular transformation and, in particular, leukemogenesis. Constitutive activation of mutated STAT3 has in fact been demonstrated to result in transformation. STAT activation has been extensively studied in leukemias, and mechanisms of STAT activation and the potential role of STAT signaling in leukemogenesis are the focus of this review. A better understanding of mechanisms of dysregulation of STAT signaling pathways may serve as a basis for designing novel therapeutic strategies that target these pathways in leukemia cells.
Collapse
Affiliation(s)
- Mustafa Benekli
- Leukemia Section, Department of Medicine, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
35
|
Hirata K, Li TS, Nishida M, Ito H, Matsuzaki M, Kasaoka S, Hamano K. Autologous bone marrow cell implantation as therapeutic angiogenesis for ischemic hindlimb in diabetic rat model. Am J Physiol Heart Circ Physiol 2003; 284:H66-70. [PMID: 12388231 DOI: 10.1152/ajpheart.00547.2002] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The angiogenic effect induced by autologous bone marrow cell implantation (BMCI) was examined in the ischemic hindlimbs of diabetic and nondiabetic rats. Diabetes mellitus was induced by the systemic administration of streptozotocin. We investigated the production of angiogenic factors and endothelial differentiation from bone marrow cells and the native recovery of blood flow in the ischemic hindlimbs. To observe the angiogenic effect induced by BMCI treatment, 6 x 10(7) bone marrow cells were injected intramuscularly at six points into the ischemic limbs, and regional perfusion recovery was evaluated with colored microspheres 2 wk later. No difference was found between diabetic and nondiabetic rats in the release of angiogenic factors or endothelial differentiation from bone marrow cells in vitro. The levels of nitric oxide in plasma were significantly lower, and native perfusion recovery in the ischemic hindlimbs was significantly slower in the diabetic rats than in the nondiabetic rats. However, although perfusion recovery was achieved in the ischemic hindlimbs, there was no significant increase in systemic VEGF after BMCI treatment in either the diabetic or nondiabetic rats. Therefore, therapeutic angiogenesis induced by BMCI could be a safe and effective treatment for ischemic limb disease in diabetic patients.
Collapse
Affiliation(s)
- Ken Hirata
- Division of Cardiovascular Surgery, Department of Medical Bioregulation, Yamaguchi University School of Medicine, Ube, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, Xu Y, Gautam SC, Chopp M. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 2002; 22:275-9. [PMID: 12564767 DOI: 10.1046/j.1440-1789.2002.00450.x] [Citation(s) in RCA: 309] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Intravenous administration of human bone marrow stromal cells (hMSCs) after middle cerebral artery occlusion (MCAo) in rats provides functional benefit. We tested the hypothesis that these functional benefits are derived in part from hMSC production of growth and trophic factors. Quantitative sandwich enzyme-linked immunosorbent assay (ELISA) of hMSCs cultured with normal and MCAo brain extracts were performed. hMSCs cultured in supernatant derived from ischemic brain extracts increased production of brain-derived neurotrophic factor (BDNF), nerve growth factor (NGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF). These neurotrophins and angiogenic growth factors increased in a post-ischemia time-dependent manner. The hMSC capacity to increase expression of growth and trophic factors may be the key to the benefit provided by transplanted hMSCs in the ischemic brain.
Collapse
Affiliation(s)
- Xiaoguang Chen
- Department of Neurology, Division of Hematology/Medical Oncology, Henry Ford Health Sciences Center, Detroit, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Valdembri D, Serini G, Vacca A, Ribatti D, Bussolino F. In vivo activation of JAK2/STAT-3 pathway during angiogenesis induced by GM-CSF. FASEB J 2002; 16:225-7. [PMID: 11744626 DOI: 10.1096/fj.01-0633fje] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Besides the regulation of hematopoiesis, granulocyte-macrophage colony-stimulating factor (GM-CSF) induces the expression of a functional program in cultured endothelial cells (ECs) related to angiogenesis and to the their survival in bone marrow microenvironment. ECs express the specific GM-CSF receptor that signals through the recruitment and the activation of Janus kinase (JAK)2 (Soldi et al., Blood 89, 863-872, 1987). We now report that GM-CSF in vivo induces angiogenesis and activates JAK-2 and signal transducers and activators of transcription (STAT)-3. This cytokine has an angiogenetic activity in chick chorioallantoic membrane (CAM) without recruitment of inflammatory cells and induces vessel sprouting from chicken aorta rings. When added to CAM, subnanomolar concentrations of GM-CSF cause a rapid phosphorylation in tyrosine residues of JAK-2 persisting at least for 10 min. Furthermore, we show that signal transducers and activators of transcription (STAT)-3, but not STAT-5, also are phosphorylated for 30 min after GM-CSF stimulation. AG-490, a JAK-2 inhibitor, reduced in a dose-dependent manner the angiogenic effect of GM-CSF in CAM. These findings provide the first evidence that the JAK-2/STAT-3 pathway is activated in vivo and participates in vessel formation triggered by GM-CSF.
Collapse
Affiliation(s)
- Donatella Valdembri
- Institute for Cancer Research and Treatment and Department of Genetics, Biology and Biochemistry, School of Medicine, University of Torino, Torino, Italy
| | | | | | | | | |
Collapse
|
38
|
Foss B, Ulvestad E, Bruserud Ø. Platelet-derived growth factor (PDGF) in human acute myelogenous leukemia: PDGF receptor expression, endogenous PDGF release and responsiveness to exogenous PDGF isoforms by in vitro cultured acute myelogenous leukemia blasts. Eur J Haematol 2001; 67:267-78. [PMID: 11860452 DOI: 10.1034/j.1600-0609.2001.0430a.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated effects of Platelet-derived growth factor (PDGF) and Platelet factor 4 (PF-4) on the functional characteristics of native, human acute myelogenous leukemia (AML) blasts. AML blast expression of the PDGF-receptor alpha-chain was detected for a subset of patients (45%), whereas PDGF-receptor beta-chain expression was detected for most patients (90%). Constitutive AML blast release of the PDGF-AB isoform (the major form also derived from normal platelets) was detected for 43% of patients, whereas PDGF-BB release was not detected for any patient. The PDGF isoforms AA, AB and BB had dose-dependent and divergent effects on spontaneous and cytokine-dependent AML blast proliferation, whereas for constitutive cytokine secretion (IL-1beta, IL-6, TNF-alpha) inhibitory effects were rare and all three isoforms usually had no effect or enhanced the constitutive secretion. The PDGF effects were caused by a direct effect on the AML blasts and were not dependent on the presence of serum. The PDGF effects could also be detected after in vitro culture of AML cells in the presence of IL-4+ granulocyte-macrophage colony stimulating factor. PF-4 had divergent effects on proliferation and cytokine secretion by native AML blasts. Our results suggest that exogenous (e.g. platelet-secreted) PDGF and PF-4 can function as regulators of leukemic hematopoiesis and possibly also modulate the function of residual AML cells in peripheral blood stem cell grafts. On the other hand, endogenous release of PDGF-AB by native blasts may modulate the function of normal cells in the bone marrow microenvironment (e.g. bone marrow stromal cells).
Collapse
MESH Headings
- Acute Disease
- Adult
- Aged
- Aged, 80 and over
- Becaplermin
- Cell Division/drug effects
- Cytokines/drug effects
- Cytokines/metabolism
- Female
- Hematopoietic Cell Growth Factors/pharmacology
- Humans
- Interleukin-1/metabolism
- Interleukin-6/metabolism
- Leukemia, Myeloid/metabolism
- Male
- Middle Aged
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Platelet Factor 4/pharmacology
- Platelet-Derived Growth Factor/metabolism
- Platelet-Derived Growth Factor/pharmacology
- Protein Isoforms/biosynthesis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Isoforms/pharmacology
- Proto-Oncogene Proteins c-sis
- Receptor, Platelet-Derived Growth Factor alpha/biosynthesis
- Receptor, Platelet-Derived Growth Factor alpha/drug effects
- Receptor, Platelet-Derived Growth Factor alpha/genetics
- Receptor, Platelet-Derived Growth Factor beta/biosynthesis
- Receptor, Platelet-Derived Growth Factor beta/drug effects
- Receptor, Platelet-Derived Growth Factor beta/genetics
- Receptors, Platelet-Derived Growth Factor/biosynthesis
- Receptors, Platelet-Derived Growth Factor/genetics
- Substrate Specificity
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/metabolism
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- B Foss
- Institute of Medicine, University of Bergen, and Department of Microbiology and Immunology, Haukeland University Hospital, 5021 Bergen, Norway
| | | | | |
Collapse
|
39
|
Loeuillet C, Bernard G, Rémy-Martin J, Saas P, Hervé P, Douay L, Chalmers D. Distinct hematopoietic support by two human stromal cell lines. Exp Hematol 2001; 29:736-45. [PMID: 11378269 DOI: 10.1016/s0301-472x(01)00644-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The hematopoietic microenvironment is complex, and the role of myofibroblast in its function is crucial. In order to obtain a stable model reflecting this particular cell type, we have previously established human bone marrow cell lines from primary myofibroblastic Stro1(+) population (pStro1(+)). We placed HPV16 E6 and E7 expression under the control of different promoters. Here, we have characterized and studied the hematopoietic support for two cell lines corresponding to the promoters alpha-SM (alphaSM-56 line) and SV40 (SV40-56 line). MATERIALS AND METHODS The expression profile was analyzed at the RNA level by gene array and at the protein level by Western blot, flow cytometry, and ELISA. Hematopoietic support determined using colony-forming unit (CFU) and stroma-adherent colony-forming cell (SA-CFC) assays. RESULTS The phenotype of cell lines was not significantly modified compared with primary myofibroblastic cells. They secreted a broad spectrum of hematopoietic cytokines and nonspecific mediators. The two lines allowed the growth of hematopoietic precursors and had different support capabilities. CONCLUSIONS We have extensively characterized two novel human bone marrow stromal cell lines. They retained a myofibroblastic phenotype and have substantial but different hematopoietic support capabilities. These lines provided a basis for determining stromal factors involved in stem-cell regulation.
Collapse
Affiliation(s)
- C Loeuillet
- EFS de Bourgogne-Franche Comté, Besançon, France.
| | | | | | | | | | | | | |
Collapse
|
40
|
Charbord PIERRE, Tamayo EURYDICE, Deschaseaux FRÉDÉRIC, Remy-Martin JEANPAUL, Pelletier LAURENT, Sensebe LUC, Deschaseaux MARIE, Peault BRUNO, Herve PATRICK. The Hematopoietic Microenvironment: Phenotypic and Functional Characterization of Human Marrow Vascular Stromal Cells. HEMATOLOGY (AMSTERDAM, NETHERLANDS) 2001; 4:257-282. [PMID: 11399569 DOI: 10.1080/10245332.1999.11746451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- PIERRE Charbord
- Laboratoire d'Etude de l'Hématopoièse, Etablissement de Transfusion Sanguine de Franche-Comté, 25020 Besançon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Foss B, Ulvestad E, Bruserud O. Platelet-derived growth factor (PDGF) in human acute myelogenous leukemia: PDGF receptor expression, endogenous PDGF release and responsiveness to exogenous PDGF isoforms by in vitro cultured acute myelogenous leukemia blasts. Eur J Haematol 2001; 66:365-76. [PMID: 11488935 DOI: 10.1034/j.1600-0609.2001.066006365.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We investigated effects of Platelet-derived growth factor (PDGF) and Platelet factor 4 (PF-4) on the functional characteristics of native, human acute myelogenous leukemia (AML) blasts. AML blast expression of the PDGF-receptor alpha-chain was detected for a subset of patients (45%), whereas PDGF-receptor beta-chain expression was detected for most patients (90%). Constitutive AML blast release of the PDGF-AB isoform (the major form also derived from normal platelets) was detected for 43% of patients, whereas PDGF-BB release was not detected for any patient. The PDGF isoforms AA, AB and BB had dose-dependent and divergent effects on spontaneous and cytokine-dependent AML blast proliferation, whereas for constitutive cytokine secretion (IL-1beta, IL-6, TNF-alpha) inhibitory effects were rare and all three isoforms usually had no effect or enhanced the constitutive secretion. The PDGF effects were caused by a direct effect on the AML blasts and were not dependent on the presence of serum. The PDGF effects could also be detected after in vitro culture of AML cells in the presence of IL-4+granulocyte-macrophage colony stimulating factor. PF-4 had divergent effects on proliferation and cytokine secretion by native AML blasts. Our results suggest that exogenous (e.g. platelet-secreted) PDGF and PF-4 can function as regulators of leukemic hematopoiesis and possibly also modulate the function of residual AML cells in peripheral blood stem cell grafts. On the other hand, endogenous release of PDGF-AB by native blasts may modulate the function of normal cells in the bone marrow microenvironment (e.g. bone marrow stromal cells).
Collapse
Affiliation(s)
- B Foss
- Institute of Medicine, University of Bergen, Haukeland University Hospital, 5021 Bergen, Norway
| | | | | |
Collapse
|
42
|
Fuchs S, Baffour R, Zhou YF, Shou M, Pierre A, Tio FO, Weissman NJ, Leon MB, Epstein SE, Kornowski R. Transendocardial delivery of autologous bone marrow enhances collateral perfusion and regional function in pigs with chronic experimental myocardial ischemia. J Am Coll Cardiol 2001; 37:1726-32. [PMID: 11345391 DOI: 10.1016/s0735-1097(01)01200-1] [Citation(s) in RCA: 373] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVES We tested the hypothesis that intramyocardial injection of autologous bone marrow (ABM) promotes collateral development in ischemic porcine myocardium. We also defined, in vitro, whether bone marrow (BM) cells secrete vascular endothelial growth factor (VEGF) and macrophage chemoattractant protein-1 (MCP-1). BACKGROUND The natural processes leading to collateral development are extremely complex, requiring multiple growth factors interacting in concert and in sequence. Because optimal angiogenesis may, therefore, require multiple angiogenic factors, we thought that injection of BM, which contains cells that secrete numerous angiogenic factors, might provide optimal therapeutic angiogenesis. METHODS Bone marrow was cultured four weeks in vitro. Conditioned medium was assayed for VEGF and MCP-1 and was added to cultured pig aortic endothelial cells (PAEC) to assess proliferation. Four weeks after left circumflex ameroid implantation, freshly aspirated ABM (n = 7) or heparinized saline (n = 7) was injected transendocardially into the ischemic zone (0.2 ml/injection at 12 sites). Echocardiography to assess myocardial thickening and microspheres to assess perfusion were performed at rest and during stress. RESULTS Vascular endothelial growth factor and MCP-1 concentrations increased in a time-related manner. The conditioned medium enhanced, in a dose-related manner, PAEC proliferation. Collateral flow (ischemic/normal zone X 100) improved in ABM-treated pigs (ABM: 98 +/- 14 vs. 83 +/- 12 at rest, p = 0.001; 89 +/- 18 vs. 78 +/- 12 during adenosine, p = 0.025; controls: 92 +/- 10 vs. 89 +/- 9 at rest, p = 0.49; 78 +/- 11 vs. 77 +/- 5 during adenosine, p = 0.75). Similarly, contractility increased in ABM-treated pigs (ABM: 83 +/- 21 vs. 60 +/- 32 at rest, p = 0.04; 91 +/- 44 vs. 36 +/- 43 during pacing, p = 0.056; controls: 69 +/- 48 vs. 64 +/- 46 at rest, p = 0.74; 65 +/- 56 vs. 37 +/- 56 during pacing, p = 0.23). CONCLUSIONS Bone marrow cells secrete angiogenic factors that induce endothelial cell proliferation and, when injected transendocardially, augment collateral perfusion and myocardial function in ischemic myocardium.
Collapse
Affiliation(s)
- S Fuchs
- Cardiovascular Research Institute, Washington Hospital Center, Washington, DC 20010, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Taichman R, Reilly M, Verma R, Ehrenman K, Emerson S. Hepatocyte growth factor is secreted by osteoblasts and cooperatively permits the survival of haematopoietic progenitors. Br J Haematol 2001; 112:438-48. [PMID: 11167845 DOI: 10.1046/j.1365-2141.2001.02568.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Human osteoblasts (HOBs) support the growth of human haematopoietic progenitor cells, and support the survival and limited expansion of long-term culture-initiating cells. Using human CD34+ cells and the murine myelomonocytic cell line NFS-60 as targets, we previously found that one component of HOB-derived haematopoietic activity is cell-associated granulocyte colony-stimulating factor (G-CSF). However, antibody failed to neutralize all the activity, suggesting that more than one factor supports haematopoietic cells. In the present investigations, we asked whether the HOB-derived, non-G-CSF secreted activity was as a result of other known growth factors. We found that, among the cytokines expressed by HOBs, only hepatocyte growth factor (HGF) and G-CSF stimulated NFS-60 cell proliferation. HOB cells and osteosarcoma cells secreted biologically active HGF, although the levels varied considerably. Moreover, addition of neutralizing HGF antibody to CD34+ cell/HOB co-cultures resulted in a significant reduction ( approximately 50%) in the ability of the HOBs to support haematopoietic progenitor cells. These results suggest that a major component of osteoblast-derived haematopoietic activity is HGF. Secretion of HGF, in concert with cell-associated cytokines such as G-CSF, may account for the stem cell-stimulating activities of osteogenic cells and, thereby, the unique stem cell-supporting role of the osteoblasts within the bone marrow microenvironment.
Collapse
Affiliation(s)
- R Taichman
- Department of Periodontics, Prevention and Geriatrics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| | | | | | | | | |
Collapse
|
44
|
Dührsen U, Martinez T, Vohwinkel G, Ergün S, Sun L, McMahon G, Dürig J, Hossfeld DK, Fiedler W. Effects of vascular endothelial and platelet-derived growth factor receptor inhibitors on long-term cultures from normal human bone marrow. Growth Factors 2001; 19:1-17. [PMID: 11678206 DOI: 10.3109/08977190109001072] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Endothelial cells and fibroblasts are important constituents of the haemopoietic microenvironment. Growth and function of these cells are controlled by a variety of cytokines, including vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF). We analysed the effects of novel tyrosine kinase inhibitors targeting the VEGF and PDGF receptors (compounds SU5614 and SU5768) on the performance of long-term cultures from normal human bone marrow. In developing cultures, the inhibitors induced a dose-dependent reduction in stromal fibroblasts, macrophages and endothelial cells with a concomitant decrease in blood cell production and an increase in fat cells. For SU5614, the concentration inhibiting stroma formation by 50% (IC50) was 123nM, and the IC50 for haemopoietic colony forming cell output was 186 nM. For SU5768, the respective values were 871 nM and 331 nM. Changes in stroma composition and inhibition of haemopoietic cell production were also demonstrable after delayed addition of the inhibitors to established cultures. By contrast, haemopoietic colony formation in clonogenic agar cultures was unimpaired (IC50 not reached at 100 microM). Immunofluorescence studies and time course analyses suggested that the primary effect of the inhibitors was interference with the proliferation and function of fibroblasts and endothelial cells which in turn resulted in decreased haemopoiesis and increased adipogenesis. This was associated with decreased levels in conditioned media of granulocyte-macrophage colony-stimulating factor, interleukin-6 and leptin. VEGF and PDGF may play a hitherto underestimated role in the control of blood cell formation. VEGF/PDGF receptor inhibitors may have therapeutic potential in stroma diseases such as myelofibrosis. Since they weaken the stimulatory signals provided by the microenvironment, they may also be of value in the treatment of leukaemia and other neoplastic bone marrow diseases.
Collapse
Affiliation(s)
- U Dührsen
- Zentrum für Innere Medizin, Abteilung für Hämatologie, Universitätsklinikum Essen, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Dürig J, Rosenthal C, Elmaagacli A, Heyworth C, Halfmeyer K, Kasper C, Novotny J, Dührsen U. Biological effects of stroma-derived factor-1 alpha on normal and CML CD34+ haemopoietic cells. Leukemia 2000; 14:1652-60. [PMID: 10995013 DOI: 10.1038/sj.leu.2401875] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We compared the biological effects of the CXC chemokine SDF-1alpha on immunomagnetically purified CD34+ cells isolated from human normal bone marrow (NBM), leukapheresis products (LP) and patients with chronic myeloid leukaemia (CML). LP CD34+ cells showed a significantly stronger migration response to SDF-1alpha (100 ng/ml) than CD34+ cells isolated from the peripheral blood (PB) of CML patients (P < 0.05). The chemotactic response to SDF-1alpha was also reduced in CML BM CD34+ cells in comparison to NBM CD34+ cells but the observed differences were not statistically significant. In analogy to normal CD34+ cells circulating CML PB CD34+ cells were less responsive to SDF-1alpha than their BM counterparts (P < 0.05). Furthermore, SDF-1alpha elicited similar concentration-dependent growth suppressive effects on normal and CML CD34+ cells (P > 0.05) in colony-forming cell assays. We then demonstrated that SDF-1alpha triggers intracellular calcium increases in CD34+ cells and there were no differences in the time course and dose response characteristics of normal and CML CD34+ cells. The reduced migration response to SDF-1alpha in CML CD34+ cells was not due to a down-regulation of the SDF-1alpha receptor CXCR-4 as flow cytometric analysis revealed similar CXCR-4 expression levels on NBM, LP, CML PB and CML BM CD34+ cells (P > 0.05). Finally, no differences in the modulation of CXCR-4 levels in response to SDF-1alpha and serum were observed in CML and normal CD34+ cells. Our data suggest that the impaired chemotactic response of CML CD34+ cells to SDF-1alpha is not caused by a lack or complete uncoupling of CXCR-4, but may be due to an intracellular signalling defect downstream of the receptor.
Collapse
MESH Headings
- Antigens, CD19/analysis
- Antigens, CD34/analysis
- B-Lymphocytes/pathology
- Calcium/metabolism
- Cell Movement/drug effects
- Chemokine CXCL12
- Chemokines, CXC/pharmacology
- Chemotactic Factors/pharmacology
- Fusion Proteins, bcr-abl/analysis
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/metabolism
- Humans
- Leukapheresis
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Neprilysin/analysis
- Receptors, CXCR4/metabolism
- Stem Cells
- Tumor Stem Cell Assay
- Up-Regulation
Collapse
Affiliation(s)
- J Dürig
- Department of Haematology, University Hospital Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang Y, Robledo O, Kinzie E, Blanchard F, Richards C, Miyajima A, Baumann H. Receptor subunit-specific action of oncostatin M in hepatic cells and its modulation by leukemia inhibitory factor. J Biol Chem 2000; 275:25273-85. [PMID: 10854424 DOI: 10.1074/jbc.m002296200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.
Collapse
MESH Headings
- Acute-Phase Proteins/metabolism
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Antigens, CD/metabolism
- Blotting, Northern
- Blotting, Western
- Cytokine Receptor gp130
- DNA, Complementary/metabolism
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Polyacrylamide Gel
- Growth Inhibitors/metabolism
- Humans
- Interleukin-6/metabolism
- Intracellular Signaling Peptides and Proteins
- JNK Mitogen-Activated Protein Kinases
- Leukemia Inhibitory Factor
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Lymphokines
- Membrane Glycoproteins/metabolism
- Mice
- Milk Proteins
- Mitogen-Activated Protein Kinases/metabolism
- Plasmids/metabolism
- Precipitin Tests
- Protein Binding
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Proteins/metabolism
- Rats
- Receptors, Cytokine/metabolism
- Receptors, OSM-LIF
- Receptors, Oncostatin M
- STAT5 Transcription Factor
- Shc Signaling Adaptor Proteins
- Signal Transduction
- Src Homology 2 Domain-Containing, Transforming Protein 1
- Thymidine/metabolism
- Time Factors
- Trans-Activators/metabolism
- Transduction, Genetic
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Y Wang
- Roswell Park Cancer Institute, Department of Molecular and Cellular Biology, Buffalo, NY 14263, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Tsuboi I, Revol V, Blanchet JP, Mouchiroud G. Role of the membrane form of human colony-stimulating factor-1 (CSF-1) in proliferation of multipotent hematopoietic FDCP-mix cells expressing human CSF-1 receptor. Leukemia 2000; 14:1460-6. [PMID: 10942243 DOI: 10.1038/sj.leu.2401847] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Because IL-3-dependent multipotential FDCP-Mix cells expressing human colony-stimulating factor-1 (CSF-1) receptor did not proliferate in response to soluble CSF-1, we investigated whether their proliferation would be induced in co-culture with adherent cells expressing the membrane form of CSF-1 (MemCSF-1). FDCP-Mix cells with high CSF-1R expression (NAF21 cells) were placed on stromal MS-5 cells or STO fibroblasts expressing MemCSF-1 (2M-1 cells and STO-M2 cells, respectively), in absence of IL-3. NAF21 cells bound significantly to 2M-1 cells as compared to control FDCP-Mix cells. Adhesion of NAF21 cells was inhibited by anti-huCSF-1 antibodies, as well as anti-huCSF-1R antibodies. Interestingly, NAF21 cells proliferated on both 2M-1 and STO-M2 cells but with very different kinetics. Moreover, NAF21 cell proliferation was also supported by glutaraldehyde-fixed 2M-1 cells or highly concentrated MS-5 cell culture supernatant, but not by CSF-1 coated on culture dishes. These results strongly suggest that MemCSF-1/CSF-1R interaction mediates a specific adhesion of NAF21 cells to stromal cells and allows stimulation of hematopoietic cells by stromal cell-derived factors expressed in a membrane-bound form or concentrated within the extracellular matrix. Thus, cytokine receptors deficient in mitogenic signalling may nevertheless have a regulatory role in hematopoietic progenitor cell proliferation by acting as adhesion molecules.
Collapse
Affiliation(s)
- I Tsuboi
- Centre de Génétique Moléculaire et Cellulaire, UMR CNRS 5534, Université Claude Bernard, Villeurbanne, France
| | | | | | | |
Collapse
|
48
|
Pelletier L, Regnard J, Fellmann D, Charbord P. An in vitro model for the study of human bone marrow angiogenesis: role of hematopoietic cytokines. J Transl Med 2000; 80:501-11. [PMID: 10780667 DOI: 10.1038/labinvest.3780056] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
This study describes a human bone marrow endothelial cell culture in which endothelial cells are organized into capillary tubes. These endothelial cells were positive for von Willebrand Factor, expressed CD34, CD31, and L-fucose residues, took up acetylated low-density lipoproteins, contained Weibel-Palade bodies, and were ensheathed in a basal lamina (which included laminin beta1, EDa+ and EDb+ fibronectin, and collagen type iv). Pericytes expressing alpha-smooth muscle (alpha-SM) actin were spatially associated with the capillary tubes and there was a highly significant correlation between the number of capillary tubes and pericytes. In this model, basal angiogenesis was found to be vascular endothelial growth factor (VEGF)-dependent, because neutralization of endogenous VEGF induced a dramatic regression in the number of tubes. However, the presence of alpha-SM actin-expressing pericytes in the linings of endothelial tubes partially prevented the VEGF-neutralized tube regression. We also observed that nitric oxide production contributed to basal angiogenesis and that upregulation of nitric oxide increased the number of tubes. Tube numbers also decreased when antibodies neutralizing the integrin alphavbeta5 were applied to the cultures. Moreover, addition of any of the hematopoietic cytokines, erythropoietin, stem cell factor, granulocytic colony stimulating factor, or granulomonocytic colony stimulating factor induced a highly significant increase in tube formation. When erythropoietin and granulocytic colony stimulating factor were added, this increase was larger than the maximum increase observed with VEGF. Thus, we have described an in vitro model for human bone marrow angiogenesis in which pericytes and basal lamina matrix were associated with endothelial cells and formed fully organized capillary tubes. In this model, cytokines known to regulate hematopoiesis also seemed to be mediators of angiogenesis. This culture system may therefore prove to be a valuable tool for the study of hematopoietic cytokines on angiogenesis.
Collapse
Affiliation(s)
- L Pelletier
- Institut d'Etude et de Transfert de Gènes, Besancon, France.
| | | | | | | |
Collapse
|
49
|
Leishmania donovani infection of bone marrow stromal macrophages selectively enhances myelopoiesis, by a mechanism involving GM-CSF and TNF-α. Blood 2000. [DOI: 10.1182/blood.v95.5.1642.005k10_1642_1651] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alterations in hematopoiesis are common in experimental infectious disease. However, few studies have addressed the mechanisms underlying changes in hematopoietic function or assessed the direct impact of infectious agents on the cells that regulate these processes. In experimental visceral leishmaniasis, caused by infection with the protozoan parasite Leishmania donovani, parasites persist in the spleen and bone marrow, and their expansion in these sites is associated with increases in local hematopoietic activity. The results of this study show that L donovani targets bone marrow stromal macrophages in vivo and can infect and multiply in stromal cell lines of macrophage, but not other lineages in vitro. Infection of stromal macrophages increases their capacity to support myelopoiesis in vitro, an effect mediated mainly through the induction of granulocyte macrophage-colony stimulating factor and tumor necrosis factor-. These data are the first to directly demonstrate that intracellular parasitism of a stromal cell population may modify its capacity to regulate hematopoiesis during infectious disease.
Collapse
|
50
|
Remy-Martin JP, Marandin A, Challier B, Bernard G, Deschaseaux M, Herve P, Wei Y, Tsuji T, Auerbach R, Dennis JE, Moore KA, Greenberger JS, Charbord P. Vascular smooth muscle differentiation of murine stroma: a sequential model. Exp Hematol 1999; 27:1782-95. [PMID: 10641596 DOI: 10.1016/s0301-472x(99)00122-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Previous studies by our group showed that stromal cells from human long-term marrow cultures were mesenchymal cells following a vascular smooth muscle pathway. The present study using 58 immortalized stromal lines from different hematopoietic sites was conducted to verify whether this hypothesis also held true for murine stroma. Principal components analysis performed using cytoskeletal and extracellular matrix proteins allowed the segregation of five factors explaining more than 70% of the variance. Factor I, including osteopontin and vimentin, and factor II, laminins and fibronectins, were representative of the mesenchyme. The remaining three factors were representative of vascular smooth muscle: factor III, including alphaSM actin, SM alpha actinin, SM22alpha, EDa+ fibronectin, and thrombospondin-1; factor IV, metavinculin and h-caldesmon; and factor V, smooth muscle myosin SM1 and desmin. All lines expressed factors I and II; 53 lines expressed factor III, 35 lines expressed factor IV; and 11 lines expressed factor V. A second principal components analysis including membrane antigens indicated the cosegregration of vascular cell adhesion molecule-1 with osteopontin and that of Ly6A/E with vimentin, whereas CD34 and Thy-1 appeared to be independent factors. The heterogeneity of vascular smooth muscle markers expression suggests that harmonious maintenance of hematopoiesis depends on the cooperation between different stromal cell clones.
Collapse
Affiliation(s)
- J P Remy-Martin
- E.T.S. de Franche-Comté and Departement d'Information Medicale, Besancon, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|