1
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
2
|
Cao C, Li L, Zhang Q, Li H, Wang Z, Wang A, Liu J. Nkx2.5: a crucial regulator of cardiac development, regeneration and diseases. Front Cardiovasc Med 2023; 10:1270951. [PMID: 38124890 PMCID: PMC10732152 DOI: 10.3389/fcvm.2023.1270951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Cardiomyocytes fail to regenerate after birth and respond to mitotic signals through cellular hypertrophy rather than cellular proliferation. Necrotic cardiomyocytes in the infarcted ventricular tissue are eventually replaced by fibroblasts, generating scar tissue. Cardiomyocyte loss causes localized systolic dysfunction. Therefore, achieving the regeneration of cardiomyocytes is of great significance for cardiac function and development. Heart development is a complex biological process. An integral cardiac developmental network plays a decisive role in the regeneration of cardiomyocytes. During this process, genetic epigenetic factors, transcription factors, signaling pathways and small RNAs are involved in regulating the developmental process of the heart. Cardiomyocyte-specific genes largely promote myocardial regeneration, among which the Nkx2.5 transcription factor is one of the earliest markers of cardiac progenitor cells, and the loss or overexpression of Nkx2.5 affects cardiac development and is a promising candidate factor. Nkx2.5 affects the development and function of the heart through its multiple functional domains. However, until now, the specific mechanism of Nkx2.5 in cardiac development and regeneration is not been fully understood. Therefore, this article will review the molecular structure, function and interaction regulation of Nkx2.5 to provide a new direction for cardiac development and the treatment of heart regeneration.
Collapse
Affiliation(s)
- Ce Cao
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lei Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Qian Zhang
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Li
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ziyan Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Aoao Wang
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
| | - Jianxun Liu
- Institute of Basic Medical Sciences of Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing Key Laboratory of Chinese Materia Pharmacology, National Clinical Research Center of Traditional Chinese Medicine for Cardiovascular Diseases, Beijing, China
- Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
3
|
Wang F, Yin L, Zhang W, Tang Y, Wang X, Huang C. The method of sinus node-like pacemaker cells from human induced pluripotent stem cells by BMP and Wnt signaling. Cell Biol Toxicol 2023; 39:2725-2741. [PMID: 36856942 DOI: 10.1007/s10565-023-09797-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023]
Abstract
The embryonic development of sinus nodes (SAN) is co-regulated by multiple signaling pathways. Among these, the bone morphogenetic protein (BMP) and Wnt signaling pathways are involved in the development of SAN. In this study, the effects of BMP and Wnt signaling on the differentiation of SAN-like pacemaker cells (SANLPCs) were investigated. Human induced pluripotent stem cells (hiPSCs) were divided into four groups: control, BMP4, CHIR-3, and BMP4 + CHIR (CHIR: a Wnt signaling activator). The samples were tested at day (D) 15 of differentiation. The final protocol for the activation of BMP signaling at D0-D3 and reactivation of Wnt signaling at D5-D7 in the differentiation of hiPSCs were determined. The results showed that the mRNA levels of pacemaker markers (TBX18, SHOX2, TBX3, HCN4, and HCN1) were higher in the BMP4 + CHIR group than in the control group, and working myocardial genes were downregulated. The immunofluorescence assay revealed that the expression of SHOX2 and HCN4 increased in the BMP4 + CHIR group compared to that in the other groups. In addition, the results of patch clamps revealed that a funny current of higher density and typical SAN action potentials were recorded, except in the control group, in which the L-type calcium current was higher in the BMP4 + CHIR group than in the other groups. Finally, the proportion of SANLPCs (cTnT+ NKX2.5-) was further enhanced by the combination of BMP4 and CHIR treatment. In summary, the combination of BMP and Wnt signaling promotes the differentiation of SANLPCs from hiPSCs.
Collapse
Affiliation(s)
- Fengyuan Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Lin Yin
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Wei Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute, Wuhan University, Hubei Key Laboratory of Cardiology, 238 Jiefang Road, Wuchang, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
4
|
Yamaguchi N, Chang EW, Lin Z, Shekhar A, Bu L, Khodadadi-Jamayran A, Tsirigos A, Cen Y, Phoon CKL, Moskowitz IP, Park DS. An Anterior Second Heart Field Enhancer Regulates the Gene Regulatory Network of the Cardiac Outflow Tract. Circulation 2023; 148:1705-1722. [PMID: 37772400 PMCID: PMC10905423 DOI: 10.1161/circulationaha.123.065700] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND Conotruncal defects due to developmental abnormalities of the outflow tract (OFT) are an important cause of cyanotic congenital heart disease. Dysregulation of transcriptional programs tuned by NKX2-5 (NK2 homeobox 5), GATA6 (GATA binding protein 6), and TBX1 (T-box transcription factor 1) have been implicated in abnormal OFT morphogenesis. However, there remains no consensus on how these transcriptional programs function in a unified gene regulatory network within the OFT. METHODS We generated mice harboring a 226-nucleotide deletion of a highly conserved cardiac enhancer containing 2 GATA-binding sites located ≈9.4 kb upstream of the transcription start site of Nkx2-5 (Nkx2-5∆enh) using CRISPR-Cas9 gene editing and assessed phenotypes. Cardiac defects in Nkx2-5∆enh/∆enh mice were structurally characterized using histology and scanning electron microscopy, and physiologically assessed using electrocardiography, echocardiography, and optical mapping. Transcriptome analyses were performed using RNA sequencing and single-cell RNA sequencing data sets. Endogenous GATA6 interaction with and activity on the NKX2-5 enhancer was studied using chromatin immunoprecipitation sequencing and transposase-accessible chromatin sequencing in human induced pluripotent stem cell-derived cardiomyocytes. RESULTS Nkx2-5∆enh/∆enh mice recapitulated cyanotic conotruncal defects seen in patients with NKX2-5, GATA6, and TBX1 mutations. Nkx2-5∆enh/∆enh mice also exhibited defects in right Purkinje fiber network formation, resulting in right bundle-branch block. Enhancer deletion reduced embryonic Nkx2-5 expression selectively in the right ventricle and OFT of mutant hearts, indicating that enhancer activity is localized to the anterior second heart field. Transcriptional profiling of the mutant OFT revealed downregulation of important genes involved in OFT rotation and septation, such as Tbx1, Pitx2, and Sema3c. Endogenous GATA6 interacted with the highly conserved enhancer in human induced pluripotent stem cell-derived cardiomyocytes and in wild-type mouse hearts. We found critical dose dependency of cardiac enhancer accessibility on GATA6 gene dosage in human induced pluripotent stem cell-derived cardiomyocytes. CONCLUSIONS Our results using human and mouse models reveal an essential gene regulatory network of the OFT that requires an anterior second heart field enhancer to link GATA6 with NKX2-5-dependent rotation and septation gene programs.
Collapse
Affiliation(s)
- Naoko Yamaguchi
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| | - Ernest W. Chang
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| | - Ziyan Lin
- NYU Applied Bioinformatics Labs, New York University Grossman School of Medicine, 227 East 30th Street, TRB, New York, NY,10016, USA
| | - Akshay Shekhar
- Regeneron Pharmaceuticals, Inc. Biotechnology, 777 Old Saw Mill River Road, Tarrytown, NY, 10591, USA
| | - Lei Bu
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| | - Alireza Khodadadi-Jamayran
- NYU Applied Bioinformatics Labs, New York University Grossman School of Medicine, 227 East 30th Street, TRB, New York, NY,10016, USA
| | - Aristotelis Tsirigos
- NYU Applied Bioinformatics Labs, New York University Grossman School of Medicine, 227 East 30th Street, TRB, New York, NY,10016, USA
| | - Yiyun Cen
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| | - Colin K. L. Phoon
- Division of Pediatric Cardiology, Hassenfeld Children’s Hospital at NYU Langone, New York University Grossman School of Medicine, Fink Children’s Center, 160 East 32nd Street, 2nd floor/L-3, New York, NY, 10016, USA
| | - Ivan P. Moskowitz
- Department of Pediatrics, Pathology, and Human Genetics, The University of Chicago, 900 East 57th Street, KCBD Room 5102, Chicago, IL, 60637, USA
| | - David S. Park
- The Leon H. Charney Division of Cardiology, New York University Grossman School of Medicine, 435 East 30th Street, Science Building 723, New York, NY, 10016, USA
| |
Collapse
|
5
|
Maven BEJ, Gifford CA, Weilert M, Gonzalez-Teran B, Hüttenhain R, Pelonero A, Ivey KN, Samse-Knapp K, Kwong W, Gordon D, McGregor M, Nishino T, Okorie E, Rossman S, Costa MW, Krogan NJ, Zeitlinger J, Srivastava D. The multi-lineage transcription factor ISL1 controls cardiomyocyte cell fate through interaction with NKX2.5. Stem Cell Reports 2023; 18:2138-2153. [PMID: 37863045 PMCID: PMC10679653 DOI: 10.1016/j.stemcr.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/22/2023] Open
Abstract
Congenital heart disease often arises from perturbations of transcription factors (TFs) that guide cardiac development. ISLET1 (ISL1) is a TF that influences early cardiac cell fate, as well as differentiation of other cell types including motor neuron progenitors (MNPs) and pancreatic islet cells. While lineage specificity of ISL1 function is likely achieved through combinatorial interactions, its essential cardiac interacting partners are unknown. By assaying ISL1 genomic occupancy in human induced pluripotent stem cell-derived cardiac progenitors (CPs) or MNPs and leveraging the deep learning approach BPNet, we identified motifs of other TFs that predicted ISL1 occupancy in each lineage, with NKX2.5 and GATA motifs being most closely associated to ISL1 in CPs. Experimentally, nearly two-thirds of ISL1-bound loci were co-occupied by NKX2.5 and/or GATA4. Removal of NKX2.5 from CPs led to widespread ISL1 redistribution, and overexpression of NKX2.5 in MNPs led to ISL1 occupancy of CP-specific loci. These results reveal how ISL1 guides lineage choices through a combinatorial code that dictates genomic occupancy and transcription.
Collapse
Affiliation(s)
- Bonnie E J Maven
- Gladstone Institutes, San Francisco, CA, USA; Developmental and Stem Cell Biology PhD Program, University of California, San Francisco, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Melanie Weilert
- Stowers Institute for Medical Research, Kansas City, MO, USA
| | - Barbara Gonzalez-Teran
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Angelo Pelonero
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Kathryn N Ivey
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Kaitlen Samse-Knapp
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Wesley Kwong
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - David Gordon
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Michael McGregor
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Eyuche Okorie
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Sage Rossman
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Mauro W Costa
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA
| | - Nevan J Krogan
- Gladstone Institutes, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, San Francisco, CA, USA
| | - Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO, USA; Department of Pathology and Laboratory Medicine, University of Kansas School of Medicine, Kansas City, KS, USA
| | - Deepak Srivastava
- Gladstone Institutes, San Francisco, CA, USA; Roddenberry Center for Stem Cell Biology at Gladstone, San Francisco, CA, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, UCSF School of Medicine, San Francisco, CA, USA.
| |
Collapse
|
6
|
Sharif FA, Abuwarda HN. Autoimmunity and re-expression of cancer/testis antigens: Numerous disorders one mechanism hypothesis. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
7
|
Nie S. Use of Frogs as a Model to Study the Etiology of HLHS. J Cardiovasc Dev Dis 2023; 10:51. [PMID: 36826547 PMCID: PMC9965361 DOI: 10.3390/jcdd10020051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
A frog is a classical model organism used to uncover processes and regulations of early vertebrate development, including heart development. Recently, we showed that a frog also represents a useful model to study a rare human congenital heart disease, hypoplastic left heart syndrome. In this review, we first summarized the cellular events and molecular regulations of vertebrate heart development, and the benefit of using a frog model to study congenital heart diseases. Next, we described the challenges in elucidating the etiology of hypoplastic left heart syndrome and discussed how a frog model may contribute to our understanding of the molecular and cellular bases of the disease. We concluded that a frog model offers its unique advantage in uncovering the cellular mechanisms of hypoplastic left heart syndrome; however, combining multiple model organisms, including frogs, is needed to gain a comprehensive understanding of the disease.
Collapse
Affiliation(s)
- Shuyi Nie
- School of Biological Sciences, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
8
|
Zhao K, Yang Z. The second heart field: the first 20 years. Mamm Genome 2022:10.1007/s00335-022-09975-8. [PMID: 36550326 DOI: 10.1007/s00335-022-09975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022]
Abstract
In 2001, three independent groups reported the identification of a novel cluster of progenitor cells that contribute to heart development in mouse and chicken embryos. This population of progenitor cells was designated as the second heart field (SHF), and a new research direction in heart development was launched. Twenty years have since passed and a comprehensive understanding of the SHF has been achieved. This review provides retrospective insights in to the contribution, the signaling regulatory networks and the epithelial properties of the SHF. It also includes the spatiotemporal characteristics of SHF development and interactions between the SHF and other types of cells during heart development. Although considerable efforts will be required to investigate the cellular heterogeneity of the SHF, together with its intricate regulatory networks and undefined mechanisms, it is expected that the burgeoning new technology of single-cell sequencing and precise lineage tracing will advance the comprehension of SHF function and its molecular signals. The advances in SHF research will translate to clinical applications and to the treatment of congenital heart diseases, especially conotruncal defects, as well as to regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, 210093, China.
| |
Collapse
|
9
|
Yin XY, Chen HX, Chen Z, Yang Q, Han J, He GW. Identification and functional analysis of genetic variants of ISL1 gene promoter in human atrial septal defects. J Gene Med 2022; 24:e3450. [PMID: 36170181 DOI: 10.1002/jgm.3450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/16/2022] [Accepted: 09/25/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Atrial septal defect (ASD) is a common type of congenital heart disease. A gene promoter plays pivotal role in the disease development. This study was designed to investigate the pathological role of variants of the ISL1 gene promoter region in ASD patients. METHODS Total DNA extracted from 625 subjects, including 332 ASD patients and 293 healthy controls, was sequenced to identify variants in the promoter region of ISL1 gene. Further functional analyses of the variants were performed with dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). All possible binding sites of transcription factor affected by the identified variants were predicted using the JASPAR database. RESULTS Four variants in the ISL1 gene promoter were found only in patients with ASD by sequencing. Three of the four variants [g.4923 G > C (rs541081886), g.5079 A > G (rs1371835943) and g.5309 G > A (rs116222082)] significantly decreased the transcriptional activities compared with the wild-type ISL1 gene promoter (p < 0.05). The EMSA revealed that these variants [g.4923 G > C (rs541081886), g.5079 A > G (rs1371835943) and g.5309 G > A (rs116222082)] in the ISL1 gene promoter affected the number and affinity of binding sites of transcription factors. Further analysis with the online JASPAR database demonstrated that a cluster of putative binding sites for transcription factors may be altered by these variants. CONCLUSIONS These sequence variants identified from the promoter region of ISL1 gene in ASD patients are probably involved in the development of ASD by affecting the transcriptional activity and altering ISL1 levels. Therefore, these findings may provide new insights into the molecular etiology and potential therapeutic strategy of ASD.
Collapse
Affiliation(s)
- Xiu-Yun Yin
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Huan-Xin Chen
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Zhuo Chen
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Qin Yang
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| | - Jun Han
- School of Pharmacy, Drug Research & Development Center, Wannan Medical College, Wuhu, Anhui, China
| | - Guo-Wei He
- The Institute of Cardiovascular Diseases & Department Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Tianjin University & Chinese Academy of Medical Sciences, Tianjin, China
| |
Collapse
|
10
|
Crespo-García T, Cámara-Checa A, Dago M, Rubio-Alarcón M, Rapún J, Tamargo J, Delpón E, Caballero R. Regulation of cardiac ion channels by transcription factors: Looking for new opportunities of druggable targets for the treatment of arrhythmias. Biochem Pharmacol 2022; 204:115206. [PMID: 35963339 DOI: 10.1016/j.bcp.2022.115206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022]
Abstract
Cardiac electrical activity is governed by different ion channels that generate action potentials. Acquired or inherited abnormalities in the expression and/or function of ion channels usually result in electrophysiological changes that can cause cardiac arrhythmias. Transcription factors (TFs) control gene transcription by binding to specific DNA sequences adjacent to target genes. Linkage analysis, candidate-gene screening within families, and genome-wide association studies have linked rare and common genetic variants in the genes encoding TFs with genetically-determined cardiac arrhythmias. Besides its critical role in cardiac development, recent data demonstrated that they control cardiac electrical activity through the direct regulation of the expression and function of cardiac ion channels in adult hearts. This narrative review summarizes some studies showing functional data on regulation of the main human atrial and ventricular Na+, Ca2+, and K+ channels by cardiac TFs such as Pitx2c, Tbx20, Tbx5, Zfhx3, among others. The results have improved our understanding of the mechanisms regulating cardiac electrical activity and may open new avenues for therapeutic interventions in cardiac acquired or inherited arrhythmias through the identification of TFs as potential drug targets. Even though TFs have for a long time been considered as 'undruggable' targets, advances in structural biology have led to the identification of unique pockets in TFs amenable to be targeted with small-molecule drugs or peptides that are emerging as novel therapeutic drugs.
Collapse
Affiliation(s)
- T Crespo-García
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - A Cámara-Checa
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Dago
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - M Rubio-Alarcón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Rapún
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - J Tamargo
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | - E Delpón
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain.
| | - R Caballero
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| | -
- Department of Pharmacology and Toxicology. School of Medicine. Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Gregorio Marañón. CIBERCV, 28040 Madrid, Spain
| |
Collapse
|
11
|
Assum I, Krause J, Scheinhardt MO, Müller C, Hammer E, Börschel CS, Völker U, Conradi L, Geelhoed B, Zeller T, Schnabel RB, Heinig M. Tissue-specific multi-omics analysis of atrial fibrillation. Nat Commun 2022; 13:441. [PMID: 35064145 PMCID: PMC8782899 DOI: 10.1038/s41467-022-27953-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/16/2021] [Indexed: 12/13/2022] Open
Abstract
Genome-wide association studies (GWAS) for atrial fibrillation (AF) have uncovered numerous disease-associated variants. Their underlying molecular mechanisms, especially consequences for mRNA and protein expression remain largely elusive. Thus, refined multi-omics approaches are needed for deciphering the underlying molecular networks. Here, we integrate genomics, transcriptomics, and proteomics of human atrial tissue in a cross-sectional study to identify widespread effects of genetic variants on both transcript (cis-eQTL) and protein (cis-pQTL) abundance. We further establish a novel targeted trans-QTL approach based on polygenic risk scores to determine candidates for AF core genes. Using this approach, we identify two trans-eQTLs and five trans-pQTLs for AF GWAS hits, and elucidate the role of the transcription factor NKX2-5 as a link between the GWAS SNP rs9481842 and AF. Altogether, we present an integrative multi-omics method to uncover trans-acting networks in small datasets and provide a rich resource of atrial tissue-specific regulatory variants for transcript and protein levels for cardiovascular disease gene prioritization.
Collapse
Affiliation(s)
- Ines Assum
- Computational Health Center, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany
- Department of Informatics, Technical University Munich, München, Germany
| | - Julia Krause
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Markus O Scheinhardt
- Institute of Medical Biometry and Statistics, University of Lübeck, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Christian Müller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Elke Hammer
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Partner site Greifswald, DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - Christin S Börschel
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
- Partner site Greifswald, DZHK (German Center for Cardiovascular Research), Greifswald, Germany
| | - Lenard Conradi
- Department of Cardiovascular Surgery, University Heart and Vascular Center Hamburg, Hamburg, Germany
| | - Bastiaan Geelhoed
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Tanja Zeller
- University Center of Cardiovascular Science, University Heart and Vascular Center Hamburg, Hamburg, Germany
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany
| | - Renate B Schnabel
- Partner site Hamburg/Kiel/Lübeck, DZHK (German Center for Cardiovascular Research), Hamburg, Germany.
- Department of Cardiology, University Heart and Vascular Center Hamburg, Hamburg, Germany.
| | - Matthias Heinig
- Computational Health Center, Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), München, Germany.
- Department of Informatics, Technical University Munich, München, Germany.
- Partner site Munich, DZHK (German Center for Cardiovascular Research), Munich, Germany.
| |
Collapse
|
12
|
Dastidar S, Majumdar D, Tipanee J, Singh K, Klein AF, Furling D, Chuah MK, VandenDriessche T. Comprehensive transcriptome-wide analysis of spliceopathy correction of myotonic dystrophy using CRISPR-Cas9 in iPSCs-derived cardiomyocytes. Mol Ther 2022; 30:75-91. [PMID: 34371182 PMCID: PMC8753376 DOI: 10.1016/j.ymthe.2021.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 07/01/2021] [Accepted: 07/26/2021] [Indexed: 01/07/2023] Open
Abstract
CTG repeat expansion (CTGexp) is associated with aberrant alternate splicing that contributes to cardiac dysfunction in myotonic dystrophy type 1 (DM1). Excision of this CTGexp repeat using CRISPR-Cas resulted in the disappearance of punctate ribonuclear foci in cardiomyocyte-like cells derived from DM1-induced pluripotent stem cells (iPSCs). This was associated with correction of the underlying spliceopathy as determined by RNA sequencing and alternate splicing analysis. Certain genes were of particular interest due to their role in cardiac development, maturation, and function (TPM4, CYP2J2, DMD, MBNL3, CACNA1H, ROCK2, ACTB) or their association with splicing (SMN2, GCFC2, MBNL3). Moreover, while comparing isogenic CRISPR-Cas9-corrected versus non-corrected DM1 cardiomyocytes, a prominent difference in the splicing pattern for a number of candidate genes was apparent pertaining to genes that are associated with cardiac function (TNNT, TNNT2, TTN, TPM1, SYNE1, CACNA1A, MTMR1, NEBL, TPM1), cellular signaling (NCOR2, CLIP1, LRRFIP2, CLASP1, CAMK2G), and other DM1-related genes (i.e., NUMA1, MBNL2, LDB3) in addition to the disease-causing DMPK gene itself. Subsequent validation using a selected gene subset, including MBNL1, MBNL2, INSR, ADD3, and CRTC2, further confirmed correction of the spliceopathy following CTGexp repeat excision. To our knowledge, the present study provides the first comprehensive unbiased transcriptome-wide analysis of the differential splicing landscape in DM1 patient-derived cardiac cells after excision of the CTGexp repeat using CRISPR-Cas9, showing reversal of the abnormal cardiac spliceopathy in DM1.
Collapse
Affiliation(s)
- Sumitava Dastidar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Debanjana Majumdar
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Jaitip Tipanee
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Kshitiz Singh
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Arnaud F. Klein
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Denis Furling
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013 Paris, France
| | - Marinee K. Chuah
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Marinee K. Chuah, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| | - Thierry VandenDriessche
- Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium,Center for Molecular & Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, 3000 Leuven, Belgium,Corresponding author: Thierry VandenDriessche, Department of Gene Therapy & Regenerative Medicine, Vrije Universiteit Brussel, 1090 Brussels, Belgium.
| |
Collapse
|
13
|
Xu J, Feng L, Wang J, Liu M, Li P, Fan Y. Study on the Influence of Shear Stress and Pulse Electrical Stimulation to the Growth of Cardiomyocytes. J Biomed Nanotechnol 2022; 18:132-143. [PMID: 35180906 DOI: 10.1166/jbn.2022.3234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Engineered myocardial tissue is expected to be used in the treatment of myocardial defects and other diseases, and one of the keys is to construct a suitable environment for the culture of myocardial tissue in vitro. In this study, flow shear stress and pulse electrical stimulation were applied to cardiomyocytes with a self-designed device by simulating the mechanical and electrical physiological microenvironment of myocardial tissue. The strength and duration of pulse electrical stimulation as well as the intensity of shear stress were studied in detail to optimize the experimental parameters. Concretely, 100 mV pulse electrical stimulation (1 Hz and 10 ms pulse width) and 10 dyn/cm² shear stress were used for studying the influence of combined mechanical-electrical stimulation to the growth of cardiomyocytes. The mechanical factor of the combined stimulation promoted the expression of α-cardiac actin mRNA, the electrical factor caused an increase in Cx-43 mRNA expression, and shear stress and pulse electrical stimulation showed a synergistic action on the expression of GATA-4 mRNA. It indicated that combined mechanical-electrical stimulation had a better effect on the functionalized culture of cardiomyocytes, which provided an important theoretical basis for the further construction of in vitro engineered myocardial tissue.
Collapse
Affiliation(s)
- Junwei Xu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Limin Feng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Jingxi Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Meili Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Ping Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| |
Collapse
|
14
|
Ren J, Miao D, Li Y, Gao R. Spotlight on Isl1: A Key Player in Cardiovascular Development and Diseases. Front Cell Dev Biol 2021; 9:793605. [PMID: 34901033 PMCID: PMC8656156 DOI: 10.3389/fcell.2021.793605] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/10/2021] [Indexed: 02/01/2023] Open
Abstract
Cardiac transcription factors orchestrate a regulatory network controlling cardiovascular development. Isl1, a LIM-homeodomain transcription factor, acts as a key player in multiple organs during embryonic development. Its crucial roles in cardiovascular development have been elucidated by extensive studies, especially as a marker gene for the second heart field progenitors. Here, we summarize the roles of Isl1 in cardiovascular development and function, and outline its cellular and molecular modes of action, thus providing insights for the molecular basis of cardiovascular diseases.
Collapse
Affiliation(s)
- Jie Ren
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| | - Danxiu Miao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China.,Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Yanshu Li
- Department of Toxicology, College of Public Health, Harbin Medical University, Harbin, China
| | - Rui Gao
- Xiamen Cardiovascular Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Kim NJ, Lee KH, Son Y, Nam AR, Moon EH, Pyun JH, Park J, Kang JS, Lee YJ, Cho JY. Spatiotemporal expression of long noncoding RNA Moshe modulates heart cell lineage commitment. RNA Biol 2021; 18:640-654. [PMID: 34755591 PMCID: PMC8782178 DOI: 10.1080/15476286.2021.1976549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The roles of long non-coding RNA (LncRNA) have been highlighted in various development processes including congenital heart defects (CHD). Here, we characterized the molecular function of LncRNA, Moshe (1010001N08ik-203), one of the Gata6 antisense transcripts located upstream of Gata6, which is involved in both heart development and the most common type of congenital heart defect, atrial septal defect (ASD). During mouse embryonic development, Moshe was first detected during the cardiac mesoderm stage (E8.5 to E9.5) where Gata6 is expressed and continues to increase at the atrioventricular septum (E12.5), which is involved in ASD. Functionally, the knock-down of Moshe during cardiogenesis caused significant repression of Nkx2.5 in cardiac progenitor stages and resulted in the increase in major SHF lineage genes, such as cardiac transcriptional factors (Isl1, Hand2, Tbx2), endothelial-specific genes (Cd31, Flk1, Tie1, vWF), a smooth muscle actin (a-Sma) and sinoatrial node-specific genes (Shox2, Tbx18). Chromatin Isolation by RNA Purification showed Moshe activates Nkx2.5 gene expression via direct binding to its promoter region. Of note, Moshe was conserved across species, including human, pig and mouse. Altogether, this study suggests that Moshe is a heart-enriched lncRNA that controls a sophisticated network of cardiogenesis by repressing genes in SHF via Nkx2.5 during cardiac development and may play an important role in ASD.
Collapse
Affiliation(s)
- Na-Jung Kim
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - YeonSung Son
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - A-Reum Nam
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| | - Eun-Hye Moon
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University, Yeonsu-gu, Republic of Korea
| | - Jung-Hoon Pyun
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jinyoung Park
- Department of Biochemistry, School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Young Jae Lee
- Lee Gil Ya Cancer and Diabetes Institute, Department of Biochemistry, Gachon University, Yeonsu-gu, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 Plus and Research Institute for Veterinary Science, School of Veterinary Medicine, Seoul National University, Seoul, Korea
| |
Collapse
|
16
|
Naumova N, Iop L. Bioengineering the Cardiac Conduction System: Advances in Cellular, Gene, and Tissue Engineering for Heart Rhythm Regeneration. Front Bioeng Biotechnol 2021; 9:673477. [PMID: 34409019 PMCID: PMC8365186 DOI: 10.3389/fbioe.2021.673477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/24/2021] [Indexed: 01/01/2023] Open
Abstract
Heart rhythm disturbances caused by different etiologies may affect pediatric and adult patients with life-threatening consequences. When pharmacological therapy is ineffective in treating the disturbances, the implantation of electronic devices to control and/or restore normal heart pacing is a unique clinical management option. Although these artificial devices are life-saving, they display many limitations; not least, they do not have any capability to adapt to somatic growth or respond to neuroautonomic physiological changes. A biological pacemaker could offer a new clinical solution for restoring heart rhythms in the conditions of disorder in the cardiac conduction system. Several experimental approaches, such as cell-based, gene-based approaches, and the combination of both, for the generation of biological pacemakers are currently established and widely studied. Pacemaker bioengineering is also emerging as a technology to regenerate nodal tissues. This review analyzes and summarizes the strategies applied so far for the development of biological pacemakers, and discusses current translational challenges toward the first-in-human clinical application.
Collapse
Affiliation(s)
| | - Laura Iop
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
17
|
A BMP4-p38 MAPK signaling axis controls ISL1 protein stability and activity during cardiogenesis. Stem Cell Reports 2021; 16:1894-1905. [PMID: 34329593 PMCID: PMC8365108 DOI: 10.1016/j.stemcr.2021.06.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
During development, cells respond rapidly to intra- and intercellular signals, which induce signaling cascades regulating the activity of transcription factors at the transcriptional and/or post-translational level. The transcription factor ISL1 plays a key role in second heart field development and cardiac differentiation, and its mRNA levels are tightly regulated during cardiogenesis. Here, we show that a BMP-p38 MAPK signaling axis controls ISL1 protein function at the post-translational level. BMP-mediated activation of p38 MAPK leads to ISL1 phosphorylation at S269 by p38, which prevents ISL1 degradation and ensures its transcriptional activity during cardiogenesis. Interfering with p38 MAPK signaling leads to the degradation of ISL1 by the proteasome, resulting in defects in cardiomyocyte differentiation and impaired zebrafish and mouse heart morphogenesis and function. Given the critical role of the tight control of ISL1 activity during cardiac lineage diversification, modulation of BMP4-p38 MAPK signaling could direct differentiation into specific cardiac cell subpopulations. ISL1 is phosphorylated by p38 MAPK at serine 269 A BMP4-p38 MAPK signaling axis controls ISL1 protein stability Phosphorylation of ISL1 by p38 regulates its activity during cardiogenesis p38 Inhibition in vivo results in ISL1 degradation and second heart field defects
Collapse
|
18
|
Network-driven discovery yields new insight into Shox2-dependent cardiac rhythm control. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2021; 1864:194702. [PMID: 33706013 DOI: 10.1016/j.bbagrm.2021.194702] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022]
Abstract
The homeodomain transcription factor SHOX2 is involved in the development and function of the heart's primary pacemaker, the sinoatrial node (SAN), and has been associated with cardiac conduction-related diseases such as atrial fibrillation and sinus node dysfunction. To shed light on Shox2-dependent genetic processes involved in these diseases, we established a murine embryonic stem cell (ESC) cardiac differentiation model to investigate Shox2 pathways in SAN-like cardiomyocytes. Differential RNA-seq-based expression profiling of Shox2+/+ and Shox2-/- ESCs revealed 94 dysregulated transcripts in Shox2-/- ESC-derived SAN-like cells. Of these, 15 putative Shox2 target genes were selected for further validation based on comparative expression analysis with SAN- and right atria-enriched genes. Network-based analyses, integrating data from the Mouse Organogenesis Cell Atlas and the Ingenuity pathways, as well as validation in mouse and zebrafish models confirmed a regulatory role for the novel identified Shox2 target genes including Cav1, Fkbp10, Igfbp5, Mcf2l and Nr2f2. Our results indicate that genetic networks involving SHOX2 may contribute to conduction traits through the regulation of these genes.
Collapse
|
19
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
20
|
Wang Y, Yi N, Hu Y, Zhou X, Jiang H, Lin Q, Chen R, Liu H, Gu Y, Tong C, Lu M, Zhang J, Zhang B, Peng L, Li L. Molecular Signatures and Networks of Cardiomyocyte Differentiation in Humans and Mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 21:696-711. [PMID: 32769060 PMCID: PMC7412763 DOI: 10.1016/j.omtn.2020.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/05/2020] [Accepted: 07/06/2020] [Indexed: 12/23/2022]
Abstract
Cardiomyocyte differentiation derived from embryonic stem cells (ESCs) is a complex process involving molecular regulation of multiple levels. In this study, we first identify and compare differentially expressed gene (DEG) signatures of ESC-derived cardiomyocyte differentiation (ESCDCD) in humans and mice. Then, the multiscale embedded gene co-expression network analysis (MEGENA) of the human ESCDCD dataset is performed to identify 212 significantly co-expressed gene modules, which capture well the regulatory information of cardiomyocyte differentiation. Three modules respectively involved in the regulation of stem cell pluripotency, Wnt, and calcium pathways are enriched in the DEG signatures of the differentiation phase transition in the two species. Three human-specific cardiomyocyte differentiation phase transition modules are identified. Moreover, the potential regulation mechanisms of transcription factors during cardiomyocyte differentiation are also illustrated. Finally, several novel key drivers of ESCDCD are identified with the evidence of their expression during mouse embryonic cardiomyocyte differentiation. Using an integrative network analysis, the core molecular signatures and gene subnetworks (modules) underlying cardiomyocyte lineage commitment are identified in both humans and mice. Our findings provide a global picture of gene-gene co-regulation and identify key regulators during ESCDCD.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Na Yi
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yi Hu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Xianxiao Zhou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Hanyu Jiang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qin Lin
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Rou Chen
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Huan Liu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China
| | - Yanqiong Gu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Chang Tong
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Min Lu
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Junfang Zhang
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Luying Peng
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| | - Li Li
- Key Laboratory of Arrhythmias, Ministry of Education, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Institute of Medical Genetics, Tongji University, Shanghai 200092, China; Department of Medical Genetics, Tongji University School of Medicine, Shanghai 200092, China; Heart Health Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China; Research Units of Origin and Regulation of Heart Rhythm, Chinese Academy of Medical Sciences, Shanghai 200092, China.
| |
Collapse
|
21
|
Liu F, Fang Y, Hou X, Yan Y, Xiao H, Zuo D, Wen J, Wang L, Zhou Z, Dang X, Zhou R, Liao B. Enrichment differentiation of human induced pluripotent stem cells into sinoatrial node-like cells by combined modulation of BMP, FGF, and RA signaling pathways. Stem Cell Res Ther 2020; 11:284. [PMID: 32678003 PMCID: PMC7364513 DOI: 10.1186/s13287-020-01794-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/15/2020] [Accepted: 06/29/2020] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Biological pacemakers derived from pluripotent stem cell (PSC) have been considered as a potential therapeutic surrogate for sick sinus syndrome. So it is essential to develop highly efficient strategies for enrichment of sinoatrial node-like cells (SANLCs) as seed cells for biological pacemakers. It has been reported that BMP, FGF, and RA signaling pathways are involved in specification of different cardiomyocyte subtypes, pacemaker, ventricular, and atrial cells. We aimed to investigate whether combined modulation of BMP, FGF, and RA signaling pathways could enrich the differentiation of SANLC from human pluripotent stem cell (hiPSC). METHODS During the differentiation process from human induced pluripotent stem cell to cardiomyocyte through small molecule-based temporal modulation of the Wnt signaling pathway, signaling of BMP, FGF, and RA was manipulated at cardiac mesoderm stage. qRT-PCR, immunofluorescence, flow cytometry, and whole cell patch clamp were used to identify the SANLC. RESULTS qRT-PCR results showed that manipulating each one of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and retinoid acid (RA) signaling was effective for the upregulation of SANLC markers. Moreover, combined modulation of these three pathways displayed the best efficiency for the expression of SANLC markers, which was further confirmed at protein level using immunofluorescence and flow cytometry. Finally, the electrophysiological characteristics of upregulated SANLC were verified by patch clamp method. CONCLUSION An efficient transgene-independent differentiation protocol for generating SANLC from hiPSC was developed, in which combined modulating BMP, FGF, and RA signaling at cardiac mesoderm stage generates SANLC at high efficiency. This may serve as a potential approach for biological pacemaker construction.
Collapse
Affiliation(s)
- Feng Liu
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Yibing Fang
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Xiaojie Hou
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Ying Yan
- College of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Haiying Xiao
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Dongchuan Zuo
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Jing Wen
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Linli Wang
- Guangzhou Biocare Institute of Cancer, Guangzhou, 510663, Guangdong, China
| | - Zhichao Zhou
- Division of Cardiology, Department of Medicine, Karolinska University Hospital, Karolinska Institute, Stockholm, Sweden
| | - Xitong Dang
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China
| | - Rui Zhou
- The Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China.
| | - Bin Liao
- Department of Cardiac Macrovascular Surgery, Affiliated Hospital of Southwest Medical University, 3-319 Zhongshan Road, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
22
|
Comprehensive Overview of Non-coding RNAs in Cardiac Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:197-211. [PMID: 32285413 DOI: 10.1007/978-981-15-1671-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cardiac development in the human embryo is characterized by the interactions of several transcription and growth factors leading the heart from a primordial linear tube into a synchronous contractile four-chamber organ. Studies on cardiogenesis showed that cell proliferation, differentiation, fate specification and morphogenesis are spatiotemporally coordinated by cell-cell interactions and intracellular signalling cross-talks. In recent years, research has focused on a class of inter- and intra-cellular modulators called non-coding RNAs (ncRNAs), transcribed from the noncoding portion of the DNA and involved in the proper formation of the heart. In this chapter, we will summarize the current state of the art on the roles of three major forms of ncRNAs [microRNAs (miRNAs), long ncRNAs (lncRNAs) and circular RNAs (circRNAs)] in orchestrating the four sequential phases of cardiac organogenesis.
Collapse
|
23
|
miR-128a Acts as a Regulator in Cardiac Development by Modulating Differentiation of Cardiac Progenitor Cell Populations. Int J Mol Sci 2020; 21:ijms21031158. [PMID: 32050579 PMCID: PMC7038042 DOI: 10.3390/ijms21031158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRs) appear to be major, yet poorly understood players in regulatory networks guiding cardiogenesis. We sought to identify miRs with unknown functions during cardiogenesis analyzing the miR-profile of multipotent Nkx2.5 enhancer cardiac progenitor cells (NkxCE-CPCs). Besides well-known candidates such as miR-1, we found about 40 miRs that were highly enriched in NkxCE-CPCs, four of which were chosen for further analysis. Knockdown in zebrafish revealed that only miR-128a affected cardiac development and function robustly. For a detailed analysis, loss-of-function and gain-of-function experiments were performed during in vitro differentiations of transgenic murine pluripotent stem cells. MiR-128a knockdown (1) increased Isl1, Sfrp5, and Hcn4 (cardiac transcription factors) but reduced Irx4 at the onset of cardiogenesis, (2) upregulated Isl1-positive CPCs, whereas NkxCE-positive CPCs were downregulated, and (3) increased the expression of the ventricular cardiomyocyte marker Myl2 accompanied by a reduced beating frequency of early cardiomyocytes. Overexpression of miR-128a (4) diminished the expression of Isl1, Sfrp5, Nkx2.5, and Mef2c, but increased Irx4, (5) enhanced NkxCE-positive CPCs, and (6) favored nodal-like cardiomyocytes (Tnnt2+, Myh6+, Shox2+) accompanied by increased beating frequencies. In summary, we demonstrated that miR-128a plays a so-far unknown role in early heart development by affecting the timing of CPC differentiation into various cardiomyocyte subtypes.
Collapse
|
24
|
Ding Z, Yang W, Yi K, Ding Y, Zhou D, Xie X, You T. Correlations between ISL1 rs1017 polymorphism and congenital heart disease risk: A PRISMA-compliant meta-analysis. Medicine (Baltimore) 2020; 99:e18715. [PMID: 31914083 PMCID: PMC6959884 DOI: 10.1097/md.0000000000018715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND ISL1 promotes cardiomyocyte differentiation and plays important roles in heart development. However, whether ISL1 rs1017 polymorphism is associated with the congenital heart disease (CHD) risk remains controversial. METHODS Five database including PubMed, Cochrane Library, ISI Web of Science, CNKI, and Wan Fang were searched by using key words "Insulin Gene Enhancer Protein ISL1" and "Single Nucleotide Polymorphism," and "Congenital Heart Disease." Five relative articles including 6 independent studies containing 2132 cases and 3812 controls were finally recruited to our study. Meta-analyses were performed by pooling odds ratios (ORs) and 95% confidence interval (CI) from included studies using STATA 12.0 software. RESULTS The associations between ISL1 rs1017 polymorphism and the risk of CHD were statistically significant under the allele model (T vs A; OR: 1.421; 95% CI: 1.072-1.882), heterozygous model (AT vs AA; OR: 1.342; 95% CI: 1.019-1.767), and dominant model (AT+ TT vs AA; OR: 1.466; 95% CI: 1.059-2.028). Sensitivity analysis indicated that the results were not stable. Subgroup analysis demonstrated that associations were found in Caucasians under the allele model and the heterozygous model (P < .05), but not the dominant model (P > .05). CONCLUSION In summary, our meta-analysis results suggest that the T allele of ISL1 rs1017 is a risk factor for CHD. However, further studies based on large sample size and multi-ethnic population should be conducted to further prove this correlation.
Collapse
Affiliation(s)
- Zhaohong Ding
- Gansu Provincial Hospital
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base
| | - Wenke Yang
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Kang Yi
- Gansu Provincial Hospital
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base
| | - Yunhan Ding
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | | | - Xiaodong Xie
- School of Basic Medical Science, Lanzhou University, Lanzhou, China
| | - Tao You
- Gansu Provincial Hospital
- Congenital Heart Disease Diagnosis and Treatment Gansu Province International Science and Technology Cooperation Base
| |
Collapse
|
25
|
Abstract
The function of the mammalian heart depends on the interplay between different cardiac cell types. The deployment of these cells, with precise spatiotemporal regulation, is also important during development to establish the heart structure. In this Review, we discuss the diverse origins of cardiac cell types and the lineage relationships between cells of a given type that contribute to different parts of the heart. The emerging lineage tree shows the progression of cell fate diversification, with patterning cues preceding cell type segregation, as well as points of convergence, with overlapping lineages contributing to a given tissue. Several cell lineage markers have been identified. However, caution is required with genetic-tracing experiments in comparison with clonal analyses. Genetic studies on cell populations provided insights into the mechanisms for lineage decisions. In the past 3 years, results of single-cell transcriptomics are beginning to reveal cell heterogeneity and early developmental trajectories. Equating this information with the in vivo location of cells and their lineage history is a current challenge. Characterization of the progenitor cells that form the heart and of the gene regulatory networks that control their deployment is of major importance for understanding the origin of congenital heart malformations and for producing cardiac tissue for use in regenerative medicine.
Collapse
|
26
|
Schwenty-Lara J, Nürnberger A, Borchers A. Loss of function of Kmt2d, a gene mutated in Kabuki syndrome, affects heart development in Xenopus laevis. Dev Dyn 2019; 248:465-476. [PMID: 30980591 DOI: 10.1002/dvdy.39] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Kabuki syndrome is a haploinsufficient congenital multi-organ malformation syndrome, which frequently includes severe heart defects. Mutations in the histone H3K4 methyltransferase KMT2D have been identified as the main cause of Kabuki syndrome, however, the role of KMT2D in heart development remains to be characterized. RESULTS Here we analyze the function of Kmt2d at different stages of Xenopus heart development. Xenopus Kmt2d is ubiquitously expressed at early stages of cardiogenesis, with enrichment in the anterior region including the cardiac precursor cells. Morpholino-mediated knockdown of Kmt2d led to hypoplastic hearts lacking the three-chambered structure. Analyzing different stages of cardiogenesis revealed that development of the first and second heart fields as well as cardiac differentiation were severely affected by loss of Kmt2d function. CONCLUSION Kmt2d loss of function in Xenopus recapitulates the hypoplastic heart defects observed in Kabuki syndrome patients and shows that Kmt2d function is required for the establishment of the primary and secondary heart fields. Thus, Xenopus Kmt2d morphants can be a valuable tool to elucidate the etiology of the congenital heart defects associated with Kabuki syndrome.
Collapse
Affiliation(s)
- Janina Schwenty-Lara
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Annika Nürnberger
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany
| | - Annette Borchers
- Department of Biology, Molecular Embryology, Philipps-University Marburg, Marburg, Germany.,DFG Research Training Group, Membrane Plasticity in Tissue Development and Remodeling, GRK 2213, Philipps-Universität Marburg, Marburg, Germany
| |
Collapse
|
27
|
Portillo-Lara R, Spencer AR, Walker BW, Shirzaei Sani E, Annabi N. Biomimetic cardiovascular platforms for in vitro disease modeling and therapeutic validation. Biomaterials 2019; 198:78-94. [PMID: 30201502 PMCID: PMC11044891 DOI: 10.1016/j.biomaterials.2018.08.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
Abstract
Bioengineered tissues have become increasingly more sophisticated owing to recent advancements in the fields of biomaterials, microfabrication, microfluidics, genetic engineering, and stem cell and developmental biology. In the coming years, the ability to engineer artificial constructs that accurately mimic the compositional, architectural, and functional properties of human tissues, will profoundly impact the therapeutic and diagnostic aspects of the healthcare industry. In this regard, bioengineered cardiac tissues are of particular importance due to the extremely limited ability of the myocardium to self-regenerate, as well as the remarkably high mortality associated with cardiovascular diseases worldwide. As novel microphysiological systems make the transition from bench to bedside, their implementation in high throughput drug screening, personalized diagnostics, disease modeling, and targeted therapy validation will bring forth a paradigm shift in the clinical management of cardiovascular diseases. Here, we will review the current state of the art in experimental in vitro platforms for next generation diagnostics and therapy validation. We will describe recent advancements in the development of smart biomaterials, biofabrication techniques, and stem cell engineering, aimed at recapitulating cardiovascular function at the tissue- and organ levels. In addition, integrative and multidisciplinary approaches to engineer biomimetic cardiovascular constructs with unprecedented human and clinical relevance will be discussed. We will comment on the implementation of these platforms in high throughput drug screening, in vitro disease modeling and therapy validation. Lastly, future perspectives will be provided on how these biomimetic platforms will aid in the transition towards patient centered diagnostics, and the development of personalized targeted therapeutics.
Collapse
Affiliation(s)
- Roberto Portillo-Lara
- Department of Chemical Engineering, Northeastern University, Boston, USA; Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Zapopan, JAL, Mexico
| | - Andrew R Spencer
- Department of Chemical Engineering, Northeastern University, Boston, USA
| | - Brian W Walker
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Ehsan Shirzaei Sani
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA 90095, USA; Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, Los Angeles, CA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
28
|
Lim JS, Jung GY, Park SY. Nkx-2.5 Regulates MDR1 Expression via Its Upstream Promoter in Breast Cancer Cells. J Korean Med Sci 2019; 34:e100. [PMID: 30940996 PMCID: PMC6439202 DOI: 10.3346/jkms.2019.34.e100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Increased expression of MDR1 gene is one of the major mechanisms responsible for multidrug resistance in cancer cells. Two alternative promoters, upstream and downstream, are responsible for transcription of MDR1 gene in the human. However, the molecular mechanism regarding the transactivation of MDR1 upstream promoter (USP) has not been determined. METHODS Dual-luciferase reporter gene assays were used to assess the effect of Nkx-2.5 on MDR1 USP activity using reporter plasmids for human MDR1 USP and its mutants. MDR1 mRNA level was examined by quantitative real-time PCR. The direct binding of Nkx-2.5 to the USP of MDR1 was evaluated by promoter enzyme immunoassays and chromatin immunoprecipitation assays. RESULTS Nkx-2.5 significantly stimulates the transactivation of MDR1 USP and increases MDR1 mRNA expression in MCF7 breast cancer cells. Reporter gene assays with deleted MDR1 USPs showed that the Nkx-2.5-binding site is located between positions -71 and +12. Mutation of the Nkx-2.5-binding site at nucleotide +4 to +10 markedly reduced the Nkx-2.5-mediated activation of MDR1 USP activity. A promoter binding immunoassay and a chromatin immunoprecipitation assay revealed that Nkx-2.5 binds directly to the region +4/+10 of human MDR1 USP. CONCLUSION The results in the present study show Nkx-2.5 is a positive regulator for the transactivation of MDR1 USP in MCF7 breast cancer cells. Our findings will help elucidate the regulatory mechanism responsible for the multidrug resistant cancer phenotype.
Collapse
Affiliation(s)
- Jung-Suk Lim
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| | - Gyu Yeon Jung
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju, Korea
| |
Collapse
|
29
|
Addressing Variability and Heterogeneity of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:1-29. [DOI: 10.1007/5584_2019_350] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Chen Z, Xian W, Bellin M, Dorn T, Tian Q, Goedel A, Dreizehnter L, Schneider CM, Ward-van Oostwaard D, Ng JKM, Hinkel R, Pane LS, Mummery CL, Lipp P, Moretti A, Laugwitz KL, Sinnecker D. Subtype-specific promoter-driven action potential imaging for precise disease modelling and drug testing in hiPSC-derived cardiomyocytes. Eur Heart J 2019; 38:292-301. [PMID: 28182242 PMCID: PMC5381588 DOI: 10.1093/eurheartj/ehw189] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 03/18/2016] [Accepted: 04/19/2016] [Indexed: 12/30/2022] Open
Affiliation(s)
- Zhifen Chen
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Wenying Xian
- Institute for Molecular Cell Biology, Medical Faculty, University Homburg/Saar, Universität des Saarlandes, Homburg/Saar 66421, Germany
| | - Milena Bellin
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333, The Netherlands
| | - Tatjana Dorn
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Qinghai Tian
- Institute for Molecular Cell Biology, Medical Faculty, University Homburg/Saar, Universität des Saarlandes, Homburg/Saar 66421, Germany
| | - Alexander Goedel
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Lisa Dreizehnter
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Christine M Schneider
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Dorien Ward-van Oostwaard
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333, The Netherlands
| | - Judy King Man Ng
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | | | - Luna Simona Pane
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Leiden 2333, The Netherlands
| | - Peter Lipp
- Institute for Molecular Cell Biology, Medical Faculty, University Homburg/Saar, Universität des Saarlandes, Homburg/Saar 66421, Germany
| | | | | | - Daniel Sinnecker
- I. Department of Medicine (Cardiology), Klinikum rechts der Isar, Technische Universität München, Munich 81675, Germany
| |
Collapse
|
31
|
Guo Y, Dorn T, Kühl SJ, Linnemann A, Rothe M, Pfister AS, Vainio S, Laugwitz KL, Moretti A, Kühl M. The Wnt inhibitor Dkk1 is required for maintaining the normal cardiac differentiation program in Xenopus laevis. Dev Biol 2019; 449:1-13. [PMID: 30797757 PMCID: PMC6496975 DOI: 10.1016/j.ydbio.2019.02.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/15/2019] [Accepted: 02/16/2019] [Indexed: 12/15/2022]
Abstract
Wnt proteins can activate different intracellular signaling pathways. These pathways need to be tightly regulated for proper cardiogenesis. The canonical Wnt/β-catenin inhibitor Dkk1 has been shown to be sufficient to trigger cardiogenesis in gain-of-function experiments performed in multiple model systems. Loss-of-function studies however did not reveal any fundamental function for Dkk1 during cardiogenesis. Using Xenopus laevis as a model we here show for the first time that Dkk1 is required for proper differentiation of cardiomyocytes, whereas specification of cardiomyocytes remains unaffected in absence of Dkk1. This effect is at least in part mediated through regulation of non-canonical Wnt signaling via Wnt11. In line with these observations we also found that Isl1, a critical regulator for specification of the common cardiac progenitor cell (CPC) population, acts upstream of Dkk1. Dkk1 is required for cardiac development in Xenopus laevis. The Wnt inhibitor Dkk1 acts downstream of Isl1 during cardiac development in vivo. Loss of Dkk1 has no impact on cardiac specification in Xenopus. Normal cardiac differentiation is impaired upon Dkk1 inhibition in Xenopus. Dkk1 regulates canonical Wnt/β-catenin signaling during Xenopus cardiogenesis.
Collapse
Affiliation(s)
- Yanchun Guo
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, Ulm University, 89081 Ulm, Germany
| | - Tatjana Dorn
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany
| | - Susanne J Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexander Linnemann
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Melanie Rothe
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany; International Graduate School in Molecular Medicine Ulm, Ulm University, 89081 Ulm, Germany
| | - Astrid S Pfister
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, InfoTech Oulu, Oulu University and Biobank Borealis of Northern Finland, Oulu University Hospital, Aapistie 5, FIN-90014, University of Oulu, Finland
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar der Technischen Universität München, Ismaninger Strasse 22, 81675 Munich, Germany; DZHK (German Centre for Cardiovascular Research) - Partner Site Munich Heart Alliance, Munich, Germany.
| | - Michael Kühl
- Institute for Biochemistry and Molecular Biology, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| |
Collapse
|
32
|
Wang X, Liang Q, Zhang L, Gou H, Li Z, Chen H, Dong Y, Ji J, Yu J. C8orf76 Promotes Gastric Tumorigenicity and Metastasis by Directly Inducing lncRNA DUSP5P1 and Associates with Patient Outcomes. Clin Cancer Res 2019; 25:3128-3140. [PMID: 30733230 DOI: 10.1158/1078-0432.ccr-18-2804] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/23/2018] [Accepted: 01/31/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE We identified for the first time that C8orf76 (chromosome 8 open reading frame 76) is preferentially amplified in gastric cancer. We elucidated its role and clinical significance in gastric carcinogenesis. EXPERIMENTAL DESIGN The clinical impact of C8orf76 was assessed in 592 patients with gastric cancer. The biological function of C8orf76 was studied in vitro, in vivo, and in gastric cancer patient-derived organoid models. C8orf76 downstream effector and pathways were identified by RNA sequencing, chromatin immunoprecipitation sequencing, luciferase reporter, and electrophoretic mobility shift assay. RESULTS C8orf76 was upregulated in 69.74% and 65.71% of two independent cohorts of gastric cancers and was positively associated with C8orf76 amplification. Multivariate analysis showed that gastric cancer patients with C8orf76 amplification (cohort I, n = 129; cohort II, n = 107) or overexpression (n = 356) had a significantly shortened survival. C8orf76 significantly promoted gastric cancer cell proliferation, cell-cycle transformation, and migration/invasion, but suppressed cell apoptosis. Silencing C8orf76 expression exerted opposite effects in vitro and significantly inhibited xenograft tumor growth, lung metastasis, and liver metastasis in nude mice. Silencing C8orf76 also significantly suppressed the growth of patient-derived organoids. Mechanically, C8orf76 activated MAPK/ERK signaling cascade. C8orf76 directly bound to the promoter region of lncRNA dual specificity phosphatase 5 pseudogene 1 (DUSP5P1) with a binding motif of AGGCTG and activated DUSP5P1 transcription. DUSP5P1 induced MAPK/ERK signaling and promoted gastric tumorigenesis. Knockdown DUSP5P1 abrogated the effect of C8orf76 in activating MAPK/ERK cascade and the tumor-promoting function. CONCLUSIONS C8orf76 directly binds to oncogenic lncRNA DUSP5P1 to induce its expression and activates MAPK signaling. C8orf76 plays a pivotal oncogenic role in gastric carcinogenesis and is an independent prognostic factor for gastric cancer patients.
Collapse
Affiliation(s)
- Xiaohong Wang
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China.,Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Qiaoyi Liang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Lianhai Zhang
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Ziyu Li
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yujuan Dong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jiafu Ji
- Key Laboratory of Carcinogenesis and Translational Research, Peking University Cancer Hospital and Institute, Beijing, China.
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
33
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
34
|
Miksiunas R, Mobasheri A, Bironaite D. Homeobox Genes and Homeodomain Proteins: New Insights into Cardiac Development, Degeneration and Regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1212:155-178. [PMID: 30945165 DOI: 10.1007/5584_2019_349] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiovascular diseases are the most common cause of human death in the developing world. Extensive evidence indicates that various toxic environmental factors and unhealthy lifestyle choices contribute to the risk, incidence and severity of cardiovascular diseases. Alterations in the genetic level of myocardium affects normal heart development and initiates pathological processes leading to various types of cardiac diseases. Homeobox genes are a large and highly specialized family of closely related genes that direct the formation of body structure, including cardiac development. Homeobox genes encode homeodomain proteins that function as transcription factors with characteristic structures that allow them to bind to DNA, regulate gene expression and subsequently control the proper physiological function of cells, tissues and organs. Mutations in homeobox genes are rare and usually lethal with evident alterations in cardiac function at or soon after the birth. Our understanding of homeobox gene family expression and function has expanded significantly during the recent years. However, the involvement of homeobox genes in the development of human and animal cardiac tissue requires further investigation. The phenotype of human congenital heart defects unveils only some aspects of human heart development. Therefore, mouse models are often used to gain a better understanding of human heart function, pathology and regeneration. In this review, we have focused on the role of homeobox genes in the development and pathology of human heart as potential tools for the future development of targeted regenerative strategies for various heart malfunctions.
Collapse
Affiliation(s)
- Rokas Miksiunas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania.
| |
Collapse
|
35
|
Zhang J, Yang M, Yang AK, Wang X, Tang YH, Zhao QY, Wang T, Chen YT, Huang CX. Insulin gene enhancer binding protein 1 induces adipose tissue‑derived stem cells to differentiate into pacemaker‑like cells. Int J Mol Med 2018; 43:879-889. [PMID: 30483766 PMCID: PMC6317671 DOI: 10.3892/ijmm.2018.4002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023] Open
Abstract
Hybrid approaches combining gene- and cell-based therapies to make biological pacemakers are a promising therapeutic avenue for bradyarrhythmia. The present study aimed to direct adipose tissue-derived stem cells (ADSCs) to differentiate specifically into cardiac pacemaker cells by overexpressing a single transcription factor, insulin gene enhancer binding protein 1 (ISL-1). In the present study, the ADSCs were transfected with ISL‑1 or mCherry fluorescent protein lentiviral vectors and co-cultured with neonatal rat ventricular cardiomyocytes (NRVMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of ADSCs into pacemaker-like cells by overexpressing ISL-1 was evaluated by observation of cell morphology and beating rate, reverse transcription-quantitative polymerase chain reaction analysis, western blotting, immunofluorescence and analysis of electrophysiological activity. In conclusion, these data indicated that the overexpression of ISL-1 in ADSCs may enhance the pacemaker phenotype and automaticity in vitro, features which were significantly increased following co‑culture induction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - An-Kang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yu-Ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
36
|
Goedel A, Zawada DM, Zhang F, Chen Z, Moretti A, Sinnecker D. Subtype-specific Optical Action Potential Recordings in Human Induced Pluripotent Stem Cell-derived Ventricular Cardiomyocytes. J Vis Exp 2018. [PMID: 30320759 DOI: 10.3791/58134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Cardiomyocytes generated from human induced pluripotent stem cells (iPSC-CMs) are an emerging tool in cardiovascular research. Rather than being a homogenous population of cells, the iPSC-CMs generated by current differentiation protocols represent a mixture of cells with ventricular-, atrial-, and nodal-like phenotypes, which complicates phenotypic analyses. Here, a method to optically record action potentials specifically from ventricular-like iPSC-CMs is presented. This is achieved by lentiviral transduction with a construct in which a genetically-encoded voltage indicator is under the control of a ventricular-specific promoter element. When iPSC-CMs are transduced with this construct, the voltage sensor is expressed exclusively in ventricular-like cells, enabling subtype-specific optical membrane potential recordings using time-lapse fluorescence microscopy.
Collapse
Affiliation(s)
- Alexander Goedel
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Dorota M Zawada
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich
| | - Fangfang Zhang
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich
| | - Zhifen Chen
- Beth Israel Deaconess Medical Center, Harvard Medical School
| | - Alessandra Moretti
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance
| | - Daniel Sinnecker
- Medical Department I, University Hospital Klinikum rechts der Isar, Technical University of Munich; German Centre for Cardiovascular Research (DZHK), Munich Heart Alliance;
| |
Collapse
|
37
|
Specific Cell (Re-)Programming: Approaches and Perspectives. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 163:71-115. [PMID: 29071403 DOI: 10.1007/10_2017_27] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Many disorders are manifested by dysfunction of key cell types or their disturbed integration in complex organs. Thereby, adult organ systems often bear restricted self-renewal potential and are incapable of achieving functional regeneration. This underlies the need for novel strategies in the field of cell (re-)programming-based regenerative medicine as well as for drug development in vitro. The regenerative field has been hampered by restricted availability of adult stem cells and the potentially hazardous features of pluripotent embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). Moreover, ethical concerns and legal restrictions regarding the generation and use of ESCs still exist. The establishment of direct reprogramming protocols for various therapeutically valuable somatic cell types has overcome some of these limitations. Meanwhile, new perspectives for safe and efficient generation of different specified somatic cell types have emerged from numerous approaches relying on exogenous expression of lineage-specific transcription factors, coding and noncoding RNAs, and chemical compounds.It should be of highest priority to develop protocols for the production of mature and physiologically functional cells with properties ideally matching those of their endogenous counterparts. Their availability can bring together basic research, drug screening, safety testing, and ultimately clinical trials. Here, we highlight the remarkable successes in cellular (re-)programming, which have greatly advanced the field of regenerative medicine in recent years. In particular, we review recent progress on the generation of cardiomyocyte subtypes, with a focus on cardiac pacemaker cells. Graphical Abstract.
Collapse
|
38
|
Meseguer S, Panadero J, Navarro-González C, Villarroya M, Boutoual R, Comi GP, Armengod ME. The MELAS mutation m.3243A>G promotes reactivation of fetal cardiac genes and an epithelial-mesenchymal transition-like program via dysregulation of miRNAs. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3022-3037. [PMID: 29928977 DOI: 10.1016/j.bbadis.2018.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/25/2018] [Accepted: 06/13/2018] [Indexed: 12/25/2022]
Abstract
The pathomechanisms underlying oxidative phosphorylation (OXPHOS) diseases are not well-understood, but they involve maladaptive changes in mitochondria-nucleus communication. Many studies on the mitochondria-nucleus cross-talk triggered by mitochondrial dysfunction have focused on the role played by regulatory proteins, while the participation of miRNAs remains poorly explored. MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is mostly caused by mutation m.3243A>G in mitochondrial tRNALeu(UUR) gene. Adverse cardiac and neurological events are the commonest causes of early death in m.3243A>G patients. Notably, the incidence of major clinical features associated with this mutation has been correlated to the level of m.3243A>G mutant mitochondrial DNA (heteroplasmy) in skeletal muscle. In this work, we used a transmitochondrial cybrid model of MELAS (100% m.3243A>G mutant mitochondrial DNA) to investigate the participation of miRNAs in the mitochondria-nucleus cross-talk associated with OXPHOS dysfunction. High-throughput analysis of small-RNA-Seq data indicated that expression of 246 miRNAs was significantly altered in MELAS cybrids. Validation of selected miRNAs, including miR-4775 and miR-218-5p, in patient muscle samples revealed miRNAs whose expression declined with high levels of mutant heteroplasmy. We show that miR-218-5p and miR-4775 are direct regulators of fetal cardiac genes such as NODAL, RHOA, ISL1 and RXRB, which are up-regulated in MELAS cybrids and in patient muscle samples with heteroplasmy above 60%. Our data clearly indicate that TGF-β superfamily signaling and an epithelial-mesenchymal transition-like program are activated in MELAS cybrids, and suggest that down-regulation of miRNAs regulating fetal cardiac genes is a risk marker of heart failure in patients with OXPHOS diseases.
Collapse
Affiliation(s)
- Salvador Meseguer
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Joaquin Panadero
- Unidad de Genómica, Instituto de Investigación Sanitaria La Fe, Avenida Fernando Abril Martorell, 106 Torre A 7ª planta, Valencia 46026, Spain.
| | - Carmen Navarro-González
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Magda Villarroya
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Rachid Boutoual
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain.
| | - Giacomo Pietro Comi
- Dino Ferrari Centre, Department of Pathophysiology and Transplantation (DEPT), University of Milan, I.R.C.C.S. Foundation Ca' Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, 20122 Milan, Italy.
| | - M-Eugenia Armengod
- RNA Modification and Mitochondrial Diseases Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Carrer d'Eduardo Primo Yúfera 3, Valencia 46012, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) node 721, Madrid 28029, Spain.
| |
Collapse
|
39
|
Dorn T, Kornherr J, Parrotta EI, Zawada D, Ayetey H, Santamaria G, Iop L, Mastantuono E, Sinnecker D, Goedel A, Dirschinger RJ, My I, Laue S, Bozoglu T, Baarlink C, Ziegler T, Graf E, Hinkel R, Cuda G, Kääb S, Grace AA, Grosse R, Kupatt C, Meitinger T, Smith AG, Laugwitz KL, Moretti A. Interplay of cell-cell contacts and RhoA/MRTF-A signaling regulates cardiomyocyte identity. EMBO J 2018; 37:e98133. [PMID: 29764980 PMCID: PMC6003642 DOI: 10.15252/embj.201798133] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 03/29/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Cell-cell and cell-matrix interactions guide organ development and homeostasis by controlling lineage specification and maintenance, but the underlying molecular principles are largely unknown. Here, we show that in human developing cardiomyocytes cell-cell contacts at the intercalated disk connect to remodeling of the actin cytoskeleton by regulating the RhoA-ROCK signaling to maintain an active MRTF/SRF transcriptional program essential for cardiomyocyte identity. Genetic perturbation of this mechanosensory pathway activates an ectopic fat gene program during cardiomyocyte differentiation, which ultimately primes the cells to switch to the brown/beige adipocyte lineage in response to adipogenesis-inducing signals. We also demonstrate by in vivo fate mapping and clonal analysis of cardiac progenitors that cardiac fat and a subset of cardiac muscle arise from a common precursor expressing Isl1 and Wt1 during heart development, suggesting related mechanisms of determination between the two lineages.
Collapse
Affiliation(s)
- Tatjana Dorn
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Jessica Kornherr
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elvira I Parrotta
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Dorota Zawada
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Harold Ayetey
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Gianluca Santamaria
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Laura Iop
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elisa Mastantuono
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Daniel Sinnecker
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Alexander Goedel
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Ralf J Dirschinger
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Ilaria My
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Svenja Laue
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Tarik Bozoglu
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | | | - Tilman Ziegler
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Rabea Hinkel
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
- IPEK Institute for Cardiovascular Prevention, Klinikum der Universität München - Ludwig-Maximillians-Universität, Munich, Germany
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Medical School, University of Magna Grecia, Catanzaro, Italy
| | - Stefan Kääb
- Medizinische Klinik und Poliklinik I, Klinikum der Universität München - Ludwig-Maximillians-Universität, Munich, Germany
| | - Andrew A Grace
- Papworth Hospital NHS Foundation Trust, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Robert Grosse
- Pharmacology Institute, Philipps University Marburg, Marburg, Germany
| | - Christian Kupatt
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
| | - Austin G Smith
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Karl-Ludwig Laugwitz
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- Klinik und Poliklinik Innere Medizin I, Klinikum rechts der Isar - Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research) - partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
40
|
Cho E, Mysliwiec MR, Carlson CD, Ansari A, Schwartz RJ, Lee Y. Cardiac-specific developmental and epigenetic functions of Jarid2 during embryonic development. J Biol Chem 2018; 293:11659-11673. [PMID: 29891551 DOI: 10.1074/jbc.ra118.002482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Epigenetic regulation is critical in normal cardiac development. We have demonstrated that the deletion of Jarid2 (Jumonji (Jmj) A/T-rich interaction domain 2) in mice results in cardiac malformations recapitulating human congenital cardiac disease and dysregulation of gene expression. However, the precise developmental and epigenetic functions of Jarid2 within the developing heart remain to be elucidated. Here, we determined the cardiac-specific functions of Jarid2 and the genetic networks regulated by Jarid2. Jarid2 was deleted using different cardiac-specific Cre mice. The deletion of Jarid2 by Nkx2.5-Cre mice (Jarid2Nkx) caused cardiac malformations including ventricular septal defects, thin myocardium, hypertrabeculation, and neonatal lethality. Jarid2Nkx mice exhibited elevated expression of neural genes, cardiac jelly, and other key factors including Isl1 and Bmp10 in the developing heart. By employing combinatorial genome-wide approaches and molecular analyses, we showed that Jarid2 in the myocardium regulates a subset of Jarid2 target gene expression and H3K27me3 enrichment during heart development. Specifically, Jarid2 was required for PRC2 occupancy and H3K27me3 at the Isl1 promoter locus, leading to the proper repression of Isl1 expression. In contrast, Jarid2 deletion in differentiated cardiomyocytes by cTnt-Cre mice caused no gross morphological defects or neonatal lethality. Thus, the early deletion of Jarid2 in cardiac progenitors, prior to the differentiation of cardiac progenitors into cardiomyocytes, results in morphogenetic defects manifested later in development. Our studies reveal that there is a critical window during early cardiac progenitor differentiation when Jarid2 is crucial to establish the epigenetic landscape at later stages of development.
Collapse
Affiliation(s)
- Eunjin Cho
- From the Department of Cell and Regenerative Biology.,Molecular and Cellular Pharmacology Graduate Program, and
| | | | - Clayton D Carlson
- the Department of Biology, Trinity Christian College, Palos Heights, Illinois 60463, and
| | - Aseem Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705
| | - Robert J Schwartz
- the Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Youngsook Lee
- From the Department of Cell and Regenerative Biology, .,Molecular and Cellular Pharmacology Graduate Program, and
| |
Collapse
|
41
|
Anderson DJ, Kaplan DI, Bell KM, Koutsis K, Haynes JM, Mills RJ, Phelan DG, Qian EL, Leitoguinho AR, Arasaratnam D, Labonne T, Ng ES, Davis RP, Casini S, Passier R, Hudson JE, Porrello ER, Costa MW, Rafii A, Curl CL, Delbridge LM, Harvey RP, Oshlack A, Cheung MM, Mummery CL, Petrou S, Elefanty AG, Stanley EG, Elliott DA. NKX2-5 regulates human cardiomyogenesis via a HEY2 dependent transcriptional network. Nat Commun 2018; 9:1373. [PMID: 29636455 PMCID: PMC5893543 DOI: 10.1038/s41467-018-03714-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/05/2018] [Indexed: 12/19/2022] Open
Abstract
Congenital heart defects can be caused by mutations in genes that guide cardiac lineage formation. Here, we show deletion of NKX2-5, a critical component of the cardiac gene regulatory network, in human embryonic stem cells (hESCs), results in impaired cardiomyogenesis, failure to activate VCAM1 and to downregulate the progenitor marker PDGFRα. Furthermore, NKX2-5 null cardiomyocytes have abnormal physiology, with asynchronous contractions and altered action potentials. Molecular profiling and genetic rescue experiments demonstrate that the bHLH protein HEY2 is a key mediator of NKX2-5 function during human cardiomyogenesis. These findings identify HEY2 as a novel component of the NKX2-5 cardiac transcriptional network, providing tangible evidence that hESC models can decipher the complex pathways that regulate early stage human heart development. These data provide a human context for the evaluation of pathogenic mutations in congenital heart disease. A gene regulatory network, including the transcription factor Nkx2-5, regulates cardiac development. Here, the authors show that on deletion of NKX2-5 from human embryonic stem cells, there is impaired cardiomyogenesis and changes in action potentials, and that this is regulated via HEY2.
Collapse
Affiliation(s)
- David J Anderson
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - David I Kaplan
- The Florey Institute of Neuroscience and Mental Health; Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Katrina M Bell
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Katerina Koutsis
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - John M Haynes
- Monash Institute of Pharmaceutical Science, Monash University, 381 Royal Parade Parkville, Victoria, 3052, Australia
| | - Richard J Mills
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dean G Phelan
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Elizabeth L Qian
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Ana Rita Leitoguinho
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Deevina Arasaratnam
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Tanya Labonne
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Elizabeth S Ng
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Simona Casini
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Robert Passier
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - James E Hudson
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Enzo R Porrello
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | | | - Arash Rafii
- Stem Cell and Microenvironment Laboratory, Weill Cornell Medical College in Qatar Qatar Foundation, Doha, Qatar.,Department of Genetic Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Clare L Curl
- Department of Physiology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Lea M Delbridge
- Department of Physiology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Richard P Harvey
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2052, Australia.,St. Vincent's Clinical School and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Kensington, 2052, Australia
| | - Alicia Oshlack
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia
| | - Michael M Cheung
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stephen Petrou
- The Florey Institute of Neuroscience and Mental Health; Centre for Neuroscience, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew G Elefanty
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - Edouard G Stanley
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia.,Department of Pediatrics, The Royal Children's Hospital, University of Melbourne, Parkville, VIC, 3052, Australia.,Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3800, Australia
| | - David A Elliott
- Murdoch Childrens Research Institute, Royal Children's Hospital, Flemington Road, Parkville, VIC, 3052, Australia. .,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, 3800, Australia. .,School of Biosciences, University of Melbourne, Parkville, VIC, 3052, Australia.
| |
Collapse
|
42
|
Horváth A, Lemoine MD, Löser A, Mannhardt I, Flenner F, Uzun AU, Neuber C, Breckwoldt K, Hansen A, Girdauskas E, Reichenspurner H, Willems S, Jost N, Wettwer E, Eschenhagen T, Christ T. Low Resting Membrane Potential and Low Inward Rectifier Potassium Currents Are Not Inherent Features of hiPSC-Derived Cardiomyocytes. Stem Cell Reports 2018; 10:822-833. [PMID: 29429959 PMCID: PMC5918194 DOI: 10.1016/j.stemcr.2018.01.012] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 01/12/2018] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) cardiomyocytes (CMs) show less negative resting membrane potential (RMP), which is attributed to small inward rectifier currents (IK1). Here, IK1 was measured in hiPSC-CMs (proprietary and commercial cell line) cultured as monolayer (ML) or 3D engineered heart tissue (EHT) and, for direct comparison, in CMs from human right atrial (RA) and left ventricular (LV) tissue. RMP was measured in isolated cells and intact tissues. IK1 density in ML- and EHT-CMs from the proprietary line was similar to LV and RA, respectively. IK1 density in EHT-CMs from the commercial line was 2-fold smaller than in the proprietary line. RMP in EHT of both lines was similar to RA and LV. Repolarization fraction and IK,ACh response discriminated best between RA and LV and indicated predominantly ventricular phenotype in hiPSC-CMs/EHT. The data indicate that IK1 is not necessarily low in hiPSC-CMs, and technical issues may underlie low RMP in hiPSC-CMs.
Collapse
Affiliation(s)
- András Horváth
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6721 Szeged, Hungary
| | - Marc D Lemoine
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; Department of Cardiology-Electrophysiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Alexandra Löser
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ingra Mannhardt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Frederik Flenner
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Ahmet Umur Uzun
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Christiane Neuber
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Kaja Breckwoldt
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Arne Hansen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Evaldas Girdauskas
- Department of Cardiovascular Surgery, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Hermann Reichenspurner
- Department of Cardiovascular Surgery, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Stephan Willems
- Department of Cardiology-Electrophysiology, University Heart Center Hamburg, 20246 Hamburg, Germany
| | - Norbert Jost
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, 6721 Szeged, Hungary
| | - Erich Wettwer
- Institute of Pharmacology, University Duisburg-Essen, 45122 Essen, Germany
| | - Thomas Eschenhagen
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Torsten Christ
- Department of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Institut für Experimentelle Pharmakologie und Toxikologie, Universitätsklinikum Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
43
|
Colombo S, de Sena-Tomás C, George V, Werdich AA, Kapur S, MacRae CA, Targoff KL. Nkx genes establish second heart field cardiomyocyte progenitors at the arterial pole and pattern the venous pole through Isl1 repression. Development 2018; 145:dev.161497. [PMID: 29361575 DOI: 10.1242/dev.161497] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 12/04/2017] [Indexed: 12/28/2022]
Abstract
NKX2-5 is the most commonly mutated gene associated with human congenital heart defects (CHDs), with a predilection for cardiac pole abnormalities. This homeodomain transcription factor is a central regulator of cardiac development and is expressed in both the first and second heart fields (FHF and SHF). We have previously revealed essential functions of nkx2.5 and nkx2.7, two Nkx2-5 homologs expressed in zebrafish cardiomyocytes, in maintaining ventricular identity. However, the differential roles of these genes in the specific subpopulations of the anterior (aSHF) and posterior (pSHF) SHFs have yet to be fully defined. Here, we show that Nkx genes regulate aSHF and pSHF progenitors through independent mechanisms. We demonstrate that Nkx genes restrict proliferation of aSHF progenitors in the outflow tract, delimit the number of pSHF progenitors at the venous pole and pattern the sinoatrial node acting through Isl1 repression. Moreover, optical mapping highlights the requirement for Nkx gene dose in establishing electrophysiological chamber identity and in integrating the physiological connectivity of FHF and SHF cardiomyocytes. Ultimately, our results may shed light on the discrete errors responsible for NKX2-5-dependent human CHDs of the cardiac outflow and inflow tracts.
Collapse
Affiliation(s)
- Sophie Colombo
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Carmen de Sena-Tomás
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Vanessa George
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Andreas A Werdich
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Sunil Kapur
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Calum A MacRae
- Brigham and Women's Hospital/Harvard Medical School, Cardiovascular Division, 75 Francis Street, Thorn 11, Boston, MA 02115, USA
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
44
|
Yu Z, Tang PL, Wang J, Bao S, Shieh JT, Leung AW, Zhang Z, Gao F, Wong SY, Hui AL, Gao Y, Dung N, Zhang ZG, Fan Y, Zhou X, Zhang Y, Wong DS, Sham PC, Azhar A, Kwok PY, Tam PP, Lian Q, Cheah KS, Wang B, Song YQ. Mutations in Hnrnpa1 cause congenital heart defects. JCI Insight 2018; 3:98555. [PMID: 29367466 PMCID: PMC5821217 DOI: 10.1172/jci.insight.98555] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 12/19/2017] [Indexed: 12/21/2022] Open
Abstract
Incomplete penetrance of congenital heart defects (CHDs) was observed in a mouse model. We hypothesized that the contribution of a major genetic locus modulates the manifestation of the CHDs. After genome-wide linkage mapping, fine mapping, and high-throughput targeted sequencing, a recessive frameshift mutation of the heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1) gene was confirmed (Hnrnpa1ct). Hnrnpa1 was expressed in both the first heart field (FHF) and second heart field (SHF) at the cardiac crescent stage but was only maintained in SHF progenitors after heart tube formation. Hnrnpa1ct/ct homozygous mutants displayed complete CHD penetrance, including truncated and incomplete looped heart tube at E9.5, ventricular septal defect (VSD) and persistent truncus arteriosus (PTA) at E13.5, and VSD and double outlet right ventricle at P0. Impaired development of the dorsal mesocardium and sinoatrial node progenitors was also observed. Loss of Hnrnpa1 expression leads to dysregulation of cardiac transcription networks and multiple signaling pathways, including BMP, FGF, and Notch in the SHF. Finally, two rare heterozygous mutations of HNRNPA1 were detected in human CHDs. These findings suggest a role of Hnrnpa1 in embryonic heart development in mice and humans. Heterogeneous nuclear ribonucleoprotein A1 (Hnrnpa1) is essential for embryonic heart development in both mice and humans.
Collapse
Affiliation(s)
- Zhe Yu
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Paul Lf Tang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Jing Wang
- National Research Institute for Family Planning, Beijing, China
| | - Suying Bao
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Joseph T Shieh
- Institute for Human Genetics and Department of Pediatrics, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Alan Wl Leung
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Zhao Zhang
- Department of Medicine and Ophthalmology
| | - Fei Gao
- Department of Medicine and Ophthalmology
| | - Sandra Yy Wong
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Andy Lc Hui
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Yuan Gao
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Nelson Dung
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Zhi-Gang Zhang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Yanhui Fan
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | | | - Yalun Zhang
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Dana Sm Wong
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Pak C Sham
- Department of Psychiatry.,Centre for Genome Sciences, and.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong, China
| | - Abid Azhar
- Institute of Biotechnology & Genetic Engineering, University of Karachi, Karachi, Pakistan
| | - Pui-Yan Kwok
- Cardiovascular Research Institute, School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Patrick Pl Tam
- Embryology Unit, Children's Medical Research Institute, School of Medical Sciences, University of Sydney, Westmead, New South Wales, Australia
| | | | - Kathryn Se Cheah
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| | - Binbin Wang
- National Research Institute for Family Planning, Beijing, China
| | - You-Qiang Song
- School of Biomedical Sciences, Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China.,Centre for Genome Sciences, and.,State Key Laboratory for Cognitive and Brain Sciences, The University of Hong Kong, Hong Kong, China.,The University of Hong Kong Shenzhen Institute of Research and Innovation and.,The University of Hong Kong-Southern University of Science and Technology Joint Laboratories of Matrix Biology and Diseases, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
45
|
Quaranta R, Fell J, Rühle F, Rao J, Piccini I, Araúzo-Bravo MJ, Verkerk AO, Stoll M, Greber B. Revised roles of ISL1 in a hES cell-based model of human heart chamber specification. eLife 2018; 7. [PMID: 29337667 PMCID: PMC5770158 DOI: 10.7554/elife.31706] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/02/2018] [Indexed: 12/21/2022] Open
Abstract
The transcription factor ISL1 is thought to be key for conveying the multipotent and proliferative properties of cardiac precursor cells. Here, we investigate its function upon cardiac induction of human embryonic stem cells. We find that ISL1 does not stabilize the transient cardiac precursor cell state but rather serves to accelerate cardiomyocyte differentiation. Conversely, ISL1 depletion delays cardiac differentiation and respecifies nascent cardiomyocytes from a ventricular to an atrial identity. Mechanistic analyses integrate this unrecognized anti-atrial function of ISL1 with known and newly identified atrial inducers. In this revised view, ISL1 is antagonized by retinoic acid signaling via a novel player, MEIS2. Conversely, ISL1 competes with the retinoic acid pathway for prospective cardiomyocyte fate, which converges on the atrial specifier NR2F1. This study reveals a core regulatory network putatively controlling human heart chamber formation and also bears implications for the subtype-specific production of human cardiomyocytes with enhanced functional properties.
Collapse
Affiliation(s)
- Roberto Quaranta
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Jakob Fell
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Frank Rühle
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany
| | - Jyoti Rao
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Ilaria Piccini
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| | - Marcos J Araúzo-Bravo
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.,Group of Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, San Sebastián, Spain
| | - Arie O Verkerk
- Department of Clinical and Experimental Cardiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Department of Medical Biology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Monika Stoll
- Department of Genetic Epidemiology, Institute of Human Genetics, University of Münster, Münster, Germany.,Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, Netherlands
| | - Boris Greber
- Human Stem Cell Pluripotency Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany.,Chemical Genomics Centre of the Max Planck Society, Dortmund, Germany
| |
Collapse
|
46
|
Brown K, Legros S, Ortega FA, Dai Y, Doss MX, Christini DJ, Robinson RB, Foley AC. Overexpression of Map3k7 activates sinoatrial node-like differentiation in mouse ES-derived cardiomyocytes. PLoS One 2017; 12:e0189818. [PMID: 29281682 PMCID: PMC5744947 DOI: 10.1371/journal.pone.0189818] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 12/02/2017] [Indexed: 12/12/2022] Open
Abstract
In vivo, cardiomyocytes comprise a heterogeneous population of contractile cells defined by unique electrophysiologies, molecular markers and morphologies. The mechanisms directing myocardial cells to specific sub-lineages remain poorly understood. Here we report that overexpression of TGFβ-Activated Kinase (TAK1/Map3k7) in mouse embryonic stem (ES) cells faithfully directs myocardial differentiation of embryoid body (EB)-derived cardiac cells toward the sinoatrial node (SAN) lineage. Most cardiac cells in Map3k7-overexpressing EBs adopt markers, cellular morphologies, and electrophysiological behaviors characteristic of the SAN. These data, in addition to the fact that Map3k7 is upregulated in the sinus venous—the source of cells for the SAN—suggest that Map3k7 may be an endogenous regulator of the SAN fate.
Collapse
Affiliation(s)
- Kemar Brown
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Stephanie Legros
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Francis A. Ortega
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Yunkai Dai
- Department of Bioengineering, Clemson University, Charleston, SC, United States of America
| | - Michael Xavier Doss
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - David J. Christini
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
| | - Richard B. Robinson
- Department of Pharmacology, Columbia University Medical Center, New York, NY, United States of America
| | - Ann C. Foley
- Greenberg Division of Cardiology, Weill Medical College of Cornell University, New York, New York, United States of America
- Department of Bioengineering, Clemson University, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
47
|
Sun C, Kontaridis MI. Physiology of Cardiac Development: From Genetics to Signaling to Therapeutic Strategies. CURRENT OPINION IN PHYSIOLOGY 2017. [PMID: 29532042 DOI: 10.1016/j.cophys.2017.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The heart is one of the first organs to form and function during embryonic development. It is comprised of multiple cell lineages, each integral for proper cardiac development, and include cardiomyocytes, endothelial cells, epicardial cells and neural crest cells. The molecular mechanisms regulating cardiac development and morphogenesis are dependent on signaling crosstalk between multiple lineages through paracrine interactions, cell-ECM interactions, and cell-cell interactions, which together, help facilitate survival, growth, proliferation, differentiation and migration of cardiac tissue. Aberrant regulation of any of these processes can induce developmental disorders and pathological phenotypes. Here, we will discuss each of these processes, the genetic factors that contribute to each step of cardiac development, as well as the current and future therapeutic targets and mechanisms of heart development and disease. Understanding the complex interactions that regulate cardiac development, proliferation and differentiation is not only vital to understanding the causes of congenital heart defects, but to also finding new therapeutics that can treat both pediatric and adult cardiac disease in the near future.
Collapse
Affiliation(s)
- Cheng Sun
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Maria I Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, MA, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
48
|
(Re-)programming of subtype specific cardiomyocytes. Adv Drug Deliv Rev 2017; 120:142-167. [PMID: 28916499 DOI: 10.1016/j.addr.2017.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/29/2017] [Accepted: 09/07/2017] [Indexed: 01/10/2023]
Abstract
Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing.
Collapse
|
49
|
Freire AG, Waghray A, Soares-da-Silva F, Resende TP, Lee DF, Pereira CF, Nascimento DS, Lemischka IR, Pinto-do-Ó P. Transient HES5 Activity Instructs Mesodermal Cells toward a Cardiac Fate. Stem Cell Reports 2017. [PMID: 28648899 PMCID: PMC5511108 DOI: 10.1016/j.stemcr.2017.05.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Notch signaling plays a role in specifying a cardiac fate but the downstream effectors remain unknown. In this study we implicate the Notch downstream effector HES5 in cardiogenesis. We show transient Hes5 expression in early mesoderm of gastrulating embryos and demonstrate, by loss and gain-of-function experiments in mouse embryonic stem cells, that HES5 favors cardiac over primitive erythroid fate. Hes5 overexpression promotes upregulation of the cardiac gene Isl1, while the hematopoietic regulator Scl is downregulated. Moreover, whereas a pulse of Hes5 instructs cardiac commitment, sustained expression after lineage specification impairs progression of differentiation to contracting cardiomyocytes. These findings establish a role for HES5 in cardiogenesis and provide insights into the early cardiac molecular network. Hes5 is expressed in the nascent mesoderm of gastrulating mouse embryos Hes5 knockdown enhances primitive erythropoiesis in mESCs A stage-specific pulse of Hes5 instructs preferential cardiac fate in mESCs Sustained Hes5 activation impairs differentiation to contracting cardiomyocytes
Collapse
Affiliation(s)
- Ana G Freire
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
| | - Avinash Waghray
- Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate School, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Francisca Soares-da-Silva
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; Faculdade de Medicina, Universidade de Coimbra, 3004-504 Coimbra, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Tatiana P Resende
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Dung-Fang Lee
- Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Carlos-Filipe Pereira
- Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; CNC, Center for Neuroscience and Cell Biology, University of Coimbra, 3060-197 Cantanhede, Portugal
| | - Diana S Nascimento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology and The Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Perpétua Pinto-do-Ó
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
50
|
Galdos FX, Guo Y, Paige SL, VanDusen NJ, Wu SM, Pu WT. Cardiac Regeneration: Lessons From Development. Circ Res 2017; 120:941-959. [PMID: 28302741 DOI: 10.1161/circresaha.116.309040] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 02/06/2023]
Abstract
Palliative surgery for congenital heart disease has allowed patients with previously lethal heart malformations to survive and, in most cases, to thrive. However, these procedures often place pressure and volume loads on the heart, and over time, these chronic loads can cause heart failure. Current therapeutic options for initial surgery and chronic heart failure that results from failed palliation are limited, in part, by the mammalian heart's low inherent capacity to form new cardiomyocytes. Surmounting the heart regeneration barrier would transform the treatment of congenital, as well as acquired, heart disease and likewise would enable development of personalized, in vitro cardiac disease models. Although these remain distant goals, studies of heart development are illuminating the path forward and suggest unique opportunities for heart regeneration, particularly in fetal and neonatal periods. Here, we review major lessons from heart development that inform current and future studies directed at enhancing cardiac regeneration.
Collapse
Affiliation(s)
- Francisco X Galdos
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Yuxuan Guo
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sharon L Paige
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Nathan J VanDusen
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.)
| | - Sean M Wu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| | - William T Pu
- From the Cardiovascular Institute, School of Medicine, Stanford University, CA (F.X.G., S.L.P., S.M.W.); Department of Cardiology, Boston Children's Hospital, MA (Y.G., N.J.V., W.T.P.); Division of Pediatric Cardiology, Department of Pediatrics (S.L.P.), Division of Cardiovascular Medicine, Department of Medicine (S.M.W.), and Institute of Stem Cell and Regenerative Biology, School of Medicine, Stanford, CA (F.X.G., S.L.P., S.M.W.); and Harvard Stem Cell Institute, Harvard University, Cambridge, MA (W.T.P.).
| |
Collapse
|