1
|
Bravo-Olín J, Martínez-Carreón SA, Francisco-Solano E, Lara AR, Beltran-Vargas NE. Analysis of the role of perfusion, mechanical, and electrical stimulation in bioreactors for cardiac tissue engineering. Bioprocess Biosyst Eng 2024; 47:767-839. [PMID: 38643271 DOI: 10.1007/s00449-024-03004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 03/13/2024] [Indexed: 04/22/2024]
Abstract
Since cardiovascular diseases (CVDs) are globally one of the leading causes of death, of which myocardial infarction (MI) can cause irreversible damage and decrease survivors' quality of life, novel therapeutics are needed. Current approaches such as organ transplantation do not fully restore cardiac function or are limited. As a valuable strategy, tissue engineering seeks to obtain constructs that resemble myocardial tissue, vessels, and heart valves using cells, biomaterials as scaffolds, biochemical and physical stimuli. The latter can be induced using a bioreactor mimicking the heart's physiological environment. An extensive review of bioreactors providing perfusion, mechanical and electrical stimulation, as well as the combination of them is provided. An analysis of the stimulations' mechanisms and modes that best suit cardiac construct culture is developed. Finally, we provide insights into bioreactor configuration and culture assessment properties that need to be elucidated for its clinical translation.
Collapse
Affiliation(s)
- Jorge Bravo-Olín
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Sabina A Martínez-Carreón
- Biological Engineering Undergraduate Program, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Emmanuel Francisco-Solano
- Natural Science and Engineering Graduate Program, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México
| | - Alvaro R Lara
- Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus, Denmark
| | - Nohra E Beltran-Vargas
- Process and Technology Department, Division of Natural Science and Engineering, Universidad Autonoma Metropolitana-Cuajimalpa, Ciudad de Mexico C.P. 05348, México.
| |
Collapse
|
2
|
Butler D, Reyes DR. Heart-on-a-chip systems: disease modeling and drug screening applications. LAB ON A CHIP 2024; 24:1494-1528. [PMID: 38318723 DOI: 10.1039/d3lc00829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide, casting a substantial economic footprint and burdening the global healthcare system. Historically, pre-clinical CVD modeling and therapeutic screening have been performed using animal models. Unfortunately, animal models oftentimes fail to adequately mimic human physiology, leading to a poor translation of therapeutics from pre-clinical trials to consumers. Even those that make it to market can be removed due to unforeseen side effects. As such, there exists a clinical, technological, and economical need for systems that faithfully capture human (patho)physiology for modeling CVD, assessing cardiotoxicity, and evaluating drug efficacy. Heart-on-a-chip (HoC) systems are a part of the broader organ-on-a-chip paradigm that leverages microfluidics, tissue engineering, microfabrication, electronics, and gene editing to create human-relevant models for studying disease, drug-induced side effects, and therapeutic efficacy. These compact systems can be capable of real-time measurements and on-demand characterization of tissue behavior and could revolutionize the drug development process. In this review, we highlight the key components that comprise a HoC system followed by a review of contemporary reports of their use in disease modeling, drug toxicity and efficacy assessment, and as part of multi-organ-on-a-chip platforms. We also discuss future perspectives and challenges facing the field, including a discussion on the role that standardization is expected to play in accelerating the widespread adoption of these platforms.
Collapse
Affiliation(s)
- Derrick Butler
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Darwin R Reyes
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| |
Collapse
|
3
|
Soma Y, Tani H, Morita-Umei Y, Kishino Y, Fukuda K, Tohyama S. Pluripotent stem cell-based cardiac regenerative therapy for heart failure. J Mol Cell Cardiol 2024; 187:90-100. [PMID: 38331557 DOI: 10.1016/j.yjmcc.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 02/10/2024]
Abstract
Cardiac regenerative therapy using human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is expected to become an alternative to heart transplantation for severe heart failure. It is now possible to produce large numbers of human pluripotent stem cells (hPSCs) and eliminate non-cardiomyocytes, including residual undifferentiated hPSCs, which can cause teratoma formation after transplantation. There are two main strategies for transplanting hPSC-CMs: injection of hPSC-CMs into the myocardium from the epicardial side, and implantation of hPSC-CM patches or engineered heart tissues onto the epicardium. Transplantation of hPSC-CMs into the myocardium of large animals in a myocardial infarction model improved cardiac function. The engrafted hPSC-CMs matured, and microvessels derived from the host entered the graft abundantly. Furthermore, as less invasive methods using catheters, injection into the coronary artery and injection into the myocardium from the endocardium side have recently been investigated. Since transplantation of hPSC-CMs alone has a low engraftment rate, various methods such as transplantation with the extracellular matrix or non-cardiomyocytes and aggregation of hPSC-CMs have been developed. Post-transplant arrhythmias, imaging of engrafted hPSC-CMs, and immune rejection are the remaining major issues, and research is being conducted to address them. The clinical application of cardiac regenerative therapy using hPSC-CMs has just begun and is expected to spread widely if its safety and efficacy are proven in the near future.
Collapse
Affiliation(s)
- Yusuke Soma
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Hidenori Tani
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Joint Research Laboratory for Medical Innovation in Heart Disease, Keio University School of Medicine, Tokyo, Japan
| | - Yuika Morita-Umei
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan; Kanagawa Institute of Industrial Science and Technology (KISTEC), Kanagawa, Japan
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
4
|
Al-attar R, Jargstorf J, Romagnuolo R, Jouni M, Alibhai FJ, Lampe PD, Solan JL, Laflamme MA. Casein Kinase 1 Phosphomimetic Mutations Negatively Impact Connexin-43 Gap Junctions in Human Pluripotent Stem Cell-Derived Cardiomyocytes. Biomolecules 2024; 14:61. [PMID: 38254663 PMCID: PMC10813327 DOI: 10.3390/biom14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/14/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The transplantation of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has shown promise in preclinical models of myocardial infarction, but graft myocardium exhibits incomplete host-graft electromechanical integration and a propensity for pro-arrhythmic behavior. Perhaps contributing to this situation, hPSC-CM grafts show low expression of connexin 43 (Cx43), the major gap junction (GJ) protein, in ventricular myocardia. We hypothesized that Cx43 expression and function could be rescued by engineering Cx43 in hPSC-CMs with a series of phosphatase-resistant mutations at three casein kinase 1 phosphorylation sites (Cx43-S3E) that have been previously reported to stabilize Cx43 GJs and reduce arrhythmias in transgenic mice. However, contrary to our predictions, transgenic Cx43-S3E hPSC-CMs exhibited reduced Cx43 expression relative to wild-type cells, both at baseline and following ischemic challenge. Cx43-S3E hPSC-CMs showed correspondingly slower conduction velocities, increased automaticity, and differential expression of other connexin isoforms and various genes involved in cardiac excitation-contraction coupling. Cx43-S3E hPSC-CMs also had phosphorylation marks associated with Cx43 GJ internalization, a finding that may account for their impaired GJ localization. Taken collectively, our data indicate that the Cx43-S3E mutation behaves differently in hPSC-CMs than in adult mouse ventricular myocytes and that multiple biological factors likely need to be addressed synchronously to ensure proper Cx43 expression, localization, and function.
Collapse
Affiliation(s)
- Rasha Al-attar
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Joseph Jargstorf
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Rocco Romagnuolo
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Mariam Jouni
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Faisal J. Alibhai
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
| | - Paul D. Lampe
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Joell L. Solan
- Translational Research Program, Public Health Sciences and Human Biology Divisions, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; (P.D.L.); (J.L.S.)
| | - Michael A. Laflamme
- McEwen Stem Cell Institute, University Health Network, Toronto, ON M5G 1L7, Canada; (R.A.-a.); (J.J.); (R.R.); (M.J.); (F.J.A.)
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 1L7, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1L7, Canada
| |
Collapse
|
5
|
Pohjolainen L, Kinnunen SM, Auno S, Kiriazis A, Pohjavaara S, Kari-Koskinen J, Zore M, Jumppanen M, Yli-Kauhaluoma J, Talman V, Ruskoaho H, Välimäki MJ. Switching of hypertrophic signalling towards enhanced cardiomyocyte identity and maturity by a GATA4-targeted compound. Stem Cell Res Ther 2024; 15:5. [PMID: 38167208 PMCID: PMC10763434 DOI: 10.1186/s13287-023-03623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The prevalence of heart failure is constantly increasing, and the prognosis of patients remains poor. New treatment strategies to preserve cardiac function and limit cardiac hypertrophy are therefore urgently needed. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are increasingly used as an experimental platform for cardiac in vitro studies. However, in contrast to adult cardiomyocytes, hiPSC-CMs display immature morphology, contractility, gene expression and metabolism and hence express a naive phenotype that resembles more of a foetal cardiomyocyte. METHODS A library of 14 novel compounds was synthesized in-house and screened for GATA4-NKX2-5 reporter activity and cellular toxicity. The most potent compound, 3i-1262, along with previously reported GATA4-acting compounds, were selected to investigate their effects on hypertrophy induced by endothelin-1 or mechanical stretch. Morphological changes and protein expression were characterized using immunofluorescence staining and high-content analysis. Changes in gene expression were studied using qPCR and RNA sequencing. RESULTS The prototype compound 3i-1262 inhibited GATA4-NKX2-5 synergy in a luciferase reporter assay. Additionally, the isoxazole compound 3i-1262 inhibited the hypertrophy biomarker B-type natriuretic peptide (BNP) by reducing BNP promoter activity and proBNP expression in neonatal rat ventricular myocytes and hiPSC-CMs, respectively. Treatment with 3i-1262 increased metabolic activity and cardiac troponin T expression in hiPSC-CMs without affecting GATA4 protein levels. RNA sequencing analysis revealed that 3i-1262 induces gene expression related to metabolic activity and cell cycle exit, indicating a change in the identity and maturity status of hiPSC-CMs. The biological processes that were enriched in upregulated genes in response to 3i-1262 were downregulated in response to mechanical stretch, and conversely, the downregulated processes in response to 3i-1262 were upregulated in response to mechanical stretch. CONCLUSIONS There is currently a lack of systematic understanding of the molecular modulation and control of hiPSC-CM maturation. In this study, we demonstrated that the GATA4-interfering compound 3i-1262 reorganizes the cardiac transcription factor network and converts hypertrophic signalling towards enhanced cardiomyocyte identity and maturity. This conceptually unique approach provides a novel structural scaffold for further development as a modality to promote cardiomyocyte specification and maturity.
Collapse
Affiliation(s)
- Lotta Pohjolainen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Sini M Kinnunen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Samuli Auno
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Alexandros Kiriazis
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Saana Pohjavaara
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Julia Kari-Koskinen
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Matej Zore
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Mikael Jumppanen
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program and Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Virpi Talman
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Heikki Ruskoaho
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland
| | - Mika J Välimäki
- Drug Research Program and Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
6
|
Ahmed DW, Eiken MK, DePalma SJ, Helms AS, Zemans RL, Spence JR, Baker BM, Loebel C. Integrating mechanical cues with engineered platforms to explore cardiopulmonary development and disease. iScience 2023; 26:108472. [PMID: 38077130 PMCID: PMC10698280 DOI: 10.1016/j.isci.2023.108472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.
Collapse
Affiliation(s)
- Donia W. Ahmed
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, Division of Pulmonary Sciences and Critical Care Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Lemarié L, Dargar T, Grosjean I, Gache V, Courtial EJ, Sohier J. Human Induced Pluripotent Spheroids' Growth Is Driven by Viscoelastic Properties and Macrostructure of 3D Hydrogel Environment. Bioengineering (Basel) 2023; 10:1418. [PMID: 38136009 PMCID: PMC10740696 DOI: 10.3390/bioengineering10121418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/04/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Stem cells, particularly human iPSCs, constitute a powerful tool for tissue engineering, notably through spheroid and organoid models. While the sensitivity of stem cells to the viscoelastic properties of their direct microenvironment is well-described, stem cell differentiation still relies on biochemical factors. Our aim is to investigate the role of the viscoelastic properties of hiPSC spheroids' direct environment on their fate. To ensure that cell growth is driven only by mechanical interaction, bioprintable alginate-gelatin hydrogels with significantly different viscoelastic properties were utilized in differentiation factor-free culture medium. Alginate-gelatin hydrogels of varying concentrations were developed to provide 3D environments of significantly different mechanical properties, ranging from 1 to 100 kPa, while allowing printability. hiPSC spheroids from two different cell lines were prepared by aggregation (⌀ = 100 µm, n > 1 × 104), included and cultured in the different hydrogels for 14 days. While spheroids within dense hydrogels exhibited limited growth, irrespective of formulation, porous hydrogels prepared with a liquid-liquid emulsion method displayed significant variations of spheroid morphology and growth as a function of hydrogel mechanical properties. Transversal culture (adjacent spheroids-laden alginate-gelatin hydrogels) clearly confirmed the separate effect of each hydrogel environment on hiPSC spheroid behavior. This study is the first to demonstrate that a mechanically modulated microenvironment induces diverse hiPSC spheroid behavior without the influence of other factors. It allows one to envision the combination of multiple formulations to create a complex object, where the fate of hiPSCs will be independently controlled by their direct microenvironment.
Collapse
Affiliation(s)
- Lucas Lemarié
- SEGULA Technologies, 69100 Villeurbanne, France;
- 3d.FAB, CNRS UMR 5246, ICBMS (Institute of Molecular and Supramolecular Chemistry and Biochemistry), Université Lyon 1, 69622 Villeurbanne, France;
- CNRS UMR 5305, LBTI (Tissue Biology and Therapeutic Engineering Laboratory), 69007 Lyon, France
| | - Tanushri Dargar
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Isabelle Grosjean
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Vincent Gache
- CNRS UMR5261, INSERM U1315, INMG-PNMG (NeuroMyoGene Institute, Physiopathology and Genetics of the Neuron and the Muscle), Université Lyon 1, 69008 Lyon, France; (T.D.); (I.G.); (V.G.)
| | - Edwin J. Courtial
- 3d.FAB, CNRS UMR 5246, ICBMS (Institute of Molecular and Supramolecular Chemistry and Biochemistry), Université Lyon 1, 69622 Villeurbanne, France;
| | - Jérôme Sohier
- CNRS UMR 5305, LBTI (Tissue Biology and Therapeutic Engineering Laboratory), 69007 Lyon, France
| |
Collapse
|
8
|
Zhang X, Aggarwal P, Broeckel U, Abassi YA. Enhancing the functional maturity of hiPSC-derived cardiomyocytes to assess inotropic compounds. J Pharmacol Toxicol Methods 2023; 123:107282. [PMID: 37419294 DOI: 10.1016/j.vascn.2023.107282] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/19/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023]
Abstract
Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) present an attractive in vitro platform to model safety and toxicity assessments-notably screening pro-arrhythmic compounds. The utility of the platform is stymied by a hiPSC-CM contractile apparatus and calcium handling mechanism akin to fetal phenotypes, evidenced by a negative force-frequency relationship. As such, hiPSC-CMs are limited in their ability to assess compounds that modulate contraction mediated by ionotropic compounds (Robertson, Tran, & George, 2013). To address this limitation, we utilize Agilent's xCELLigence Real-Time Cell Analyzer ePacer (RTCA ePacer) to enhance hiPSC-CM functional maturity. A continuous, progressive increase of electrical pacing is applied to hiPSC-CMs for up to 15 days. Contraction and viability are recorded by measurement of impedance using the RTCA ePacer. Our data confirms hiPSC-CMs inherently demonstrate a negative impedance amplitude frequency that is reversed after long-term electrical pacing. The data also indicate positive inotropic compounds increase the contractility of paced cardiomyocytes and calcium handling machinery is improved. Increased expression of genes critical to cardiomyocyte maturation further underscores the maturity of paced cells. In summary, our data suggest the application of continuous electrical pacing can functionally mature hiPSC-CMs, enhancing cellular response to positive inotropic compounds and improving calcium handling. SUMMARY: Long-term electrical stimulation of hiPSC-CM leads to functional maturation enabling predictive assessment of inotropic compounds.
Collapse
|
9
|
Gao Y, Su L, Wei Y, Tan S, Hu Z, Tao Z, Kovalik JP, Soong TW, Zhang J, Pu J, Ye L. Ascorbic acid induces MLC2v protein expression and promotes ventricular-like cardiomyocyte subtype in human induced pluripotent stem cells derived cardiomyocytes. Theranostics 2023; 13:3872-3896. [PMID: 37441603 PMCID: PMC10334833 DOI: 10.7150/thno.80801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/09/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction: The potentially unlimited number of cardiomyocyte (CMs) derived from human induced pluripotent stem cells (hiPSCs) in vitro facilitates high throughput applications like cell transplantation for myocardial repair, disease modelling, and cardiotoxicity testing during drug development. Despite promising progress in these areas, a major disadvantage that limits the use of hiPSC derived CMs (hiPSC-CMs) is their immaturity. Methods: Three hiPSC lines (PCBC-hiPSC, DP3-hiPSCs, and MLC2v-mEGFP hiPSC) were differentiated into CMs (PCBC-CMs, DP3-CMs, and MLC2v-CMs, respectively) with or without retinoic acid (RA). hiPSC-CMs were either maintained up to day 30 of contraction (D30C), or D60C, or purified using lactate acid and used for experiments. Purified hiPSC-CMs were cultured in basal maturation medium (BMM) or BMM supplemented with ascorbic acid (AA) for 14 days. The AA treated and non-treated hiPSC-CMs were characterized for sarcomeric proteins (MLC2v, TNNI3, and MYH7), ion channel proteins (Kir2.1, Nav1.5, Cav1.2, SERCA2a, and RyR), mitochondrial membrane potential, metabolomics, and action potential. Bobcat339, a selective and potent inhibitor of DNA demethylation, was used to determine whether AA promoted hiPSC-CM maturation through modulating DNA demethylation. Results: AA significantly increased MLC2v expression in PCBC-CMs, DP3-CMs, MLC2v-CMs, and RA induced atrial-like PCBC-CMs. AA treatment significantly increased mitochondrial mass, membrane potential, and amino acid and fatty acid metabolism in PCBC-CMs. Patch clamp studies showed that AA treatment induced PCBC-CMs and DP3-CMs adaptation to a ventricular-like phenotype. Bobcat339 inhibited MLC2v protein expression in AA treated PCBC-CMs and DP3-CMs. DNA demethylation inhibition was also associated with reduced TET1 and TET2 protein expressions and reduced accumulation of the oxidative product, 5 hmC, in both PCBC-CMs and DP3-CMs, in the presence of AA. Conclusions: Ascorbic acid induced MLC2v protein expression and promoted ventricular-like CM subtype in hiPSC-CMs. The effect of AA on hiPSC-CM was attenuated with inhibition of TET1/TET2 mediated DNA demethylation.
Collapse
Affiliation(s)
- Yu Gao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Liping Su
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Yuhua Wei
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shihua Tan
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| | - Zhenyu Hu
- Department of Physiology, National University of Singapore, Singapore
- Cardiovascular Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Zhonghao Tao
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
- Department of Thoracic and Cardiovascular Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jean-Paul Kovalik
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS, Singapore
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore
- Cardiovascular Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore
| | - Jianyi Zhang
- Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jun Pu
- Department of Cardiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Ye
- National Heart Research Institute Singapore, National Heart Centre Singapore, Singapore
| |
Collapse
|
10
|
Borger M, von Haefen C, Bührer C, Endesfelder S. Cardioprotective Effects of Dexmedetomidine in an Oxidative-Stress In Vitro Model of Neonatal Rat Cardiomyocytes. Antioxidants (Basel) 2023; 12:1206. [PMID: 37371938 DOI: 10.3390/antiox12061206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Preterm birth is a risk factor for cardiometabolic disease. The preterm heart before terminal differentiation is in a phase that is crucial for the number and structure of cardiomyocytes in further development, with adverse effects of hypoxic and hyperoxic events. Pharmacological intervention could attenuate the negative effects of oxygen. Dexmedetomidine (DEX) is an α2-adrenoceptor agonist and has been mentioned in connection with cardio-protective benefits. In this study, H9c2 myocytes and primary fetal rat cardiomyocytes (NRCM) were cultured for 24 h under hypoxic condition (5% O2), corresponding to fetal physioxia (pO2 32-45 mmHg), ambient oxygen (21% O2, pO2 ~150 mmHg), or hyperoxic conditions (80% O2, pO2 ~300 mmHg). Subsequently, the effects of DEX preconditioning (0.1 µM, 1 µM, 10 µM) were analyzed. Modulated oxygen tension reduced both proliferating cardiomyocytes and transcripts (CycD2). High-oxygen tension induced hypertrophy in H9c2 cells. Cell-death-associated transcripts for caspase-dependent apoptosis (Casp3/8) increased, whereas caspase-independent transcripts (AIF) increased in H9c2 cells and decreased in NRCMs. Autophagy-related mediators (Atg5/12) were induced in H9c2 under both oxygen conditions, whereas they were downregulated in NRCMs. DEX preconditioning protected H9c2 and NRCMs from oxidative stress through inhibition of transcription of the oxidative stress marker GCLC, and inhibited the transcription of both the redox-sensitive transcription factors Nrf2 under hyperoxia and Hif1α under hypoxia. In addition, DEX normalized the gene expression of Hippo-pathway mediators (YAP1, Tead1, Lats2, Cul7) that exhibited abnormalities due to differential oxygen tensions compared with normoxia, suggesting that DEX modulates the activation of the Hippo pathway. This, in the context of the protective impact of redox-sensitive factors, may provide a possible rationale for the cardio-protective effects of DEX in oxygen-modulated requirements on survival-promoting transcripts of immortalized and fetal cardiomyocytes.
Collapse
Affiliation(s)
- Moritz Borger
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Christoph Bührer
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Stefanie Endesfelder
- Department of Neonatology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
11
|
In vitro cell stretching devices and their applications: From cardiomyogenic differentiation to tissue engineering. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2023. [DOI: 10.1016/j.medntd.2023.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
12
|
Macrae RGC, Colzani MT, Williams TL, Bayraktar S, Kuc RE, Pullinger AL, Bernard WG, Robinson EL, Davenport EE, Maguire JJ, Sinha S, Davenport AP. Inducible apelin receptor knockdown reduces differentiation efficiency and contractility of hESC-derived cardiomyocytes. Cardiovasc Res 2023; 119:587-598. [PMID: 36239923 PMCID: PMC10064845 DOI: 10.1093/cvr/cvac065] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 04/12/2022] [Indexed: 11/14/2022] Open
Abstract
AIMS The apelin receptor, a G protein-coupled receptor, has emerged as a key regulator of cardiovascular development, physiology, and disease. However, there is a lack of suitable human in vitro models to investigate the apelinergic system in cardiovascular cell types. For the first time we have used human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and a novel inducible knockdown system to examine the role of the apelin receptor in both cardiomyocyte development and to determine the consequences of loss of apelin receptor function as a model of disease. METHODS AND RESULTS Expression of the apelin receptor and its ligands in hESCs and hESC-CMs was determined. hESCs carrying a tetracycline-inducible short hairpin RNA targeting the apelin receptor were generated using the sOPTiKD system. Phenotypic assays characterized the consequences of either apelin receptor knockdown before hESC-CM differentiation (early knockdown) or in 3D engineered heart tissues as a disease model (late knockdown). hESC-CMs expressed the apelin signalling system at a similar level to the adult heart. Early apelin receptor knockdown decreased cardiomyocyte differentiation efficiency and prolonged voltage sensing, associated with asynchronous contraction. Late apelin receptor knockdown had detrimental consequences on 3D engineered heart tissue contractile properties, decreasing contractility and increasing stiffness. CONCLUSIONS We have successfully knocked down the apelin receptor, using an inducible system, to demonstrate a key role in hESC-CM differentiation. Knockdown in 3D engineered heart tissues recapitulated the phenotype of apelin receptor down-regulation in a failing heart, providing a potential platform for modelling heart failure and testing novel therapeutic strategies.
Collapse
Affiliation(s)
- Robyn G C Macrae
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Level 6, Addenbrooke’s Centre for Clinical Investigation, Box 110, Cambridge CB2 0QQ, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Maria T Colzani
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Thomas L Williams
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Level 6, Addenbrooke’s Centre for Clinical Investigation, Box 110, Cambridge CB2 0QQ, UK
| | - Semih Bayraktar
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Rhoda E Kuc
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Level 6, Addenbrooke’s Centre for Clinical Investigation, Box 110, Cambridge CB2 0QQ, UK
| | - Anna L Pullinger
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Level 6, Addenbrooke’s Centre for Clinical Investigation, Box 110, Cambridge CB2 0QQ, UK
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - William G Bernard
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Emma L Robinson
- School of Medicine, Division of Cardiology, University of Colorado Denver, Aurora, CO, USA
| | | | - Janet J Maguire
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Level 6, Addenbrooke’s Centre for Clinical Investigation, Box 110, Cambridge CB2 0QQ, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Anthony P Davenport
- Experimental Medicine and Immunotherapeutics, University of Cambridge, Addenbrooke’s Hospital, Level 6, Addenbrooke’s Centre for Clinical Investigation, Box 110, Cambridge CB2 0QQ, UK
| |
Collapse
|
13
|
Im G, Kim Y, Lee TI, Bhang SH. Subaqueous free-standing 3D cell culture system for ultrafast cell compaction, mechano-inductive immune control, and improving therapeutic angiogenesis. Bioeng Transl Med 2023; 8:e10438. [PMID: 36925707 PMCID: PMC10013761 DOI: 10.1002/btm2.10438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 11/08/2022] Open
Abstract
Conventional 3D cell culture methods require a comprehensive complement in labor-intensive and time-consuming processes along with in vivo circumstantial mimicking. Here, we describe a subaqueous free-standing 3D cell culture (FS) device that can induce the omnidirectional environment and generate ultrafast human adipose-derived stem cells (hADSCs) that efficiently aggregate with compaction using acoustic pressure. The cell culture conditions were optimized using the FS device and identified the underlying molecular mechanisms. Unique phenomena in cell aggregation have led to extraordinary cellular behavior that can upregulate cell compaction, mechanosensitive immune control, and therapeutic angiogenesis. Therefore, we designated the resulting cell aggregates as "pressuroid." Notably, external acoustic stimulation produced by the FS device affected the pressuroids. Furthermore, the pressuroids exhibited upregulation in mechanosensitive genes and proteins, PIEZO1/2. CyclinD1 and PCNA, which are strongly associated with cell adhesion and proliferation, were elevated by PIEZO1/2. In addition, we found that pressuroids significantly increase angiogenic paracrine factor secretion, promote cell adhesion molecule expression, and enhance M2 immune modulation of Thp1 cells. Altogether, we have concluded that our pressuroid would suggest a more effective therapy method for future cell therapy than the conventional one.
Collapse
Affiliation(s)
- Gwang‐Bum Im
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
- Present address:
Department of Cardiac Surgery, Boston Children's Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Yu‐Jin Kim
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| | - Tae Il Lee
- Department of Materials Science and EngineeringGachon UniversitySeongnamRepublic of Korea
| | - Suk Ho Bhang
- School of Chemical Engineering, Sungkyunkwan UniversitySuwonRepublic of Korea
| |
Collapse
|
14
|
Ernst P, Bidwell PA, Dora M, Thomas DD, Kamdar F. Cardiac calcium regulation in human induced pluripotent stem cell cardiomyocytes: Implications for disease modeling and maturation. Front Cell Dev Biol 2023; 10:986107. [PMID: 36742199 PMCID: PMC9889838 DOI: 10.3389/fcell.2022.986107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Human induced pluripotent stem cell cardiomyocytes (hiPSC-CMs) are based on ground-breaking technology that has significantly impacted cardiovascular research. They provide a renewable source of human cardiomyocytes for a variety of applications including in vitro disease modeling and drug toxicity testing. Cardiac calcium regulation plays a critical role in the cardiomyocyte and is often dysregulated in cardiovascular disease. Due to the limited availability of human cardiac tissue, calcium handling and its regulation have most commonly been studied in the context of animal models. hiPSC-CMs can provide unique insights into human physiology and pathophysiology, although a remaining limitation is the relative immaturity of these cells compared to adult cardiomyocytes Therefore, this field is rapidly developing techniques to improve the maturity of hiPSC-CMs, further establishing their place in cardiovascular research. This review briefly covers the basics of cardiomyocyte calcium cycling and hiPSC technology, and will provide a detailed description of our current understanding of calcium in hiPSC-CMs.
Collapse
Affiliation(s)
- Patrick Ernst
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Philip A. Bidwell
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States
| | - Michaela Dora
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - David D. Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN, United States
| | - Forum Kamdar
- Cardiovascular Division, University of Minnesota, Minneapolis, MN, United States,*Correspondence: Forum Kamdar,
| |
Collapse
|
15
|
Hong Y, Zhao Y, Li H, Yang Y, Chen M, Wang X, Luo M, Wang K. Engineering the maturation of stem cell-derived cardiomyocytes. Front Bioeng Biotechnol 2023; 11:1155052. [PMID: 37034258 PMCID: PMC10073467 DOI: 10.3389/fbioe.2023.1155052] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
The maturation of human stem cell-derived cardiomyocytes (hSC-CMs) has been a major challenge to further expand the scope of their application. Over the past years, several strategies have been proven to facilitate the structural and functional maturation of hSC-CMs, which include but are not limited to engineering the geometry or stiffness of substrates, providing favorable extracellular matrices, applying mechanical stretch, fluidic or electrical stimulation, co-culturing with niche cells, regulating biochemical cues such as hormones and transcription factors, engineering and redirecting metabolic patterns, developing 3D cardiac constructs such as cardiac organoid or engineered heart tissue, or culturing under in vivo implantation. In this review, we summarize these maturation strategies, especially the recent advancements, and discussed their advantages as well as the pressing problems that need to be addressed in future studies.
Collapse
Affiliation(s)
- Yi Hong
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yun Zhao
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Hao Li
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Yunshu Yang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Meining Chen
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
| | - Xi Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Mingyao Luo
- Center of Vascular Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Vascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, Yunnan, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| | - Kai Wang
- Key Laboratory of Molecular Cardiovascular Science, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Ministry of Education, Beijing, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, China
- *Correspondence: Kai Wang, ; Mingyao Luo, ; Xi Wang,
| |
Collapse
|
16
|
Wang Y, Yu M, Hao K, Lei W, Tang M, Hu S. Cardiomyocyte Maturation-the Road is not Obstructed. Stem Cell Rev Rep 2022; 18:2966-2981. [PMID: 35788883 DOI: 10.1007/s12015-022-10407-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2022] [Indexed: 12/29/2022]
Abstract
Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) represent one of the most promising ways to treat cardiovascular diseases. High-purity cardiomyocytes (CM) from different cell sources could be obtained at present. However, the immature nature of these cardiomyocytes hinders its further clinical application. From immature to mature state, it involves structural, functional, and metabolic changes in cardiomyocytes. Generally, two types of culturing (2D and 3D) systems have been reported to induce cardiomyocyte maturation. 2D culture mainly achieves the maturation of cardiomyocytes through long-term culture, co-culture, supplementation of small molecule compounds, and the application of biophysical cues. The combined use of biomaterial's surface topography and biophysical cues also facilitates the maturation of cardiomyocytes. Cardiomyocyte maturation is a complex process involving many signaling pathways, and current methods fail to fully reproduce this process. Therefore, analyzing the signaling pathway network related to the maturation and producing hPSC-CMs with adult-like phenotype is a challenge. In this review, we summarized the structural and functional differences between hPSC-CMs and mature cardiomyocytes, and introduced various methods to induce cardiomyocyte maturation.
Collapse
Affiliation(s)
- Yaning Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Miao Yu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Kaili Hao
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Wei Lei
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China
| | - Mingliang Tang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| | - Shijun Hu
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Soochow University, Suzhou, 215000, China.
| |
Collapse
|
17
|
Bremner SB, Gaffney KS, Sniadecki NJ, Mack DL. A Change of Heart: Human Cardiac Tissue Engineering as a Platform for Drug Development. Curr Cardiol Rep 2022; 24:473-486. [PMID: 35247166 PMCID: PMC8897733 DOI: 10.1007/s11886-022-01668-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Human cardiac tissue engineering holds great promise for early detection of drug-related cardiac toxicity and arrhythmogenicity during drug discovery and development. We describe shortcomings of the current drug development pathway, recent advances in the development of cardiac tissue constructs as drug testing platforms, and the challenges remaining in their widespread adoption. RECENT FINDINGS Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have been used to develop a variety of constructs including cardiac spheroids, microtissues, strips, rings, and chambers. Several ambitious studies have used these constructs to test a significant number of drugs, and while most have shown proper negative inotropic and arrhythmogenic responses, few have been able to demonstrate positive inotropy, indicative of relative hPSC-CM immaturity. Several engineered human cardiac tissue platforms have demonstrated native cardiac physiology and proper drug responses. Future studies addressing hPSC-CM immaturity and inclusion of patient-specific cell lines will further advance the utility of such models for in vitro drug development.
Collapse
Affiliation(s)
- Samantha B. Bremner
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - Karen S. Gaffney
- Department of Bioengineering, University of Washington, Seattle, WA USA
| | - Nathan J. Sniadecki
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
| | - David L. Mack
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA USA
| |
Collapse
|
18
|
Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nat Biomed Eng 2022; 6:327-338. [PMID: 35478227 DOI: 10.1038/s41551-022-00885-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 03/08/2022] [Indexed: 12/20/2022]
Abstract
Engineered human cardiac tissues facilitate progress in regenerative medicine, disease modelling and drug development. In this Perspective, we reflect on the most notable advances in cardiac tissue engineering from the past two decades by analysing pivotal studies and critically examining the most consequential developments. This retrospective analysis led us to identify key milestones and to outline a set of opportunities, along with their associated challenges, for the further advancement of engineered human cardiac tissues.
Collapse
|
19
|
Metabolically driven maturation of human-induced-pluripotent-stem-cell-derived cardiac microtissues on microfluidic chips. Nat Biomed Eng 2022; 6:372-388. [PMID: 35478228 DOI: 10.1038/s41551-022-00884-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 03/14/2022] [Indexed: 12/29/2022]
Abstract
The immature physiology of cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) limits their utility for drug screening and disease modelling. Here we show that suitable combinations of mechanical stimuli and metabolic cues can enhance the maturation of hiPSC-derived cardiomyocytes, and that the maturation-inducing cues have phenotype-dependent effects on the cells' action-potential morphology and calcium handling. By using microfluidic chips that enhanced the alignment and extracellular-matrix production of cardiac microtissues derived from genetically distinct sources of hiPSC-derived cardiomyocytes, we identified fatty-acid-enriched maturation media that improved the cells' mitochondrial structure and calcium handling, and observed divergent cell-source-dependent effects on action-potential duration (APD). Specifically, in the presence of maturation media, tissues with abnormally prolonged APDs exhibited shorter APDs, and tissues with aberrantly short APDs displayed prolonged APDs. Regardless of cell source, tissue maturation reduced variabilities in spontaneous beat rate and in APD, and led to converging cell phenotypes (with APDs within the 300-450 ms range characteristic of human left ventricular cardiomyocytes) that improved the modelling of the effects of pro-arrhythmic drugs on cardiac tissue.
Collapse
|
20
|
Michas C, Karakan MÇ, Nautiyal P, Seidman JG, Seidman CE, Agarwal A, Ekinci K, Eyckmans J, White AE, Chen CS. Engineering a living cardiac pump on a chip using high-precision fabrication. SCIENCE ADVANCES 2022; 8:eabm3791. [PMID: 35452278 PMCID: PMC9032966 DOI: 10.1126/sciadv.abm3791] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biomimetic on-chip tissue models serve as a powerful tool for studying human physiology and developing therapeutics; however, their modeling power is hindered by our inability to develop highly ordered functional structures in small length scales. Here, we demonstrate how high-precision fabrication can enable scaled-down modeling of organ-level cardiac mechanical function. We use two-photon direct laser writing (TPDLW) to fabricate a nanoscale-resolution metamaterial scaffold with fine-tuned mechanical properties to support the formation and cyclic contraction of a miniaturized, induced pluripotent stem cell-derived ventricular chamber. Furthermore, we fabricate microfluidic valves with extreme sensitivity to rectify the flow generated by the ventricular chamber. The integrated microfluidic system recapitulates the ventricular fluidic function and exhibits a complete pressure-volume loop with isovolumetric phases. Together, our results demonstrate a previously unexplored application of high-precision fabrication that can be generalized to expand the accessible spectrum of organ-on-a-chip models toward structurally and biomechanically sophisticated tissue systems.
Collapse
Affiliation(s)
- Christos Michas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - M. Çağatay Karakan
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Pranjal Nautiyal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Arvind Agarwal
- Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33174, USA
| | - Kamil Ekinci
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alice E. White
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Photonics Center, Boston University, Boston, MA 02215, USA
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
- Division of Materials Science and Engineering, Boston University, Boston, MA 02215, USA
- Department of Physics, Boston University, Boston, MA 02215, USA
- Corresponding author. (A.E.W.); (C.S.C.)
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Corresponding author. (A.E.W.); (C.S.C.)
| |
Collapse
|
21
|
Li Y, Lang S, Akin I, Zhou X, El-Battrawy I. Brugada Syndrome: Different Experimental Models and the Role of Human Cardiomyocytes From Induced Pluripotent Stem Cells. J Am Heart Assoc 2022; 11:e024410. [PMID: 35322667 PMCID: PMC9075459 DOI: 10.1161/jaha.121.024410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Brugada syndrome (BrS) is an inherited and rare cardiac arrhythmogenic disease associated with an increased risk of ventricular fibrillation and sudden cardiac death. Different genes have been linked to BrS. The majority of mutations are located in the SCN5A gene, and the typical abnormal ECG is an elevation of the ST segment in the right precordial leads V1 to V3. The pathophysiological mechanisms of BrS were studied in different models, including animal models, heterologous expression systems, and human-induced pluripotent stem cell-derived cardiomyocyte models. Currently, only a few BrS studies have used human-induced pluripotent stem cell-derived cardiomyocytes, most of which have focused on genotype-phenotype correlations and drug screening. The combination of new technologies, such as clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 (CRISPR associated protein 9)-mediated genome editing and 3-dimensional engineered heart tissues, has provided novel insights into the pathophysiological mechanisms of the disease and could offer opportunities to improve the diagnosis and treatment of patients with BrS. This review aimed to compare different models of BrS for a better understanding of the roles of human-induced pluripotent stem cell-derived cardiomyocytes in current BrS research and personalized medicine at a later stage.
Collapse
Affiliation(s)
- Yingrui Li
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany
| | - Siegfried Lang
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Ibrahim Akin
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Xiaobo Zhou
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province Institute of Cardiovascular Research Southwest Medical University Luzhou Sichuan China.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany
| | - Ibrahim El-Battrawy
- First Department of Medicine Medical Faculty Mannheim University Medical Centre Mannheim (UMM)University of Heidelberg Mannheim Germany.,DZHK (German Center for Cardiovascular Research), Partner Site, Heidelberg-Mannheim Mannheim Germany.,Department of Cardiology and Angiology Bergmannsheil Bochum Medical Clinic II Ruhr University Bochum Germany
| |
Collapse
|
22
|
Manokawinchoke J, Limraksasin P, Okawa H, Pavasant P, Egusa H, Osathanon T. Intermittent compressive force induces cell cycling and reduces apoptosis in embryoid bodies of mouse induced pluripotent stem cells. Int J Oral Sci 2022; 14:1. [PMID: 34980892 PMCID: PMC8724316 DOI: 10.1038/s41368-021-00151-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 02/06/2023] Open
Abstract
In vitro manipulation of induced pluripotent stem cells (iPSCs) by environmental factors is of great interest for three-dimensional (3D) tissue/organ induction. The effects of mechanical force depend on many factors, including force and cell type. However, information on such effects in iPSCs is lacking. The aim of this study was to identify a molecular mechanism in iPSCs responding to intermittent compressive force (ICF) by analyzing the global gene expression profile. Embryoid bodies of mouse iPSCs, attached on a tissue culture plate in 3D form, were subjected to ICF in serum-free culture medium for 24 h. Gene ontology analyses for RNA sequencing data demonstrated that genes differentially regulated by ICF were mainly associated with metabolic processes, membrane and protein binding. Topology-based analysis demonstrated that ICF induced genes in cell cycle categories and downregulated genes associated with metabolic processes. The Kyoto Encyclopedia of Genes and Genomes database revealed differentially regulated genes related to the p53 signaling pathway and cell cycle. qPCR analysis demonstrated significant upregulation of Ccnd1, Cdk6 and Ccng1. Flow cytometry showed that ICF induced cell cycle and proliferation, while reducing the number of apoptotic cells. ICF also upregulated transforming growth factor β1 (Tgfb1) at both mRNA and protein levels, and pretreatment with a TGF-β inhibitor (SB431542) prior to ICF abolished ICF-induced Ccnd1 and Cdk6 expression. Taken together, these findings show that TGF-β signaling in iPSCs enhances proliferation and decreases apoptosis in response to ICF, that could give rise to an efficient protocol to manipulate iPSCs for organoid fabrication.
Collapse
Affiliation(s)
- Jeeranan Manokawinchoke
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.,Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.,Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroko Okawa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Prasit Pavasant
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan. .,Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan.
| | - Thanaphum Osathanon
- Dental Stem Cell Biology Research Unit and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
23
|
Bremner SB, Mandrycky CJ, Leonard A, Padgett RM, Levinson AR, Rehn ES, Pioner JM, Sniadecki NJ, Mack DL. Full-length dystrophin deficiency leads to contractile and calcium transient defects in human engineered heart tissues. J Tissue Eng 2022; 13:20417314221119628. [PMID: 36003954 PMCID: PMC9393922 DOI: 10.1177/20417314221119628] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/28/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiomyopathy is currently the leading cause of death for patients with Duchenne muscular dystrophy (DMD), a severe neuromuscular disorder affecting young boys. Animal models have provided insight into the mechanisms by which dystrophin protein deficiency causes cardiomyopathy, but there remains a need to develop human models of DMD to validate pathogenic mechanisms and identify therapeutic targets. Here, we have developed human engineered heart tissues (EHTs) from CRISPR-edited, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing a truncated dystrophin protein lacking part of the actin-binding domain. The 3D EHT platform enables direct measurement of contractile force, simultaneous monitoring of Ca2+ transients, and assessment of myofibril structure. Dystrophin-mutant EHTs produced less contractile force as well as delayed kinetics of force generation and relaxation, as compared to isogenic controls. Contractile dysfunction was accompanied by reduced sarcomere length, increased resting cytosolic Ca2+ levels, delayed Ca2+ release and reuptake, and increased beat rate irregularity. Transcriptomic analysis revealed clear differences between dystrophin-deficient and control EHTs, including downregulation of genes related to Ca2+ homeostasis and extracellular matrix organization, and upregulation of genes related to regulation of membrane potential, cardiac muscle development, and heart contraction. These findings indicate that the EHT platform provides the cues necessary to expose the clinically-relevant, functional phenotype of force production as well as mechanistic insights into the role of Ca2+ handling and transcriptomic dysregulation in dystrophic cardiac function, ultimately providing a powerful platform for further studies in disease modeling and drug discovery.
Collapse
Affiliation(s)
- Samantha B Bremner
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Christian J Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Andrea Leonard
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Ruby M Padgett
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
| | - Alan R Levinson
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ethan S Rehn
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - J Manuel Pioner
- Department of Biology, University of Florence, Florence, Italy
| | - Nathan J Sniadecki
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - David L Mack
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA
| |
Collapse
|
24
|
Metabolism in Human Pluripotent Stem Cells and Cardiomyocytes for Regenerative Therapy. Keio J Med 2022; 71:55-61. [DOI: 10.2302/kjm.2021-0015-ir] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Carlos-Oliveira M, Lozano-Juan F, Occhetta P, Visone R, Rasponi M. Current strategies of mechanical stimulation for maturation of cardiac microtissues. Biophys Rev 2021; 13:717-727. [PMID: 34765047 PMCID: PMC8555032 DOI: 10.1007/s12551-021-00841-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/27/2021] [Indexed: 12/14/2022] Open
Abstract
The most advanced in vitro cardiac models are today based on the use of induced pluripotent stem cells (iPSCs); however, the maturation of cardiomyocytes (CMs) has not yet been fully achieved. Therefore, there is a rising need to move towards models capable of promoting an adult-like cardiomyocytes phenotype. Many strategies have been applied such as co-culture of cardiomyocytes, with fibroblasts and endothelial cells, or conditioning them through biochemical factors and physical stimulations. Here, we focus on mechanical stimulation as it aims to mimic the different mechanical forces that heart receives during its development and the post-natal period. We describe the current strategies and the mechanical properties necessary to promote a positive response in cardiac tissues from different cell sources, distinguishing between passive stimulation, which includes stiffness, topography and static stress and active stimulation, encompassing cyclic strain, compression or perfusion. We also highlight how mechanical stimulation is applied in disease modelling.
Collapse
Affiliation(s)
- Maria Carlos-Oliveira
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Ferran Lozano-Juan
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy.,BiomimX S.r.l., Via G. Durando 38/A, 20158 Milano, Italy
| | - Paola Occhetta
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Roberta Visone
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| |
Collapse
|
26
|
Periodontal ligament fibroblast-derived exosomes induced by compressive force promote macrophage M1 polarization via Yes-associated protein. Arch Oral Biol 2021; 132:105263. [PMID: 34688132 DOI: 10.1016/j.archoralbio.2021.105263] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 01/31/2023]
Abstract
OBJECTIVES This study aimed to investigate the biological roles and mechanisms of compressive force-stimulated periodontal ligament fibroblasts (PDLFs) on polarization of macrophages DESIGN: PDLFs were stimulated with or without static compressive force, and then conditioned medium, high-molecular weight proteins and low-molecular weight proteins were collected to treat THP-1 macrophages. RT-qPCR and flow cytometric analysis were used to evaluate the polarization of macrophages. Exosomes were isolated by ultracentrifugation method and identified via transmission electron microscopy, western-blot and nano-tracking analysis. The protein level of Yes-Associated Protein (YAP) contained in exosomes was detected by western blot. GW4869 and Verteporfin were used to inhibit exosome secretion and YAP- TEA domain transcription factor (TEAD) interaction respectively. RESULTS Exosomes were successfully purified from PDLFs and could be efficiently incorporated into THP-1 macrophages. conditioned medium, HMW proteins and exosomes derived from compressive force-treated PDLFs significantly induce M1 polarization of macrophages. While inhibiting exosomes secretion by GW4869 treatment eliminated the inductive effect. YAP target genes, connective tissue growth factor (CTGF) and cysteine-rich angiogenic inducer 61 (CYR61) were upregulated in macrophages when treated with exosomes derived from compressive force-treated PDLFs (F-Exo). YAP level was elevated in the F-Exo. When macrophages were treated with Verteporfin, expression of YAP target genes and M1 polarization were significantly downregulated. CONCLUSION These results suggested that exosomes derived from compressive force-treated PDLFs promoted the M1 polarization of the THP-1 macrophages. The elevated level of YAP in the exosomes may be a critical factor for this response.
Collapse
|
27
|
Devillard CD, Marquette CA. Vascular Tissue Engineering: Challenges and Requirements for an Ideal Large Scale Blood Vessel. Front Bioeng Biotechnol 2021; 9:721843. [PMID: 34671597 PMCID: PMC8522984 DOI: 10.3389/fbioe.2021.721843] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/20/2021] [Indexed: 01/05/2023] Open
Abstract
Since the emergence of regenerative medicine and tissue engineering more than half a century ago, one obstacle has persisted: the in vitro creation of large-scale vascular tissue (>1 cm3) to meet the clinical needs of viable tissue grafts but also for biological research applications. Considerable advancements in biofabrication have been made since Weinberg and Bell, in 1986, created the first blood vessel from collagen, endothelial cells, smooth muscle cells and fibroblasts. The synergistic combination of advances in fabrication methods, availability of cell source, biomaterials formulation and vascular tissue development, promises new strategies for the creation of autologous blood vessels, recapitulating biological functions, structural functions, but also the mechanical functions of a native blood vessel. In this review, the main technological advancements in bio-fabrication are discussed with a particular highlights on 3D bioprinting technologies. The choice of the main biomaterials and cell sources, the use of dynamic maturation systems such as bioreactors and the associated clinical trials will be detailed. The remaining challenges in this complex engineering field will finally be discussed.
Collapse
Affiliation(s)
- Chloé D Devillard
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| | - Christophe A Marquette
- 3d.FAB, CNRS, INSA, Univ Lyon, CPE-Lyon, UMR5246, ICBMS, Université Lyon 1, Villeurbanne Cedex, France
| |
Collapse
|
28
|
Gu X, Zhou F, Mu J. Recent Advances in Maturation of Pluripotent Stem Cell-Derived Cardiomyocytes Promoted by Mechanical Stretch. Med Sci Monit 2021; 27:e931063. [PMID: 34381009 PMCID: PMC8369941 DOI: 10.12659/msm.931063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stem cells have significant potential use in tissue regeneration, especially for treating cardiac diseases because of their multi-directional differentiation capability. By mimicking the in vivo physiological environment of native cardiomyocytes during their development and maturation, researchers have been able to induce pluripotent stem cell-derived cardiomyocytes (PSC-CMs) at high purity. However, the phenotype of these PSC-CMs is immature compared with that of adult cardiomyocytes. Various strategies have been explored to improve the maturity of PSC-CMs, such as long-term culturing, mechanical stimuli, chemical stimuli, and combinations of these strategies. Among these strategies, mechanical stretch as a key mechanical stimulus plays an important role in PSC-CM maturation. In this review, the optimal parameters of mechanical stretch, the effects of mechanical stretch on maturation of PSC-CMs, underlying molecular mechanisms as well as existing problems are discussed. Mechanical stretch is a powerful approach to promote the maturation of SC-CMs in terms of morphology, structure, and functionality. Nonetheless, further research efforts are needed to reach a satisfactory standard for clinical applications of PSC-CMs in treating cardiac diseases.
Collapse
Affiliation(s)
- Xingwang Gu
- Capital Medical University, Beijing, China (mainland)
| | - Fan Zhou
- Department of Ultrasound, Third Medical Center of Chinese People's Liberation Army (PLA) General Hospital, Beijing, China (mainland)
| | - Junsheng Mu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Beijing, China (mainland)
| |
Collapse
|
29
|
Geng Y, Zhao X, Xu J, Zhang X, Hu G, Fu SC, Dai K, Chen X, Patrick YSH, Zhang X. Overexpression of mechanical sensitive miR-337-3p alleviates ectopic ossification in rat tendinopathy model via targeting IRS1 and Nox4 of tendon-derived stem cells. J Mol Cell Biol 2021; 12:305-317. [PMID: 31065679 PMCID: PMC7232128 DOI: 10.1093/jmcb/mjz030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/24/2019] [Accepted: 03/12/2019] [Indexed: 02/07/2023] Open
Abstract
Tendinopathy, which is characterized by the ectopic ossification of tendon, is a common disease occurring in certain population, such as athletes that suffer from repetitive tendon strains. However, the molecular mechanism underlying the pathogenesis of tendinopathy caused by the overuse of tendon is still lacking. Here, we found that the mechanosensitive miRNA, miR-337-3p, had lower expression under uniaxial cyclical mechanical loading in tendon-derived stem cells (TDSCs) and negatively controlled chondro-osteogenic differentiation of TDSCs. Importantly, downregulation of miR-337-3p expression was also observed in both rat and human calcified tendons, and overexpressing miR-337-3p in patellar tendons of rat tendinopathy model displayed a robust therapeutic efficiency. Mechanistically, we found that the proinflammatory cytokine interleukin-1β was the upstream factor of miR-337-3p that bridges the mechanical loading with its downregulation. Furthermore, the target genes of miR-337-3p, NADPH oxidase 4, and insulin receptor substrate 1, activated chondro-osteogenic differentiation of TDSCs through JNK and ERK signaling, respectively. Thus, these findings not only provide novel insight into the molecular mechanisms underlying ectopic ossification in tendinopathy but also highlight the significance of miR-337-3p as a putative therapeutic target for clinic treatment of tendinopathy.
Collapse
Affiliation(s)
- Yiyun Geng
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), Shenzhen 518035, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoying Zhao
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Jiajia Xu
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xudong Zhang
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guoli Hu
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Sai-Chuen Fu
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kerong Dai
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaodong Chen
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China
| | - Yung Shu-Huang Patrick
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200092, China.,The Key Laboratory of Stem Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
30
|
Zhang XD, Thai PN, Lieu DK, Chiamvimonvat N. Model Systems for Addressing Mechanism of Arrhythmogenesis in Cardiac Repair. Curr Cardiol Rep 2021; 23:72. [PMID: 34050853 PMCID: PMC8164614 DOI: 10.1007/s11886-021-01498-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/09/2021] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Cardiac cell-based therapy represents a promising approach for cardiac repair. However, one of the main challenges is cardiac arrhythmias associated with stem cell transplantation. The current review summarizes the recent progress in model systems for addressing mechanisms of arrhythmogenesis in cardiac repair. RECENT FINDINGS Animal models have been extensively developed for mechanistic studies of cardiac arrhythmogenesis. Advances in human induced pluripotent stem cells (hiPSCs), patient-specific disease models, tissue engineering, and gene editing have greatly enhanced our ability to probe the mechanistic bases of cardiac arrhythmias. Additionally, recent development in multiscale computational studies and machine learning provides yet another powerful tool to quantitatively decipher the mechanisms of cardiac arrhythmias. Advancing efforts towards the integrations of experimental and computational studies are critical to gain insights into novel mitigation strategies for cardiac arrhythmias in cell-based therapy.
Collapse
Affiliation(s)
- Xiao-Dong Zhang
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Phung N. Thai
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
| | - Deborah K. Lieu
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| | - Nipavan Chiamvimonvat
- Division of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, University of California, Davis, Davis, CA 95616 USA
- Department of Veterans Affairs, Veterans Affairs Northern California Health Care System, Mather, CA 95655 USA
- Department of Pharmacology, School of Medicine, University of California, Davis, Davis, CA 95616 USA
| |
Collapse
|
31
|
Karch SB, Fineschi V, Francia P, Scopetti M, Padovano M, Manetti F, Santurro A, Frati P, Volpe M. Role of induced pluripotent stem cells in diagnostic cardiology. World J Stem Cells 2021; 13:331-341. [PMID: 34136069 PMCID: PMC8176845 DOI: 10.4252/wjsc.v13.i5.331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/27/2021] [Accepted: 04/14/2021] [Indexed: 02/06/2023] Open
Abstract
Ethical concerns about stem cell-based research have delayed important advances in many areas of medicine, including cardiology. The introduction of induced pluripotent stem cells (iPSCs) has supplanted the need to use human stem cells for most purposes, thus eliminating all ethical controversies. Since then, many new avenues have been opened in cardiology research, not only in approaches to tissue replacement but also in the design and testing of antiarrhythmic drugs. This methodology has advanced to the point where induced human cardiomyocyte cell lines can now also be obtained from commercial sources or tissue banks. Initial studies with readily available iPSCs have generally confirmed that their behavioral characteristics accurately predict the behavior of beating cardiomyocytes in vivo. As a result, iPSCs can provide new ways to study arrhythmias and heart disease in general, accelerating the development of new, more effective antiarrhythmic drugs, clinical diagnoses, and personalized medical care. The focus on producing cardiomyocytes that can be used to replace damaged heart tissue has somewhat diverted interest in a host of other applications. This manuscript is intended to provide non-specialists with a brief introduction and overview of the research carried out in the field of heart rhythm disorders.
Collapse
Affiliation(s)
- Steven B Karch
- School of Medicine, University of Nevada, Las Vegas, NV 89102, United States
| | - Vittorio Fineschi
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Pietro Francia
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, St. Andrea Hospital, Via di Grottarossa, 1035, 00189 Rome, Italy
| | - Matteo Scopetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Martina Padovano
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Federico Manetti
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
- Department SAIMLAL, Sapienza University of Roma, Rome 00185, Italy
| | - Alessandro Santurro
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Paola Frati
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Rome 00185, Italy
- Department SAIMLAL, Sapienza University of Roma, Rome 00185, Italy
| | - Massimo Volpe
- Division of Cardiology, Department of Clinical and Molecular Medicine, Sapienza University of Rome, St. Andrea Hospital, Via di Grottarossa, 1035, 00189 Rome, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome 00197, Italy
| |
Collapse
|
32
|
Munawar S, Turnbull IC. Cardiac Tissue Engineering: Inclusion of Non-cardiomyocytes for Enhanced Features. Front Cell Dev Biol 2021; 9:653127. [PMID: 34113613 PMCID: PMC8186263 DOI: 10.3389/fcell.2021.653127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 12/01/2022] Open
Abstract
Engineered cardiac tissues (ECTs) are 3D physiological models of the heart that are created and studied for their potential role in developing therapies of cardiovascular diseases and testing cardio toxicity of drugs. Recreating the microenvironment of the native myocardium in vitro mainly involves the use of cardiomyocytes. However, ECTs with only cardiomyocytes (CM-only) often perform poorly and are less similar to the native myocardium compared to ECTs constructed from co-culture of cardiomyocytes and nonmyocytes. One important goal of co-culture tissues is to mimic the native heart's cellular composition, which can result in better tissue function and maturity. In this review, we investigate the role of nonmyocytes in ECTs and discuss the mechanisms behind the contributions of nonmyocytes in enhancement of ECT features.
Collapse
Affiliation(s)
| | - Irene C. Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
33
|
Pretorius D, Kahn-Krell AM, Lou X, Fast VG, Berry JL, Kamp TJ, Zhang J. Layer-By-Layer Fabrication of Large and Thick Human Cardiac Muscle Patch Constructs With Superior Electrophysiological Properties. Front Cell Dev Biol 2021; 9:670504. [PMID: 33937272 PMCID: PMC8086556 DOI: 10.3389/fcell.2021.670504] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/29/2021] [Indexed: 02/02/2023] Open
Abstract
Engineered cardiac tissues fabricated from human induced pluripotent stem cells (hiPSCs) show promise for ameliorating damage from myocardial infarction, while also restoring function to the damaged left ventricular (LV) myocardium. For these constructs to reach their clinical potential, they need to be of a clinically relevant volume and thickness, and capable of generating synchronous and forceful contraction to assist the pumping action of the recipient heart. Design prerequisites include a structure thickness sufficient to produce a beneficial contractile force, prevascularization to overcome diffusion limitations and sufficient structural development to allow for maximal cell communication. Previous attempts to meet these prerequisites have been hindered by lack of oxygen and nutrient transport due to diffusion limits (100–200 μm) resulting in necrosis. This study employs a layer-by-layer (LbL) fabrication method to produce cardiac tissue constructs that meet these design prerequisites and mimic normal myocardium in form and function. Thick (>2 mm) cardiac tissues created from hiPSC-derived cardiomyocytes, -endothelial cells (ECs) and -fibroblasts (FBs) were assessed, in vitro, over a 4-week period for viability (<6% necrotic cells), cell morphology and functionality. Functional performance assessment showed enhanced t-tubule network development, gap junction communication as well as previously unseen, physiologically relevant conduction velocities (CVs) (>30 cm/s). These results demonstrate that LbL fabrication can be utilized successfully to create prevascularized, functional cardiac tissue constructs from hiPSCs for potential therapeutic applications.
Collapse
Affiliation(s)
- Danielle Pretorius
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Asher M Kahn-Krell
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Xi Lou
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vladimir G Fast
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel L Berry
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Timothy J Kamp
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI, United States
| | - Jianyi Zhang
- Department of Biomedical Engineering, School of Medicine and School of Engineering, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Lu K, Seidel T, Cao-Ehlker X, Dorn T, Batcha AMN, Schneider CM, Semmler M, Volk T, Moretti A, Dendorfer A, Tomasi R. Progressive stretch enhances growth and maturation of 3D stem-cell-derived myocardium. Am J Cancer Res 2021; 11:6138-6153. [PMID: 33995650 PMCID: PMC8120210 DOI: 10.7150/thno.54999] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Bio-engineered myocardium has great potential to substitute damaged myocardium and for studies of myocardial physiology and disease, but structural and functional immaturity still implies limitations. Current protocols of engineered heart tissue (EHT) generation fall short of simulating the conditions of postnatal myocardial growth, which are characterized by tissue expansion and increased mechanical load. To investigate whether these two parameters can improve EHT maturation, we developed a new approach for the generation of cardiac tissues based on biomimetic stimulation under application of continuously increasing stretch. Methods: EHTs were generated by assembling cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CM) at high cell density in a low collagen hydrogel. Maturation and growth of the EHTs were induced in a custom-made biomimetic tissue culture system that provided continuous electrical stimulation and medium agitation along with progressive stretch at four different increments. Tissues were characterized after a three week conditioning period. Results: The highest rate of stretch (S3 = 0.32 mm/day) increased force development by 5.1-fold compared to tissue with a fixed length, reaching contractility of 11.28 mN/mm². Importantly, intensely stretched EHTs developed physiological length-dependencies of active and passive forces (systolic/diastolic ratio = 9.47 ± 0.84), and a positive force-frequency relationship (1.25-fold contractility at 180 min-1). Functional markers of stretch-dependent maturation included enhanced and more rapid Ca2+ transients, higher amplitude and upstroke velocity of action potentials, and pronounced adrenergic responses. Stretch conditioned hiPSC-CMs displayed structural improvements in cellular volume, linear alignment, and sarcomere length (2.19 ± 0.1 µm), and an overall upregulation of genes that are specifically expressed in adult cardiomyocytes. Conclusions: With the intention to simulate postnatal heart development, we have established techniques of tissue assembly and biomimetic culture that avoid tissue shrinkage and yield muscle fibers with contractility and compliance approaching the properties of adult myocardium. This study demonstrates that cultivation under progressive stretch is a feasible way to induce growth and maturation of stem cell-derived myocardium. The novel tissue-engineering approach fulfills important requirements of disease modelling and therapeutic tissue replacement.
Collapse
|
35
|
Wang J, Jiao D, Huang X, Bai Y. Osteoclastic effects of mBMMSCs under compressive pressure during orthodontic tooth movement. Stem Cell Res Ther 2021; 12:148. [PMID: 33632323 PMCID: PMC7905894 DOI: 10.1186/s13287-021-02220-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/09/2021] [Indexed: 01/10/2023] Open
Abstract
Background During orthodontic tooth movement (OTM), alveolar bone remodelling is closely related to mechanical force. It is unclear whether stem cells can affect osteoclastogenesis to promote OTM. This study aimed to investigate the role of mouse bone marrow mesenchymal stem cells (mBMMSCs) under compression load in OTM. Methods A mouse OTM model was established, and GFP-labelled mBMMSCs and normal saline were injected into different groups of mice by tail vein injection. OTM distance was measured using tissue specimens and micro-computed tomography (micro-CT). The locations of mBMMSCs were traced using GFP immunohistochemistry. Haematoxylin-eosin staining, tartrate-resistant acid phosphate (TRAP) staining and immunohistochemistry of Runx2 and lipoprotein lipase were used to assess changes in the periodontal ligament during OTM. mBMMSCs under compression were co-cultured with mouse bone marrow-derived macrophages (mBMMs), and the gene expression levels of Rankl, Mmp-9, TRAP, Ctsk, Alp, Runx2, Ocn and Osterix were determined by RT-PCR. Results Ten days after mBMMSCs were injected into the tail vein of mice, the OTM distance increased from 176 (normal saline) to 298.4 μm, as determined by tissue specimen observation, and 174.2 to 302.6 μm, as determined by micro-CT metrological analysis. GFP-labelled mBMMSCs were mostly located on the compressed side of the periodontal ligament. Compared to the saline group, the number of osteoclasts in the alveolar bone increased significantly (P < 0.01) on the compressed side in the mBMMSC group. Three days after mBMMSC injection, the number of Runx2-GFP double-positive cells on the tension side was significantly higher than that on the compression side. After applying compressive force on the mBMMSCs in vitro for 2 days, RANKL expression was significantly higher than in the non-compression cells, but expression of Alp, Runx2, Ocn and Osterix was significantly decreased (P < 0.05). The numbers of osteoclasts differentiated in response to mBMMs co-cultured with mBMMSCs under pressure load and expression of osteoclast differentiation marker genes (Mmp-9, TRAP and Ctsk) were significantly higher than those in mBMMs stimulated by M-CSF alone (P < 0.05). Conclusions mBMMSCs are not only recruited to the compressed side of the periodontal ligament but can also promote osteoclastogenesis by expressing Rankl, improving the efficiency of OTM.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Delong Jiao
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China
| | - Xiaofeng Huang
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Beijing Stomatological Hospital, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
36
|
Tanosaki S, Tohyama S, Kishino Y, Fujita J, Fukuda K. Metabolism of human pluripotent stem cells and differentiated cells for regenerative therapy: a focus on cardiomyocytes. Inflamm Regen 2021; 41:5. [PMID: 33526069 PMCID: PMC7852150 DOI: 10.1186/s41232-021-00156-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/25/2021] [Indexed: 12/29/2022] Open
Abstract
Pluripotent stem cells (PSCs) exhibit promising application in regenerative therapy, drug discovery, and disease modeling. While several protocols for differentiating somatic cells from PSCs exist, their use is limited by contamination of residual undifferentiated PSCs and immaturity of differentiated somatic cells. The metabolism of PSCs differs greatly from that of somatic cells, and a distinct feature is required to sustain the distinct properties of PSCs. To date, several studies have reported on the importance of metabolism in PSCs and their derivative cells. Here, we detail advancements in the field, with a focus on cardiac regenerative therapy.
Collapse
Affiliation(s)
- Sho Tanosaki
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.,Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan.
| | - Yoshikazu Kishino
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Jun Fujita
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
37
|
DePalma SJ, Davidson CD, Stis AE, Helms AS, Baker BM. Microenvironmental determinants of organized iPSC-cardiomyocyte tissues on synthetic fibrous matrices. Biomater Sci 2021; 9:93-107. [PMID: 33325920 PMCID: PMC7971708 DOI: 10.1039/d0bm01247e] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cardiomyocytes derived from induced pluripotent stem cells (iPSC-CMs) show great potential for engineering myocardium to study cardiac disease and create regenerative therapies. However, iPSC-CMs typically possess a late embryonic stage phenotype, with cells failing to exhibit markers of mature adult tissue. This is due in part to insufficient knowledge and control of microenvironmental cues required to facilitate the organization and maturation of iPSC-CMs. Here, we employed a cell-adhesive, mechanically tunable synthetic fibrous extracellular matrix (ECM) consisting of electrospun dextran vinyl sulfone (DVS) fibers and examined how biochemical, architectural, and mechanical properties of the ECM impact iPSC-CM tissue assembly and subsequent function. Exploring a multidimensional parameter space spanning cell-adhesive ligand, seeding density, fiber alignment, and stiffness, we found that fibronectin-functionalized DVS matrices composed of highly aligned fibers with low stiffness optimally promoted the organization of functional iPSC-CM tissues. Tissues generated on these matrices demonstrated improved calcium handling and increased end-to-end localization of N-cadherin as compared to micropatterned fibronectin lines or fibronectin-coated glass. Furthermore, DVS matrices supported long-term culture (45 days) of iPSC-CMs; N-cadherin end-to-end localization and connexin43 expression both increased as a function of time in culture. In sum, these findings demonstrate the importance of recapitulating the fibrous myocardial ECM in engineering structurally organized and functional iPSC-CM tissues.
Collapse
Affiliation(s)
- Samuel J DePalma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
38
|
Fujiwara Y, Deguchi K, Miki K, Nishimoto T, Yoshida Y. A Method for Contraction Force Measurement of hiPSC-Derived Engineered Cardiac Tissues. Methods Mol Biol 2021; 2320:171-180. [PMID: 34302658 DOI: 10.1007/978-1-0716-1484-6_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Engineered cardiac tissue (ECT) derived from human induced pluripotent stem cells (iPSCs) can replicate human heart in vitro and be applied to drug discovery and heart disease models. The contraction force of ECT is an important indicator of its function and of the disease phenotype. Here we describe a construction method of ECT using the Flexcell® Tissue Train® culture system and a contraction force measurement method based on the Frank-Starling law.
Collapse
Affiliation(s)
- Yuya Fujiwara
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
| | - Kohei Deguchi
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
- T-CiRA discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kenji Miki
- Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Tomoyuki Nishimoto
- Takeda-CiRA Joint Program (T-CiRA), Fujisawa, Kanagawa, Japan
- T-CiRA discovery, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Yoshinori Yoshida
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.
| |
Collapse
|
39
|
Dou W, Wang L, Malhi M, Liu H, Zhao Q, Plakhotnik J, Xu Z, Huang Z, Simmons CA, Maynes JT, Sun Y. A microdevice platform for characterizing the effect of mechanical strain magnitudes on the maturation of iPSC-Cardiomyocytes. Biosens Bioelectron 2020; 175:112875. [PMID: 33303322 DOI: 10.1016/j.bios.2020.112875] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022]
Abstract
The use of human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) as an in vitro model of the heart is limited by their structurally and functionally immature phenotypes. During heart development, mechanical stimuli from in vivo microenvironments are known to regulate cardiomyocyte gene expression and maturation. Accordingly, protocols for culturing iPSC-CMs have recently incorporated mechanical or electromechanical stimulation to induce cellular maturation in vitro; however, the response of iPSC-CMs to different mechanical strain magnitudes is unknown, and existing techniques lack the capability to dynamically measure changes to iPSC-CM contractility in situ as maturation progresses. We developed a microdevice platform which applies cyclical strains of varying magnitudes (5%, 10%, 15% and 20%) to a monolayer of iPSC-CMs, coincidentally measuring contractile stress during mechanical stimulation using fluorescent nanobeads embedded in the microdevice's suspended membrane. Cyclic strain was found to induce circumferential cell alignment on the actuated membranes. In situ contractility measurements revealed that cyclic stimulation gradually increased cardiomyocyte contractility during a 10-day culture period. The contractile stress of iPSC-CM monolayers was found to increase with a higher strain magnitude and plateaued at 15% strain. Cardiomyocyte contractility positively correlated with the elongation of sarcomeres and an increased expression of β-myosin heavy chain (MYH7) in a strain magnitude-dependent manner, illustrating how mechanical stress can be optimized for the phenotypic and proteomic maturation of the cells. iPSC-CMs with improved maturity have the potential to create a more accurate heart model in vitro for applications in disease modeling and therapeutic discovery.
Collapse
Affiliation(s)
- Wenkun Dou
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Li Wang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; School of Mechanical & Automotive Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Manpreet Malhi
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Haijiao Liu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, M5S 3G9, Canada
| | - Qili Zhao
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Julia Plakhotnik
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada
| | - Zhensong Xu
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Zongjie Huang
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada
| | - Craig A Simmons
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, M5S 3G9, Canada; Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, M5G 1M1, Canada.
| | - Jason T Maynes
- Program in Molecular Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada; Department of Biochemistry, University of Toronto, Toronto, M5S 1A8, Canada; Department of Anesthesia and Pain Medicine, Hospital for Sick Children, Toronto, M5G 1X8, Canada.
| | - Yu Sun
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, M5S 3G8, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, M5S 3G9, Canada; Department of Electrical and Computer Engineering, University of Toronto, M5S 3G4, Canada; Department of Computer Science, University of Toronto, M5T 3A1, Canada.
| |
Collapse
|
40
|
Zhang R, Guo T, Han Y, Huang H, Shi J, Hu J, Li H, Wang J, Saleem A, Zhou P, Lan F. Design of synthetic microenvironments to promote the maturation of human pluripotent stem cell derived cardiomyocytes. J Biomed Mater Res B Appl Biomater 2020; 109:949-960. [PMID: 33231364 DOI: 10.1002/jbm.b.34759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/08/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022]
Abstract
Cardiomyocyte like cells derived from human pluripotent stem cells (hPSC-CMs) have a good application perspective in many fields such as disease modeling, drug screening and clinical treatment. However, these are severely hampered by the fact that hPSC-CMs are immature compared to adult human cardiomyocytes. Therefore, many approaches such as genetic manipulation, biochemical factors supplement, mechanical stress, electrical stimulation and three-dimensional culture have been developed to promote the maturation of hPSC-CMs. Recently, establishing in vitro synthetic artificial microenvironments based on the in vivo development program of cardiomyocytes has achieved much attention due to their inherent properties such as stiffness, plasticity, nanotopography and chemical functionality. In this review, the achievements and deficiency of reported synthetic microenvironments that mainly discussed comprehensive biological, chemical, and physical factors, as well as three-dimensional culture were mainly discussed, which have significance to improve the microenvironment design and accelerate the maturation of hPSC-CMs.
Collapse
Affiliation(s)
- Rui Zhang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China.,College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Tianwei Guo
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yu Han
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Hongxin Huang
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jiamin Shi
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Jiaxuan Hu
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hongjiao Li
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Jianlin Wang
- College of Life Sciences, Lanzhou University, Lanzhou, China
| | - Amina Saleem
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ping Zhou
- School and hospital of Stomatology, Lanzhou University, Lanzhou, China
| | - Feng Lan
- National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Feng Q, Gao H, Wen H, Huang H, Li Q, Liang M, Liu Y, Dong H, Cao X. Engineering the cellular mechanical microenvironment to regulate stem cell chondrogenesis: Insights from a microgel model. Acta Biomater 2020; 113:393-406. [PMID: 32629189 DOI: 10.1016/j.actbio.2020.06.046] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/07/2023]
Abstract
Biophysical cues (especially mechanical cues) embedded in cellular microenvironments show a critical impact on stem cell fate. Despite the capability of traditional hydrogels to mimic the feature of extracellular matrix (ECM) and tune their physicochemical properties via diverse approaches, their relatively large size not only induces biased results, but also hinders high-throughput screening and analysis. In this paper, a microgel model is proposed to recapitulate the role of 3D mechanical microenvironment on stem cell behaviors especially chondrogenesis in vitro. The small diameter of microgels brings the high surface area to volume ratio and then the enlarged diffusion area and shortened diffusion distance of soluble molecules, leading to uniform distribution of nutrients and negligible biochemical gradient inside microgels. To construct ECM-like microenvironment with tunable mechanical strength, three gelatin/hyaluronic acid hybrid microgels with low, medium and high crosslinking densities, i.e., Gel-HA(L), Gel-HA(M) and Gel-HA(H), are fabricated in microfluidic devices by Michael addition reaction between thiolated gelatin (Gel-SH) and ethylsulfated hyaluronic acid (HA-VS) with different substitution degrees of vinyl sulfone groups. Our results show that mouse bone marrow mesenchymal stem cell (BMSC) proliferation, distribution and chondrogenesis are all closely dependent on mechanical microenvironments in microgels. Noteworthily, BMSCs show a clear trend of differentiating into hyaline cartilage in Gel-HA(L) and fibrocartilage in Gel-HA(M) and Gel-HA(H). Whole transcriptome RNA sequencing reveals that mechanical microenvironment of microgels affects BMSC differentiation via TGF-β/Smad signaling pathway, Hippo signaling pathway and Integrin/YAP/TAZ signaling pathway. We believe this microgel model provides a new way to further explore the interaction between cells and 3D microenvironment. STATEMENT OF SIGNIFICANCE: In recent years, hydrogels have been frequently used to construct 3D microenvironment for cells. However, their relatively large size not only brings biased experimental results, but also limits high-throughput screening and analysis. Herein we propose a gelatin/hyaluronic acid microgel model to explore the effects of 3D cellular mechanical microenvironment (biophysical cues) on BMSC behaviors especially chondrogenesis, which can minimize the interference of biochemical gradients. Our results reveal that BMSC differentiation into either hyaline cartilage or fibrocartilage can be regulated via tailoring the mechanical properties of microgels. Whole transcriptome RNA sequencing proves that "TGF-β/Smad signaling pathway", "Hippo signaling pathway" and "Integrins/YAP/ TAZ signaling pathway" are activated or inhibited in this process.
Collapse
Affiliation(s)
- Qi Feng
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Huichang Gao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hongji Wen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hanhao Huang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Qingtao Li
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Minhua Liang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Yang Liu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hua Dong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China.
| | - Xiaodong Cao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China; National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, P R China; Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
42
|
Maroli G, Braun T. The long and winding road of cardiomyocyte maturation. Cardiovasc Res 2020; 117:712-726. [PMID: 32514522 DOI: 10.1093/cvr/cvaa159] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 05/15/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Knowledge about the molecular mechanisms regulating cardiomyocyte (CM) proliferation and differentiation has increased exponentially in recent years. Such insights together with the availability of more efficient protocols for generation of CMs from induced pluripotent stem cells (iPSCs) have raised expectations for new therapeutic strategies to treat congenital and non-congenital heart diseases. However, the poor regenerative potential of the postnatal heart and the incomplete maturation of iPSC-derived CMs represent important bottlenecks for such therapies in future years. CMs undergo dramatic changes at the doorstep between prenatal and postnatal life, including terminal cell cycle withdrawal, change in metabolism, and further specialization of the cellular machinery required for high-performance contraction. Here, we review recent insights into pre- and early postnatal developmental processes that regulate CM maturation, laying specific focus on genetic and metabolic pathways that control transition of CMs from the embryonic and perinatal to the fully mature adult CM state. We recapitulate the intrinsic features of CM maturation and highlight the importance of external factors, such as energy substrate availability and endocrine regulation in shaping postnatal CM development. We also address recent approaches to enhance maturation of iPSC-derived CMs in vitro, and summarize new discoveries that might provide useful tools for translational research on repair of the injured human heart.
Collapse
Affiliation(s)
- Giovanni Maroli
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- Department of Cardiac Development and Remodeling, Max Planck Institute for Heart and Lung Research, Ludwigstrasse 43, 61231 Bad Nauheim, Germany.,German Centre for Cardiovascular Research (DZHK), partner site Rhein-Main, Ludwigstrasse 43, 61231 Bad Nauheim, Germany
| |
Collapse
|
43
|
Gaetani R, Zizzi EA, Deriu MA, Morbiducci U, Pesce M, Messina E. When Stiffness Matters: Mechanosensing in Heart Development and Disease. Front Cell Dev Biol 2020; 8:334. [PMID: 32671058 PMCID: PMC7326078 DOI: 10.3389/fcell.2020.00334] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 04/16/2020] [Indexed: 12/20/2022] Open
Abstract
During embryonic morphogenesis, the heart undergoes a complex series of cellular phenotypic maturations (e.g., transition of myocytes from proliferative to quiescent or maturation of the contractile apparatus), and this involves stiffening of the extracellular matrix (ECM) acting in concert with morphogenetic signals. The maladaptive remodeling of the myocardium, one of the processes involved in determination of heart failure, also involves mechanical cues, with a progressive stiffening of the tissue that produces cellular mechanical damage, inflammation, and ultimately myocardial fibrosis. The assessment of the biomechanical dependence of the molecular machinery (in myocardial and non-myocardial cells) is therefore essential to contextualize the maturation of the cardiac tissue at early stages and understand its pathologic evolution in aging. Because systems to perform multiscale modeling of cellular and tissue mechanics have been developed, it appears particularly novel to design integrated mechano-molecular models of heart development and disease to be tested in ex vivo reconstituted cells/tissue-mimicking conditions. In the present contribution, we will discuss the latest implication of mechanosensing in heart development and pathology, describe the most recent models of cell/tissue mechanics, and delineate novel strategies to target the consequences of heart failure with personalized approaches based on tissue engineering and induced pluripotent stem cell (iPSC) technologies.
Collapse
Affiliation(s)
- Roberto Gaetani
- Department of Molecular Medicine, Faculty of Pharmacy and Medicine, Sapienza University of Rome, Rome, Italy.,Department of Bioengineering, Sanford Consortium for Regenerative Medicine, University of California, San Diego, San Diego, CA, United States
| | - Eric Adriano Zizzi
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Marco Agostino Deriu
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Umberto Morbiducci
- PolitoBIOMed Lab, Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Maurizio Pesce
- Tissue Engineering Research Unit, "Centro Cardiologico Monzino," IRCCS, Milan, Italy
| | - Elisa Messina
- Department of Maternal, Infantile, and Urological Sciences, "Umberto I" Hospital, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
44
|
Gerbin KA, Mitzelfelt KA, Guan X, Martinson AM, Murry CE. Delta-1 Functionalized Hydrogel Promotes hESC-Cardiomyocyte Graft Proliferation and Maintains Heart Function Post-Injury. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 17:986-998. [PMID: 32426414 PMCID: PMC7225377 DOI: 10.1016/j.omtm.2020.04.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/13/2020] [Indexed: 12/13/2022]
Abstract
Current cell transplantation techniques are hindered by small graft size, requiring high cell doses to achieve therapeutic cardiac remuscularization. Enhancing the proliferation of transplanted human embryonic stem cell-derived cardiomyocytes (hESC-CMs) could address this, allowing an otherwise subtherapeutic cell dose to prevent disease progression after myocardial infarction. In this study, we designed a hydrogel that activates Notch signaling through 3D presentation of the Notch ligand Delta-1 to use as an injectate for transplanting hESC-CMs into the infarcted rat myocardium. After 4 weeks, hESC-CM proliferation increased 2-fold and resulted in a 3-fold increase in graft size with the Delta-1 hydrogel compared to controls. To stringently test the effect of Notch-mediated graft expansion on long-term heart function, a normally subtherapeutic dose of hESC-CMs was implanted into the infarcted myocardium and cardiac function was evaluated by echocardiography. Transplantation of the Delta-1 hydrogel + hESC-CMs augmented heart function and was significantly higher at 3 months compared to controls. Graft size and hESC-CM proliferation were also increased at 3 months post-implantation. Collectively, these results demonstrate the therapeutic approach of a Delta-1 functionalized hydrogel to reduce the cell dose required to achieve functional benefit after myocardial infarction by enhancing hESC-CM graft size and proliferation.
Collapse
Affiliation(s)
- Kaytlyn A Gerbin
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Katie A Mitzelfelt
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Xuan Guan
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Amy M Martinson
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA
| | - Charles E Murry
- Center for Cardiovascular Biology, Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA.,Department of Bioengineering, University of Washington, Seattle, WA, USA.,Department of Pathology, University of Washington, Seattle, WA, USA.,Department of Medicine/Cardiology, University of Washington, Seattle, WA, USA
| |
Collapse
|
45
|
He D, Liu F, Cui S, Jiang N, Yu H, Zhou Y, Liu Y, Kou X. Mechanical load-induced H 2S production by periodontal ligament stem cells activates M1 macrophages to promote bone remodeling and tooth movement via STAT1. Stem Cell Res Ther 2020; 11:112. [PMID: 32169104 PMCID: PMC7071778 DOI: 10.1186/s13287-020-01607-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/20/2022] Open
Abstract
Background Tooth movement is a unique bone remodeling process induced by mechanical stimulation. Macrophages are important in mediating inflammatory processes during mechanical load-induced tooth movement. However, how macrophages are regulated under mechanical stimulation remains unclear. Mesenchymal stem cells (MSCs) can modulate macrophage polarization during bone remodeling. Hydrogen sulfide (H2S) can be produced by MSCs and have been linked to bone homeostasis. Therefore, this study aimed to investigate whether H2S contributed to periodontal ligament stem cell (PDLSC)-regulated macrophage polarization and bone remodeling under mechanical stimulation. Methods An experimental mechanical load-induced tooth movement animal model was established. Changes in cystathionine-β-synthase (CBS), markers of M1/M2 macrophages, tooth movement distance, and the number of osteoclasts were examined. The conditioned medium of PDLSCs with or without mechanical loading was utilized to treat THP-1 derived macrophages for 24 h to further investigate the effect of PDLSCs on macrophage polarization. Different treatments with H2S donor, CBS inhibitor, or the inhibitor of STAT1 were used to investigate the related mechanism. Markers of M1/M2 polarization and STAT1 pathway expression were evaluated in macrophages. Results Mechanical load promoted tooth movement and increased the number of M1-like macrophages, M1-associated pro-inflammatory cytokines, and the expression of CBS on the compression side of the periodontal ligament. The injection of CBS inhibitor or H2S donor could further repress or increase the number of M1-like macrophages, tartrate-resistant acid phosphatase-positive osteoclasts and the distance of tooth movement. Mechanistically, load-induced PDLSCs enhanced H2S production, which increased the expression of M1-associated cytokines in macrophages. These effects could be blocked by the administration of CBS inhibitor. Moreover, load-induced H2S steered M1 macrophage polarization via the STAT1 signaling pathway. Conclusions These data suggest a novel mechanism indicating that mechanical load-stimulated PDLSCs produce H2S to polarize macrophages toward the M1 phenotype via the STAT1 signaling pathway, which contributes to bone remodeling and tooth movement process. These results provide new insights into the role of PDLSCs in regulating macrophage polarization and mediating bone remodeling under mechanical stimulation, and indicate that appropriate H2S supplementation may accelerate tooth movement. Electronic supplementary material Supplementary information accompanies this paper at 10.1186/s13287-020-01607-9.
Collapse
Affiliation(s)
- Danqing He
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Fuliang Liu
- Department of Orthodontics, ShenZhen Clinic, Sunny Dental Group, #2388 Houhai avenue, Nanshan District, Shenzhen, 518100, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Nan Jiang
- Central laboratory, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China
| | - Huajie Yu
- Fourth Division, Peking University School and Hospital of Stomatology, No. 41 Dongsuhuan Road, Chaoyang District, Beijing, 100025, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,National Engineering Laboratory for Digital and Material Technology of Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China. .,Beijing Key Laboratory of Digital Stomatology, 22# Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
| | - Xiaoxing Kou
- South China Center of Craniofacial Stem Cell Research, Hospital of Stomatology, Sun Yat-sen University, 74 Zhongshan 2Rd, Guangzhou, 510080, China.
| |
Collapse
|
46
|
Ulmer BM, Eschenhagen T. Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118471. [PMID: 30954570 PMCID: PMC7042711 DOI: 10.1016/j.bbamcr.2019.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/26/2019] [Accepted: 04/01/2019] [Indexed: 12/25/2022]
Abstract
Cardiomyocyte energy metabolism is altered in heart failure, and primary defects of metabolic pathways can cause heart failure. Studying cardiac energetics in rodent models has principal shortcomings, raising the question to which extent human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CM) can provide an alternative. As metabolic maturation of CM occurs mostly after birth during developmental hypertrophy, the immaturity of hiPSC-CM is an important limitation. Here we shortly review the physiological drivers of metabolic maturation and concentrate on methods to mature hiPSC-CM with the goal to benchmark the metabolic state of hiPSC-CM against in vivo data and to see how far known abnormalities in inherited metabolic disorders can be modeled in hiPSC-CM. The current data indicate that hiPSC-CM, despite their immature, approximately mid-fetal state of energy metabolism, faithfully recapitulate some basic metabolic disease mechanisms. Efforts to improve their metabolic maturity are underway and shall improve the validity of this model.
Collapse
Affiliation(s)
- Bärbel M Ulmer
- University Medical Center Hamburg-Eppendorf, Institute of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Centre for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| | - Thomas Eschenhagen
- University Medical Center Hamburg-Eppendorf, Institute of Experimental Pharmacology and Toxicology, 20246 Hamburg, Germany; German Centre for Heart Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Hamburg, Germany.
| |
Collapse
|
47
|
Haider KH, Aramini B. Mircrining the injured heart with stem cell-derived exosomes: an emerging strategy of cell-free therapy. Stem Cell Res Ther 2020; 11:23. [PMID: 31918755 PMCID: PMC6953131 DOI: 10.1186/s13287-019-1548-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/18/2019] [Accepted: 12/29/2019] [Indexed: 02/06/2023] Open
Abstract
Bone marrow-derived mesenchymal stem cells (MSCs) have successfully progressed to phase III clinical trials successive to an intensive in vitro and pre-clinical assessment in experimental animal models of ischemic myocardial injury. With scanty evidence regarding their cardiogenic differentiation in the recipient patients' hearts post-engraftment, paracrine secretion of bioactive molecules is being accepted as the most probable underlying mechanism to interpret the beneficial effects of cell therapy. Secretion of small non-coding microRNA (miR) constitutes an integral part of the paracrine activity of stem cells, and there is emerging interest in miRs' delivery to the heart as part of cell-free therapy to exploit their integral role in various cellular processes. MSCs also release membrane vesicles of diverse sizes loaded with a wide array of miRs as part of their paracrine secretions primarily for intercellular communication and to shuttle genetic material. Exosomes can also be loaded with miRs of interest for delivery to the organs of interest including the heart, and hence, exosome-based cell-free therapy is being assessed for cell-free therapy as an alternative to cell-based therapy. This review of literature provides an update on cell-free therapy with primary focus on exosomes derived from BM-derived MSCs for myocardial repair.
Collapse
Affiliation(s)
- Khawaja Husnain Haider
- Sulaiman Alrajhi University, Al-Qaseem, Kingdom of Saudi Arabia
- Department of Basic Sciences, Sulaiman Alrajhi University, PO Box 777, Al Bukairiyah, 51941 Kingdom of Saudi Arabia
| | - Beatrice Aramini
- Division of Thoracic Surgery, Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
48
|
Ge F, Wang Z, Xi JJ. Engineered Maturation Approaches of Human Pluripotent Stem Cell-Derived Ventricular Cardiomyocytes. Cells 2019; 9:cells9010009. [PMID: 31861463 PMCID: PMC7016801 DOI: 10.3390/cells9010009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022] Open
Abstract
Heart diseases such as myocardial infarction and myocardial ischemia are paroxysmal and fatal in clinical practice. Cardiomyocytes (CMs) differentiated from human pluripotent stem cells provide a promising approach to myocardium regeneration therapy. Identifying the maturity level of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) is currently the main challenge for pathophysiology and therapeutics. In this review, we describe current maturity indicators for cardiac microtissue and microdevice cultivation technologies that accelerate cardiac maturation. It may provide insights into regenerative medicine, drug cardiotoxicity testing, and preclinical safety testing.
Collapse
Affiliation(s)
- Feixiang Ge
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
| | - Zetian Wang
- Institute of Microelectronics, Peking University, Beijing 100871, China;
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China;
- Correspondence:
| |
Collapse
|
49
|
Murphy JF, Mayourian J, Stillitano F, Munawar S, Broughton KM, Agullo-Pascual E, Sussman MA, Hajjar RJ, Costa KD, Turnbull IC. Adult human cardiac stem cell supplementation effectively increases contractile function and maturation in human engineered cardiac tissues. Stem Cell Res Ther 2019; 10:373. [PMID: 31801634 PMCID: PMC6894319 DOI: 10.1186/s13287-019-1486-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/25/2019] [Accepted: 11/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Delivery of stem cells to the failing heart is a promising therapeutic strategy. However, the improvement in cardiac function in animal studies has not fully translated to humans. To help bridge the gap between species, we investigated the effects of adult human cardiac stem cells (hCSCs) on contractile function of human engineered cardiac tissues (hECTs) as a species-specific model of the human myocardium. METHODS Human induced pluripotent stem cell-derived cardiomyoctes (hCMs) were mixed with Collagen/Matrigel to fabricate control hECTs, with an experimental group of hCSC-supplemented hECT fabricated using a 9:1 ratio of hCM to hCSC. Functional testing was performed starting on culture day 6, under spontaneous conditions and also during electrical pacing from 0.25 to 1.0 Hz, measurements repeated at days 8 and 10. hECTs were then frozen and processed for gene analysis using a Nanostring assay with a cardiac targeted custom panel. RESULTS The hCSC-supplemented hECTs displayed a twofold higher developed force vs. hCM-only controls by day 6, with approximately threefold higher developed stress and maximum rates of contraction and relaxation during pacing at 0.75 Hz. The spontaneous beat rate characteristics were similar between groups, and hCSC supplementation did not adversely impact beat rate variability. The increased contractility persisted through days 8 and 10, albeit with some decrease in the magnitude of the difference of the force by day 10, but with developed stress still significantly higher in hCSC-supplemented hECT; these findings were confirmed with multiple hCSC and hCM cell lines. The force-frequency relationship, while negative for both, control (- 0.687 Hz- 1; p = 0.013 vs. zero) and hCSC-supplemented (- 0.233 Hz- 1;p = 0.067 vs. zero) hECTs, showed a significant rectification in the regression slope in hCSC-supplemented hECT (p = 0.011 vs. control). Targeted gene exploration (59 genes) identified a total of 14 differentially expressed genes, with increases in the ratios of MYH7/MHY6, MYL2/MYL7, and TNNI3/TNNI1 in hCSC-supplemented hECT versus controls. CONCLUSIONS For the first time, hCSC supplementation was shown to significantly improve human cardiac tissue contractility in vitro, without evidence of proarrhythmic effects, and was associated with increased expression of markers of cardiac maturation. These findings provide new insights about adult cardiac stem cells as contributors to functional improvement of human myocardium.
Collapse
Affiliation(s)
- Jack F Murphy
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1030, New York, NY, 10029, USA
| | - Joshua Mayourian
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1030, New York, NY, 10029, USA
| | - Francesca Stillitano
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1030, New York, NY, 10029, USA
| | - Sadek Munawar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1030, New York, NY, 10029, USA
| | | | | | - Mark A Sussman
- San Diego Heart Research Institute, San Diego State University, San Diego, USA
| | | | - Kevin D Costa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1030, New York, NY, 10029, USA
| | - Irene C Turnbull
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Pl, Box 1030, New York, NY, 10029, USA.
| |
Collapse
|
50
|
Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y, Ritterhoff J, Zhao L, Kolwicz SC, Pabon L, Reinecke H, Sniadecki NJ, Tian R, Ruohola-Baker H, Xu H, Murry CE. Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports 2019; 13:657-668. [PMID: 31564645 PMCID: PMC6829750 DOI: 10.1016/j.stemcr.2019.08.013] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/23/2019] [Accepted: 08/26/2019] [Indexed: 02/07/2023] Open
Abstract
Although human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have emerged as a novel platform for heart regeneration, disease modeling, and drug screening, their immaturity significantly hinders their application. A hallmark of postnatal cardiomyocyte maturation is the metabolic substrate switch from glucose to fatty acids. We hypothesized that fatty acid supplementation would enhance hPSC-CM maturation. Fatty acid treatment induces cardiomyocyte hypertrophy and significantly increases cardiomyocyte force production. The improvement in force generation is accompanied by enhanced calcium transient peak height and kinetics, and by increased action potential upstroke velocity and membrane capacitance. Fatty acids also enhance mitochondrial respiratory reserve capacity. RNA sequencing showed that fatty acid treatment upregulates genes involved in fatty acid β-oxidation and downregulates genes in lipid synthesis. Signal pathway analyses reveal that fatty acid treatment results in phosphorylation and activation of multiple intracellular kinases. Thus, fatty acids increase human cardiomyocyte hypertrophy, force generation, calcium dynamics, action potential upstroke velocity, and oxidative capacity. This enhanced maturation should facilitate hPSC-CM usage for cell therapy, disease modeling, and drug/toxicity screens.
Collapse
Affiliation(s)
- Xiulan Yang
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Marita L Rodriguez
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Andrea Leonard
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Lihua Sun
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Karin A Fischer
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Yuliang Wang
- Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA; Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98109, USA
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Limei Zhao
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Lil Pabon
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Hans Reinecke
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Nathan J Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington, Seattle, WA 98109, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98109, USA
| | - Hannele Ruohola-Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Haodong Xu
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA
| | - Charles E Murry
- Department of Pathology, University of Washington, Seattle, WA 98109, USA; Department of Bioengineering, University of Washington, Seattle, WA 98109, USA; Department of Medicine/Cardiology, University of Washington, Seattle, WA 98109, USA; Center for Cardiovascular Biology, University of Washington, Seattle, WA 98109, USA; Institute for Stem Cell and Regenerative Medicine, University of Washington, 850 Republican Street, Brotman Building Room 453, Seattle, WA 98109, USA.
| |
Collapse
|