1
|
Shen B, Yoon D, Castillo J, Biswal S. A Practical Guide to Sigma-1 Receptor Positron Emission Tomography/Magnetic Resonance Imaging: A New Clinical Molecular Imaging Method to Identify Peripheral Pain Generators in Patients with Chronic Pain. Semin Musculoskelet Radiol 2023; 27:601-617. [PMID: 37935207 PMCID: PMC10629991 DOI: 10.1055/s-0043-1775744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Accurately identifying the peripheral pain generator in patients with chronic pain remains a major challenge for modern medicine. Millions of patients around the world suffer endlessly from difficult-to-manage debilitating pain because of very limited diagnostic tests and a paucity of pain therapies. To help these patients, we have developed a novel clinical molecular imaging approach, and, in its early stages, it has been shown to accurately identify the exact site of pain generation using an imaging biomarker for the sigma-1 receptor and positron emission tomography/magnetic resonance imaging. We hope the description of the work in this article can help others begin their own pain imaging programs at their respective institutions.
Collapse
Affiliation(s)
- Bin Shen
- Cyclotron Radiochemistry Facility, Molecular Imaging Program at Stanford, Stanford University School of Medicine, Stanford, California
| | - Daehyun Yoon
- Department of Radiology, University of California San Francisco School of Medicine, San Francisco, California
| | - Jessa Castillo
- Radiochemistry Facility, University of California San Francisco School of Medicine, San Francisco, California
| | - Sandip Biswal
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
2
|
Wang YM, Xia CY, Jia HM, He J, Lian WW, Yan Y, Wang WP, Zhang WK, Xu JK. Sigma-1 receptor: A potential target for the development of antidepressants. Neurochem Int 2022; 159:105390. [PMID: 35810915 DOI: 10.1016/j.neuint.2022.105390] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/10/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Though a great many of studies on the development of antidepressants for the therapy of major depression disorder (MDD) and the development of antidepressants have been carried out, there still lacks an efficient approach in clinical practice. The involvement of Sigma-1 receptor in the pathological process of MDD has been verified. In this review, recent research focusing on the role of Sigma-1 receptor in the etiology of MDD were summarized. Preclinical studies and clinical trials have found that stress induce the variation of Sigma-1 receptor in the blood, brain and heart. Dysfunction and absence of Sigma-1 receptor result in depressive-like behaviors in rodent animals. Agonists of Sigma-1 receptor show not only antidepressant-like activities but also therapeutical effects in complications of depression. The mechanisms underlying antidepressant-like effects of Sigma-1 receptor may include suppressing neuroinflammation, regulating neurotransmitters, ameliorating brain-derived neurotrophic factor and N-Methyl-D-Aspartate receptor, and alleviating the endoplasmic reticulum stress and mitochondria damage during stress. Therefore, Sigma-1 receptor represents a potential target for antidepressants development.
Collapse
Affiliation(s)
- Yu-Ming Wang
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China; Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Cong-Yuan Xia
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Hong-Mei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, PR China
| | - Jun He
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Wen Lian
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Yu Yan
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wen-Ping Wang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China
| | - Wei-Ku Zhang
- Institute of Clinical Medical Sciences & Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, PR China.
| | - Jie-Kun Xu
- School of Life Sciences & School of Chinese Medicine Sciences, Beijing University of Chinese Medicine, Beijing, 100029, PR China.
| |
Collapse
|
3
|
Yoon D, Fast AM, Cipriano P, Shen B, Castillo JB, McCurdy CR, Mari Aparici C, Lum D, Biswal S. Sigma-1 Receptor Changes Observed in Chronic Pelvic Pain Patients: A Pilot PET/MRI Study. FRONTIERS IN PAIN RESEARCH 2021; 2:711748. [PMID: 35295458 PMCID: PMC8915714 DOI: 10.3389/fpain.2021.711748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Introduction: Chronic pelvic pain is a highly prevalent pain condition among women, but identifying the exact cause of pelvic pain remains a significant diagnostic challenge. In this study, we explored a new diagnostic approach with PET/MRI of the sigma-1 receptor, a chaperone protein modulating ion channels for activating nociceptive processes. Methods: Our approach is implemented by a simultaneous PET/MRI scan with a novel radioligand [18F]FTC-146, which is highly specific to the sigma-1 receptor. We recruited 5 chronic pelvic pain patients and 5 healthy volunteers and compared our PET/MRI findings between these two groups. Results: All five patients showed abnormally increased radioligand uptake on PET compared to healthy controls at various organs, including the uterus, vagina, pelvic bowel, gluteus maximus muscle, and liver. However, on MRI, only 2 patients showed abnormalities that could be potentially associated with the pain symptoms. For a subset of patients, the association of pain and the abnormally increased radioligand uptake was further validated by successful pain relief outcomes following surgery or trigger point injections to the identified abnormalities. Conclusion: In this preliminary study, sigma-1 receptor PET/MRI demonstrated potential for identifying abnormalities associated with chronic pelvic pain. Future studies will need to correlate samples with imaging findings to further validate the correlation between S1R distribution and pathologies of chronic pelvic pain. Trial Registration: The clinical trial registration date is June 2, 2018, and the registration number of the study is NCT03195270 (https://clinicaltrials.gov/ct2/show/NCT03556137).
Collapse
Affiliation(s)
- Daehyun Yoon
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Angela M. Fast
- Diagnostic, Molecular and Interventional Radiology, The Mount Sinai Hospital, New York, NY, United States
| | - Peter Cipriano
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Bin Shen
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Jessa B. Castillo
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Christopher R. McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Carina Mari Aparici
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Deirdre Lum
- Department of Obstetrics and Gynecology, School of Medicine, Stanford University, Stanford, CA, United States
- *Correspondence: Sandip Biswal
| | - Sandip Biswal
- Department of Radiology, School of Medicine, Stanford University, Stanford, CA, United States
- Deirdre Lum
| |
Collapse
|
4
|
Agha H, McCurdy CR. In vitro and in vivo sigma 1 receptor imaging studies in different disease states. RSC Med Chem 2021; 12:154-177. [PMID: 34046607 PMCID: PMC8127618 DOI: 10.1039/d0md00186d] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
The sigma receptor system has been classified into two distinct subtypes, sigma 1 (σ1R) and sigma 2 (σ2R). Sigma 1 receptors (σ1Rs) are involved in many neurodegenerative diseases and different central nervous system disorders such as Alzheimer's disease, Parkinson's disease, schizophrenia, and drug addiction, and pain. This makes them attractive targets for developing radioligands as tools to gain a better understanding of disease pathophysiology and clinical diagnosis. Over the years, several σ1R radioligands have been developed to image the changes in σ1R distribution and density providing insights into their role in disease development. Moreover, the involvement of both σ1Rs and σ2Rs with cancer make these ligands, especially those that are σ2R selective, great tools for imaging different types of tumors. This review will discuss the principles of molecular imaging using PET and SPECT, known σ1R radioligands and their applications for labelling σ1Rs under different disease conditions. Furthermore, this review will highlight σ1R radioligands that have demonstrated considerable potential as biomarkers, and an opportunity to fulfill the ultimate goal of better healthcare outcomes and improving human health.
Collapse
Affiliation(s)
- Hebaalla Agha
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
| | - Christopher R McCurdy
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida Gainesville FL 32610 USA +(352) 273 7705 +1 (352) 294 8691
- UF Translational Drug Development Core, University of Florida Gainesville FL 32610 USA
| |
Collapse
|
5
|
Identifying Musculoskeletal Pain Generators Using Molecular Imaging. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
6
|
Vela JM. Repurposing Sigma-1 Receptor Ligands for COVID-19 Therapy? Front Pharmacol 2020; 11:582310. [PMID: 33364957 PMCID: PMC7751758 DOI: 10.3389/fphar.2020.582310] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022] Open
Abstract
Outbreaks of emerging infections, such as COVID-19 pandemic especially, confront health professionals with the unique challenge of treating patients. With no time to discover new drugs, repurposing of approved drugs or in clinical development is likely the only solution. Replication of coronaviruses (CoVs) occurs in a modified membranous compartment derived from the endoplasmic reticulum (ER), causes host cell ER stress and activates pathways to facilitate adaptation of the host cell machinery to viral needs. Accordingly, modulation of ER remodeling and ER stress response might be pivotal in elucidating CoV-host interactions and provide a rationale for new therapeutic, host-based antiviral approaches. The sigma-1 receptor (Sig-1R) is a ligand-operated, ER membrane-bound chaperone that acts as an upstream modulator of ER stress and thus a candidate host protein for host-based repurposing approaches to treat COVID-19 patients. Sig-1R ligands are frequently identified in in vitro drug repurposing screens aiming to identify antiviral compounds against CoVs, including severe acute respiratory syndrome CoV-2 (SARS-CoV-2). Sig-1R regulates key mechanisms of the adaptive host cell stress response and takes part in early steps of viral replication. It is enriched in lipid rafts and detergent-resistant ER membranes, where it colocalizes with viral replicase proteins. Indeed, the non-structural SARS-CoV-2 protein Nsp6 interacts with Sig-1R. The activity of Sig-1R ligands against COVID-19 remains to be specifically assessed in clinical trials. This review provides a rationale for targeting Sig-1R as a host-based drug repurposing approach to treat COVID-19 patients. Evidence gained using Sig-1R ligands in unbiased in vitro antiviral drug screens and the potential mechanisms underlying the modulatory effect of Sig-1R on the host cell response are discussed. Targeting Sig-1R is not expected to reduce dramatically established viral replication, but it might interfere with early steps of virus-induced host cell reprogramming, aid to slow down the course of infection, prevent the aggravation of the disease and/or allow a time window to mature a protective immune response. Sig-1R-based medicines could provide benefit not only as early intervention, preventive but also as adjuvant therapy.
Collapse
Affiliation(s)
- José Miguel Vela
- Drug Discovery and Preclinical Development, ESTEVE Pharmaceuticals, Barcelona, Spain
| |
Collapse
|
7
|
Abramyan AM, Yano H, Xu M, Liu L, Naing S, Fant AD, Shi L. The Glu102 mutation disrupts higher-order oligomerization of the sigma 1 receptor. Comput Struct Biotechnol J 2020; 18:199-206. [PMID: 32055286 PMCID: PMC7005341 DOI: 10.1016/j.csbj.2019.12.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 11/18/2022] Open
Abstract
The sigma 1 receptor (σ1R) is a unique endoplasmic reticulum membrane protein. Its ligands have been shown to possess therapeutic potential for neurological and substance use disorders among others. The E102Q mutation of σ1R has been found to elicit familial cases of amyotrophic lateral sclerosis (ALS). Despite reports of its downstream signaling consequences, the mechanistic details of the functional impact of E102Q at molecular level are not clear. Here, we investigate the molecular mechanism of the E102Q mutation with a spectrum of biochemical, biophysical, and pharmacological approaches. Our analysis of the interaction network of σ1R indicates that a set of residues near E102 is critical for the integrity of C-terminal ligand-binding domain. However, this integrity is not affected by the E102Q and E102A mutations, which is confirmed by the radioligand binding results. Instead, the E102 mutations disrupt the connection between the C-terminal domain and the N-terminal transmembrane helix (NT-helix). Results from bioluminescence resonance energy transfer and western blot assays demonstrate that these mutations destabilize higher-order σ1R oligomers, while our molecular dynamics simulations based on a σ1R crystal structure reveal a potential mechanism by which the mutations perturb the NT-helix dynamics. Thus, we propose that E102 is at a critical position in propagating the effects of ligand binding from the C-terminal domain to the NT-helix, while the latter may be involved in forming alternative oligomer interfaces, separate from the previously reported trimer interface. Together, these results provide the first account of the molecular mechanism of σ1R dysfunction caused by E102Q.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lei Shi
- Corresponding author at: Triad Technology Center, 333 Cassell Drive, Room 1121, Baltimore, MD 21224, USA.
| |
Collapse
|
8
|
Lam VM, Mielnik CA, Baimel C, Beerepoot P, Espinoza S, Sukhanov I, Horsfall W, Gainetdinov RR, Borgland SL, Ramsey AJ, Salahpour A. Behavioral Effects of a Potential Novel TAAR1 Antagonist. Front Pharmacol 2018; 9:953. [PMID: 30233365 PMCID: PMC6131539 DOI: 10.3389/fphar.2018.00953] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 08/03/2018] [Indexed: 12/17/2022] Open
Abstract
The trace amine associated receptor 1 (TAAR1) is a G-protein coupled receptor expressed in the monoaminergic regions of the brain, and represents a potential novel therapeutic target for the treatment of neurological disorders. While selective agonists for TAAR1 have been successfully identified, only one high affinity TAAR1 antagonist has been described thus far. We previously identified four potential low potency TAAR1 antagonists through an in silico screen on a TAAR1 homology model. One of the identified antagonists (compound 22) was predicted to have favorable physicochemical properties, which would allow the drug to cross the blood brain barrier. In vivo studies were therefore carried out and showed that compound 22 potentiates amphetamine- and cocaine-mediated locomotor activity. Furthermore, electrophysiology experiments demonstrated that compound 22 increased firing of dopamine neurons similar to EPPTB, the only known TAAR1 antagonist. In order to assess whether the effects of compound 22 were mediated through TAAR1, experiments were carried out on TAAR1-KO mice. The results showed that compound 22 is able to enhance amphetamine- and cocaine-mediated locomotor activity, even in TAAR1-KO mice, suggesting that the in vivo effects of this compound are not mediated by TAAR1. In collaboration with Psychoactive Drug Screening Program, we attempted to determine the targets for compound 22. Psychoactive Drug Screening Program (PDSP) results suggested several potential targets for compound 22 including, the dopamine, norepinephrine and serotonin transporters; as well as sigma 1 and 2 receptors. Our follow-up studies using heterologous cell systems showed that the dopamine transporter is not a target of compound 22. Therefore, the biological target of compound 22 mediating its psychoactive effects still remains unknown.
Collapse
Affiliation(s)
- Vincent M Lam
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Catharine A Mielnik
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Corey Baimel
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Pieter Beerepoot
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Boston Children's Hospital, F.M. Kirby Center for Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Stefano Espinoza
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ilya Sukhanov
- Department of Neuroscience and Brain Technologies, Fondazione Istituto Italiano di Tecnologia, Genoa, Italy.,Pavlov First Saint Petersburg State Medical University, Valdman Institute of Pharmacology, Saint Petersburg, Russia
| | - Wendy Horsfall
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Raul R Gainetdinov
- Institute of Translational Biomedicine, Saint Petersburg State University, Saint Petersburg, Russia
| | - Stephanie L Borgland
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Amy J Ramsey
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Ali Salahpour
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
9
|
Bhyrapuneni G, Thentu JB, Mohammed AR, Aleti RR, Padala NP, Ajjala DR, Nirogi R. Assessment of sigma-1 receptor occupancy in mice with non-radiolabelled FTC-146 as a tracer. J Recept Signal Transduct Res 2018; 38:290-298. [PMID: 29912606 DOI: 10.1080/10799893.2018.1478855] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/09/2018] [Accepted: 05/10/2018] [Indexed: 12/21/2022]
Abstract
The use of liquid chromatography coupled with mass spectrometry (LC-MS/MS) is advantageous in in-vivo receptor occupancy assays at pre-clinical drug developmental stages. Relatively, its application is effective in terms of high throughput, data reproducibility, sensitivity, and sample processing. In this perspective, we have evaluated the use of FTC-146 as a non-radiolabelled tracer to determine the sigma-1 receptor occupancy of test drugs in mice brain. Further, the brain and plasma exposures of test drug were determined at their corresponding occupancies. In this occupancy method, the optimized tracer treatment (sacrification) time after intravenous administration was 30 min. The tracer dose was 3 µg/kg and specific brain regions of interest were frontal cortex, pons and midbrain. Mice were pretreated orally with SA4503, fluspidine, haloperidol, and donepezil followed by tracer treatment. Among the test drugs, SA4503 was used as positive control group at its highest test dose (7 mg/kg, intraperitoneal). There was a dose-dependent decrease in brain regional FTC-146 binding in pretreated mice. From the occupancy curves of SA4503, fluspidine, haloperidol, and donepezil the effective dose (ED50) value ranges are 0.74-1.45, 0.09-0.11, 0.11-0.12, and 0.07-0.09 mg/kg, respectively. Their corresponding brain effective concentration (EC50) values are 74.3-132.5, 3.4-3.7, 122.5-139.5, and 8.8-11.0 ng/g and plasma EC50 values are 34.3-53.7, 0.08-0.10, 7.8-9.5, and 0.6-0.7 ng/mL. Brain regional distribution and binding inhibition upon pretreatment were comparable with data reported with labeled [18F]FTC-146. Drug exposures were simultaneously determined and correlated with sigma-1 occupancy from the same experiment. Wide category drugs can be assayed for sigma-1 receptor engagement and their correlation with exposures aid in clinical development.
Collapse
|
10
|
He Y, Xie F, Ye J, Deuther-Conrad W, Cui B, Wang L, Lu J, Steinbach J, Brust P, Huang Y, Lu J, Jia H. 1-(4-[ 18F]Fluorobenzyl)-4-[(tetrahydrofuran-2-yl)methyl]piperazine: A Novel Suitable Radioligand with Low Lipophilicity for Imaging σ 1 Receptors in the Brain. J Med Chem 2017; 60:4161-4172. [PMID: 28409931 DOI: 10.1021/acs.jmedchem.6b01723] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have designed and synthesized novel piperazine compounds with low lipophilicity as σ1 receptor ligands. 1-(4-Fluorobenzyl)-4-[(tetrahydrofuran-2-yl)methyl]piperazine (10) possessed a low nanomolar σ1 receptor affinity and a high selectivity toward the vesicular acetylcholine transporter (>2000-fold), σ2 receptors (52-fold), and adenosine A2A, adrenergic α2, cannabinoid CB1, dopamine D1, D2L, γ-aminobutyric acid A (GABAA), NMDA, melatonin MT1, MT2, and serotonin 5-HT1 receptors. The corresponding radiotracer [18F]10 demonstrated high brain uptake and extremely high brain-to-blood ratios in biodistribution studies in mice. Pretreatment with the selective σ1 receptor agonist SA4503 significantly reduced the level of accumulation of the radiotracer in the brain. No radiometabolite of [18F]10 was observed to enter the brain. Positron emission tomography and magnetic resonance imaging confirmed suitable kinetics and a high specific binding of [18F]10 to σ1 receptors in rat brain. Ex vivo autoradiography showed a reduced level of binding of [18F]10 in the cortex and hippocampus of the senescence-accelerated prone (SAMP8) compared to that of the senescence-accelerated resistant (SAMR1) mice, indicating the potential dysfunction of σ1 receptors in Alzheimer's disease.
Collapse
Affiliation(s)
- Yingfang He
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University , Beijing, China
| | - Fang Xie
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University , Beijing, China
| | - Jiajun Ye
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University , Beijing, China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Bixiao Cui
- Department of Nuclear Medicine, Xuanwu Hospital Capital Medical University , Beijing, China
| | - Liang Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University , Beijing, China
| | - Jie Lu
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University , Beijing, China
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf , Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, 04318 Leipzig, Germany
| | - Yiyun Huang
- Yale PET Center, Department of Radiology and Biomedical Imaging, Yale University School of Medicine , New Haven, Connecticut 06520-8048, United States
| | - Jie Lu
- Department of Nuclear Medicine, Xuanwu Hospital Capital Medical University , Beijing, China
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University , Beijing, China
| |
Collapse
|
11
|
Lever SZ, Fan KH, Lever JR. Tactics for preclinical validation of receptor-binding radiotracers. Nucl Med Biol 2017; 44:4-30. [PMID: 27755986 PMCID: PMC5161541 DOI: 10.1016/j.nucmedbio.2016.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). METHODS Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. RESULTS E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2/σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol/mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, >6% injected dose/g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). CONCLUSIONS Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo.
Collapse
Affiliation(s)
- Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO, USA; University of Missouri Research Reactor Center, Columbia, MO, USA.
| | - Kuo-Hsien Fan
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
12
|
Ye J, Wang X, Deuther-Conrad W, Zhang J, Li J, Zhang X, Wang L, Steinbach J, Brust P, Jia H. Synthesis and evaluation of a18F-labeled 4-phenylpiperidine-4-carbonitrile radioligand for σ1receptor imaging. J Labelled Comp Radiopharm 2016; 59:332-9. [DOI: 10.1002/jlcr.3408] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 03/10/2016] [Accepted: 05/03/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Jiajun Ye
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Xia Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Department of Neuroradiopharmaceuticals; Institute of Radiopharmaceutical Cancer Research; 04318 Leipzig Germany
| | - Jinming Zhang
- Nuclear Medicine Department; Chinese PLA General Hospital; Beijing 100853 China
| | - Jianzhou Li
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Xiaojun Zhang
- Nuclear Medicine Department; Chinese PLA General Hospital; Beijing 100853 China
| | - Liang Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| | - Jörg Steinbach
- Helmholtz-Zentrum Dresden-Rossendorf, Department of Neuroradiopharmaceuticals; Institute of Radiopharmaceutical Cancer Research; 04318 Leipzig Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Department of Neuroradiopharmaceuticals; Institute of Radiopharmaceutical Cancer Research; 04318 Leipzig Germany
| | - Hongmei Jia
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry; Beijing Normal University; Beijing 100875 China
| |
Collapse
|
13
|
Srivats S, Balasuriya D, Pasche M, Vistal G, Edwardson JM, Taylor CW, Murrell-Lagnado RD. Sigma1 receptors inhibit store-operated Ca2+ entry by attenuating coupling of STIM1 to Orai1. J Cell Biol 2016; 213:65-79. [PMID: 27069021 PMCID: PMC4828687 DOI: 10.1083/jcb.201506022] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 02/24/2016] [Indexed: 11/24/2022] Open
Abstract
Sigma1 receptors (σ1Rs) are expressed widely; they bind diverse ligands, including psychotropic drugs and steroids, regulate many ion channels, and are implicated in cancer and addiction. It is not known how σ1Rs exert such varied effects. We demonstrate that σ1Rs inhibit store-operated Ca(2+)entry (SOCE), a major Ca(2+)influx pathway, and reduce the Ca(2+)content of the intracellular stores. SOCE was inhibited by expression of σ1R or an agonist of σ1R and enhanced by loss of σ1R or an antagonist. Within the endoplasmic reticulum (ER), σ1R associated with STIM1, the ER Ca(2+)sensor that regulates SOCE. This interaction was modulated by σ1R ligands. After depletion of Ca(2+)stores, σ1R accompanied STIM1 to ER-plasma membrane (PM) junctions where STIM1 stimulated opening of the Ca(2+)channel, Orai1. The association of STIM1 with σ1R slowed the recruitment of STIM1 to ER-PM junctions and reduced binding of STIM1 to PM Orai1. We conclude that σ1R attenuates STIM1 coupling to Orai1 and thereby inhibits SOCE.
Collapse
Affiliation(s)
- Shyam Srivats
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - Dilshan Balasuriya
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - Mathias Pasche
- MRC Laboratory for Molecular Biology, Cambridge CB2 0QH, England, UK
| | - Gerard Vistal
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - J Michael Edwardson
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK
| | - Ruth D Murrell-Lagnado
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, England, UK Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, England, UK
| |
Collapse
|
14
|
LEVER JOHNR, FERGASON-CANTRELL EMILYA, WATKINSON LISAD, CARMACK TERRYL, LORD SARAHA, XU RONG, MILLER DENNISK, LEVER SUSANZ. Cocaine occupancy of sigma1 receptors and dopamine transporters in mice. Synapse 2016; 70:98-111. [PMID: 26618331 PMCID: PMC4724290 DOI: 10.1002/syn.21877] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Activation of sigma1 (σ1) receptors contributes to the behavioral and toxic effects of (-)-cocaine. We studied a key step, the ability of (-)-cocaine to occupy σ1 receptors in vivo, using CD-1(®) mice and the novel radioligand [(125) I]E-N-1-(3'-iodoallyl)-N'-4-(3",4"-dimethoxyphenethyl)-piperazine ([(125) I]E-IA-DM-PE-PIPZE). (-)-Cocaine displayed an ED50 of 68 μmol/kg for inhibition of specific radioligand binding in whole brain, with values between 73 and 80 μmol/kg for heart, lung, and spleen. For comparison, an ED50 of 26 μmol/kg for (-)-cocaine occupancy of striatal dopamine transporters (DAT) was determined by inhibition of [(125) I]3β-(4-iodophenyl)tropan-2β-carboxylic acid isopropyl ester ([(125) I]RTI-121) binding. A chief finding is the relatively small potency difference between (-)-cocaine occupancy of σ1 receptors and the DAT, although the DAT occupancy is likely underestimated. Interactions of (-)-cocaine with σ1 receptors were assessed further using [(125) I]E-IA-DM-PE-PIPZE for regional cerebral biodistribution studies and quantitative ex vivo autoradiography of brain sections. (-)-Cocaine binding to cerebral σ1 receptors proved directly proportional to the relative site densities known for the brain regions. Nonradioactive E-IA-DM-PE-PIPZE gave an ED50 of 0.23 μmol/kg for occupancy of cerebral σ1 receptors, and a 3.16 μmol/kg (i.p.) dose attenuated (-)-cocaine-induced locomotor hyperactivity by 30%. This effect did not reach statistical significance, but suggests that E-IA-DM-PE-PIPZE is a probable σ1 receptor antagonist. As groundwork for the in vivo studies, we used standard techniques in vitro to determine ligand affinities, site densities, and pharmacological profiles for the σ1 and σ2 receptors expressed in CD-1(®) mouse brain.
Collapse
Affiliation(s)
- JOHN R. LEVER
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - EMILY A. FERGASON-CANTRELL
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - LISA D. WATKINSON
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - TERRY L. CARMACK
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - SARAH A. LORD
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - RONG XU
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211
| | - DENNIS K. MILLER
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri 65211
- Center for Translational Neuroscience, University of Missouri, Columbia, Missouri 65211
| | - SUSAN Z. LEVER
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211
- MU Research Reactor Center, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
15
|
Abstract
This review compares the biological and physiological function of Sigma receptors [σRs] and their potential therapeutic roles. Sigma receptors are widespread in the central nervous system and across multiple peripheral tissues. σRs consist of sigma receptor one (σ1R) and sigma receptor two (σ2R) and are expressed in numerous regions of the brain. The sigma receptor was originally proposed as a subtype of opioid receptors and was suggested to contribute to the delusions and psychoses induced by benzomorphans such as SKF-10047 and pentazocine. Later studies confirmed that σRs are non-opioid receptors (not an µ opioid receptor) and play a more diverse role in intracellular signaling, apoptosis and metabolic regulation. σ1Rs are intracellular receptors acting as chaperone proteins that modulate Ca2+ signaling through the IP3 receptor. They dynamically translocate inside cells, hence are transmembrane proteins. The σ1R receptor, at the mitochondrial-associated endoplasmic reticulum membrane, is responsible for mitochondrial metabolic regulation and promotes mitochondrial energy depletion and apoptosis. Studies have demonstrated that they play a role as a modulator of ion channels (K+ channels; N-methyl-d-aspartate receptors [NMDAR]; inositol 1,3,5 triphosphate receptors) and regulate lipid transport and metabolism, neuritogenesis, cellular differentiation and myelination in the brain. σ1R modulation of Ca2+ release, modulation of cardiac myocyte contractility and may have links to G-proteins. It has been proposed that σ1Rs are intracellular signal transduction amplifiers. This review of the literature examines the mechanism of action of the σRs, their interaction with neurotransmitters, pharmacology, location and adverse effects mediated through them.
Collapse
Affiliation(s)
- Colin G Rousseaux
- a Department of Pathology and Laboratory Medicine , University of Ottawa , Ottawa , ON , Canada and
| | | |
Collapse
|
16
|
O'Neill J, Tobias MC, Hudkins M, London ED. Glutamatergic neurometabolites during early abstinence from chronic methamphetamine abuse. Int J Neuropsychopharmacol 2014; 18:pyu059. [PMID: 25522400 PMCID: PMC4360253 DOI: 10.1093/ijnp/pyu059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The acute phase of abstinence from methamphetamine abuse is critical for rehabilitation success. Proton magnetic resonance spectroscopy has detected below-normal levels of glutamate+glutamine in anterior middle cingulate of chronic methamphetamine abusers during early abstinence, attributed to abstinence-induced downregulation of the glutamatergic systems in the brain. This study further explored this phenomenon. METHODS We measured glutamate+glutamine in additional cortical regions (midline posterior cingulate, midline precuneus, and bilateral inferior frontal cortex) putatively affected by methamphetamine. We examined the relationship between glutamate+glutamine in each region with duration of methamphetamine abuse as well as the depressive symptoms of early abstinence. Magnetic resonance spectroscopic imaging was acquired at 1.5 T from a methamphetamine group of 44 adults who had chronically abused methamphetamine and a control group of 23 age-, sex-, and tobacco smoking-matched healthy volunteers. Participants in the methamphetamine group were studied as inpatients during the first week of abstinence from the drug and were not receiving treatment. RESULTS In the methamphetamine group, small but significant (5-15%, P<.05) decrements (vs control) in glutamate+glutamine were observed in posterior cingulate, precuneus, and right inferior frontal cortex; glutamate+glutamine in posterior cingulate was negatively correlated (P<.05) with years of methamphetamine abuse. The Beck Depression Inventory score was negatively correlated (P<.005) with glutamate+glutamine in right inferior frontal cortex. CONCLUSIONS Our findings support the idea that glutamatergic metabolism is downregulated in early abstinence in multiple cortical regions. The extent of downregulation may vary with length of abuse and may be associated with severity of depressive symptoms emergent in early recovery.
Collapse
Affiliation(s)
- Joseph O'Neill
- Division of Child and Adolescent Psychiatry (Drs O'Neill, Tobias, and Hudkins), and Department of Psychiatry and Biobehavioral Sciences (Drs O'Neill and London), Semel Institute for Neuroscience, and Department of Molecular and Medical Pharmacology (Dr London), and Brain Research Institute (Dr London), University of California, Los Angeles, CA
| | - Marc C Tobias
- Division of Child and Adolescent Psychiatry (Drs O'Neill, Tobias, and Hudkins), and Department of Psychiatry and Biobehavioral Sciences (Drs O'Neill and London), Semel Institute for Neuroscience, and Department of Molecular and Medical Pharmacology (Dr London), and Brain Research Institute (Dr London), University of California, Los Angeles, CA
| | - Matthew Hudkins
- Division of Child and Adolescent Psychiatry (Drs O'Neill, Tobias, and Hudkins), and Department of Psychiatry and Biobehavioral Sciences (Drs O'Neill and London), Semel Institute for Neuroscience, and Department of Molecular and Medical Pharmacology (Dr London), and Brain Research Institute (Dr London), University of California, Los Angeles, CA
| | - Edythe D London
- Division of Child and Adolescent Psychiatry (Drs O'Neill, Tobias, and Hudkins), and Department of Psychiatry and Biobehavioral Sciences (Drs O'Neill and London), Semel Institute for Neuroscience, and Department of Molecular and Medical Pharmacology (Dr London), and Brain Research Institute (Dr London), University of California, Los Angeles, CA
| |
Collapse
|
17
|
Chen YY, Wang X, Zhang JM, Deuther-Conrad W, Zhang XJ, Huang Y, Li Y, Ye JJ, Cui MC, Steinbach J, Brust P, Liu BL, Jia HM. Synthesis and evaluation of a 18F-labeled spirocyclic piperidine derivative as promising σ1 receptor imaging agent. Bioorg Med Chem 2014; 22:5270-8. [DOI: 10.1016/j.bmc.2014.08.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 07/18/2014] [Accepted: 08/05/2014] [Indexed: 12/16/2022]
|
18
|
Wang X, Li D, Deuther-Conrad W, Lu J, Xie Y, Jia B, Cui M, Steinbach J, Brust P, Liu B, Jia H. Novel cyclopentadienyl tricarbonyl (99m)tc complexes containing 1-piperonylpiperazine moiety: potential imaging probes for sigma-1 receptors. J Med Chem 2014; 57:7113-25. [PMID: 25073047 DOI: 10.1021/jm5009488] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report the design, synthesis, and evaluation of a series of novel cyclopentadienyl tricarbonyl (99m)Tc complexes as potent σ1 receptor radioligands. Rhenium compounds 3-(4-(1,3-benzodioxol-5-ylmethyl)piperazin-1-yl)propylcarbonylcyclopentadienyl tricarbonyl rhenium (10a) and 4-(4-(1,3-benzodioxol-5-ylmethyl)piperazin-1-yl)butylcarbonylcyclopentadienyl tricarbonyl rhenium (10b) possessed high in vitro affinity for σ1 receptors and moderate to high selectivity for σ2 receptors and the vesicular acetylcholine transporter. Biodistribution studies in mice demonstrated high initial brain uptake for corresponding (99m)Tc derivatives [(99m)Tc]23 and [(99m)Tc]24 of 2.94 and 2.13% injected dose (ID)/g, respectively, at 2 min postinjection. Pretreatment of haloperidol significantly reduced the radiotracer accumulation of [(99m)Tc]23 or [(99m)Tc]24 in the brain. Studies of the cellular uptake of [(99m)Tc]23 in C6 and DU145 tumor cells demonstrated a reduction of accumulation by incubation with haloperidol, 1-(3,4-dimethoxyphenethyl)-4-(3-phenylpropyl)piperazine (SA4503), or 1,3-di-o-tolyl-guanidine (DTG). Furthermore, blocking studies in C6 glioma-bearing mice confirmed the specific binding of [(99m)Tc]23 to σ1 receptors in the tumor.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University , Beijing 100875, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Matsumoto RR, Nguyen L, Kaushal N, Robson MJ. Sigma (σ) receptors as potential therapeutic targets to mitigate psychostimulant effects. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:323-86. [PMID: 24484982 DOI: 10.1016/b978-0-12-420118-7.00009-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Many psychostimulants, including cocaine and methamphetamine, interact with sigma (σ) receptors at physiologically relevant concentrations. The potential therapeutic relevance of this interaction is underscored by the ability to selectively target σ receptors to mitigate many behavioral and physiological effects of psychostimulants in animal and cell-based model systems. This chapter begins with an overview of these enigmatic proteins. Provocative preclinical data showing that σ ligands modulate an array of cocaine and methamphetamine effects are summarized, along with emerging areas of research. Together, the literature suggests targeting of σ receptors as an innovative option for combating undesired actions of psychostimulants through both neuronal and glial mechanisms.
Collapse
Affiliation(s)
- Rae R Matsumoto
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA.
| | - Linda Nguyen
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| | - Nidhi Kaushal
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| | - Matthew J Robson
- West Virginia University, One Medical Center Drive, Morgantown, West Virginia, USA
| |
Collapse
|
20
|
Abstract
OBJECTIVES Comprehensively review the evidence regarding the use of ayahuasca, an Amerindian medicine traditionally used to treat many different illnesses and diseases, to treat some types of cancer. METHODS An in-depth review of the literature was conducted using PubMed, books, institutional magazines, conferences and online texts in nonprofessional sources regarding the biomedical knowledge about ayahuasca in general with a specific focus in its possible relations to the treatment of cancer. RESULTS At least nine case reports regarding the use of ayahuasca in the treatment of prostate, brain, ovarian, uterine, stomach, breast, and colon cancers were found. Several of these were considered improvements, one case was considered worse, and one case was rated as difficult to evaluate. A theoretical model is presented which explains these effects at the cellular, molecular, and psychosocial levels. Particular attention is given to ayahuasca's pharmacological effects through the activity of N,N-dimethyltryptamine at intracellular sigma-1 receptors. The effects of other components of ayahuasca, such as harmine, tetrahydroharmine, and harmaline, are also considered. CONCLUSION The proposed model, based on the molecular and cellular biology of ayahuasca's known active components and the available clinical reports, suggests that these accounts may have consistent biological underpinnings. Further study of ayahuasca's possible antitumor effects is important because cancer patients continue to seek out this traditional medicine. Consequently, based on the social and anthropological observations of the use of this brew, suggestions are provided for further research into the safety and efficacy of ayahuasca as a possible medicinal aid in the treatment of cancer.
Collapse
Affiliation(s)
- Eduardo E Schenberg
- Departamento de Psiquiatria, Universidade Federal de São Paulo, São Paulo, Brazil; Instituto Plantando Consciencia, São Paulo, Brazil
| |
Collapse
|
21
|
Li Y, Wang X, Zhang J, Deuther-Conrad W, Xie F, Zhang X, Liu J, Qiao J, Cui M, Steinbach J, Brust P, Liu B, Jia H. Synthesis and Evaluation of Novel 18F-Labeled Spirocyclic Piperidine Derivatives as σ1 Receptor Ligands for Positron Emission Tomography Imaging. J Med Chem 2013; 56:3478-91. [DOI: 10.1021/jm301734g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yan Li
- Key Laboratory
of Radiopharmaceuticals
(Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s
Republic of China
| | - Xia Wang
- Key Laboratory
of Radiopharmaceuticals
(Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s
Republic of China
| | - Jinming Zhang
- Nuclear
Medicine Department, Chinese PLA General Hospital, Beijing 100853, People’s
Republic of China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research
Site Leipzig, Department of Neuroradiopharmaceuticals, 04318 Leipzig,
Germany
| | - Fang Xie
- Key Laboratory
of Radiopharmaceuticals
(Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s
Republic of China
| | - Xiaojun Zhang
- Nuclear
Medicine Department, Chinese PLA General Hospital, Beijing 100853, People’s
Republic of China
| | - Jian Liu
- Nuclear
Medicine Department, Chinese PLA General Hospital, Beijing 100853, People’s
Republic of China
| | - Jinping Qiao
- Key Laboratory
of Radiopharmaceuticals
(Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s
Republic of China
| | - Mengchao Cui
- Key Laboratory
of Radiopharmaceuticals
(Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s
Republic of China
| | - Jörg Steinbach
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research
Site Leipzig, Department of Neuroradiopharmaceuticals, 04318 Leipzig,
Germany
| | - Peter Brust
- Helmholtz-Zentrum
Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Research
Site Leipzig, Department of Neuroradiopharmaceuticals, 04318 Leipzig,
Germany
| | - Boli Liu
- Key Laboratory
of Radiopharmaceuticals
(Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s
Republic of China
| | - Hongmei Jia
- Key Laboratory
of Radiopharmaceuticals
(Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, People’s
Republic of China
| |
Collapse
|
22
|
Wang X, Li Y, Deuther-Conrad W, Xie F, Chen X, Cui MC, Zhang XJ, Zhang JM, Steinbach J, Brust P, Liu BL, Jia HM. Synthesis and biological evaluation of ¹⁸F labeled fluoro-oligo-ethoxylated 4-benzylpiperazine derivatives for sigma-1 receptor imaging. Bioorg Med Chem 2013; 21:215-22. [PMID: 23199475 DOI: 10.1016/j.bmc.2012.10.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/11/2012] [Accepted: 10/23/2012] [Indexed: 11/20/2022]
Abstract
We report the synthesis and evaluation of a series of fluoro-oligo-ethoxylated 4-benzylpiperazine derivatives as potential σ(1) receptor ligands. In vitro competition binding assays showed that 1-(1,3-benzodioxol-5-ylmethyl)-4-(4-(2-fluoroethoxy)benzyl)piperazine (6) exhibits low nanomolar affinity for σ(1) receptors (K(i)=1.85 ± 1.59 nM) and high subtype selectivity (σ(2) receptor: K(i)=291 ± 111 nM; K(i)σ(2)/K(i)σ(1)=157). [(18)F]6 was prepared in 30-50% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via nucleophilic (18)F(-) substitution of the corresponding tosylate precursor. The logD(pH 7.4) value of [(18)F]6 was found to be 2.57 ± 0.10, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiotracers in organs known to contain σ(1) receptors, including the brain, lungs, kidneys, heart, and spleen. Administration of haloperidol 5 min prior to injection of [(18)F]6 significantly reduced the concentration of radiotracers in the above-mentioned organs. The accumulation of radiotracers in the bone was quite low suggesting that [(18)F]6 is relatively stable to in vivo defluorination. The ex vivo autoradiography in rat brain showed high accumulation of radiotracers in the brain areas known to possess high expression of σ(1) receptors. These findings suggest that [(18)F]6 is a suitable radiotracer for imaging σ(1) receptors with PET in vivo.
Collapse
Affiliation(s)
- Xia Wang
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Laurini E, Marson D, Dal Col V, Fermeglia M, Mamolo MG, Zampieri D, Vio L, Pricl S. Another brick in the wall. Validation of the σ1 receptor 3D model by computer-assisted design, synthesis, and activity of new σ1 ligands. Mol Pharm 2012; 9:3107-26. [PMID: 23020867 DOI: 10.1021/mp300233y] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Originally considered an enigmatic polypeptide, the σ(1) receptor has recently been identified as a unique ligand-regulated protein. Many studies have shown the potential of σ(1) receptor ligands for the treatment of various diseases of the central nervous system (CNS); nevertheless, almost no information about the 3D structure of the receptor and/or the possible modes of interaction of the σ(1) protein with its ligands have been unveiled so far. With the present work we validated our σ(1) 3D homology model and assessed its reliability as a platform for σ(1) ligand structure-based drug design. To this purpose, the 3D σ(1) model was exploited in the design of 33 new σ(1) ligands and in their ranking for receptor affinity by extensive molecular dynamics simulation-based free energy calculations. Also, the main interactions involved in receptor/ligand binding were analyzed by applying a per residue free energy deconvolution and in silico alanine scanning mutagenesis calculations. Subsequently, all compounds were synthesized in our laboratory and tested for σ(1) binding activity in vitro. The agreement between in silico and in vitro results confirms the reliability of the proposed σ(1) 3D model in the a priori prediction of the affinity of new σ(1) ligands. Moreover, it also supports and corroborates the currently available biochemical data concerning the σ(1) protein residues considered essential for σ(1) ligand binding and activity.
Collapse
Affiliation(s)
- Erik Laurini
- Molecular Simulation Engineering Laboratory, Department of Industrial Engineering and Information Technology, University of Trieste, Via Valerio 10, 34127 Trieste, Italy
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Lever SZ, Xu R, Fan KH, Fergason-Cantrell EA, Carmack TL, Watkinson LD, Lever JR. Synthesis, radioiodination and in vitro and in vivo sigma receptor studies of N-1-allyl-N´-4-phenethylpiperazine analogs. Nucl Med Biol 2012; 39:401-14. [PMID: 22172395 DOI: 10.1016/j.nucmedbio.2011.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 08/25/2011] [Accepted: 10/05/2011] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Sigma-1 (σ(1)) receptor radioligands are useful for basic pharmacology studies and for imaging studies in neurology, psychiatry and oncology. We derived a hybrid structure, N-1-allyl-N´-4-phenethylpiperazine, from known ligands TPCNE and SA4503 for use as a scaffold for development of radioiodinated σ(1) receptor ligands. METHODS E-and Z-N-1-(3'-iodoallyl)-N´-4-(3″,4″-dimethoxyphenethyl)-piperazine (E-1 and Z-1), N-1-allyl-N´-4-(3',4'-dimethoxyphenethyl)-piperazine (2) and E-N-1-(3'-iodoallyl)-N´-4-(3″-methoxy-4'´-hydroxyphenethyl)-piperazine (3) were synthesized. Affinities for σ(1) and σ(2) receptors were determined. [(125)I]E-1 and [(125)I]Z-1 were prepared and evaluated in vivo in mice. [(125)I]E-1 was further evaluated in σ(1) receptor binding assays in vitro. RESULTS E-1 displayed moderately high apparent affinity (15 nM) for σ(1) sites and 84-fold selectivity against σ(2) sites. Z-1 showed similar σ(1) affinity, but only 23-fold selectivity. In contrast, 2 exhibited poor binding to both subtypes, while 3 had good affinities but poor selectivity. E-1 profiled as a probable antagonist in the phenytoin shift assay. [(125)I]E-1 and [(125)I]Z-1 were prepared in good yields and with high specific radioactivities. Log D(7.4) values (2.25 and 2.27) fall within the optimal range for in vivo studies. Both radioligands selectively labeled σ(1) receptors in mouse brain and peripheral organs in vivo. [(125)I]E-1 showed a higher level of specific binding than [(125)I]Z-1 and displayed good metabolic stability. Further, [(125)I]E-1 selectively labeled σ(1) receptors in mouse brain homogenates (K(d) 3.79 nM; B(max)=599 fmol/mg protein). CONCLUSIONS [(125)I]E-1 is a selective σ(1) receptor radioligand that exhibits properties amenable to in vitro and in vivo studies, with possible extension to single photon emission computed tomography using iodine-123.
Collapse
Affiliation(s)
- Susan Z Lever
- Department of Chemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Serafine KM, Briscione MA, Riley AL. The effects of haloperidol on cocaine-induced conditioned taste aversions. Physiol Behav 2011; 105:1161-7. [PMID: 22212241 DOI: 10.1016/j.physbeh.2011.12.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2011] [Revised: 10/26/2011] [Accepted: 12/15/2011] [Indexed: 11/30/2022]
Abstract
Although the mechanism underlying the rewarding effects of cocaine has been well characterized, little is known about the mechanism underlying its aversive effects. Several reports have indicated a possible role of dopamine (DA) in the aversive effects; however, several procedural issues limit any conclusions regarding its specific role. In order to investigate a possible dopaminergic role in cocaine-induced CTAs using procedures that circumvented these possible issues, the present series of investigations assessed the aversive effects of the DA antagonist haloperidol alone (Experiment 1) and in combination with cocaine (Experiment 2). Haloperidol, at doses that were determined to be non-aversive, yet behaviorally active in a locomotor assessment, attenuated cocaine-induced taste aversions, suggesting that cocaine's aversive effects are mediated in part by dopaminergic activity. These findings were discussed in consideration with other evidence implicating DA and other neurotransmitter systems in cocaine-induced CTAs.
Collapse
Affiliation(s)
- Katherine M Serafine
- Psychopharmacology Laboratory, Department of Psychology, American University, Washington, DC 20016, USA.
| | | | | |
Collapse
|
26
|
Li ZJ, Ren HY, Cui MC, Deuther-Conrad W, Tang RK, Steinbach J, Brust P, Liu BL, Jia HM. Synthesis and biological evaluation of novel 4-benzylpiperazine ligands for sigma-1 receptor imaging. Bioorg Med Chem 2011; 19:2911-7. [PMID: 21481592 DOI: 10.1016/j.bmc.2011.03.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 03/17/2011] [Accepted: 03/17/2011] [Indexed: 10/18/2022]
Abstract
We report the synthesis and evaluation of 4-benzylpiperazine ligands (BP-CH(3), BP-F, BP-Br, BP-I, and BP-NO(2)) as potential σ(1) receptor ligands. The X-ray crystal structure of BP-Br, which crystallized with monoclinic space group P2(1)/c, has been determined. In vitro competition binding assays showed that all the five ligands exhibit low nanomolar affinity for σ(1) receptors (K(i)=0.43-0.91nM) and high subtype selectivity (σ(2) receptor: K(i)=40-61nM; K(i)σ(2)/K(i)σ(1)=52-94). [(125)I]BP-I (1-(1,3-benzodioxol-5-ylmethyl)-4-(4-iodobenzyl)piperazine) was prepared in 53±10% isolated radiochemical yield, with radiochemical purity of >99% by HPLC analysis after purification, via iododestannylation of the corresponding tributyltin precursor. The logD value of [(125)I]BP-I was found to be 2.98±0.17, which is within the range expected to give high brain uptake. Biodistribution studies in mice demonstrated relatively high concentration of radiolabeled substances in organs known to contain σ(1) receptors, including the brain, lung, kidney, heart, and spleen. Administration of haloperidol 5min prior to injection of [(125)I]BP-I significantly reduced the concentration of radioactivity in the above-mentioned organs. The accumulation of radiolabeled substance in the thyroid was quite low suggesting that [(125)I]BP-I is relatively stable to in vivo deiodination. These findings suggest that the binding of [(125)I]BP-I to σ(1) receptors in vivo is specific.
Collapse
Affiliation(s)
- Zi-Jing Li
- Key Laboratory of Radiopharmaceuticals (Beijing Normal University), Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Chen RQ, Li Y, Zhang QY, Jia HM, Deuther-Conrad W, Schepmann D, Steinbach J, Brust P, Wünsch B, Liu BL. Synthesis and biological evaluation of a radioiodinated spiropiperidine ligand as a potential σ1 receptor imaging agent. J Labelled Comp Radiopharm 2010. [DOI: 10.1002/jlcr.1777] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
28
|
Cobos EJ, Entrena JM, Nieto FR, Cendán CM, Del Pozo E. Pharmacology and therapeutic potential of sigma(1) receptor ligands. Curr Neuropharmacol 2010; 6:344-66. [PMID: 19587856 PMCID: PMC2701284 DOI: 10.2174/157015908787386113] [Citation(s) in RCA: 295] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2007] [Revised: 07/18/2008] [Accepted: 07/09/2008] [Indexed: 11/22/2022] Open
Abstract
Sigma (σ) receptors, initially described as a subtype of opioid receptors, are now considered unique receptors. Pharmacological studies have distinguished two types of σ receptors, termed σ1 and σ2. Of these two subtypes, the σ1 receptor has been cloned in humans and rodents, and its amino acid sequence shows no homology with other mammalian proteins. Several psychoactive drugs show high to moderate affinity for σ1 receptors, including the antipsychotic haloperidol, the antidepressant drugs fluvoxamine and sertraline, and the psychostimulants cocaine and methamphetamine; in addition, the anticonvulsant drug phenytoin allosterically modulates σ1 receptors. Certain neurosteroids are known to interact with σ1 receptors, and have been proposed to be their endogenous ligands. These receptors are located in the plasma membrane and in subcellular membranes, particularly in the endoplasmic reticulum, where they play a modulatory role in intracellular Ca2+ signaling. Sigma1 receptors also play a modulatory role in the activity of some ion channels and in several neurotransmitter systems, mainly in glutamatergic neurotransmission. In accordance with their widespread modulatory role, σ1 receptor ligands have been proposed to be useful in several therapeutic fields such as amnesic and cognitive deficits, depression and anxiety, schizophrenia, analgesia, and against some effects of drugs of abuse (such as cocaine and methamphetamine). In this review we provide an overview of the present knowledge of σ1 receptors, focussing on σ1 ligand neuropharmacology and the role of σ1 receptors in behavioral animal studies, which have contributed greatly to the potential therapeutic applications of σ1 ligands.
Collapse
Affiliation(s)
- E J Cobos
- Department of Pharmacology and Institute of Neuroscience, Faculty of Medicine, University of Granada, Granada, Spain
| | | | | | | | | |
Collapse
|
29
|
Mégalizzi V, Decaestecker C, Debeir O, Spiegl-Kreinecker S, Berger W, Lefranc F, Kast RE, Kiss R. Screening of anti-glioma effects induced by sigma-1 receptor ligands: potential new use for old anti-psychiatric medicines. Eur J Cancer 2009; 45:2893-905. [PMID: 19679463 DOI: 10.1016/j.ejca.2009.07.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 07/06/2009] [Accepted: 07/17/2009] [Indexed: 11/28/2022]
Abstract
The prognosis of glioblastoma (GBM) remains poor. Diffuse invasion of distant brain tissue by migrating cells from the primary tumour mass has already occurred at time of diagnosis. Anti-cancer effects of a selective sigma-1 agonist, 4-(N-benzylpiperidin-4-yl)-4-iodobenzamide (4-IBP), in glioblastoma were shown previously, leading to the present work where the effects on glioblastoma cells of 17 agonists or antagonists of sigma-1 receptors were studied, including currently marketed drugs fluvoxamine, dextromethorphan, donepezil, memantine and haloperidol. We first showed that established GBM cell lines, primary cultures and surgical specimens express sigma-1 receptors. In vitro analyses then focused on anti-proliferation and anti-migratory effects on human glioblastoma cell lines using quantitative videomicroscopy analyses. These cell monitoring assays revealed specific impacts on the mitotic cell process. Using an aggressive glioma model orthotopically grafted into the brains of immunocompromised mice, we showed that combining donepezil and temozolomide gave additive benefit in terms of long survivors as compared to temozolomide or donepezil alone. Clinical study is planned if further rodent dose-ranging studies of donepezil with temozolomide continue to show evidence of benefit in this model.
Collapse
Affiliation(s)
- Véronique Mégalizzi
- Laboratory of Toxicology, Institute of Pharmacy, Université Libre de Bruxelles, Campus de la Plaine, Boulevard du Triomphe, Brussels 1050, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Akhter N, Shiba K, Ogawa K, Kinuya S, Nakajima K, Mori H. In vivo characterization of radioiodinated (+)-2-[4-(4-iodophenyl) piperidino] cyclohexanol as a potential sigma-1 receptor imaging agent. Nucl Med Biol 2007; 34:697-702. [PMID: 17707810 DOI: 10.1016/j.nucmedbio.2007.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2006] [Revised: 04/12/2007] [Accepted: 05/16/2007] [Indexed: 11/28/2022]
Abstract
In this study, the (+)-enantiomer of radioiodinated 2-[4-(4-iodophenyl)piperidino]cyclohexanol [(+)-[(125)I]-p-iodovesamicol] [(+)-[(125)I]pIV], which is reported to bind with high affinity to sigma-1 receptors in vitro, was tested for its usefulness in imaging sigma-1 receptors in the central nervous system (CNS) in vivo. In biodistribution studies, significant amounts (approximately 3% of the injected dose) of (+)-[(125)I]pIV accumulated in rat brain, and its retention was prolonged. In blocking studies, the accumulation of (+)-[(125)I]pIV in the rat brain was significantly reduced by the coadministration of sigma-ligands such as pentazocine (5.0 micromol), haloperidol (0.5 micromol) or SA4503 (0.5 micromol). The blocking effect of pentazocine (selective sigma-1 ligand) was similar to the blocking effects of SA4503 and haloperidol [nonselective sigma (sigma-1 and sigma-2) ligands]. Ex vivo autoradiography of the rat brain at 45 min following intravenous injection of (+)-[(125)I]pIV showed high localization in brain areas rich in sigma-1 receptors. Thus, the distribution of (+)-[(125)I]pIV was thought to bind to sigma-1 receptors in the CNS in vivo. These results indicate that radioiodinated (+)-pIV may have the potential to image sigma-1 receptors in vivo.
Collapse
Affiliation(s)
- Nasima Akhter
- Department of Biotracer Medicine, Kanazawa University, Kanazawa 920-8640, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Kast RE. Glioblastoma: looking at the currently marketed sigma-1 agonists and antagonists. Neoplasia 2007; 9:689. [PMID: 17786188 PMCID: PMC1950439 DOI: 10.1593/neo.07451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 06/05/2007] [Accepted: 06/23/2007] [Indexed: 11/18/2022]
|
32
|
Waterhouse RN, Chang RC, Atuehene N, Collier TL. In vitro and in vivo binding of neuroactive steroids to the sigma-1 receptor as measured with the positron emission tomography radioligand [18F]FPS. Synapse 2007; 61:540-6. [PMID: 17447254 DOI: 10.1002/syn.20369] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Sigma-1 receptors are widely expressed in the mammalian brain and also in organs of the immune, endocrine and reproductive systems. Based on behavioral and pharmacological assessments, sigma-1 receptors are important in memory and cognitive processes, and are thought to be involved in specific psychiatric illnesses, including schizophrenia, depression, and drug addiction. It is thought that specific neuroactive steroids are endogenous ligands for these sites. In addition, several sigma-1 receptor binding steroids including progesterone, dihydroepiandrosterone (DHEA), and testosterone are being examined clinically for specific therapeutic purposes; however, their mechanisms of action have not been clearly defined. We previously described the high affinity sigma-1 receptor selective PET tracer [(18)F]FPS. This study examines the effect of neuroactive steroids on [(18)F]FPS binding in vitro and in vivo. Inhibition constants were determined in vitro for progesterone, testosterone, DHEA, estradiol, and estriol binding to the [(18)F]FPS labeled receptor. The affinity order (K(i) values) for these steroids ranged from 36 nM for progesterone to >10,000 nM for estrodiol and estriol. Biodistribution studies revealed that i.v. coadministration of progesterone (10 mg/kg), testosterone (20 mg/kg), or DHEA (20 mg/kg) significantly decreased [(18)F]FPS uptake (%ID/g) by up to 50% in nearly all of eight brain regions examined. [(18)F]FPS uptake in several peripheral organs that express sigma-1 receptors (heart, spleen, muscle, lung) was also reduced (54-85%). These studies clearly demonstrate that exogenously administered steroids can occupy sigma-1 receptors in vivo, and that [(18)F]FPS may provide an effective tool for monitoring sigma-1 receptor occupancy of specific therapeutic steroids during clinical trials.
Collapse
|
33
|
Sakata M, Kimura Y, Naganawa M, Oda K, Ishii K, Chihara K, Ishiwata K. Mapping of human cerebral sigma1 receptors using positron emission tomography and [11C]SA4503. Neuroimage 2007; 35:1-8. [PMID: 17240168 DOI: 10.1016/j.neuroimage.2006.11.055] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 10/20/2006] [Accepted: 11/27/2006] [Indexed: 11/16/2022] Open
Abstract
The objective of this study was to establish the kinetic analysis for mapping sigma(1) receptors (sigma1Rs) in the human brain by positron emission tomography (PET) with [(11)C]SA4503. The sigma1Rs are considered to be involved in various neurological and psychiatric diseases. [(11)C]SA4503 is a recently developed radioligand with high and selective affinity for sigma1Rs, and we have first applied it to clinical studies. Nine healthy male subjects each underwent a dynamic 90-min PET scan after injection of [(11)C]SA4503. In addition to the baseline measurement, three of the nine subjects underwent a second [(11)C]SA4503-PET after partial blockade of sigma1Rs by oral administration of haloperidol, a sigma receptor antagonist. Full kinetic analysis using two times nonlinear estimations was applied for fitting a two-tissue three-compartment model to determine the binding potential (BP) and total distribution volume (tDV) of [(11)C]SA4503. Graphical analysis with a Logan plot was also applied for estimations of tDV. The regional distribution patterns of BP and tDV in 11 regions were compatible with those of previously reported sigma1Rs in vitro. The reduced binding sites of sigma1Rs by haloperidol were appropriately evaluated. The tDVs derived from the two methods matched each other well. The Logan plot offered images of the tDV, which reflected sigma1R densities, and the tDV in the images decreased after haloperidol loading. Moreover, comparison of BPs calculated with and without metabolite correction for plasma input function indicated that the metabolite correction could be omitted. We concluded that this method enables the quantitative analysis of sigma1Rs in the human brain.
Collapse
Affiliation(s)
- Muneyuki Sakata
- Graduate School of Information Science, Nara Institute of Science and Technology, Japan
| | | | | | | | | | | | | |
Collapse
|