1
|
Adraoui FW, Douw L, Martens GJM, Maas DA. Connecting Neurobiological Features with Interregional Dysconnectivity in Social-Cognitive Impairments of Schizophrenia. Int J Mol Sci 2023; 24:ijms24097680. [PMID: 37175387 PMCID: PMC10177877 DOI: 10.3390/ijms24097680] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023] Open
Abstract
Schizophrenia (SZ) is a devastating psychiatric disorder affecting about 1% of the world's population. Social-cognitive impairments in SZ prevent positive social interactions and lead to progressive social withdrawal. The neurobiological underpinnings of social-cognitive symptoms remain poorly understood, which hinders the development of novel treatments. At the whole-brain level, an abnormal activation of social brain regions and interregional dysconnectivity within social-cognitive brain networks have been identified as major contributors to these symptoms. At the cellular and subcellular levels, an interplay between oxidative stress, neuroinflammation and N-methyl-D-aspartate receptor hypofunction is thought to underly SZ pathology. However, it is not clear how these molecular processes are linked with interregional dysconnectivity in the genesis of social-cognitive symptoms. Here, we aim to bridge the gap between macroscale (connectivity analyses) and microscale (molecular and cellular mechanistic) knowledge by proposing impaired myelination and the disinhibition of local microcircuits as possible causative biological pathways leading to dysconnectivity and abnormal activity of the social brain. Furthermore, we recommend electroencephalography as a promising translational technique that can foster pre-clinical drug development and discuss attractive drug targets for the treatment of social-cognitive symptoms in SZ.
Collapse
Affiliation(s)
- Florian W Adraoui
- Biotrial, Preclinical Pharmacology Department, 7-9 rue Jean-Louis Bertrand, 35000 Rennes, France
| | - Linda Douw
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| | - Gerard J M Martens
- Donders Centre for Neuroscience (DCN), Department of Molecular Animal Physiology, Faculty of Science, Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 GA Nijmegen, The Netherlands
- NeuroDrug Research Ltd., 6525 ED Nijmegen, The Netherlands
| | - Dorien A Maas
- Anatomy and Neurosciences, Amsterdam UMC Location Vrije Universiteit Amsterdam, Boelelaan, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
2
|
Roberts RC, McCollum LA, Schoonover KE, Mabry SJ, Roche JK, Lahti AC. Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr Res 2022; 249:4-15. [PMID: 32014360 PMCID: PMC7392793 DOI: 10.1016/j.schres.2020.01.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/14/2022]
Abstract
The aim of this paper is to summarize ultrastructural evidence for glutamatergic dysregulation in several linked regions in postmortem schizophrenia brain. Following a brief summary of glutamate circuitry and how synapses are identified at the electron microscopic (EM) level, we will review EM pathology in the cortex and basal ganglia. We will include the effects of antipsychotic drugs and the relation of treatment response. We will discuss how these findings support or confirm other postmortem findings as well as imaging results. Briefly, synaptic and mitochondrial density in anterior cingulate cortex was decreased in schizophrenia, versus normal controls (NCs), in a selective layer specific pattern. In dorsal striatum, increases in excitatory synaptic density were detected in caudate matrix, a compartment associated with cognitive and motor function, and in the putamen patches, a region associated with limbic function and in the core of the nucleus accumbens. Patients who were treatment resistant or untreated had significantly elevated numbers of excitatory synapses in limbic striatal areas in comparison to NCs and responders. Protein levels of vGLUT2, found in subcortical glutamatergic neurons, were increased in the nucleus accumbens in schizophrenia. At the EM level, schizophrenia subjects had an increase in density of excitatory synapses in several areas of the basal ganglia. In the substantia nigra, the protein levels of vGLUT2 were elevated in untreated patients compared to NCs. The density of inhibitory synapses was decreased in schizophrenia versus NCs. In schizophrenia, glutamatergic synapses are differentially affected depending on the brain region, treatment status, and treatment response.
Collapse
Affiliation(s)
- Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America.
| | - Lesley A McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Kirsten E Schoonover
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Samuel J Mabry
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Joy K Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| | - Adrienne C Lahti
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama, Birmingham, AL 35294, United States of America
| |
Collapse
|
3
|
Aberrant maturation and connectivity of prefrontal cortex in schizophrenia-contribution of NMDA receptor development and hypofunction. Mol Psychiatry 2022; 27:731-743. [PMID: 34163013 PMCID: PMC8695640 DOI: 10.1038/s41380-021-01196-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 06/02/2021] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
The neurobiology of schizophrenia involves multiple facets of pathophysiology, ranging from its genetic basis over changes in neurochemistry and neurophysiology, to the systemic level of neural circuits. Although the precise mechanisms associated with the neuropathophysiology remain elusive, one essential aspect is the aberrant maturation and connectivity of the prefrontal cortex that leads to complex symptoms in various stages of the disease. Here, we focus on how early developmental dysfunction, especially N-methyl-D-aspartate receptor (NMDAR) development and hypofunction, may lead to the dysfunction of both local circuitry within the prefrontal cortex and its long-range connectivity. More specifically, we will focus on an "all roads lead to Rome" hypothesis, i.e., how NMDAR hypofunction during development acts as a convergence point and leads to local gamma-aminobutyric acid (GABA) deficits and input-output dysconnectivity in the prefrontal cortex, which eventually induce cognitive and social deficits. Many outstanding questions and hypothetical mechanisms are listed for future investigations of this intriguing hypothesis that may lead to a better understanding of the aberrant maturation and connectivity associated with the prefrontal cortex.
Collapse
|
4
|
Ploense KL, Vieira P, Bubalo L, Olivarria G, Carr AE, Szumlinski KK, Kippin TE. Contributions of prolonged contingent and non-contingent cocaine exposure to escalation of cocaine intake and glutamatergic gene expression. Psychopharmacology (Berl) 2018; 235:1347-1359. [PMID: 29234834 PMCID: PMC5924572 DOI: 10.1007/s00213-017-4798-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 11/01/2017] [Indexed: 01/08/2023]
Abstract
Similar to the pattern observed in people with substance abuse disorders, laboratory animals will exhibit escalation of cocaine intake when the drug is available over prolonged periods of time. Here, we investigated the contribution of behavioral contingency of cocaine administration on escalation of cocaine intake and gene expression in the dorsal medial prefrontal cortex (dmPFC) in adult male rats. Rats were allowed to self-administer intravenous cocaine (0.25 mg/infusion) under either limited cocaine-(1 h/day), prolonged cocaine-(6 h/day), or limited cocaine-(1 h/day) plus yoked cocaine-access (5 h/day); a control group received access to saline (1 h/day). One day after the final self-administration session, the rats were euthanized and the dmPFC was removed for quantification of mRNA expression of critical glutamatergic signaling genes, Homer2, Grin1, and Dlg4, as these genes and brain region have been previously implicated in addiction, learning, and memory. All groups with cocaine-access showed escalated cocaine intake during the first 10 min of each daily session, and within the first 1 h of cocaine administration. Additionally, the limited-access + yoked group exhibited more non-reinforced lever responses during self-administration sessions than the other groups tested. Lastly, Homer2, Grin1, and Dlg4 mRNA were impacted by both duration and mode of cocaine exposure. Only prolonged-access rats exhibited increases in mRNA expression for Homer2, Grin1, and Dlg4 mRNA. Taken together, these findings indicate that both contingent and non-contingent "excessive" cocaine exposure supports escalation behavior, but the behavioral contingency of cocaine-access has distinct effects on the patterning of operant responsiveness and changes in mRNA expression.
Collapse
Affiliation(s)
- Kyle L Ploense
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA.
| | - Philip Vieira
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Department of Psychology, California State University-Dominguez Hills, Carson, CA, 90747, USA
| | - Lana Bubalo
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Gema Olivarria
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Amanda E Carr
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
| | - Karen K Szumlinski
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Tod E Kippin
- Department of Psychological & Brain Sciences, University of California Santa Barbara, Santa Barbara, CA, 93106-9660, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Molecular Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Institute for Collaborative Biotechnologies, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
5
|
Perez-Rando M, Castillo-Gómez E, Guirado R, Blasco-Ibañez JM, Crespo C, Varea E, Nacher J. NMDA Receptors Regulate the Structural Plasticity of Spines and Axonal Boutons in Hippocampal Interneurons. Front Cell Neurosci 2017; 11:166. [PMID: 28659763 PMCID: PMC5466979 DOI: 10.3389/fncel.2017.00166] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 05/29/2017] [Indexed: 11/13/2022] Open
Abstract
N-methyl-D-aspartate receptors (NMDARs) are present in both pyramidal neurons and interneurons of the hippocampus. These receptors play an important role in the adult structural plasticity of excitatory neurons, but their impact on the remodeling of interneurons is unknown. Among hippocampal interneurons, somatostatin-expressing cells located in the stratum oriens are of special interest because of their functional importance and structural characteristics: they display dendritic spines, which change density in response to different stimuli. In order to understand the role of NMDARs on the structural plasticity of these interneurons, we have injected acutely MK-801, an NMDAR antagonist, to adult mice which constitutively express enhanced green fluorescent protein (EGFP) in these cells. We have behaviorally tested the animals, confirming effects of the drug on locomotion and anxiety-related behaviors. NMDARs were expressed in the somata and dendritic spines of somatostatin-expressing interneurons. Twenty-four hours after the injection, the density of spines did not vary, but we found a significant increase in the density of their en passant boutons (EPB). We have also used entorhino-hippocampal organotypic cultures to study these interneurons in real-time. There was a rapid decrease in the apparition rate of spines after MK-801 administration, which persisted for 24 h and returned to basal levels afterwards. A similar reversible decrease was detected in spine density. Our results show that both spines and axons of interneurons can undergo remodeling and highlight NMDARs as regulators of this plasticity. These results are specially relevant given the importance of all these players on hippocampal physiology and the etiopathology of certain psychiatric disorders.
Collapse
Affiliation(s)
- Marta Perez-Rando
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Esther Castillo-Gómez
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Ramon Guirado
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de ValènciaValència, Spain
| | - José Miguel Blasco-Ibañez
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Carlos Crespo
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Emilio Varea
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de ValènciaValència, Spain
| | - Juan Nacher
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED), Universitat de ValènciaValència, Spain.,CIBERSAM: Spanish National Network for Research in Mental HealthMadrid, Spain.,Fundación Investigación Hospital Clínico de Valencia, Instituto de Investigación Sanitaria (INCLIVA)València, Spain
| |
Collapse
|
6
|
Noli B, Sanna F, Brancia C, D'Amato F, Manconi B, Vincenzoni F, Messana I, Melis MR, Argiolas A, Ferri GL, Cocco C. Profiles of VGF Peptides in the Rat Brain and Their Modulations after Phencyclidine Treatment. Front Cell Neurosci 2017. [PMID: 28626390 PMCID: PMC5454051 DOI: 10.3389/fncel.2017.00158] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
From the VGF precursor protein originate several low molecular weight peptides, whose distribution in the brain and blood circulation is not entirely known. Among the VGF peptides, those containing the N-terminus portion were altered in the cerebro-spinal fluid (CSF) and hypothalamus of schizophrenia patients. "Hence, we aimed to better investigate the involvement of the VGF peptides in schizophrenia by studying their localization in the brain regions relevant for the disease, and revealing their possible modulations in response to certain neuronal alterations occurring in schizophrenia". We produced antibodies against different VGF peptides encompassing the N-terminus, but also C-terminus-, TLQP-, GGGE- peptide sequences, and the so named NERP-3 and -4. These antibodies were used to carry out specific ELISA and immunolocalization studies while mass spectrometry (MS) analysis was also performed to recognize the intact brain VGF fragments. We used a schizophrenia rat model, in which alterations in the prepulse inhibition (PPI) of the acoustic startle response occurred after PCP treatment. In normal rats, all the VGF peptides studied were distributed in the brain areas examined including hypothalamus, prefrontal cortex, hippocampus, accumbens and amygdaloid nuclei and also in the plasma. By liquid chromatography-high resolution mass, we identified different intact VGF peptide fragments, including those encompassing the N-terminus and the NERPs. PCP treatment caused behavioral changes that closely mimic schizophrenia, estimated by us as a disruption of PPI of the acoustic startle response. The PCP treatment also induced selective changes in the VGF peptide levels within certain brain areas. Indeed, an increase in VGF C-terminus and TLQP peptides was revealed in the prefrontal cortex (p < 0.01) where they were localized within parvoalbumin and tyrosine hydroxylase (TH) containing neurons, respectively. Conversely, in the nucleus accumbens, PCP treatment produced a down-regulation in the levels of VGF C-terminus-, N-terminus- and GGGE- peptides (p < 0.01), expressed in GABAergic- (C-terminus/GGGE) and somatostatin- (N-terminus) neurons. These results confirm that VGF peptides are widely distributed in the brain and modulated in specific areas involved in schizophrenia.
Collapse
Affiliation(s)
- Barbara Noli
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Fabrizio Sanna
- Neuropsychobiology Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Carla Brancia
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Filomena D'Amato
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Barbara Manconi
- Department of Life and Environmental Sciences, University of CagliariMonserrato, Italy
| | - Federica Vincenzoni
- Institute of Biochemistry and Clinical Biochemistry, Catholic UniversityRome, Italy
| | - Irene Messana
- Institute of Chemistry of the Molecular Recognition, National Research Council (CNR)Rome, Italy
| | - Maria R Melis
- Neuropsychobiology Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Antonio Argiolas
- Neuropsychobiology Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Gian-Luca Ferri
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| | - Cristina Cocco
- Neuro-Endocrine-Fluorecence (NEF) Laboratory, Department of Biomedical Sciences, University of CagliariMonserrato, Italy
| |
Collapse
|
7
|
Flores G, Morales-Medina JC, Diaz A. Neuronal and brain morphological changes in animal models of schizophrenia. Behav Brain Res 2016; 301:190-203. [DOI: 10.1016/j.bbr.2015.12.034] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/15/2015] [Accepted: 12/18/2015] [Indexed: 12/14/2022]
|
8
|
McClatchy DB, Savas JN, Martínez-Bartolomé S, Park SK, Maher P, Powell SB, Yates JR. Global quantitative analysis of phosphorylation underlying phencyclidine signaling and sensorimotor gating in the prefrontal cortex. Mol Psychiatry 2016; 21:205-15. [PMID: 25869802 PMCID: PMC4605830 DOI: 10.1038/mp.2015.41] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/27/2015] [Accepted: 03/02/2015] [Indexed: 01/09/2023]
Abstract
Prepulse inhibition (PPI) is an example of sensorimotor gating and deficits in PPI have been demonstrated in schizophrenia patients. Phencyclidine (PCP) suppression of PPI in animals has been studied to elucidate the pathological elements of schizophrenia. However, the molecular mechanisms underlying PCP treatment or PPI in the brain are still poorly understood. In this study, quantitative phosphoproteomic analysis was performed on the prefrontal cortex from rats that were subjected to PPI after being systemically injected with PCP or saline. PCP downregulated phosphorylation events were significantly enriched in proteins associated with long-term potentiation (LTP). Importantly, this data set identifies functionally novel phosphorylation sites on known LTP-associated signaling molecules. In addition, mutagenesis of a significantly altered phosphorylation site on xCT (SLC7A11), the light chain of system xc-, the cystine/glutamate antiporter, suggests that PCP also regulates the activity of this protein. Finally, new insights were also derived on PPI signaling independent of PCP treatment. This is the first quantitative phosphorylation proteomic analysis providing new molecular insights into sensorimotor gating.
Collapse
Affiliation(s)
| | - Jeffrey N. Savas
- Department of Chemical Physiology, The Scripps Research Institute
| | | | - Sung Kyu Park
- Department of Chemical Physiology, The Scripps Research Institute
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute
| | | | - John R. Yates
- Department of Chemical Physiology, The Scripps Research Institute
- Corresponding Author:
| |
Collapse
|
9
|
Landek-Salgado MA, Faust TE, Sawa A. Molecular substrates of schizophrenia: homeostatic signaling to connectivity. Mol Psychiatry 2016; 21:10-28. [PMID: 26390828 PMCID: PMC4684728 DOI: 10.1038/mp.2015.141] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 02/06/2023]
Abstract
Schizophrenia (SZ) is a devastating psychiatric condition affecting numerous brain systems. Recent studies have identified genetic factors that confer an increased risk of SZ and participate in the disease etiopathogenesis. In parallel to such bottom-up approaches, other studies have extensively reported biological changes in patients by brain imaging, neurochemical and pharmacological approaches. This review highlights the molecular substrates identified through studies with SZ patients, namely those using top-down approaches, while also referring to the fruitful outcomes of recent genetic studies. We have subclassified the molecular substrates by system, focusing on elements of neurotransmission, targets in white matter-associated connectivity, immune/inflammatory and oxidative stress-related substrates, and molecules in endocrine and metabolic cascades. We further touch on cross-talk among these systems and comment on the utility of animal models in charting the developmental progression and interaction of these substrates. Based on this comprehensive information, we propose a framework for SZ research based on the hypothesis of an imbalance in homeostatic signaling from immune/inflammatory, oxidative stress, endocrine and metabolic cascades that, at least in part, underlies deficits in neural connectivity relevant to SZ. Thus, this review aims to provide information that is translationally useful and complementary to pathogenic hypotheses that have emerged from genetic studies. Based on such advances in SZ research, it is highly expected that we will discover biomarkers that may help in the early intervention, diagnosis or treatment of SZ.
Collapse
Affiliation(s)
- M A Landek-Salgado
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - T E Faust
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neuroscience, John Hopkins University School of Medicine, Baltimore, MD, USA
| | - A Sawa
- Department of Psychiatry, John Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
McCollum LA, Walker CK, Roche JK, Roberts RC. Elevated Excitatory Input to the Nucleus Accumbens in Schizophrenia: A Postmortem Ultrastructural Study. Schizophr Bull 2015; 41:1123-32. [PMID: 25817135 PMCID: PMC4535638 DOI: 10.1093/schbul/sbv030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The cause of schizophrenia (SZ) is unknown and no single region of the brain can be pinpointed as an area of primary pathology. Rather, SZ results from dysfunction of multiple neurotransmitter systems and miswiring between brain regions. It is necessary to elucidate how communication between regions is disrupted to advance our understanding of SZ pathology. The nucleus accumbens (NAcc) is a prime region of interest, where inputs from numerous brain areas altered in SZ are integrated. Aberrant signaling in the NAcc is hypothesized to cause symptoms of SZ, but it is unknown if these abnormalities are actually present. Electron microscopy was used to study the morphology of synaptic connections in SZ. The NAcc core and shell of 6 SZ subjects and 8 matched controls were compared in this pilot study. SZ subjects had a 19% increase in the density of asymmetric axospinous synapses (characteristic of excitatory inputs) in the core, but not the shell. Both groups had similar densities of symmetric synapses (characteristic of inhibitory inputs). The postsynaptic densities of asymmetric synapses had 22% smaller areas in the core, but not the shell. These results indicate that the core receives increased excitatory input in SZ, potentially leading to dysfunctional dopamine neurotransmission and cortico-striatal-thalamic stimulus processing. The reduced postsynaptic density size of asymmetric synapses suggests impaired signaling at these synapses. These findings enhance our understanding of the role the NAcc might play in SZ and the interaction of glutamatergic and dopaminergic abnormalities in SZ.
Collapse
Affiliation(s)
- Lesley A. McCollum
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL;,*To whom correspondence should be addressed; Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Sparks Center 841, 1720 2nd Avenue South, Birmingham, AL 35294, US; tel: +1-205-934-1858, fax: +1-205-996-9377, e-mail:
| | - Courtney K. Walker
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL
| | - Joy K. Roche
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
11
|
Chronic phencyclidine treatment induces long-lasting glutamatergic activation of VTA dopamine neurons. Neurosci Lett 2014; 564:72-7. [PMID: 24525246 DOI: 10.1016/j.neulet.2014.01.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Revised: 01/15/2014] [Accepted: 01/20/2014] [Indexed: 11/23/2022]
Abstract
Use of phencyclidine (PCP) can mimic some aspects of schizophrenia. However, the underlying mechanism is unclear. Administration of PCP is known to activate mesolimbic dopamine pathway. In this study, we focused on ventral tegmental area (VTA) of mesolimbic dopamine pathway as target of PCP for inducing schizophrenia-like symptoms. Single VTA neuron was isolated and its neural activity was monitored by measuring cytosolic Ca(2+) concentration ([Ca(2+)]i) followed by immunocytochemical identification of dopamine neurons. Administration of glutamate increased [Ca(2+)]i in dopamine neurons from control rats, and the [Ca(2+)]i increase was inhibited in the presence of PCP. In contrast, in VTA dopamine neurons from rats chronically treated with PCP for 7 days, administration of glutamate was able to induce [Ca(2+)]i increase in the presence of PCP. Furthermore, this glutamate-induced [Ca(2+)]i increase in the presence of PCP continued even after washout of glutamate and this effect lasted as long as PCP was present. This long-lasting glutamate-induced [Ca(2+)]i increase in the presence of PCP was not observed or significantly attenuated under Ca(2+) free condition and by N-type Ca(2+) channel blocker ω-conotoxin. The results indicate that chronic treatment with PCP reverses the acute PCP effect on VTA dopamine neurons from inhibitory to stimulatory tone, and consequently induces long-lasting activation of dopamine neurons by glutamate.
Collapse
|
12
|
Abbott CC, Jaramillo A, Wilcox CE, Hamilton DA. Antipsychotic drug effects in schizophrenia: a review of longitudinal FMRI investigations and neural interpretations. Curr Med Chem 2014; 20:428-37. [PMID: 23157635 DOI: 10.2174/0929867311320030014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/10/2012] [Accepted: 09/26/2012] [Indexed: 12/11/2022]
Abstract
The evidence that antipsychotics improve brain function and reduce symptoms in schizophrenia is unmistakable, but how antipsychotics change brain function is poorly understood, especially within neuronal systems. In this review, we investigated the hypothesized normalization of the functional magnetic resonance imaging (fMRI) blood oxygen level dependent signal in the context of antipsychotic treatment. First, we conducted a systematic PubMed search to identify eight fMRI investigations that met the following inclusion criteria: case-control, longitudinal design; pre- and post-treatment contrasts with a healthy comparison group; and antipsychotic-free or antipsychotic-naive patients with schizophrenia at the start of the investigation. We hypothesized that aberrant activation patterns or connectivity between patients with schizophrenia and healthy comparisons at the first imaging assessment would no longer be apparent or "normalize" at the second imaging assessment. The included studies differed by analysis method and fMRI task but demonstrated normalization of fMRI activation or connectivity during the treatment interval. Second, we reviewed putative mechanisms from animal studies that support normalization of the BOLD signal in schizophrenia. We provided several neuronal-based interpretations of these changes of the BOLD signal that may be attributable to long-term antipsychotic administration.
Collapse
Affiliation(s)
- C C Abbott
- Department of Psychiatry, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.
| | | | | | | |
Collapse
|
13
|
Villalba RM, Smith Y. Differential striatal spine pathology in Parkinson's disease and cocaine addiction: a key role of dopamine? Neuroscience 2013; 251:2-20. [PMID: 23867772 DOI: 10.1016/j.neuroscience.2013.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/03/2013] [Indexed: 01/19/2023]
Abstract
In the striatum, the dendritic tree of the two main populations of projection neurons, called "medium spiny neurons (MSNs)", are covered with spines that receive glutamatergic inputs from the cerebral cortex and thalamus. In Parkinson's disease (PD), striatal MSNs undergo an important loss of dendritic spines, whereas aberrant overgrowth of striatal spines occurs following chronic cocaine exposure. This review examines the possibility that opposite dopamine dysregulation is one of the key factors that underlies these structural changes. In PD, nigrostriatal dopamine degeneration results in a significant loss of dendritic spines in the dorsal striatum, while rodents chronically exposed to cocaine and other psychostimulants, display an increase in the density of "thin and immature" spines in the nucleus accumbens (NAc). In rodent models of PD, there is evidence that D2 dopamine receptor-containing MSNs are preferentially affected, while D1-positive cells are the main targets of increased spine density in models of addiction. However, such specificity remains to be established in primates. Although the link between the extent of striatal spine changes and the behavioral deficits associated with these disorders remains controversial, there is unequivocal evidence that glutamatergic synaptic transmission is significantly altered in both diseased conditions. Recent studies have suggested that opposite calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 (MEF2) function induces these structural defects. In conclusion, there is strong evidence that dopamine is a major, but not the sole, regulator of striatal spine pathology in PD and addiction to psychostimulants. Further studies of the role of glutamate and other genes associated with spine plasticity in mediating these effects are warranted.
Collapse
Affiliation(s)
- R M Villalba
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Road NE, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Road NE, Atlanta, GA 30329, USA.
| | | |
Collapse
|
14
|
Bellon A, Le Pen G, Matricon J, Jay TM, Krebs MO. Potential application as screening and drug designing tools of cytoarchitectural deficiencies present in three animal models of schizophrenia. Expert Opin Drug Discov 2013; 4:257-78. [PMID: 23489125 DOI: 10.1517/17460440902762794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND The development of new treatment alternatives for schizophrenia has been prevented by the unknown etiology of the illness and the divergence of results in the field. However, consistent neuropathological findings are emerging from anatomical areas known to be at the core of schizophrenia. If these deficiencies are replicated in animal models then such anomalies could become the target for a new generation of drugs. OBJECTIVE To determine if the methylazoxymethanol acetate (MAM) model, the heterozygote reeler mouse (HRM) and NMDA-antagonists treated rats replicate neuropathological deficits encountered in patients with schizophrenia and to establish if such changes could lead the search for developing novel treatment alternatives. METHODS Databases including MEDLINE, Cochrane and Ovid were searched; search terms included neuropathology, schizophrenia and animal models. RESULTS/CONCLUSIONS NMDA-antagonist treated animals partially replicate schizophrenia anomalies in parvalbumin positive interneurons. In contrast, neuroanatomical deficiencies replicated by the MAM model and the HRM in the hippocampus and the prefrontal cortex seem promising targets for future pharmacological research in schizophrenia. Such neuroanatomical findings along with evidence from molecules and genes associated with schizophrenia suggest new drugs should aim to correct deficits in the formation of dendrites and axons that seems to be implicated in this illness pathophysiology.
Collapse
Affiliation(s)
- Alfredo Bellon
- INSERM, Hôpital Sainte-Anne, Centre de Psychiatrie et Neurosciences, Laboratoire de Physiopathologie des Maladies Psychiatriques, U894, 2 ter rue d'Alésia, 75014 Paris, France +33 1 40788634 ; +33 1 45807293 ;
| | | | | | | | | |
Collapse
|
15
|
Pickering C, Ericson M, Söderpalm B. Chronic phencyclidine increases synapsin-1 and synaptic adaptation proteins in the medial prefrontal cortex. ISRN PSYCHIATRY 2013; 2013:620361. [PMID: 23738220 PMCID: PMC3658391 DOI: 10.1155/2013/620361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 01/13/2013] [Indexed: 12/03/2022]
Abstract
Phencyclidine (PCP) mimics many aspects of schizophrenia, yet the underlying mechanism of neurochemical adaptation for PCP is unknown. We therefore used proteomics to study changes in the medial prefrontal cortex in animals with PCP-induced behavioural deficits. Male Wistar rats were injected with saline or 5 mg/kg phencyclidine for 5 days followed by two days of washout. Spontaneous alternation behaviour was tested in a Y-maze and then proteins were extracted from the medial prefrontal cortex. 2D-DIGE analysis followed by spot picking and protein identification with mass spectrometry then provided a list of differentially expressed proteins. Treatment with 5 mg/kg phencyclidine decreased the percentage of correct alternations in the Y-maze compared to saline-treated controls. Proteomics analysis of the medial prefrontal cortex found upregulation of 6 proteins (synapsin-1, Dpysl3, Aco2, Fscn1, Tuba1c, and Mapk1) and downregulation of 11 (Bin1, Dpysl2, Sugt1, ApoE, Psme1, ERp29, Pgam1, Uchl1, Ndufv2, Pcmt1, and Vdac1). A trend to upregulation was observed for Gnb4 and Capza2, while downregulation trends were noted for alpha-enolase and Fh. Many of the hits in this study concur with recent postmortem data from schizophrenic patients and this further validates the use of phencyclidine in preclinical translational research.
Collapse
Affiliation(s)
- Chris Pickering
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 410, 405 30 Gothenburg, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 410, 405 30 Gothenburg, Sweden
| | - Bo Söderpalm
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, P.O. Box 410, 405 30 Gothenburg, Sweden
- Beroendekliniken, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
16
|
Jung Y, Mulholland PJ, Wiseman SL, Chandler LJ, Picciotto MR. Constitutive knockout of the membrane cytoskeleton protein beta adducin decreases mushroom spine density in the nucleus accumbens but does not prevent spine remodeling in response to cocaine. Eur J Neurosci 2012; 37:1-9. [PMID: 23106536 DOI: 10.1111/ejn.12037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/19/2012] [Accepted: 09/23/2012] [Indexed: 11/27/2022]
Abstract
The adducin family of proteins associates with the actin cytoskeleton in a calcium-dependent manner. Beta adducin (βAdd) is involved in synaptic plasticity in the hippocampus; however, the role of βAdd in synaptic plasticity in other brain areas is unknown. Using diolistic labeling with the lipophilic dye DiI, we found that the density of mature mushroom-shaped spines was significantly decreased in the nucleus accumbens (NAc) in brain slices from βAdd-knockout (KO) mice as compared to their wildtype (WT) siblings. The effect of 10 days of daily cocaine (15 mg/kg) administration on NAc spine number and locomotor behavior was also measured in βAdd WT and KO mice. As expected, there was a significant increase in overall spine density in NAc slices from cocaine-treated WT mice at this time-point; however, there was a greater increase in the density of mushroom spines in βAdd-KO animals following chronic cocaine administration than in WT. In addition, βAdd-KO mice showed elevated locomotor activity in response to cocaine treatment compared to WT siblings. These results indicate that βAdd is required for stabilising mature spines under basal conditions in the NAc, but that lack of this protein does not prevent synaptic remodeling following repeated cocaine administration. In addition, these data are consistent with previous studies suggesting that βAdd may normally be involved in stabilising spines once drug- or experience-dependent remodeling has occurred.
Collapse
Affiliation(s)
- Yonwoo Jung
- Division of Molecular Psychiatry, Yale University School of Medicine, New Haven, CT 06508, USA
| | | | | | | | | |
Collapse
|
17
|
Golden SA, Russo SJ. Mechanisms of psychostimulant-induced structural plasticity. Cold Spring Harb Perspect Med 2012; 2:cshperspect.a011957. [PMID: 22935995 DOI: 10.1101/cshperspect.a011957] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Psychostimulants robustly induce alterations in neuronal structural plasticity throughout brain reward circuits. However, despite our extensive understanding of how these circuits modulate motivated behavior, it is still unclear whether structural plasticity within these regions drives pathological behavioral responses in addiction. Although these structural changes have been subjected to an exhaustive phenomenological characterization, we still have a limited understanding of the molecular mechanisms regulating their induction and the functional relevance of such changes in mediating addiction-like behavior. Here we have highlighted the known molecular pathways and intracellular signaling cascades that regulate psychostimulant-induced changes in neuronal morphology and synaptic restructuring, and we discuss them in the larger context of addiction behavior.
Collapse
Affiliation(s)
- Sam A Golden
- Department of Neuroscience and The Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
18
|
Zhang L, Li J, Liu N, Wang B, Gu J, Zhang M, Zhou Z, Jiang Y, Zhang L, Zhang L. Signaling via Dopamine D1 and D3 Receptors Oppositely Regulates Cocaine-Induced Structural Remodeling of Dendrites and Spines. Neurosignals 2011; 20:15-34. [DOI: 10.1159/000330743] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/30/2011] [Indexed: 01/09/2023] Open
|
19
|
Jones CA, Watson DJG, Fone KCF. Animal models of schizophrenia. Br J Pharmacol 2011; 164:1162-94. [PMID: 21449915 PMCID: PMC3229756 DOI: 10.1111/j.1476-5381.2011.01386.x] [Citation(s) in RCA: 536] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 03/09/2011] [Accepted: 03/12/2011] [Indexed: 12/27/2022] Open
Abstract
Developing reliable, predictive animal models for complex psychiatric disorders, such as schizophrenia, is essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel drugs with improved therapeutic efficacy. All available animal models of schizophrenia fit into four different induction categories: developmental, drug-induced, lesion or genetic manipulation, and the best characterized examples of each type are reviewed herein. Most rodent models have behavioural phenotype changes that resemble 'positive-like' symptoms of schizophrenia, probably reflecting altered mesolimbic dopamine function, but fewer models also show altered social interaction, and learning and memory impairment, analogous to negative and cognitive symptoms of schizophrenia respectively. The negative and cognitive impairments in schizophrenia are resistant to treatment with current antipsychotics, even after remission of the psychosis, which limits their therapeutic efficacy. The MATRICS initiative developed a consensus on the core cognitive deficits of schizophrenic patients, and recommended a standardized test battery to evaluate them. More recently, work has begun to identify specific rodent behavioural tasks with translational relevance to specific cognitive domains affected in schizophrenia, and where available this review focuses on reporting the effect of current and potential antipsychotics on these tasks. The review also highlights the need to develop more comprehensive animal models that more adequately replicate deficits in negative and cognitive symptoms. Increasing information on the neurochemical and structural CNS changes accompanying each model will also help assess treatments that prevent the development of schizophrenia rather than treating the symptoms, another pivotal change required to enable new more effective therapeutic strategies to be developed.
Collapse
Affiliation(s)
- C A Jones
- School of Biomedical Sciences, Medical School, Queen's Medical Centre, The University of Nottingham, Nottingham, UK
| | | | | |
Collapse
|
20
|
Spiga S, Acquas E, Puddu MC, Mulas G, Lintas A, Diana M. Simultaneous Golgi-Cox and immunofluorescence using confocal microscopy. Brain Struct Funct 2011; 216:171-82. [PMID: 21461741 PMCID: PMC3155021 DOI: 10.1007/s00429-011-0312-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 03/17/2011] [Indexed: 02/01/2023]
Abstract
Visualization of neuronal elements is of fundamental importance in modern neuroscience. Golgi-Cox impregnation is a widely employed method that provides detailed information about morphological characteristics of neurons, but none regarding their neurochemical features. Immunocytochemical procedures, on the other hand, can provide a high degree of biochemical specificity but poorer morphological details, in particular if compared to Golgi-Cox impregnation. Hence, the combined use of these two approaches is highly desirable, especially for confocal microscopy that can exploit the advantages of both methods simultaneously. Here we show an innovative procedure of perfusion and fixation of brain tissue, that allows, by applying Golgi-Cox impregnation and immunofluorescence in the same histological section, to obtain high-quality histological material, with a very simple and inexpensive method. This procedure is based on three simple fixation steps: (1) a paraformaldehyde perfusion followed by a standard post-fixation to stabilize the subsequent immunofluorescence reaction; (2) the classical Golgi-Cox impregnation and (3) an immunofluorescence reaction in previously impregnated material. This combination allows simultaneous visualization of (a) the structural details (Golgi-Cox impregnated neurons), (b) the antigens' characterization, (c) the anatomical interactions between discrete neuronal elements and (d) the 3D reconstruction and modeling. The method is easy to perform and can be reproducibly applied by small laboratories and expanded through the use of different antibodies. Overall, the method presented in this study offers an innovative and powerful approach to study the nervous system, especially by using confocal microscopy.
Collapse
Affiliation(s)
- Saturnino Spiga
- Department of Animal Biology and Ecology, University of Cagliari, Via Ing. Tomaso Fiorelli, 09126 Cagliari, Italy,
| | | | | | | | | | | |
Collapse
|
21
|
Hercher C, Canetti L, Turecki G, Mechawar N. Anterior cingulate pyramidal neurons display altered dendritic branching in depressed suicides. J Psychiatr Res 2010; 44:286-93. [PMID: 19765721 DOI: 10.1016/j.jpsychires.2009.08.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 07/30/2009] [Accepted: 08/18/2009] [Indexed: 12/31/2022]
Abstract
BACKGROUND It is hypothesized that mood disorders are accompanied by altered wiring and plasticity in key limbic brain regions such as the anterior cingulate cortex (ACC). To test this hypothesis at the cellular level, we analyzed basilar dendritic arborizations extended by layer VI pyramidal neurons in silver-impregnated postmortem ACC samples from well-characterized depressed suicide subjects (n=12) and matched sudden-death controls (n=7). METHODS One cm(3) tissue blocks were stained using a Golgi preparation, cut on a microtome, and mounted on slides. Basilar dendritic arbors from 195 neurons were reconstructed, and the number, length, and diameter of branches were determined at each branch order. The size and number of spines borne by these branches were also assessed. RESULTS Third-order branches were significantly reduced in number (24% fewer; p=0.00262) in depressed suicides compared to controls. The size and average length of these branches, as well as their number of spines/length were unaltered. On average, for each pyramidal neuron analyzed in depressed subjects, the fewer third-order branches resulted in a significant reduction in branch length (28% shorter; p=0.00976) at this branch order. CONCLUSIONS These results provide the first evidence of altered cortical dendritic branching in mood disorders. Given that proximal dendritic branches grow during perinatal development, and that they are generally less plastic at maturity than distal segments, we speculate that these differences in dendritic branching may reflect a biological predisposition to depression and suicide.
Collapse
Affiliation(s)
- Christa Hercher
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Verdun, Québec, Canada
| | | | | | | |
Collapse
|
22
|
Mei B, Niu L, Cao B, Huang D, Zhou Y. Prenatal morphine exposure alters the layer II/III pyramidal neurons morphology in lateral secondary visual cortex of juvenile rats. Synapse 2010; 63:1154-61. [PMID: 19670310 DOI: 10.1002/syn.20694] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Altered cortical neuronal morphology and juvenile behavior manifestation by prenatal morphine exposure were well documented. However, this developmental morphine exposure affect the lateral secondary visual area (V2L), which may be critically involved in the multisensory of auditory and visual stimulus, remained poorly understood. To clarify the neuronal architecture changes possibly occurring in the V2L, Golgi-Cox staining was used in this study to count dendritic length and the spine density of the layer II/III pyramidal neurons in the V2L of the juvenile rats (postnatal day 25, PND25) prenatally exposed to morphine (gestation days 11-18). Quantitative analysis showed that prenatal morphine exposure decreased the total length, branch number, and spine density of the layer II/III pyramidal neurons in the V2L, and selectively altered the total length of the basal dendrites but not of the apical dendrites. The findings may provide the mechanistic understanding of the behavioral changes in the children whose mothers abuse opiates during pregnancy.
Collapse
Affiliation(s)
- Bin Mei
- Department of Biology, School of Basic Medical Science, Anhui Medical University, Hefei, Anhui 230032, People's Republic of China
| | | | | | | | | |
Collapse
|
23
|
Prenatal immune challenge induces developmental changes in the morphology of pyramidal neurons of the prefrontal cortex and hippocampus in rats. Schizophr Res 2009; 107:99-109. [PMID: 19004618 DOI: 10.1016/j.schres.2008.10.003] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/01/2008] [Accepted: 10/02/2008] [Indexed: 12/31/2022]
Abstract
The neural mechanisms by which maternal infections increase the risk for schizophrenia are poorly understood; however, animal models using maternal administration of immune activators suggest a role for cytokine imbalance in maternal/fetal compartments. As cytokines can potentially affect multiple aspects of neuronal development and the neuropathology of schizophrenia is believed to involve subtle temporo-limbic neurodevelopmental alterations, we investigated morphological development of the pyramidal neurons of the medial prefrontal cortex (mPFC) and hippocampus in rats that were prenatally challenged with the immune activator lipopolysaccharide (LPS). Pregnant Sprague-Dawley rats were administered with LPS (at E15- E16) or saline. The brains of offspring were processed for Golgi-Cox staining at postnatal days 10, 35 and 60. Dendritic length, branching, spine density and structure were quantified using Neurolucida software. At all ages, dendritic arbor was significantly reduced in mPFC and CA1 neurons of LPS-treated animals. Dendritic length was significantly reduced in the mPFC neurons of LPS group at P10 and 35 but returned to control values at P60. Opposite pattern was observed in CA1 region of LPS animals (normal values at P10 and 35, but a reduction at P60). LPS treatment significantly altered the structure of CA1 dendritic spines at P10. Spine density was found to be significantly lower only in layer V mPFC of P60 LPS rats. The study provides the first evidence that prenatal exposure to an immune activator dynamically affects spatio-temporal development of pyramidal neurons in mPFC and hippocampal that can potentially lead to aberrant neuronal connectivity and functions of these structures.
Collapse
|