1
|
Durairaj P, Liu ZL. Brain Cytochrome P450: Navigating Neurological Health and Metabolic Regulation. J Xenobiot 2025; 15:44. [PMID: 40126262 PMCID: PMC11932283 DOI: 10.3390/jox15020044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
Human cytochrome P450 (CYP) enzymes in the brain represent a crucial frontier in neuroscience, with far-reaching implications for drug detoxification, cellular metabolism, and the progression of neurodegenerative diseases. The brain's complex architecture, composed of interconnected cell types and receptors, drives unique neuronal signaling pathways, modulates enzyme functions, and leads to distinct CYP gene expression and regulation patterns compared to the liver. Despite their relatively low levels of expression, brain CYPs exert significant influence on drug responses, neurotoxin susceptibility, behavior, and neurological disease risk. These enzymes are essential for maintaining brain homeostasis, mediating cholesterol turnover, and synthesizing and metabolizing neurochemicals, neurosteroids, and neurotransmitters. Moreover, they are key participants in oxidative stress responses, neuroprotection, and the regulation of inflammation. In addition to their roles in metabolizing psychotropic drugs, substances of abuse, and endogenous compounds, brain CYPs impact drug efficacy, safety, and resistance, underscoring their importance beyond traditional drug metabolism. Their involvement in critical physiological processes also links them to neuroprotection, with significant implications for the onset and progression of neurodegenerative diseases. Understanding the roles of cerebral CYP enzymes is vital for advancing neuroprotective strategies, personalizing treatments for brain disorders, and developing CNS-targeting therapeutics. This review explores the emerging roles of CYP enzymes, particularly those within the CYP1-3 and CYP46 families, highlighting their functional diversity and the pathological consequences of their dysregulation on neurological health. It also examines the potential of cerebral CYP-based biomarkers to improve the diagnosis and treatment of neurodegenerative disorders, offering new avenues for therapeutic innovation.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
| | - Zixiang Leonardo Liu
- Department of Chemical and Biomedical Engineering, Florida State University, Tallahassee, FL 32310, USA
- Department of Chemical and Biomedical Engineering, Florida A&M University, Tallahassee, FL 32310, USA
- Institute for Successful Longevity, Florida State University, Tallahassee, FL 32310, USA
| |
Collapse
|
2
|
Wheeler AM, Eberhard CD, Mosher EP, Yuan Y, Wilkins HN, Seneviratne HK, Orsburn BC, Bumpus NN. Achieving a Deeper Understanding of Drug Metabolism and Responses Using Single-Cell Technologies. Drug Metab Dispos 2023; 51:350-359. [PMID: 36627162 PMCID: PMC10029823 DOI: 10.1124/dmd.122.001043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 01/12/2023] Open
Abstract
Recent advancements in single-cell technologies have enabled detection of RNA, proteins, metabolites, and xenobiotics in individual cells, and the application of these technologies has the potential to transform pharmacological research. Single-cell data has already resulted in the development of human and model species cell atlases, identifying different cell types within a tissue, further facilitating the characterization of tumor heterogeneity, and providing insight into treatment resistance. Research discussed in this review demonstrates that distinct cell populations express drug metabolizing enzymes to different extents, indicating there may be variability in drug metabolism not only between organs, but within tissue types. Additionally, we put forth the concept that single-cell analyses can be used to expose underlying variability in cellular response to drugs, providing a unique examination of drug efficacy, toxicity, and metabolism. We will outline several of these techniques: single-cell RNA-sequencing and mass cytometry to characterize and distinguish different cell types, single-cell proteomics to quantify drug metabolizing enzymes and characterize cellular responses to drug, capillary electrophoresis-ultrasensitive laser-induced fluorescence detection and single-probe single-cell mass spectrometry for detection of drugs, and others. Emerging single-cell technologies such as these can comprehensively characterize heterogeneity in both cell-type-specific drug metabolism and response to treatment, enhancing progress toward personalized and precision medicine. SIGNIFICANCE STATEMENT: Recent technological advances have enabled the analysis of gene expression and protein levels in single cells. These types of analyses are important to investigating mechanisms that cannot be elucidated on a bulk level, primarily due to the variability of cell populations within biological systems. Here, we summarize cell-type-specific drug metabolism and how pharmacologists can utilize single-cell approaches to obtain a comprehensive understanding of drug metabolism and cellular heterogeneity in response to drugs.
Collapse
Affiliation(s)
- Abigail M Wheeler
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Eric P Mosher
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Yuting Yuan
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Hannah N Wilkins
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Herana Kamal Seneviratne
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| | - Namandjé N Bumpus
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland (A.M.W., C.D.E., E.P.M., Y.Y., H.N.W., H.K.S., B.C.O., N.N.B.) and Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, Baltimore, Maryland (H.K.S.)
| |
Collapse
|
3
|
Epigenome-Wide Analysis of DNA Methylation in Parkinson's Disease Cortex. Life (Basel) 2022; 12:life12040502. [PMID: 35454993 PMCID: PMC9025601 DOI: 10.3390/life12040502] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Epigenetic factors including DNA methylation contribute to specific patterns of gene expression. Gene−environment interactions can change the methylation status in the brain, and accumulation of these epigenetic changes over a lifespan may be co-responsible for a neurodegenerative disease like Parkinson’s disease, which that is characterised by a late onset in life. Aims: To determine epigenetic modifications in the brains of Parkinson’s disease patients. Patients and Methods: DNA methylation patterns were compared in the cortex tissue of 14 male PD patients and 10 male healthy individuals using the Illumina Methylation 450 K chip. Subsequently, DNA methylation of candidate genes was evaluated using bisulphite pyrosequencing, and DNA methylation of cytochrome P450 2E1 (CYP2E1) was characterized in DNA from blood mononuclear cells (259 PD patients and 182 healthy controls) and skin fibroblasts (10 PD patients and 5 healthy controls). Protein levels of CYP2E1 were analysed using Western blot in human cortex and knock-out mice brain samples. Results: We found 35 hypomethylated and 22 hypermethylated genes with a methylation M-value difference >0.5. Decreased methylation of cytochrome P450 2E1 (CYP2E1) was associated with increased protein levels in PD brains, but in peripheral tissues, i.e., in blood cells and skin fibroblasts, DNA methylation of CYP2E1 was unchanged. In CYP2E1 knock-out mice brain alpha-synuclein (SNCA) protein levels were down-regulated compared to wild-type mice, whereas treatment with trichloroethylene (TCE) up-regulated CYP2E1 protein in a dose-dependent manner in cultured cells. We further identified an interconnected group of genes associated with oxidative stress, such as Methionine sulfoxide reductase A (MSRA) and tumour protein 73 (TP73) in the brain, which again were not paralleled in other tissues and appeared to indicate brain-specific changes. Conclusions: Our study revealed surprisingly few dysmethylated genes in a brain region less affected in PD. We confirmed hypomethylation of CYP2E1.
Collapse
|
4
|
Laporta ML, Kruthiventi SC, Stang CD, Camerucci E, Martin DP, Weingarten TN, Hanson AC, Schroeder DR, Warner DO, Savica R, Sprung J. Exposure to anesthesia is not associated with development of α-synucleinopathies: A nested case-control study. Parkinsonism Relat Disord 2021; 88:76-81. [PMID: 34147949 PMCID: PMC8266757 DOI: 10.1016/j.parkreldis.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Preclinical studies suggest that inhalational anesthetics may induce neuropathology changes in the nigrostriatal system, leading to development of α-synucleinopathies. We explored the role of general anesthesia in the development of Parkinson disease (PD) and other α-synucleinopathies. METHODS All α-synucleinopathy cases in Olmsted County, Minnesota, from January 1991, to December 2010, were identified from diagnostic codes, and then reviewed for type and index date of diagnosis. Cases were matched by sex and age (±1 year) to a referent control, a resident living in Olmsted County, and free of α-synucleinopathies before the index date (year of onset of the α-synucleinopathy). Medical records of both cases and controls were reviewed for lifetime exposure to anesthesia prior to the index date. RESULTS A total of 431 cases with clinically defined α-synucleinopathies were identified. Of these, 321 (74%) underwent 1,069 procedures under anesthesia before the diagnosis date, and in the control group, 341 (79%) underwent 986 procedures. When assessed as a dichotomous variable, anesthetic exposure was not significantly associated with α-synucleinopathies (odds ratio [OR], 0.75; 95% CI, 0.54-1.05; P=.094). No association was observed when anesthetic exposure was quantified by the number of exposures (OR, 0.64, 0.89, and 0.74, for 1, 2-3, and ≥4 exposures, respectively, compared to no exposure as the reference; P=.137) or quantified by the cumulative duration of exposure assessed as a continuous variable (OR, 1.00; 95% CI, 0.97-1.02 per 1-h increase of anesthetic exposure; P=.776). CONCLUSIONS We did not observe a significant association between exposure to general anesthesia and risk for the development of α-synucleinopathies.
Collapse
Affiliation(s)
- Mariana L Laporta
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - Cole D Stang
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | | | - David P Martin
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Toby N Weingarten
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Andrew C Hanson
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Darrell R Schroeder
- Department of Health Sciences Research, Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, 55905, USA
| | - David O Warner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rodolfo Savica
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Juraj Sprung
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
5
|
Sheng Y, Yang H, Wu T, Zhu L, Liu L, Liu X. Alterations of Cytochrome P450s and UDP-Glucuronosyltransferases in Brain Under Diseases and Their Clinical Significances. Front Pharmacol 2021; 12:650027. [PMID: 33967789 PMCID: PMC8097730 DOI: 10.3389/fphar.2021.650027] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
Cytochrome P450s (CYPs) and UDP-glucuronosyltransferases (UGTs) are both greatly important metabolic enzymes in various tissues, including brain. Although expressions of brain CYPs and UGTs and their contributions to drug disposition are much less than liver, both CYPs and UGTs also mediate metabolism of endogenous substances including dopamine and serotonin as well as some drugs such as morphine in brain, demonstrating their important roles in maintenance of brain homeostasis or pharmacological activity of drugs. Some diseases such as epilepsy, Parkinson's disease and Alzheimer's disease are often associated with the alterations of CYPs and UGTs in brain, which may be involved in processes of these diseases via disturbing metabolism of endogenous substances or resisting drugs. This article reviewed the alterations of CYPs and UGTs in brain, the effects on endogenous substances and drugs and their clinical significances. Understanding the roles of CYPs and UGTs in brain provides some new strategies for the treatment of central nervous system diseases.
Collapse
Affiliation(s)
- Yun Sheng
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Hanyu Yang
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Tong Wu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Liang Zhu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Center of Pharmacokinetics and Metabolism, School of Pharmacy, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Guan F, Yang X, Li J, Dong W, Zhang X, Liu N, Gao S, Wang J, Zhang L, Lu D. New Molecular Mechanism Underlying Myc-Mediated Cytochrome P450 2E1 Upregulation in Apoptosis and Energy Metabolism in the Myocardium. J Am Heart Assoc 2020; 8:e009871. [PMID: 30563421 PMCID: PMC6405704 DOI: 10.1161/jaha.118.009871] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Canonical studies indicate that cytochrome P450 2E1 (CYP2E1) plays a critical role in the metabolism of xenobiotics and ultimately participates in tissue damage. CYP2E1 upregulates in the pathophysiological development of multiple diseases; however, the mechanism of CYP2E1 upregulation, particularly in heart disease, remains elusive. Methods and Results We found that the level of CYP2E1 increased in heart tissues from patients with hypertrophic cardiomyopathy; multiple mouse models of heart diseases, including dilated cardiomyopathy, hypertrophic cardiomyopathy, and myocardial ischemia; and HL‐1 myocytes under stress. We determined that Myc bound to the CYP2E1 promoter and activated its transcription by bioinformatics analysis, luciferase activity, and chromatin immunoprecipitation, and Myc expression was modulated by extracellular signal–regulated kinases 1/2 and phosphatidylinositol 3 kinase/protein kinase B pathways under stress or injury in myocardium by signal transduction analysis. In addition, the level of oxidative stress and apoptosis gradually worsened with age in transgenic mice overexpressing CYP2E1, which was significantly inhibited with CYP2E1 knockdown. Conclusions Our results demonstrated that CYP2E1 is likely a sensor of diverse pathophysiological factors and states in the myocardium. Upregulated CYP2E1 has multiple pathophysiological roles in the heart, including increased oxidative stress and apoptosis as well as energy supply to meet the energy demand of the heart in certain disease states. Our discovery thus provides a basis for a therapeutic strategy for heart diseases targeting Myc and CYP2E1.
Collapse
Affiliation(s)
- Feifei Guan
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Xinlan Yang
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Jing Li
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Wei Dong
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Xu Zhang
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Ning Liu
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Shan Gao
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Jizheng Wang
- 2 State Key Laboratory of Cardiovascular Disease Fuwai Hospital National Center for Cardiovascular Disease Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lianfeng Zhang
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| | - Dan Lu
- 1 Key Laboratory of Human Disease Comparative Medicine NHFPC Institute of Laboratory Animal Science Chinese Academy of Medical Sciences & Comparative Medical Center Peking Union Medical College Beijing China
| |
Collapse
|
7
|
Silkstone M, Brudzynski SM. Dissimilar interaction between dopaminergic and cholinergic systems in the initiation of emission of 50-kHz and 22-kHz vocalizations. Pharmacol Biochem Behav 2020; 188:172815. [DOI: 10.1016/j.pbb.2019.172815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/09/2019] [Accepted: 10/15/2019] [Indexed: 10/25/2022]
|
8
|
Pyrethroid exposure and neurotoxicity: a mechanistic approach. Arh Hig Rada Toksikol 2019; 70:74-89. [DOI: 10.2478/aiht-2019-70-3263] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/01/2019] [Indexed: 12/27/2022] Open
Abstract
Abstract
Pyrethroids are a class of synthetic insecticides that are used widely in and around households to control the pest. Concerns about exposure to this group of pesticides are now mainly related to their neurotoxicity and nigrostriatal dopaminergic neurodegeneration seen in Parkinson’s disease. The main neurotoxic mechanisms include oxidative stress, inflammation, neuronal cell loss, and mitochondrial dysfunction. The main neurodegeneration targets are ion channels. However, other receptors, enzymes, and several signalling pathways can also participate in disorders induced by pyrethroids. The aim of this review is to elucidate the main mechanisms involved in neurotoxicity caused by pyrethroids deltamethrin, permethrin, and cypermethrin. We also review common targets and pathways of Parkinson’s disease therapy, including Nrf2, Nurr1, and PPARγ, and how they are affected by exposure to pyrethroids. We conclude with possibilities to be addressed by future research of novel methods of protection against neurological disorders caused by pesticides that may also find their use in the management/treatment of Parkinson’s disease.
Collapse
|
9
|
Fernandez-Abascal J, Ripullone M, Valeri A, Leone C, Valoti M. β-Naphtoflavone and Ethanol Induce Cytochrome P450 and Protect towards MPP⁺ Toxicity in Human Neuroblastoma SH-SY5Y Cells. Int J Mol Sci 2018; 19:ijms19113369. [PMID: 30373287 PMCID: PMC6274691 DOI: 10.3390/ijms19113369] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/13/2022] Open
Abstract
Cytochrome P450 (CYP) isozymes vary their expression depending on the brain area, the cell type, and the presence of drugs. Some isoforms are involved in detoxification and/or toxic activation of xenobiotics in central nervous system. However, their role in brain metabolism and neurodegeneration is still a subject of debate. We have studied the inducibility of CYP isozymes in human neuroblastoma SH-SY5Y cells, treated with β-naphtoflavone (β-NF) or ethanol (EtOH) as inducers, by qRT-PCR, Western blot (WB), and metabolic activity assays. Immunohistochemistry was used to localize the isoforms in mitochondria and/or endoplasmic reticulum (ER). Tetrazolium (MTT) assay was performed to study the role of CYPs during methylphenyl pyridine (MPP+) exposure. EtOH increased mRNA and protein levels of CYP2D6 by 73% and 60% respectively. Both β-NF and EtOH increased CYP2E1 mRNA (4- and 1.4-fold, respectively) and protein levels (64% both). The 7-ethoxycoumarin O-deethylation and dextromethorphan O-demethylation was greater in treatment samples than in controls. Furthermore, both treatments increased by 22% and 18%, respectively, the cell viability in MPP+-treated cells. Finally, CYP2D6 localized at mitochondria and ER. These data indicate that CYP is inducible in SH-SY5Y cells and underline this in vitro system for studying the role of CYPs in neurodegeneration.
Collapse
Affiliation(s)
- Jesus Fernandez-Abascal
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Mariantonia Ripullone
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Aurora Valeri
- Molecular Horizon srl, Via Montelino 32, Bettona, 06084 Perugia, Italy.
| | - Cosima Leone
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università di Siena, Via Aldo Moro 2, 53100 Siena, Italy.
| |
Collapse
|
10
|
Teijido O, Cacabelos R. Pharmacoepigenomic Interventions as Novel Potential Treatments for Alzheimer's and Parkinson's Diseases. Int J Mol Sci 2018; 19:E3199. [PMID: 30332838 PMCID: PMC6213964 DOI: 10.3390/ijms19103199] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022] Open
Abstract
Cerebrovascular and neurodegenerative disorders affect one billion people around the world and result from a combination of genomic, epigenomic, metabolic, and environmental factors. Diagnosis at late stages of disease progression, limited knowledge of gene biomarkers and molecular mechanisms of the pathology, and conventional compounds based on symptomatic rather than mechanistic features, determine the lack of success of current treatments, including current FDA-approved conventional drugs. The epigenetic approach opens new avenues for the detection of early presymptomatic pathological events that would allow the implementation of novel strategies in order to stop or delay the pathological process. The reversibility and potential restoring of epigenetic aberrations along with their potential use as targets for pharmacological and dietary interventions sited the use of epidrugs as potential novel candidates for successful treatments of multifactorial disorders involving neurodegeneration. This manuscript includes a description of the most relevant epigenetic mechanisms involved in the most prevalent neurodegenerative disorders worldwide, as well as the main potential epigenetic-based compounds under investigation for treatment of those disorders and their limitations.
Collapse
Affiliation(s)
- Oscar Teijido
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 La Coruña, Spain.
| | - Ramón Cacabelos
- EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 La Coruña, Spain.
- Chair of Genomic Medicine, Continental University Medical School, Huancayo 12000, Peru.
| |
Collapse
|
11
|
Sorce S, Stocker R, Seredenina T, Holmdahl R, Aguzzi A, Chio A, Depaulis A, Heitz F, Olofsson P, Olsson T, Duveau V, Sanoudou D, Skosgater S, Vlahou A, Wasquel D, Krause KH, Jaquet V. NADPH oxidases as drug targets and biomarkers in neurodegenerative diseases: What is the evidence? Free Radic Biol Med 2017; 112:387-396. [PMID: 28811143 DOI: 10.1016/j.freeradbiomed.2017.08.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 11/25/2022]
Abstract
Neurodegenerative disease are frequently characterized by microglia activation and/or leukocyte infiltration in the parenchyma of the central nervous system and at the molecular level by increased oxidative modifications of proteins, lipids and nucleic acids. NADPH oxidases (NOX) emerged as a novel promising class of pharmacological targets for the treatment of neurodegeneration due to their role in oxidant generation and presumably in regulating microglia activation. The unique function of NOX is the generation of superoxide anion (O2•-) and hydrogen peroxide (H2O2). However in the context of neuroinflammation, they present paradoxical features since O2•-/H2O2 generated by NOX and/or secondary reactive oxygen species (ROS) derived from O2•-/H2O2 can either lead to neuronal oxidative damage or resolution of inflammation. The role of NOX enzymes has been investigated in many models of neurodegenerative diseases by using either genetic or pharmacological approaches. In the present review we provide a critical assessment of recent findings related to the role of NOX in the CNS as well as how the field has advanced over the last 5 years. In particular, we focus on the data derived from the work of a consortium (Neurinox) funded by the European Commission's Programme 7 (FP7). We discuss the evidence gathered from animal models and human samples linking NOX expression/activity with neuroinflammation in neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) and Creutzfeldt-Jakob disease as well as autoimmune demyelinating diseases like multiple sclerosis (MS) and chronic inflammatory demyelinating polyneuropathy (CIDP). We address the possibility to use measurement of the activity of the NOX2 isoform in blood samples as biomarker of disease severity and treatment efficacy in neurodegenerative disease. Finally we clarify key controversial aspects in the field of NOX, such as NOX cellular expression in the brain, measurement of NOX activity, impact of genetic deletion of NOX in animal models of neurodegeneration and specificity of NOX inhibitors.
Collapse
Affiliation(s)
- Silvia Sorce
- Neuropathology Institute, University of Zürich, Switzerland
| | - Roland Stocker
- Victor Chang Cardiac Research Institute, and School of Medical Sciences, University of New South Wales, Australia
| | - Tamara Seredenina
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Rikard Holmdahl
- Section for Medical Inflammation research, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | - Adriano Aguzzi
- Neuropathology Institute, University of Zürich, Switzerland
| | - Adriano Chio
- Department of Neuroscience, University of Torino, Italy
| | - Antoine Depaulis
- Grenoble Institut des Neurosciences, Inserm U1216 and Univ, Grenoble Alpes, F-38000 Grenoble, France
| | | | - Peter Olofsson
- Redoxis AB, Medicon Village, Lund, Sweden; Pronoxis AB, Medicon Village, Lund, Sweden
| | - Tomas Olsson
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Sweden
| | | | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4th Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sara Skosgater
- Arttic, 58A rue du Dessous des Berges, F-75013 Paris, France
| | - Antonia Vlahou
- Biomedical Research Foundation, Academy of Athens, Athens, Greece
| | | | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland
| | - Vincent Jaquet
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Switzerland.
| |
Collapse
|
12
|
Abreu-Villaça Y, Levin ED. Developmental neurotoxicity of succeeding generations of insecticides. ENVIRONMENT INTERNATIONAL 2017; 99:55-77. [PMID: 27908457 PMCID: PMC5285268 DOI: 10.1016/j.envint.2016.11.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 11/17/2016] [Accepted: 11/17/2016] [Indexed: 05/19/2023]
Abstract
Insecticides are by design toxic. They must be toxic to effectively kill target species of insects. Unfortunately, they also have off-target toxic effects that can harm other species, including humans. Developmental neurotoxicity is one of the most prominent off-target toxic risks of insecticides. Over the past seven decades several classes of insecticides have been developed, each with their own mechanisms of effect and toxic side effects. This review covers the developmental neurotoxicity of the succeeding generations of insecticides including organochlorines, organophosphates, pyrethroids, carbamates and neonicotinoids. The goal of new insecticide development is to more effectively kill target species with fewer toxic side effects on non-target species. From the experience with the developmental neurotoxicity caused by the generations of insecticides developed in the past advice is offered how to proceed with future insecticide development to decrease neurotoxic risk.
Collapse
Affiliation(s)
- Yael Abreu-Villaça
- Departamento de Ciências Fisiologicas, Universidade do Estado do Rio de Janeiro (UERJ), RJ, Brazil
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
13
|
Ramsay RR, Majekova M, Medina M, Valoti M. Key Targets for Multi-Target Ligands Designed to Combat Neurodegeneration. Front Neurosci 2016; 10:375. [PMID: 27597816 PMCID: PMC4992697 DOI: 10.3389/fnins.2016.00375] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/02/2016] [Indexed: 12/13/2022] Open
Abstract
HIGHLIGHTS Compounds that interact with multiple targets but minimally with the cytochrome P450 system (CYP) address the many factors leading to neurodegeneration.Acetyl- and Butyryl-cholineEsterases (AChE, BChE) and Monoamine Oxidases A/B (MAO A, MAO B) are targets for Multi-Target Designed Ligands (MTDL).ASS234 is an irreversible inhibitor of MAO A >MAO B and has micromolar potency against the cholinesterases.ASS234 is a poor CYP substrate in human liver, yielding the depropargylated metabolite.SMe1EC2, a stobadine derivative, showed high radical scavenging property, in vitro and in vivo giving protection in head trauma and diabetic damage of endothelium.Control of mitochondrial function and morphology by manipulating fission and fusion is emerging as a target area for therapeutic strategies to decrease the pathological outcome of neurodegenerative diseases. Growing evidence supports the view that neurodegenerative diseases have multiple and common mechanisms in their aetiologies. These multifactorial aspects have changed the broadly common assumption that selective drugs are superior to "dirty drugs" for use in therapy. This drives the research in studies of novel compounds that might have multiple action mechanisms. In neurodegeneration, loss of neuronal signaling is a major cause of the symptoms, so preservation of neurotransmitters by inhibiting the breakdown enzymes is a first approach. Acetylcholinesterase (AChE) inhibitors are the drugs preferentially used in AD and that one of these, rivastigmine, is licensed also for PD. Several studies have shown that monoamine oxidase (MAO) B, located mainly in glial cells, increases with age and is elevated in Alzheimer (AD) and Parkinson's Disease's (PD). Deprenyl, a MAO B inhibitor, significantly delays the initiation of levodopa treatment in PD patients. These indications underline that AChE and MAO are considered a necessary part of multi-target designed ligands (MTDL). However, both of these targets are simply symptomatic treatment so if new drugs are to prevent degeneration rather than compensate for loss of neurotransmitters, then oxidative stress and mitochondrial events must also be targeted. MAO inhibitors can protect neurons from apoptosis by mechanisms unrelated to enzyme inhibition. Understanding the involvement of MAO and other proteins in the induction and regulation of the apoptosis in mitochondria will aid progress toward strategies to prevent the loss of neurons. In general, the oxidative stress observed both in PD and AD indicate that antioxidant properties are a desirable part of MTDL molecules. After two or more properties are incorporated into one molecule, the passage from a lead compound to a therapeutic tool is strictly linked to its pharmacokinetic and toxicity. In this context the interaction of any new molecules with cytochrome P450 and other xenobiotic metabolic processes is a crucial point. The present review covers the biochemistry of enzymes targeted in the design of drugs against neurodegeneration and the cytochrome P450-dependent metabolism of MTDLs.
Collapse
Affiliation(s)
- Rona R. Ramsay
- Biomedical Sciences Research Complex, University of St. AndrewsSt. Andrews, UK
| | - Magdalena Majekova
- Department of Biochemical Pharmacology, Institute of Experimental Pharmacology and Toxicology, Slovak Academy of SciencesBratislava, Slovakia
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias and BIFI, Universidad de ZaragozaZaragoza, Spain
| | - Massimo Valoti
- Dipartimento di Scienze della Vita, Università degli Studi di SienaSiena, Italy
| |
Collapse
|
14
|
Wang X, Tang Y, Lu J, Shao Y, Qin X, Li Y, Wang L, Li D, Liu M. Characterization of novel cytochrome P450 2E1 knockout rat model generated by CRISPR/Cas9. Biochem Pharmacol 2016; 105:80-90. [DOI: 10.1016/j.bcp.2016.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/01/2016] [Indexed: 12/26/2022]
|
15
|
Prenatal Exposure of Cypermethrin Induces Similar Alterations in Xenobiotic-Metabolizing Cytochrome P450s and Rate-Limiting Enzymes of Neurotransmitter Synthesis in Brain Regions of Rat Offsprings During Postnatal Development. Mol Neurobiol 2015; 53:3670-3689. [DOI: 10.1007/s12035-015-9307-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/16/2015] [Indexed: 11/30/2022]
|
16
|
Effect of Gestational Exposure of Cypermethrin on Postnatal Development of Brain Cytochrome P450 2D1 and 3A1 and Neurotransmitter Receptors. Mol Neurobiol 2014; 52:741-56. [DOI: 10.1007/s12035-014-8903-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
|
17
|
Induction of brain cytochrome P450 2E1 boosts the locomotor-stimulating effects of ethanol in mice. Neuropharmacology 2014; 85:36-44. [PMID: 24863043 DOI: 10.1016/j.neuropharm.2014.05.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/14/2014] [Accepted: 05/13/2014] [Indexed: 11/23/2022]
Abstract
In the central nervous system ethanol (EtOH) is metabolized into acetaldehyde by different enzymes. Brain catalase accounts for 60% of the total production of EtOH-derived acetaldehyde, whereas cerebral cytochrome P450 2E1 (CYP 2E1) produces 20% of this metabolite. Acetaldehyde formed by the activity of central catalase has been implicated in some of the neurobehavioral properties of EtOH, yet the contribution of CYP 2E1 to the pharmacological actions of this drug has not been investigated. Here we assessed the possible participation of CYP 2E1 in the behavioral effects of EtOH. Thus, we induced CYP 2E1 activity and expression by exposing mice to chronic acetone intake (1% v/v for 10 days) and examined its consequences on the stimulating and uncoordinating effects of EtOH (0-3.2 g/kg) injected intraperitoneally. Our data showed that 24 h after withdrawal of acetone brain expression and activity of CYP 2E1 was induced. Furthermore, the locomotion produced by EtOH was boosted over the same interval of time. Locomotor stimulation produced by amphetamine or tert-butanol was unchanged by previous treatment with acetone. EtOH-induced motor impairment as evaluated in a Rota-Rod apparatus was unaffected by the preceding exposure to acetone. These results indicate that cerebral CYP 2E1 activity could contribute to the locomotor-stimulating effects of EtOH, and therefore we suggest that centrally produced acetaldehyde might be a possible mediator of some EtOH-induced pharmacological effects.
Collapse
|
18
|
Tripathi VK, Kumar V, Singh AK, Kashyap MP, Jahan S, Pandey A, Alam S, Khan F, Khanna VK, Yadav S, Lohani M, Pant AB. Monocrotophos induces the expression and activity of xenobiotic metabolizing enzymes in pre-sensitized cultured human brain cells. PLoS One 2014; 9:e91946. [PMID: 24663500 PMCID: PMC3963866 DOI: 10.1371/journal.pone.0091946] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Accepted: 02/16/2014] [Indexed: 01/04/2023] Open
Abstract
The expression and metabolic profile of cytochrome P450s (CYPs) is largely missing in human brain due to non-availability of brain tissue. We attempted to address the issue by using human brain neuronal (SH-SY5Y) and glial (U373-MG) cells. The expression and activity of CYP1A1, 2B6 and 2E1 were carried out in the cells exposed to CYP inducers viz., 3-methylcholanthrene (3-MC), cyclophosphamide (CPA), ethanol and known neurotoxicant- monocrotophos (MCP), a widely used organophosphorous pesticide. Both the cells show significant induction in the expression and CYP-specific activity against classical inducers and MCP. The induction level of CYPs was comparatively lower in MCP exposed cells than cells exposed to classical inducers. Pre-exposure (12 h) of cells to classical inducers significantly added the MCP induced CYPs expression and activity. The findings were concurrent with protein ligand docking studies, which show a significant modulatory capacity of MCP by strong interaction with CYP regulators-CAR, PXR and AHR. Similarly, the known CYP inducers- 3-MC, CPA and ethanol have also shown significantly high docking scores with all the three studied CYP regulators. The expression of CYPs in neuronal and glial cells has suggested their possible association with the endogenous physiology of the brain. The findings also suggest the xenobiotic metabolizing capabilities of these cells against MCP, if received a pre-sensitization to trigger the xenobiotic metabolizing machinery. MCP induced CYP-specific activity in neuronal cells could help in explaining its effect on neurotransmission, as these CYPs are known to involve in the synthesis/transport of the neurotransmitters. The induction of CYPs in glial cells is also of significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The data provide better understanding of the metabolizing capability of the human brain cells against xenobiotics.
Collapse
Affiliation(s)
- Vinay K. Tripathi
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Department of Biotechnology, Integral University, Lucknow, India
| | - Vivek Kumar
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- Department of Biotechnology, Integral University, Lucknow, India
| | - Abhishek K. Singh
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mahendra P. Kashyap
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sadaf Jahan
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Ankita Pandey
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sarfaraz Alam
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Feroz Khan
- Metabolic and Structural Biology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Vinay K. Khanna
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sanjay Yadav
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Mohtshim Lohani
- Department of Biotechnology, Integral University, Lucknow, India
| | - Aditya B. Pant
- In Vitro Toxicology Laboratory, CSIR-Indian Institute of Toxicology Research, Lucknow, India
- * E-mail:
| |
Collapse
|
19
|
Shimamoto N. [A pathophysiological role of cytochrome p450 involved in production of reactive oxygen species]. YAKUGAKU ZASSHI 2014; 133:435-50. [PMID: 23546588 DOI: 10.1248/yakushi.12-00263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dysregulation of the production of reactive oxygen species (ROS) determines cellular function. Cytochrome P450s (CYPs) regulates ROS production and contributes to the process of cell death. This review summarizes our recent findings, focusing on the involvement of CYPs in pathophysiology induced by ROS. 1. Quinone toxicity in hepatocytes: CYPs require electrons supplied from NADPH-cytochrome P450 reductase (NPR) during the process of metabolism. NPR also provides electrons to quinone compounds, which compete with CYPs over electrons. Inhibition of CYPs shifts NPR's electron flow more to quinones, which accelerates the redox cycle to enhance ROS production and quinone toxicity. 2. Myocardial ischemia-reperfusion injury: Reperfusion of blood flow after coronary artery occlusion induces cell damage, as evident by the extension of myocardial infarct size and caspase-independent cell apoptosis. CYP2C6 appears to be a source for ROS production, since sulfaphenazole, a selective inhibitor of CYP2C6, reduces this damage. ROS produced by CYP2C6 during the reperfusion causes translational activation of Noxa and BimEL, as well as the suppression of caspase activation, resulting in caspase-independent apoptosis. 3. Primary hepatocyte apoptosis: Inhibition of catalase and glutathione peroxidase increases intracellular ROS and elicits caspase-independent hepatocyte apoptosis. SKF-525A, a pan-CYP inhibitor, suppresses these ROS increases and hepatocyte apoptosis. Increased ROS activates ERK and AP-1 by inhibition of tyrosine phosphatase, and inhibits BimEL degradation by proteasome. These results in the accumulation of mitochondrial BimEL, which then induces the release of cytochrome c and endonuclease G (EndoG). Increased ROS also keeps caspases inactivated. As a result, EndoG executes nucleosomal DNA fragmentation.
Collapse
Affiliation(s)
- Norio Shimamoto
- Laboratory of Pharmacology, Faculty of Pharmaceutical Sciences at Kagawa, Tokushima Bunri University, Kagawa 769-2193, Japan
| |
Collapse
|
20
|
Mastrangelo G, Comiati V, dell’Aquila M, Zamprogno E. Exposure to anesthetic gases and Parkinson's disease: a case report. BMC Neurol 2013; 13:194. [PMID: 24321326 PMCID: PMC3878925 DOI: 10.1186/1471-2377-13-194] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 11/27/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The administration of anesthetics determines depression of the central nervous system and general anesthesia by inhalation may cause an environmental pollution of the operating rooms. It may therefore conceive a possible occupational etiology of Parkinson's Disease (PD). CASE PRESENTATION In a Caucasian male aged 59 years, PD was diagnosed by brain scans with a presynaptic radioactive tracer of the dopaminergic system. Family history was negative for Parkinson's disease or essential tremor. He was a smoker, a moderate consumer of coffee and alcohol, and never exposed to pesticides/metals. For 30 years (since the age of 29 until today), he worked as an anesthesiologist in private clinics in the Veneto (Northern Italy), exposed to anesthetic gases. The time elapsed from first exposure to onset of disease is 22 years, fulfilling the requirement of the induction/latency period. A literature search demonstrated unacceptable levels of anesthetic gases in public hospitals of the Veneto region from 1990 to 1999. This exposure was presumably high also in private hospitals of the region until at least 2007, when an overexposure to sevoflurane was repeatedly measured in this patient. The association between occupational exposure to anesthetic gases and risk of Parkinson's disease was supported by a case-control study (reporting a two-fold increase in the risk of PD associated with a clinical history of general anesthesia) and a cohort study comparing mortality from PD between US anesthesiologists and internists (showing a statistically significant excess (p=0.01) in anesthesiologists compared to internists). Numerous recent mechanistic studies (in vitro essays and in vivo short-term studies) strengthened the association between exposure to anesthetic gases (nitrous oxide, halothane, isoflurane, levoflurane) and PD. CONCLUSION In view of the limited evidence of human studies and the sufficient evidence of experimental studies, the high exposure to anesthetic gases could have induced PD in the subject under study.
Collapse
Affiliation(s)
| | - Vera Comiati
- Department of Molecular Medicine, Padua University, Padua, Italy
| | - Massimiliano dell’Aquila
- Department of Anatomical, Histological, Medico-Legal and Locomotor Sciences, La Sapienza University, Rome, Italy
| | | |
Collapse
|
21
|
Tripathi VK, Kumar V, Singh AK, Kashyap MP, Jahan S, Kumar D, Lohani M. Differences in the expression and sensitivity of cultured rat brain neuronal and glial cells toward the monocrotophos. Toxicol Int 2013; 20:177-85. [PMID: 24082512 PMCID: PMC3783685 DOI: 10.4103/0971-6580.117264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Inducible expressions cytochrome P450s (CYPs) against environmental chemicals in brain tissues of experimental animals is well-documented. However, the precise role of specific brain cell type in the metabolism of different class of xenobiotics has not been explored adequately. We study the expression of selected CYPs (1A1/1A2, 2B1/2B2, 2E1) in primary cultures of rat brain neuronal and glial cell exposed to an organophosphate pesticide-monocrotophos (MCP), a known neurotoxicant. The cultured neurons and glial cells express significant expression of CYP1A1, 2B2 and 2E1 isoenzymes, where the levels were comparatively higher in neuronal cells. Neuronal cells exhibited greater induction of CYP2E1 against MCP exposure, while glial cells were having more vulnerability for CYP1A and 2B isoenzymes. Similarly, cells were showing substrate specific responses against the specific inducers of CYPs, that is, ethanol (2E1), cyclophosphamide (2B1/2B2), 3-methylcholanthrene (1A1/1A2). The altered expression and activity of selected CYPs in cultured neuronal and glial cells could be helpful in explaining the association between MCP-induced neurotoxicity/metabolism and synthesis or transport of the neurotransmitters. The induction of CYPs in glial cells may also have significance as these cells are thought to be involved in protecting the neurons from environmental insults and safeguard them from toxicity. The differential expression pattern of CYPs in neuronal and glial cells exposed to MCP also indicate the selective sensitivity of these cells against the xenobiotics, hence suggested their suitability as tool to screen neurotoxicity potential of variety of xenobiotics.
Collapse
Affiliation(s)
- Vinay Kumar Tripathi
- CSIR-Indian Institute of Toxicology Research, Integral University, Lucknow, Uttar Pradesh, India ; Department of Biotechnology, Integral University, Lucknow, Uttar Pradesh, India
| | | | | | | | | | | | | |
Collapse
|
22
|
Singh A, Yadav S, Srivastava V, Kumar R, Singh D, Sethumadhavan R, Parmar D. Imprinting of Cerebral and Hepatic Cytochrome P450s in Rat Offsprings Exposed Prenatally to Low Doses of Cypermethrin. Mol Neurobiol 2013; 48:128-40. [DOI: 10.1007/s12035-013-8419-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 01/29/2013] [Indexed: 01/04/2023]
|
23
|
Lock EA, Zhang J, Checkoway H. Solvents and Parkinson disease: a systematic review of toxicological and epidemiological evidence. Toxicol Appl Pharmacol 2013; 266:345-55. [PMID: 23220449 PMCID: PMC3621032 DOI: 10.1016/j.taap.2012.11.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 12/25/2022]
Abstract
Parkinson disease (PD) is a debilitating neurodegenerative motor disorder, with its motor symptoms largely attributable to loss of dopaminergic neurons in the substantia nigra. The causes of PD remain poorly understood, although environmental toxicants may play etiologic roles. Solvents are widespread neurotoxicants present in the workplace and ambient environment. Case reports of parkinsonism, including PD, have been associated with exposures to various solvents, most notably trichloroethylene (TCE). Animal toxicology studies have been conducted on various organic solvents, with some, including TCE, demonstrating potential for inducing nigral system damage. However, a confirmed animal model of solvent-induced PD has not been developed. Numerous epidemiologic studies have investigated potential links between solvents and PD, yielding mostly null or weak associations. An exception is a recent study of twins indicating possible etiologic relations with TCE and other chlorinated solvents, although findings were based on small numbers, and dose-response gradients were not observed. At present, there is no consistent evidence from either the toxicological or epidemiologic perspective that any specific solvent or class of solvents is a cause of PD. Future toxicological research that addresses mechanisms of nigral damage from TCE and its metabolites, with exposure routes and doses relevant to human exposures, is recommended. Improvements in epidemiologic research, especially with regard to quantitative characterization of long-term exposures to specific solvents, are needed to advance scientific knowledge on this topic.
Collapse
Affiliation(s)
- Edward A Lock
- Liverpool John Moores University, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UK.
| | | | | |
Collapse
|
24
|
Hellmann-Regen J, Gertz K, Uhlemann R, Colla M, Endres M, Kronenberg G. Retinoic acid as target for local pharmacokinetic interaction with modafinil in neural cells. Eur Arch Psychiatry Clin Neurosci 2012; 262:697-704. [PMID: 22434147 DOI: 10.1007/s00406-012-0309-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 03/07/2012] [Indexed: 02/07/2023]
Abstract
While the biological importance of the cytochrome P450 system in the liver is well established, much less is known about its role in the brain and drug interactions at the level of brain cells have hardly been investigated. Here, we show that modafinil, a well-known inducer of hepatic CYP enzymes, also increases CYP3A4 expression in human-derived neuron-like SH-SY5Y cells. Upregulation of CYP3A4 by modafinil was associated with increased retinoic acid (RA) degradation, which could be blocked by specific CYP3A4 inhibitor erythromycin. In turn, reduced RA levels in culture medium during modafinil treatment resulted in decreased neuronal differentiation of SH-SY5Y cells as assessed by intracellular neurotransmitter concentrations and proliferative activity. Again, this differentiation-impeding effect of modafinil on SH-SY5Y cells was antagonized by erythromycin. Similarly, modafinil treatment of the murine GL261 glioma cell line resulted in increased proliferative activity. This was associated with upregulation of RA-degrading CYP26A1 in GL261 cells. Taken together, our results indicate that psychopharmacological agents such as modafinil may directly act on CYP enzymes in neural tissue. These kinds of drug effects may become highly relevant especially in the context of biomolecules such as RA whose local metabolism in brain is under tight spatial and temporal control.
Collapse
|
25
|
Ishihara Y, Hamaguchi A, Sekine M, Hirakawa A, Shimamoto N. Accumulation of cytochrome P450 induced by proteasome inhibition during cardiac ischemia. Arch Biochem Biophys 2012; 527:16-22. [DOI: 10.1016/j.abb.2012.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/19/2012] [Accepted: 07/26/2012] [Indexed: 10/28/2022]
|
26
|
Blechingberg J, Luo Y, Bolund L, Damgaard CK, Nielsen AL. Gene expression responses to FUS, EWS, and TAF15 reduction and stress granule sequestration analyses identifies FET-protein non-redundant functions. PLoS One 2012; 7:e46251. [PMID: 23049996 PMCID: PMC3457980 DOI: 10.1371/journal.pone.0046251] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 08/30/2012] [Indexed: 12/13/2022] Open
Abstract
The FET family of proteins is composed of FUS/TLS, EWS/EWSR1, and TAF15 and possesses RNA- and DNA-binding capacities. The FET-proteins are involved in transcriptional regulation and RNA processing, and FET-gene deregulation is associated with development of cancer and protein granule formations in amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and trinucleotide repeat expansion diseases. We here describe a comparative characterization of FET-protein localization and gene regulatory functions. We show that FUS and TAF15 locate to cellular stress granules to a larger extend than EWS. FET-proteins have no major importance for stress granule formation and cellular stress responses, indicating that FET-protein stress granule association most likely is a downstream response to cellular stress. Gene expression analyses showed that the cellular response towards FUS and TAF15 reduction is relatively similar whereas EWS reduction resulted in a more unique response. The presented data support that FUS and TAF15 are more functionally related to each other, and that the FET-proteins have distinct functions in cellular signaling pathways which could have implications for the neurological disease pathogenesis.
Collapse
Affiliation(s)
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | | |
Collapse
|
27
|
Induction of brain CYP2E1 by chronic ethanol treatment and related oxidative stress in hippocampus, cerebellum, and brainstem. Toxicology 2012; 302:275-84. [PMID: 22960445 DOI: 10.1016/j.tox.2012.08.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/02/2012] [Accepted: 08/23/2012] [Indexed: 11/24/2022]
Abstract
Ethanol is one of the most commonly abused substances, and oxidative stress is an important causative factor in ethanol-induced neurotoxicity. Cytochrome P450 2E1 (CYP2E1) is involved in ethanol metabolism in the brain. This study investigates the role of brain CYP2E1 in the susceptibility of certain brain regions to ethanol neurotoxicity. Male Wistar rats were intragastrically treated with ethanol (3.0 g/kg, 30 days). CYP2E1 protein, mRNA expression, and catalytic activity in various brain regions were respectively assessed by immunoblotting, quantitative quantum dot immunohistochemistry, real-time RT-PCR, and LC-MS. The generation of reactive oxygen species (ROS) was analyzed using a laser confocal scanning microscope. The hippocampus, cerebellum, and brainstem were selectively damaged after ethanol treatment, indicated by both lactate dehydrogenase (LDH) activity and histopathological analysis. Ethanol markedly increased the levels of CYP2E1 protein, mRNA expression, and activity in the hippocampus and cerebellum. CYP2E1 protein and activity were significantly increased by ethanol in the brainstem, with no change in mRNA expression. ROS levels induced by ethanol paralleled the enhanced CYP2E1 proteins in the hippocampus, granular layer and white matter of cerebellum as well as brainstem. Brain CYP2E1 activity was positively correlated with the damage to the hippocampus, cerebellum, and brainstem. These results suggest that the selective sensitivity of brain regions to ethanol neurodegeneration may be attributed to the regional and cellular-specific induction of CYP2E1 by ethanol. The inhibition of CYP2E1 levels may attenuate ethanol-induced oxidative stress via ROS generation.
Collapse
|
28
|
Kacevska M, Ivanov M, Ingelman-Sundberg M. Epigenetic-dependent regulation of drug transport and metabolism: an update. Pharmacogenomics 2012; 13:1373-85. [DOI: 10.2217/pgs.12.119] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The pharmacokinetics of a drug are subject to large interindividual variability, which can result in lack of response or adverse drug reactions. In addition to genetic polymorphisms and drug interactions, key genes involved in the metabolism and transport of drugs are demonstrated to have epigenetic influences that can potentially affect interindividual variability in drug response. Emerging studies have focused on the importance of DNA methylation for ADME gene expression and for drug action and resistance, particularly in cancer. However, the epigenetic and ncRNA-dependent regulation of these genes, as well as the pharmacological consequences, is in need of greater attention. In the current review we provide an update of epigenetic and ncRNA-dependent regulation of ADME genes.
Collapse
Affiliation(s)
- Marina Kacevska
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Maxim Ivanov
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Magnus Ingelman-Sundberg
- Section of Pharmacogenetics, Department of Physiology & Pharmacology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
29
|
Jiao Y, Lu L, Williams RW, Smeyne RJ. Genetic dissection of strain dependent paraquat-induced neurodegeneration in the substantia nigra pars compacta. PLoS One 2012; 7:e29447. [PMID: 22291891 PMCID: PMC3265472 DOI: 10.1371/journal.pone.0029447] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 11/28/2011] [Indexed: 02/03/2023] Open
Abstract
The etiology of the vast majority of Parkinson's disease (PD) cases is unknown. It is generally accepted that there is an interaction between exposures to environmental agents with underlying genetic sensitivity. Recent epidemiological studies have shown that people living in agricultural communities have an increased risk of PD. Within these communities, paraquat (PQ) is one of the most utilized herbicides. PQ acts as a direct redox cycling agent to induce formation of free radicals and when administered to mice induces the cardinal symptoms of parkinsonism, including loss of TH+-positive dopaminergic (DA) neurons in the ventral midbrain's substantia nigra pars compacta (SNpc). Here we show that PQ-induced SNpc neuron loss is highly dependent on genetic background: C57BL/6J mice rapidly lose ∼50% of their SNpc DA neurons, whereas inbred Swiss-Webster (SWR/J) mice do not show any significant loss. We intercrossed these two strains to map quantitative trait loci (QTLs) that underlie PQ-induced SNpc neuron loss. Using genome-wide linkage analysis we detected two significant QTLs. The first is located on chromosome 5 (Chr 5) centered near D5Mit338, whereas the second is on Chr 14 centered near D14Mit206. These two QTLs map to different loci than a previously identified QTL (Mptp1) that controls a significant portion of strain sensitivity to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), suggesting that the mechanism of action of these two parkinsonian neurotoxins are different.
Collapse
Affiliation(s)
- Yun Jiao
- Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Lu Lu
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Robert W. Williams
- Department of Anatomy and Neurobiology, Center for Integrative and Translational Genomics, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Richard J. Smeyne
- Department of Developmental Neurobiology, Saint Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
30
|
Kaut O, Schmitt I, Wüllner U. Genome-scale methylation analysis of Parkinson's disease patients' brains reveals DNA hypomethylation and increased mRNA expression of cytochrome P450 2E1. Neurogenetics 2012; 13:87-91. [PMID: 22238121 DOI: 10.1007/s10048-011-0308-3] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Accepted: 12/13/2011] [Indexed: 01/14/2023]
Abstract
Multiple lines of evidence suggest a link between environmental toxins and Parkinson's disease (PD). Although numerous studies reported associations of genetic variants in de-toxifying enzymes, i.e. cytochrome genes, with PD. Epigenetic modifications of genes and subsequent altered expression may confer a yet unappreciated level of susceptibility. We present a genome-wide methylation analysis of PD with quantitative DNA methylation levels of 27.500 CpG sites representing 14.495 genes. We found decreased methylation of the cytochrome P450 2E1 gene and increased expression of CYP2E1 messenger RNA in PD patients' brains, suggesting that epigenetic variants of this cytochrome contribute to PD susceptibility.
Collapse
Affiliation(s)
- Oliver Kaut
- University Clinic, Department of Neurology, University of Bonn, Bonn, Germany.
| | | | | |
Collapse
|
31
|
Haduch A, Bromek E, Daniel WA. The effect of psychotropic drugs on cytochrome P450 2D (CYP2D) in rat brain. Eur J Pharmacol 2010; 651:51-8. [PMID: 21115002 DOI: 10.1016/j.ejphar.2010.10.077] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Revised: 10/06/2010] [Accepted: 10/29/2010] [Indexed: 10/18/2022]
Abstract
The aim of the study was to investigate the influence of selected antidepressants and neuroleptics on the protein level and activity of cytochrome P450 2D (CYP2D) in rat brain. The obtained results showed that imipramine, fluoxetine, nefazodone, thioridazine and perazine, added to brain microsomes of control rats, inhibited CYP2D activity to a lower extent (K(i)=255-485μM) than when added to liver microsomes (K(i)=1-45μM), which may result from their stronger affinity for liver CYP2D2 (K(i)=2.7 and 1.25μM for imipramine and fluoxetine, respectively) than for brain CYP2D4 (K(i)=25 and 10μM for imipramine and fluoxetine, respectively), as well as from their high non-specific binding in brain microsomes. Two-week treatment with fluoxetine evoked decreases in the level and activity of CYP2D in the striatum and the nucleus accumbens. In contrast, fluoxetine increased CYP2D expression in the cerebellum, while nefazodone considerably enhanced the activity (but not the protein level) of CYP2D in the truncus cerebri. Imipramine and mirtazapine (active in the liver) did not affect brain CYP2D. Chronic thioridazine decreased CYP2D activity in the substantia nigra and nucleus accumbens, but significantly increased that activity in the striatum and cerebellum. Clozapine significantly enhanced CYP2D activity in the truncus cerebri. In conclusion, psychotropics influence CYP2D in the brain, but their effect is different than in the liver and depends on the cerebral structure. The observed psychotropics-brain CYP2D interactions may be important for the metabolism of neurosteroids and monoaminergic neurotransmitters, and for the local biotransformation of drugs.
Collapse
Affiliation(s)
- Anna Haduch
- Polish Academy of Sciences, Institute of Pharmacology, Kraków, Poland
| | | | | |
Collapse
|
32
|
Clement HW, Vazquez JF, Sommer O, Heiser P, Morawietz H, Hopt U, Schulz E, von Dobschütz E. Lipopolysaccharide-induced radical formation in the striatum is abolished in Nox2 gp91phox-deficient mice. J Neural Transm (Vienna) 2009; 117:13-22. [DOI: 10.1007/s00702-009-0327-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Accepted: 09/20/2009] [Indexed: 11/24/2022]
|
33
|
Dutheil F, Dauchy S, Diry M, Sazdovitch V, Cloarec O, Mellottée L, Bièche I, Ingelman-Sundberg M, Flinois JP, de Waziers I, Beaune P, Declèves X, Duyckaerts C, Loriot MA. Xenobiotic-metabolizing enzymes and transporters in the normal human brain: regional and cellular mapping as a basis for putative roles in cerebral function. Drug Metab Dispos 2009; 37:1528-38. [PMID: 19359404 DOI: 10.1124/dmd.109.027011] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (P450) enzymes and ATP-binding cassette (ABC) transporters modulate the transport and metabolism of both endogenous and exogenous substrates and could play crucial roles in the human brain. In this study, we report the transcript expression profile of seven ABC transporters (ABCB1, ABCC1-C5, and ABCG2), 24 P450s (CYP1, CYP2, and CYP3 families and CYP46A1), and 14 related transcription factors [aryl hydrocarbon receptor, nuclear receptor (NR)1I2/pregnane X receptor, NR1I3/constitutive androstane receptor and NR1C/peroxisome proliferator-activated receptor, NR1H/liver X receptor, NR2B/retinoid X receptor, and NR3A/estrogen receptor subfamilies] in the whole brain, the dura mater, and 17 different encephalic areas. In addition, Western blotting and immunohistochemistry analysis were used to characterize the distribution of the P450s at the cellular and subcellular levels in some brain regions. Our results show the presence of a large variety of xenobiotic transporters and metabolizing enzymes in human brain and show for the first time their apparent selective distribution in different cerebral regions. The most abundant transporters were ABCC5 and ABCG2, which, interestingly, had a higher mRNA expression in the brain compared with that found in the liver. CYP46A1, CYP2J2, CYP2U1, CYP1B1, CYP2E1, and CYP2D6 represented more than 90% of the total P450 and showed selective distribution in different brain regions. Their presence in both microsomal and mitochondrial fractions was shown both in neuronal and glial cells in several brain areas. Thus, our study shows key enzymes of cholesterol and fatty acid metabolism to be present in the human brain and provides novel information of importance for elucidation of enzymes responsible for normal and pathological processes in the human brain.
Collapse
|
34
|
Ishihara Y, Sekine M, Nakazawa M, Shimamoto N. Suppression of myocardial ischemia–reperfusion injury by inhibitors of cytochrome P450 in rats. Eur J Pharmacol 2009; 611:64-71. [DOI: 10.1016/j.ejphar.2009.03.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Revised: 03/12/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
|
35
|
Shahabi HN, Westberg L, Melke J, Håkansson A, Belin AC, Sydow O, Olson L, Holmberg B, Nissbrandt H. Cytochrome P450 2E1 gene polymorphisms/haplotypes and Parkinson's disease in a Swedish population. J Neural Transm (Vienna) 2009; 116:567-73. [PMID: 19381774 DOI: 10.1007/s00702-009-0221-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 03/21/2009] [Indexed: 11/26/2022]
Abstract
Cytochrome P450 2E1 (CYP2E1), which inter alia is located in dopamine containing neurons in the substantia nigra, has been hypothesized to be of importance for the pathophysiology of Parkinson's disease (PD), either by its production of reactive oxygen species (ROS) or by its capability to detoxify putative neurotoxins. Numerous polymorphisms in the coding and non-coding regions of the gene for this enzyme have been reported. Different variants may account for inter-individual differences in the activity of the enzyme or production of ROS. In this study, the CYP2E1 gene was examined in a control population (n = 272) and a population with PD (n = 347), using a tag-single nucleotide polymorphism (tSNP) approach founded on HapMap Data. Six tSNPs were used in the analysis and haplotype block data were obtained. In case of significance, the SNP was further examined regarding early/late age of disease onset and presence of relatives with PD. We found an association between allele and genotype frequencies of the C/G polymorphism at intron 7 (rs2070676) of this gene and PD (P value of 0.026 and 0.027, respectively). Furthermore, analysis of the rs2070676 polymorphism in subgroups of patients with age of disease onset higher than 50 years and those not having a relative with PD also demonstrated a significant difference with controls. This was seen in both genotype (corresponding to P value = 0.039 and 0.032) and allele (P = 0.027 and 0.017 respectively) frequency. As a representative of many polymorphisms or in possible linkage disequilibrium with other functional variants, it is possible that rs2070676 could influence the regulation of the enzyme. In conclusion, our results display an association between the rs2070676 polymorphism and PD. Additional investigations are needed to elucidate the importance of this polymorphism for the activity of CYP2E1 and PD susceptibility.
Collapse
Affiliation(s)
- H Niazi Shahabi
- Department of Pharmacology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Viaggi C, Vaglini F, Pardini C, Caramelli A, Corsini GU. MPTP-induced model of Parkinson's disease in cytochrome P450 2E1 knockout mice. Neuropharmacology 2009; 56:1075-81. [PMID: 19298832 DOI: 10.1016/j.neuropharm.2009.03.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Revised: 03/05/2009] [Accepted: 03/10/2009] [Indexed: 11/27/2022]
Abstract
Evidence for involvement of cytochrome P450 2E1 in the MPTP-induced mouse model of PD has been reported [Vaglini, F., Pardini, C., Viaggi, C., Bartoli, C., Dinucci, D., Corsini, G.U., 2004. Involvement of cytochrome P450 2E1 in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced mouse model of Parkinson's disease. J. Neurochem. 91, 285-298]. We studied the sensitivity of Cyp2e1(-/-) mice to the acute administration of MPTP in comparison with their wild-type counterparts. In Cyp2e1(-/-) mice, the reduction of striatal DA content was less pronounced 7 days after MPTP treatment compared to treated wild-type mice. Similarly, TH immunoreactivity analysis of the substantia nigra of Cyp2e1(-/-) mice did not show any neuronal lesions after MPTP treatment. In contrast to this, wild-type animals showed a minimal but significant lesioning by the toxin as evaluated also by means of non-stereologic computerized assisted analysis of this brain area. Striatal levels of DA metabolites after 7 days were variably affected by the toxin, but consistent differences between the two animal strains were not observed. We evaluated short-term changes in the levels of striatal DA and its metabolites, and we monitored striatal MPP(+) levels. Striatal MPP(+) was cleared more rapidly in Cyp2e1(-/-) mice than in wild-type animals and, consistently, striatal DA content decreased faster in Cyp2e1(-/-) mice than in wild-type animals, and 3-methoxytyramine and HVA levels showed an early and sharp rise. Our findings suggest that Cyp2e1(-/-) mice are weakly sensitive to MPTP-induced brain lesions, markedly in contrast with a protective role of the enzyme as suggested previously. The differences observed between the knockout mice and their wild-type counterparts are modest and may be due to an efficient compensatory mechanism or genetic drift in the colonies.
Collapse
Affiliation(s)
- C Viaggi
- Department of Neuroscience, Section of Pharmacology, University of Pisa and Center of Excellence AMBISEN for the Study of Environmental Toxins and CNS Diseases, Pisa, Italy.
| | | | | | | | | |
Collapse
|