1
|
Griffiths K, Smart SE, Barker GJ, Deakin B, Lawrie SM, Lewis S, Lythgoe DJ, Pardiñas AF, Singh K, Semple S, Walters JTR, Williams SR, Egerton A, MacCabe JH. Treatment resistance NMDA receptor pathway polygenic score is associated with brain glutamate in schizophrenia. Schizophr Res 2023; 260:152-159. [PMID: 37657282 PMCID: PMC10873209 DOI: 10.1016/j.schres.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Dysfunction of glutamate neurotransmission has been implicated in the pathophysiology of schizophrenia and may be particularly relevant in severe, treatment-resistant symptoms. The underlying mechanism may involve hypofunction of the NMDA receptor. We investigated whether schizophrenia-related pathway polygenic scores, composed of genetic variants within NMDA receptor encoding genes, are associated with cortical glutamate in schizophrenia. Anterior cingulate cortex (ACC) glutamate was measured in 70 participants across 4 research sites using Proton Magnetic Resonance Spectroscopy (1H-MRS). Two NMDA receptor gene sets were sourced from the Molecular Signatories Database and NMDA receptor pathway polygenic scores were constructed using PRSet. The NMDA receptor pathway polygenic scores were weighted by single nucleotide polymorphism (SNP) associations with treatment-resistant schizophrenia, and associations with ACC glutamate were tested. We then tested whether NMDA receptor pathway polygenic scores with SNPs weighted by associations with non-treatment-resistant schizophrenia were associated with ACC glutamate. A higher NMDA receptor complex pathway polygenic score was significantly associated with lower ACC glutamate (β = -0.25, 95 % CI = -0.49, -0.02, competitive p = 0.03). When SNPs were weighted by associations with non-treatment-resistant schizophrenia, there was no association between the NMDA receptor complex pathway polygenic score and ACC glutamate (β = 0.05, 95 % CI = -0.18, 0.27, competitive p = 0.79). These results provide initial evidence of an association between common genetic variation implicated in NMDA receptor function and ACC glutamate levels in schizophrenia. This association was specific to when the NMDA receptor complex pathway polygenic score was weighted by SNP associations with treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Kira Griffiths
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Sophie E Smart
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Gareth J Barker
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Bill Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, M13 9PT, UK
| | | | - Shon Lewis
- Division of Psychology and Mental Health, University of Manchester, M13 9PT, UK; Greater Manchester Mental Health NHS Foundation Trust, Manchester M25 3BL, UK
| | - David J Lythgoe
- NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK; Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Antonio F Pardiñas
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Krishna Singh
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff CF24 4HQ, UK
| | - Scott Semple
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - James T R Walters
- MRC Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Stephen R Williams
- Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK.
| |
Collapse
|
2
|
Fu H, Chen Z, Josephson L, Li Z, Liang SH. Positron Emission Tomography (PET) Ligand Development for Ionotropic Glutamate Receptors: Challenges and Opportunities for Radiotracer Targeting N-Methyl-d-aspartate (NMDA), α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA), and Kainate Receptors. J Med Chem 2019; 62:403-419. [PMID: 30110164 PMCID: PMC6393217 DOI: 10.1021/acs.jmedchem.8b00714] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ionotropic glutamate receptors (iGluRs) mediate excitatory neurotransmission within the mammalian central nervous system. iGluRs exist as three main groups: N-methyl-d-aspartate receptors (NMDARs), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs), and kainate receptors. The past decades have witnessed a remarkable development of PET tracers targeting different iGluRs including NMDARs and AMPARs, and several of the tracers have advanced to clinical imaging studies. Here, we assess the recent development of iGluR PET probes, focusing on tracer design, brain kinetics, and performance in PET imaging studies. Furthermore, this review will not only present challenges in the tracer development but also provide novel approaches in conjunction with most recent drug discovery efforts on these iGluRs, including subtype-selective NMDAR and transmembrane AMPAR regulatory protein modulators and positive allosteric modulators (PAMs) of AMPARs. These approaches, if successful as PET tracers, may provide fundamental knowledge to understand the roles of iGluR receptors under physiological and pathological conditions.
Collapse
Affiliation(s)
- Hualong Fu
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zhen Chen
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Lee Josephson
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| | - Zijing Li
- State Key Laboratory of Molecular Vaccinology, Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, P. R. China
| | - Steven H. Liang
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St., Boston, MA 02114 USA
| |
Collapse
|
3
|
McGinnity CJ, Årstad E, Beck K, Brooks DJ, Coles JP, Duncan JS, Galovic M, Hinz R, Hirani E, Howes OD, Jones PA, Koepp MJ, Luo F, Riaño Barros DA, Singh N, Trigg W, Hammers A. Comment on " In Vivo [ 18F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates". ACS Chem Neurosci 2019; 10:768-772. [PMID: 30346706 DOI: 10.1021/acschemneuro.8b00246] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Schoenberger and colleagues ( Schoenberger et al. ( 2018 ) ACS Chem. Neurosci. 9 , 298 - 305 ) recently reported attempts to demonstrate specific binding of the positron emission tomography (PET) radiotracer, [18F]GE-179, to NMDA receptors in both rats and Rhesus macaques. GE-179 did not work as expected in animal models; however, we disagree with the authors' conclusion that "the [18F]GE-179 signal seems to be largely nonspecific". It is extremely challenging to demonstrate specific binding for the use-dependent NMDA receptor intrachannel ligands such as [18F]GE-179 in animals via traditional blocking, due to its low availability of target sites ( Bmax'). Schoenberger and colleagues anesthetized rats and Rhesus monkeys using isoflurane, which has an inhibitory effect on NMDA receptor function and thus would be expected to further reduce the Bmax'. The extent of glutamate release achieved in the provocation experiments is uncertain, as is whether a significant increase in NMDA receptor channel opening can be expected under anesthesia. Prior data suggest that the uptake of disubstituted arylguanidine-based ligands such as GE-179 can be reduced by phencyclidine binding site antagonists, if injection is performed in the absence of ketamine and isoflurane anesthesia, e.g., with GE-179's antecedent, CNS 5161 ( Biegon et al. ( 2007 ) Synapse 61 , 577 - 586 ), and with GMOM ( van der Doef et al. ( 2016 ) J. Cereb. Blood Flow Metab. 36 , 1111 - 1121 ). However, the extent of nonspecific uptake remains uncertain.
Collapse
Affiliation(s)
- Colm J. McGinnity
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
- King’s
College London & Guy’s and St Thomas’ PET Centre,
St Thomas’ Hospital, London SE1 7EH, United Kingdom
| | - Erik Årstad
- Institute of Nuclear Medicine and Department of Chemistry, University College London, London NW1 2BU, United Kingdom
| | - Katherine Beck
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | - David J. Brooks
- Department of Nuclear Medicine, Aarhus University, Aarhus 8200, Denmark
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jonathan P. Coles
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - John S. Duncan
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Epilepsy Society, Gerrards Cross SL9 0RJ, United Kingdom
| | - Marian Galovic
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Epilepsy Society, Gerrards Cross SL9 0RJ, United Kingdom
- Department of Neurology, Kantonsspital St Gallen, 9007 St. Gallen, Switzerland
| | - Rainer Hinz
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester M20 3LJ, United Kingdom
| | - Ella Hirani
- GE Healthcare Ltd, Amersham HP7 9LL, United Kingdom
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | | | - Matthias J. Koepp
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- Epilepsy Society, Gerrards Cross SL9 0RJ, United Kingdom
| | - Feng Luo
- GE Healthcare Ltd, Amersham HP7 9LL, United Kingdom
| | - Daniela A. Riaño Barros
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, Beckenham, London BR3 3BX, United Kingdom
| | - Nisha Singh
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, United Kingdom
| | | | - Alexander Hammers
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London SE1 7EH, United Kingdom
- King’s
College London & Guy’s and St Thomas’ PET Centre,
St Thomas’ Hospital, London SE1 7EH, United Kingdom
| |
Collapse
|
4
|
Sander CY, Schoenberger M, Hooker JM. Response to Comment on "In Vivo [ 18F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates". ACS Chem Neurosci 2019; 10:773-775. [PMID: 30346705 DOI: 10.1021/acschemneuro.8b00423] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Christin Y. Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Matthias Schoenberger
- Chemical Biology and Imaging, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, BE-3000 Leuven, Belgium
| | - Jacob M. Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
5
|
Sloan NL, Luthra SK, McRobbie G, Pimlott SL, Sutherland A. A one-pot radioiodination of aryl amines via stable diazonium salts: preparation of 125I-imaging agents. Chem Commun (Camb) 2018; 53:11008-11011. [PMID: 28849815 DOI: 10.1039/c7cc06211g] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An operationally simple, one-pot, two-step tandem procedure that allows the incorporation of radioactive iodine into aryl amines via stable diazonium salts is described. The mild conditions are tolerant of various functional groups and substitution patterns, allowing late-stage, rapid access to a wide range of 125I-labelled aryl compounds and SPECT radiotracers.
Collapse
Affiliation(s)
- Nikki L Sloan
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | | | | | |
Collapse
|
6
|
Schoenberger M, Schroeder FA, Placzek MS, Carter RL, Rosen BR, Hooker JM, Sander CY. In Vivo [ 18F]GE-179 Brain Signal Does Not Show NMDA-Specific Modulation with Drug Challenges in Rodents and Nonhuman Primates. ACS Chem Neurosci 2018; 9:298-305. [PMID: 29050469 PMCID: PMC5894869 DOI: 10.1021/acschemneuro.7b00327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
As one of the major excitatory ion channels in the brain, NMDA receptors have been a leading research target for neuroscientists, physicians, medicinal chemists, and pharmaceutical companies for decades. Molecular imaging of NMDA receptors by means of positron emission tomography (PET) with [18F]GE-179 quickly progressed to clinical PET studies, but a thorough understanding of its binding specificity has been missing and has thus limited signal interpretation. Here a preclinical study with [18F]GE-179 in rodents and nonhuman primates (NHPs) is presented in an attempt to characterize [18F]GE-179 signal specificity. Rodent PET/CT was used to study drug occupancy and functional manipulation in rats by pretreating animals with NMDA targeted blocking/modulating drug doses followed by a single bolus of [18F]GE-179. Binding competition with GE-179, MK801, PCP, and ketamine, allosteric inhibition by ifenprodil, and brain activation with methamphetamine did not alter the [18F]GE-179 brain signal in rats. In addition, multimodal imaging with PET/MRI in NHPs was used to evaluate changes in radiotracer binding as a function of pharmacological challenges. Drug-induced hemodynamic changes were monitored simultaneously using functional MRI (fMRI). Comparisons of baseline and signal after drug challenge in NHPs demonstrated that the [18F]GE-179 signal cannot be manipulated in a predictable fashion in vivo. fMRI data acquired simultaneously with PET data supported this finding and provided evidence that radiotracer delivery is not altered by blood flow changes. In conclusion, the [18F]GE-179 brain signal is not readily interpretable in the context of NMDA receptor binding on the basis of the results shown in this study.
Collapse
Affiliation(s)
- Matthias Schoenberger
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Chemical Biology and Imaging, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven , BE-3000 Leuven, Belgium
| | - Frederick A Schroeder
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
| | - Michael S Placzek
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Department of Psychiatry, McLean Imaging Center, McLean Hospital , Belmont, Massachusetts 02478, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| | | | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, United States
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| | - Christin Y Sander
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, Massachusetts 02129, United States
- Harvard Medical School , Boston, Massachusetts 02115, United States
| |
Collapse
|
7
|
Sloan N, Luthra SK, McRobbie G, Pimlott SL, Sutherland A. Late stage iodination of biologically active agents using a one-pot process from aryl amines. RSC Adv 2017. [DOI: 10.1039/c7ra11860k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A tandem process has been developed for the general preparation of aryl iodide compounds from anilines that is also applicable for the late-stage iodination of biologically active agents.
Collapse
Affiliation(s)
- Nikki L. Sloan
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow G12 8QQ
| | | | | | - Sally L. Pimlott
- West of Scotland PET Centre
- Greater Glasgow and Clyde NHS Trust
- Glasgow G12 0YN
- UK
| | - Andrew Sutherland
- WestCHEM
- School of Chemistry
- The Joseph Black Building
- University of Glasgow
- Glasgow G12 8QQ
| |
Collapse
|
8
|
Yamada S. [Integration of pharmacokinetics and pharmacodynamics based on the in vivo analysis of drug-receptor binding]. YAKUGAKU ZASSHI 2015; 135:137-50. [PMID: 25743911 DOI: 10.1248/yakushi.14-00217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As I was deeply interested in the effects of drugs on the human body, I chose pharmacology as the subject of special study when I became a 4th year student at Shizuoka College of Pharmacy. I studied abroad as a postdoctoral fellow for two years, from 1978, under the tutelage of Professor Henry I. Yamamura (pharmacology) in the College of Medicine at the University of Arizona, USA. He taught me a variety of valuable skills such as the radioreceptor binding assay, which represented the most advanced technology developed in the US at that time. After returning home, I engaged in clarifying receptor abnormalities in pathological conditions, as well as in drug action mechanisms, by making the best use of this radioreceptor binding assay. In 1989, following the founding of the University of Shizuoka, I was invited by Professor Ryohei Kimura to join the Department of Pharmacokinetics. This switch in discipline provided a good opportunity for me to broaden my perspectives in pharmaceutical sciences. I worked on evaluating drug-receptor binding in vivo as a combined index for pharmacokinetics and pharmacological effect manifestation, with the aim of bridging pharmacology and pharmacokinetics. In fact, by focusing on data from in vivo receptor binding, it became possible to clearly rationalize the important consideration of drug dose-concentration-action relationships, and to study quantitative and kinetic analyses of relationships among pharmacokinetics, receptor binding and pharmacological effects. Based on this concept, I was able to demonstrate the utility of dynamic analyses of drug-receptor binding in drug discovery, drug fostering, and the proper use of pharmacokinetics with regard to many drugs.
Collapse
Affiliation(s)
- Shizuo Yamada
- Center for Pharma-Food Research (CPFR), Graduate School of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
9
|
Synthesis, structure activity relationship, radiolabeling and preclinical evaluation of high affinity ligands for the ion channel of the N-methyl-d-aspartate receptor as potential imaging probes for positron emission tomography. Bioorg Med Chem 2015; 23:1189-206. [DOI: 10.1016/j.bmc.2014.12.029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/20/2022]
|
10
|
Abstract
The glutamate and dopamine hypotheses are leading theories of the pathoaetiology of schizophrenia. Both were initially based on indirect evidence from pharmacological studies supported by post-mortem findings, but have since been substantially advanced by new lines of evidence from in vivo imaging studies. This review provides an update on the latest findings on dopamine and glutamate abnormalities in schizophrenia, focusing on in vivo neuroimaging studies in patients and clinical high-risk groups, and considers their implications for understanding the biology and treatment of schizophrenia. These findings have refined both the dopamine and glutamate hypotheses, enabling greater anatomical and functional specificity, and have been complemented by preclinical evidence showing how the risk factors for schizophrenia impact on the dopamine and glutamate systems. The implications of this new evidence for understanding the development and treatment of schizophrenia are considered, and the gaps in current knowledge highlighted. Finally, the evidence for an integrated model of the interactions between the glutamate and dopamine systems is reviewed, and future directions discussed.
Collapse
Affiliation(s)
- Oliver Howes
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| | - Rob McCutcheon
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| | - James Stone
- Psychiatric Imaging, MRC Clinical Sciences Centre, Hammersmith Hospital, London, UK Institute of Psychiatry, King's College London, London, UK
| |
Collapse
|
11
|
Naumiec GR, Cai L, Pike VW. New N-aryl-N'-(3-(substituted)phenyl)-N'-methylguanidines as leads to potential PET radioligands for imaging the open NMDA receptor. Bioorg Med Chem Lett 2014; 25:225-8. [PMID: 25499436 DOI: 10.1016/j.bmcl.2014.11.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/21/2014] [Accepted: 11/24/2014] [Indexed: 12/28/2022]
Abstract
An expansive set of N-aryl-N'-(3-(substituted)phenyl)-N'-methylguanidines was prepared in a search for new leads to prospective PET ligands for imaging of the open channel of the N-methyl-d-aspartate (NMDA) receptor in vivo. The N-aryl rings and their substituents were varied, whereas the N-methyl group was maintained as a site for potential labeling with the positron-emitter, carbon-11 (t1/2=20.4min). At micromolar concentration, over half of the prepared compounds strongly inhibited the binding of [(3)H]TCP to its binding site in the open NMDA receptor in vitro. Four ligands displayed affinities that are similar or superior to those of the promising SPECT radioligand ([(123)I]CNS1261). The 3'-dimethylamino (19; Ki 36.7nM), 3'-trifluoromethyl (20; Ki 18.3nM) and 3'-methylthio (2; Ki 39.8nM) derivatives of N-1-naphthyl-N'-(phenyl)-N'-methylguanidine were identified as especially attractive leads for PET radioligand development.
Collapse
Affiliation(s)
- Gregory R Naumiec
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States
| | - Lisheng Cai
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Building 10, Room B3 C346A, 10 Center Drive, Bethesda, MD 20892, United States.
| |
Collapse
|
12
|
Pérez-Medina C, Patel N, Robson M, Badar A, Lythgoe MF, Årstad E. Evaluation of a 125I-labelled benzazepinone derived voltage-gated sodium channel blocker for imaging with SPECT. Org Biomol Chem 2012; 10:9474-80. [PMID: 23117159 DOI: 10.1039/c2ob26695d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Voltage-gated sodium channels (VGSCs) are a family of transmembrane proteins that mediate fast neurotransmission, and are integral to sustain physiological conditions and higher cognitive functions. Imaging of VGSCs in vivo holds promise as a tool to elucidate operational functions in the brain and to aid the treatment of a wide range of neurological diseases. To assess the suitability of 1-benzazepin-2-one derived VGSC blockers for imaging, we have prepared a (125)I-labelled analogue of BNZA and evaluated the tracer in vivo. In an automated patch-clamp assay, a diastereomeric mixture of the non-radioactive compound blocked the Na(v)1.2 and Na(v)1.7 VGSC isoforms with IC(50) values of 4.1 ± 1.5 μM and 0.25 ± 0.07 μM, respectively. [(3)H]BTX displacement studies revealed a three-fold difference in affinity between the two diastereomers. Iodo-destannylation of a tin precursor with iodine-125 afforded the two diastereomerically pure tracers, which were used to assess binding to VGSCs in vivo by comparing their tissue distributions in mice. Whilst the results point to a lack of VGSC binding in vivo, SPECT imaging revealed highly localized uptake in the interscapular region, an area typically associated with brown adipose tissue, which in addition to high metabolic stability of the iodinated tracer, demonstrate the potential of 1-benzazepin-2-ones for in vivo imaging.
Collapse
Affiliation(s)
- Carlos Pérez-Medina
- Department of Chemistry and Institute of Nuclear Medicine, UCL, 235 Euston Road (T-5), NW1 2BU London, United Kingdom
| | | | | | | | | | | |
Collapse
|
13
|
Majo VJ, Prabhakaran J, Mann JJ, Kumar JSD. PET and SPECT tracers for glutamate receptors. Drug Discov Today 2012; 18:173-84. [PMID: 23092894 DOI: 10.1016/j.drudis.2012.10.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 07/10/2012] [Accepted: 10/15/2012] [Indexed: 12/19/2022]
Abstract
Radioligands for PET imaging of glutamate receptors will have the potential for studying neurological and neuropsychiatric disorders and their diagnosis and therapeutic intervention. Glutamate is the major excitatory neurotransmitter in the brain and is implicated in the pathophysiology of many neurodegenerative and neuropsychiatric disorders. Glutamate and its receptors are potential targets in the treatment of these disorders. Glutamate signaling is mediated through ionotropic and metabotropic receptors. The abundant concentration of these receptors can facilitate their in vivo quantification using positron emission tomography (PET). Glutamate receptors are a potentially important set of targets for monitoring disease progression, for evaluating the effect of therapy and for new treatment development based on the quantification of receptor occupancy. Here, we review the PET and single-photon emission computed tomography (SPECT) radioligands that have been developed for imaging glutamate receptors in living brain.
Collapse
Affiliation(s)
- Vattoly J Majo
- Division of Molecular Imaging and Neuropathology, Department of Psychiatry, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
14
|
|
15
|
Abstract
The results of imaging studies have played an important role in the formulation of hypotheses regarding the etiology of psychosis and schizophrenia, as well as in our understanding of the mechanisms of action of antipsychotics. Since this volume is primarily directed to molecular aspects of psychosis and antipsychotics, only the results of molecular imaging techniques addressing these topics will be discussed here.One of the most consistent findings of molecular imaging studies in schizophrenia is an increased uptake of DOPA in the striatum, which may be interpreted as an increased synthesis of L-DOPA. Also, several studies reported an increased release of dopamine induced by amphetamine in schizophrenia patients. These findings played an important role in reformulating the dopamine hypothesis of schizophrenia. To study the roles of the neurotransmitters γ-aminobutyric acid (GABA) and glutamate in schizophrenia, SPECT as well as MR spectroscopy have been used. The results of preliminary SPECT studies are consistent with the hypothesis of NMDA receptor dysfunction in schizophrenia. Regarding the GABA deficit hypothesis of schizophrenia, imaging results are inconsistent. No changes in serotonin transporters were demonstrated in imaging studies in schizophrenia, but studies of several serotonin receptors showed conflicting results. The lack of selective radiotracers for muscarinic receptors may have hampered examination of this system in schizophrenia as well as its role in the induction of side effects of antipsychotics. Interestingly, preliminary molecular imaging studies on the cannabinoid-1 receptor and on neuroinflammatory processes in schizophrenia have recently been published. Finally, a substantial number of PET/SPECT studies have examined the occupancy of receptors by antipsychotics and an increasing number of studies is now focusing on the effects of these drugs using techniques like spectroscopy and pharmacological MRI.
Collapse
|
16
|
Kong Y, Zhou X, Cao G, Xu X, Zou M, Qin X, Zhang R. Preparation of 99mTc-PQQ and preliminary biological evaluation for the NMDA receptor. J Radioanal Nucl Chem 2010. [PMID: 26224906 PMCID: PMC4514009 DOI: 10.1007/s10967-010-0845-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Pyrroloquinoline quinone (PQQ), an essential nutrient, antioxidant, redox modulator and nerve growth factor found in a class of enzymes called quinoproteins, was labeled with 99mTc by using stannous fluoride (SnF2) method. Radiolabeling qualification, quality control and characterization of 99mTc-PQQ and its biodistribution studies in mice were performed and discussed. Effects of pH values, temperature, time and reducing agents concentration on the radiolabeling yield were investigated. The quality control procedure of 99mTc-PQQ was determined by thin layer chromatography (TLC), radio high-performance liquid chromatography (RHPLC) and paper electrophoresis methods. The average radiolabeling yield was 94 ± 1% under optimum conditions of 0.99 mg of PQQ, 30 μg of SnF2, 0.5 mg of ethylenediaminetetraacetic acid disodium salt (EDTA-2Na) and 18.5 MBq of Na99mTcO4 at pH 6 and 25 °C with a response volume of 1 ± 0.1 mL. 99mTc-PQQ was stable and anionic. Lipid–water partition coefficient of 99mTc-PQQ was −1.49 ± 0.16. The pharmacokinetics parameters of 99mTc-PQQ were t1/2α = 18.16 min, t1/2β = 100.45 min, K12 = 0.013 min−1, K21 = 0.017 min−1, Ke = 0.016 min−1, AUC (area under the curve) = 1040.78 ID% g−1 min and CL (plasma clearance) = 0.096 mL min−1. The dual-exponential equation was Y = 10.88e−0.038t + 5.21e−0.0069t. The biodistribution of 99mTc-PQQ was studied in ICR (Institute for Cancer Research 7701 Burhelme Are., Fox Chase, Philadelphia, PA 1911 USA) mice. In vitro autoradiographic studies clearly showed that the 99mTc-PQQ radioactivity accumulated predominantly in the hippocampus and cortex, which had a high density of N-methyl-d-aspartate Receptor (NMDAR). The enrichment can be blocked by NMDAR redox modulatory site antagonists-ebselen (EB) and 99mTc-PQQ is therefore a promising candidate for the molecular imaging of NMDAR. To date, however, there have been no studies characterizing 99mTc-PQQ.
Collapse
Affiliation(s)
- Yanyan Kong
- Department of Nuclear Medicine, Huashan Hospital, Fudan University, Shanghai, 200040 China
| | - Xingqin Zhou
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063 China
| | - Guoxian Cao
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063 China
| | - Xijie Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063 China
| | - Meifen Zou
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063 China
| | - Xiaofeng Qin
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063 China
| | - Rongjun Zhang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, Jiangsu 214063 China
| |
Collapse
|
17
|
Synthesis and in vitro evaluation of 18F-labelled S-fluoroalkyl diarylguanidines: Novel high-affinity NMDA receptor antagonists for imaging with PET. Bioorg Med Chem Lett 2010; 20:1749-51. [DOI: 10.1016/j.bmcl.2010.01.052] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/05/2010] [Accepted: 01/06/2010] [Indexed: 11/24/2022]
|
18
|
Yamada S, Yoshida A, Ito Y. [In vivo analysis of drug-receptor binding characteristics]. Nihon Yakurigaku Zasshi 2009; 134:276-280. [PMID: 19915288 DOI: 10.1254/fpj.134.276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
|