1
|
Mika K, Szafarz M, Bednarski M, Siwek A, Szczepańska K, Kieć-Kononowicz K, Kotańska M. Evaluation of Some Safety Parameters of Dual Histamine H 3 and Sigma-2 Receptor Ligands with Anti-Obesity Potential. Int J Mol Sci 2023; 24:ijms24087499. [PMID: 37108661 PMCID: PMC10138714 DOI: 10.3390/ijms24087499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/16/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Many studies have shown the high efficacy of histamine H3 receptor ligands in preventing weight gain. In addition to evaluating the efficacy of future drug candidates, it is very important to assess their safety profile, which is established through numerous tests and preclinical studies. The purpose of the present study was to evaluate the safety of histamine H3/sigma-2 receptor ligands by assessing their effects on locomotor activity and motor coordination, as well as on the cardiac function, blood pressure, and plasma activity of certain cellular enzymes. The ligands tested at a dose of 10 mg/kg b.w. did not cause changes in locomotor activity (except for KSK-74) and did not affect motor coordination. Significant reductions in blood pressure were observed after the administration of compounds KSK-63, KSK-73, and KSK-74, which seems logically related to the increased effect of histamine. Although the results of in vitro studies suggest that the tested ligands can block the human ether-a-go-go-related gene (hERG) potassium channels, they did not affect cardiac parameters in vivo. It should be noted that repeated administration of the tested compounds prevented an increase in the activity of alanine aminotransferase (AlaT) and gamma-glutamyl transpeptidases (gGT) observed in the control animals fed a palatable diet. The obtained results show that the ligands selected for this research are not only effective in preventing weight gain but also demonstrate safety in relation to the evaluated parameters, allowing the compounds to proceed to the next stages of research.
Collapse
Affiliation(s)
- Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Katarzyna Szczepańska
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
- Department of Medicinal Chemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Smętna 12, 31-343 Cracow, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| | - Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland
| |
Collapse
|
2
|
Remex NS, Abdullah CS, Aishwarya R, Nitu SS, Traylor J, Hartman B, King J, Bhuiyan MAN, Kevil CG, Orr AW, Bhuiyan MS. Sigmar1 ablation leads to lung pathological changes associated with pulmonary fibrosis, inflammation, and altered surfactant proteins levels. Front Physiol 2023; 14:1118770. [PMID: 37051024 PMCID: PMC10083329 DOI: 10.3389/fphys.2023.1118770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Sigma1 receptor protein (Sigmar1) is a small, multifunctional molecular chaperone protein ubiquitously expressed in almost all body tissues. This protein has previously shown its cardioprotective roles in rodent models of cardiac hypertrophy, heart failure, and ischemia-reperfusion injury. Extensive literature also suggested its protective functions in several central nervous system disorders. Sigmar1's molecular functions in the pulmonary system remained unknown. Therefore, we aimed to determine the expression of Sigmar1 in the lungs. We also examined whether Sigmar1 ablation results in histological, ultrastructural, and biochemical changes associated with lung pathology over aging in mice. In the current study, we first confirmed the presence of Sigmar1 protein in human and mouse lungs using immunohistochemistry and immunostaining. We used the Sigmar1 global knockout mouse (Sigmar1-/-) to determine the pathophysiological role of Sigmar1 in lungs over aging. The histological staining of lung sections showed altered alveolar structures, higher immune cells infiltration, and upregulation of inflammatory markers (such as pNFκB) in Sigmar1-/- mice compared to wildtype (Wt) littermate control mice (Wt). This indicates higher pulmonary inflammation resulting from Sigmar1 deficiency in mice, which was associated with increased pulmonary fibrosis. The protein levels of some fibrotic markers, fibronectin, and pSMAD2 Ser 245/250/255 and Ser 465/467, were also elevated in mice lungs in the absence of Sigmar1 compared to Wt. The ultrastructural analysis of lungs in Wt mice showed numerous multilamellar bodies of different sizes with densely packed lipid lamellae and mitochondria with a dark matrix and dense cristae. In contrast, the Sigmar1-/- mice lung tissues showed altered multilamellar body structures in alveolar epithelial type-II pneumocytes with partial loss of lipid lamellae structures in the lamellar bodies. This was further associated with higher protein levels of all four surfactant proteins, SFTP-A, SFTP-B, SFTP-C, and SFTP-D, in the Sigmar1-/- mice lungs. This is the first study showing Sigmar1's expression pattern in human and mouse lungs and its association with lung pathophysiology. Our findings suggest that Sigmar1 deficiency leads to increased pulmonary inflammation, higher pulmonary fibrosis, alterations of the multilamellar body stuructures, and elevated levels of lung surfactant proteins.
Collapse
Affiliation(s)
- Naznin Sultana Remex
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Chowdhury S. Abdullah
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Richa Aishwarya
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Sadia S. Nitu
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - James Traylor
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Brandon Hartman
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Judy King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Mohammad Alfrad Nobel Bhuiyan
- Department of Internal Medicine, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Christopher G. Kevil
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - A. Wayne Orr
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| | - Md. Shenuarin Bhuiyan
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, United States
| |
Collapse
|
3
|
Wang H, Peng Z, Li Y, Sahn JJ, Hodges TR, Chou TH, Liu Q, Zhou X, Jiao S, Porciatti V, Liebl DJ, Martin SF, Wen R. σ 2R/TMEM97 in retinal ganglion cell degeneration. Sci Rep 2022; 12:20753. [PMID: 36456686 PMCID: PMC9715665 DOI: 10.1038/s41598-022-24537-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
The sigma 2 receptor (σ2R) was recently identified as an endoplasmic reticulum (ER) membrane protein known as transmembrane protein 97 (TMEM97). Studies have shown that σ2R/TMEM97 binding compounds are neuroprotective, suggesting a role of σ2R/TMEM97 in neurodegenerative processes. To understand the function of σ2R/TMEM97 in neurodegeneration pathways, we characterized ischemia-induced retinal ganglion cell (RGC) degeneration in TMEM97-/- mice and found that RGCs in TMEM97-/- mice are resistant to degeneration. In addition, intravitreal injection of a selective σ2R/TMEM97 ligand DKR-1677 significantly protects RGCs from ischemia-induced degeneration in wildtype mice. Our results provide conclusive evidence that σ2R/TMEM97 plays a role to facilitate RGC death following ischemic injury and that inhibiting the function of σ2R/TMEM97 is neuroprotective. This work is a breakthrough toward elucidating the biology and function of σ2R/TMEM97 in RGCs and likely in other σ2R/TMEM97 expressing neurons. Moreover, these findings support future studies to develop new neuroprotective approaches for RGC degenerative diseases by inhibiting σ2R/TMEM97.
Collapse
Affiliation(s)
- Hua Wang
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhiyou Peng
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yiwen Li
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - James J Sahn
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Timothy R Hodges
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Tsung-Han Chou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Qiong Liu
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Xuezhi Zhou
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Shuliang Jiao
- Department of Biomedical Engineering, Florida International University, Miami, FL, 33174, USA
| | - Vittorio Porciatti
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Daniel J Liebl
- Department of Neurosurgery, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Stephen F Martin
- Department of Chemistry and Biochemistry, University of Texas at Austin, Austin, TX, 78712, USA.
| | - Rong Wen
- Bascom Palmer Eye Institute, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Davidson M, Saoud J, Staner C, Noel N, Werner S, Luthringer E, Walling D, Weiser M, Harvey PD, Strauss GP, Luthringer R. Efficacy and Safety of Roluperidone for the Treatment of Negative Symptoms of Schizophrenia. Schizophr Bull 2022; 48:609-619. [PMID: 35211743 PMCID: PMC9077422 DOI: 10.1093/schbul/sbac013] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
BACKGROUND This is a placebo-controlled multi-national trial of roluperidone, a compound with antagonist properties for 5-HT2A, sigma2, and α1A-adrenergic receptors, targeting negative symptoms in patients with schizophrenia. This trial follows a previous trial that demonstrated roluperidone superiority over placebo in a similar patient population. METHODS Roluperidone 32 mg/day, roluperidone 64 mg/day, or placebo was administered for 12 weeks to 513 patients with schizophrenia with moderate to severe negative symptoms. The primary endpoint was the PANSS-derived Negative Symptom Factor Score (NSFS) and the key secondary endpoint was Personal and Social Performance scale (PSP) total score. RESULTS NSFS scores were lower (improved) for roluperidone 64 mg compared to placebo and marginally missing statistical significance for the intent-to-treat (ITT) analysis data set (P ≤ .064), but reached nominal significance (P ≤ .044) for the modified-ITT (m-ITT) data set. Changes in PSP total score were statistically significantly better on roluperidone 64 mg compared to placebo for both ITT and m-ITT (P ≤ .021 and P ≤ .017, respectively). CONCLUSIONS Results of this trial confirm the potential of roluperidone as a treatment of negative symptoms and improving everyday functioning in patients with schizophrenia. Study registration: Eudra-CT: 2017-003333-29; NCT03397134.
Collapse
Affiliation(s)
- Michael Davidson
- Minerva Neurosciences, Watham, MA, USA
- Department Of Psychiatry Nicosia Cyprus, Nicosia University Medical School, Egkomi, Cyprus
| | - Jay Saoud
- Minerva Neurosciences, Watham, MA, USA
| | - Corinne Staner
- PPRS, 4e Av. du Général de Gaulle, Colmar, Grand EST, France
| | - Nadine Noel
- PPRS, 4e Av. du Général de Gaulle, Colmar, Grand EST, France
| | - Sandra Werner
- PPRS, 4e Av. du Général de Gaulle, Colmar, Grand EST, France
| | | | - David Walling
- Collaborative Neuroscience Network, Suite 3, Garden Grove, CA, USA
| | - Mark Weiser
- University of Tel Aviv School of Medicine, Ramat Aviv, Israel
| | - Philip D Harvey
- Department of Psychiatry, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | | |
Collapse
|
5
|
Discovery and development of brain-penetrant 18F-labeled radioligands for neuroimaging of the sigma-2 receptors. Acta Pharm Sin B 2022; 12:1406-1415. [PMID: 35530149 PMCID: PMC9069315 DOI: 10.1016/j.apsb.2021.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
We have discovered and synthesized a series of indole-based derivatives as novel sigma-2 (σ 2) receptor ligands. Two ligands with high σ 2 receptor affinity and subtype selectivity were then radiolabeled with F-18 in good radiochemical yields and purities, and evaluated in rodents. In biodistribution studies in male ICR mice, radioligand [18F]9, or 1-(4-(5,6-dimethoxyisoindolin-2-yl)butyl)-4-(2-[18F]fluoroethoxy)-1H-indole, was found to display high brain uptake and high brain-to-blood ratio. Pretreatment of animals with the selective σ 2 receptor ligand CM398 led to significant reductions in both brain uptake (29%-54%) and brain-to-blood ratio (60%-88%) of the radioligand in a dose-dependent manner, indicating high and saturable specific binding of [18F]9 to σ 2 receptors in the brain. Further, ex vivo autoradiography in male ICR mice demonstrated regionally heterogeneous specific binding of [18F]9 in the brain that is consistent with the distribution pattern of σ 2 receptors. Dynamic positron emission tomography imaging confirmed regionally distinct distribution and high levels of specific binding for [18F]9 in the rat brain, along with appropriate tissue kinetics. Taken together, results from our current study indicated the novel radioligand [18F]9 as the first highly specific and promising imaging agent for σ 2 receptors in the brain.
Collapse
|
6
|
Cordone P, Namballa HK, Muniz B, Pal RK, Gallicchio E, Harding WW. New tetrahydroisoquinoline-based D 3R ligands with an o-xylenyl linker motif. Bioorg Med Chem Lett 2021; 42:128047. [PMID: 33882273 DOI: 10.1016/j.bmcl.2021.128047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/18/2021] [Accepted: 04/13/2021] [Indexed: 12/21/2022]
Abstract
The effect of rigidification of the n-butyl linker region of tetrahydroisoquinoline-containing D3R ligands via inclusion of an o-xylenyl motif was examined in this study. Generally, rigidification with an o-xylenyl linker group reduces D3R affinity and negatively impacts selectivity versus D2R for compounds possessing a 6-methoxy-1,2,3,4,-tetrahydroisoquinolin-7-ol primary pharmacophore group. However, D3R affinity appears to be regulated by the primary pharmacophore group and high affinity D3R ligands with 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline and 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline primary pharmacophore groups were identified. The results of this study also indicate that D3R selectivity versus the σ2R is dictated by the benzamide secondary pharmacophore group, this being facilitated with 4-substituted benzamides. Compounds 5s and 5t were identified as high affinity (Ki < 4 nM) D3R ligands. Docking studies revealed that the added phenyl ring moiety interacts with the Cys181 in D3R which partially accounts for the strong D3R affinity of the ligands.
Collapse
Affiliation(s)
- Pierpaolo Cordone
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States
| | - Hari K Namballa
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Bryant Muniz
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States
| | - Rajat K Pal
- Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn New York, NY, 11210, United States
| | - Emilio Gallicchio
- Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Department of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn New York, NY, 11210, United States
| | - Wayne W Harding
- Department of Chemistry, Hunter College, City University of New York, 695 Park Avenue, NY 10065, United States; Program in Biochemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States; Program in Chemistry, CUNY Graduate Center, 365 5th Avenue, New York, NY 10016, United States.
| |
Collapse
|
7
|
Quadir SG, Tanino SM, Rohl CD, Sahn JJ, Yao EJ, Cruz LDR, Cottone P, Martin SF, Sabino V. The Sigma-2 receptor / transmembrane protein 97 (σ2R/TMEM97) modulator JVW-1034 reduces heavy alcohol drinking and associated pain states in male mice. Neuropharmacology 2020; 184:108409. [PMID: 33221481 DOI: 10.1016/j.neuropharm.2020.108409] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/27/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022]
Abstract
Alcohol Use Disorder (AUD) is a chronic relapsing disorder characterized by compulsive alcohol intake, loss of control over alcohol intake, and a negative emotional state when access to alcohol is prevented. AUD is also closely tied to pain, as repeated alcohol drinking leads to increased pain sensitivity during withdrawal. The sigma-2 receptor, recently identified as transmembrane protein 97 (σ2R/TMEM97), is an integral membrane protein involved in cholesterol homeostasis and lipid metabolism. Selective σ2R/Tmem97 modulators have been recently shown to relieve mechanical hypersensitivity in animal models of neuropathic pain as well as to attenuate alcohol withdrawal signs in C. elegans and to reduce alcohol drinking in rats, suggesting a potential key role for this protein in alcohol-related behaviors. In this study, we tested the effects of a potent and selective σ2R/TMEM97 ligand, JVW-1034, on heavy alcohol drinking and alcohol-induced heightened pain states in mice using an intermittent access model. Administration of JVW-1034 decreased both ethanol intake and preference for ethanol, without affecting water intake, total fluid intake, or food intake. Notably, this effect was specific for alcohol, as JVW-1034 had no effect on sucrose intake. Furthermore, JVW-1034 reduced both thermal hyperalgesia and mechanical hypersensitivity in ethanol withdrawn mice. Our data provide important evidence that modulation of σ2R/TMEM97 with small molecules can mediate heavy alcohol drinking as well as chronic alcohol-induced heightened pain sensitivity, thereby identifying a promising novel pharmacological target for AUD and associated pain states.
Collapse
Affiliation(s)
- Sema G Quadir
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, USA
| | - Sean M Tanino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, USA
| | - Christian D Rohl
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, USA
| | - James J Sahn
- Department of Chemistry and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Emily J Yao
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, USA
| | - Luíza Dos Reis Cruz
- Department of Chemistry and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, USA
| | - Stephen F Martin
- Department of Chemistry and Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA.
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, 72 E. Concord St, Boston, MA, USA.
| |
Collapse
|
8
|
Jones MT, Strassnig MT, Harvey PD. Emerging 5-HT receptor antagonists for the treatment of Schizophrenia. Expert Opin Emerg Drugs 2020; 25:189-200. [PMID: 32449404 DOI: 10.1080/14728214.2020.1773792] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION While antipsychotics have been generally successful in treating psychosis in schizophrenia, there is a major treatment gap for negative symptoms and cognitive deficits. Given that these aspects of the disease contribute to poor functional outcomes independently of positive symptoms, treatments would have profound implications for quality of life. The 5-HT2A- receptor has been considered a potential target for interventions aimed at negative and cognitive symptoms and multiple antagonists and inverse agonists of this receptor have been tested. AREAS COVERED Ritanserin and volinanserin, are historically important compounds in this area, while pimavanserin, roluperidone, and lumateperone are either newly approved, in late stages of development, or currently being tested for efficacy in schizophrenia-related features. The focus will be on their efficacy in the treatment of negative symptoms, with a limited secondary discussion of cognition. EXPERT OPINION In addition to their efficacy in treating negative symptoms and cognition, these compounds may also have a role in modulating antipsychotic-induced dopamine super-sensitivity and preventing relapse. They may also show efficacy in treating patients with milder symptoms such as patients with schizotypal personality disorder and attenuated psychosis syndrome. Their utility may also expand outside the spectrum of schizophrenia to encompass Parkinson's Disease psychosis, major depression, bipolar depression, and dementia-associated apathy.
Collapse
Affiliation(s)
| | | | - Philip D Harvey
- Miller School of Medicine, University of Miami , Miami, FL, USA
| |
Collapse
|
9
|
Harvey PD, Saoud JB, Luthringer R, Moroz S, Blazhevych Y, Stefanescu C, Davidson M. Effects of Roluperidone (MIN-101) on two dimensions of the negative symptoms factor score: Reduced emotional experience and reduced emotional expression. Schizophr Res 2020; 215:352-356. [PMID: 31488314 DOI: 10.1016/j.schres.2019.08.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Recent research has suggested that negative symptoms (NS) can be considered in terms of two different dimensions: reduced expression (expressive deficit) and reduced experience (experiential deficit). Roluperidone, a compound with high affinities for 5 HT2A and sigma2 receptors, has previously shown superiority over placebo on improving NS in a prospective study in patients with schizophrenia. The objective here is to explore the effect of roluperidone compared to placebo, on the 2 domains of the Negative Symptoms. METHODS This was a multi-national Phase 2b trial that enrolled 244 symptomatically stable patients with schizophrenia who had baseline scores ≥20 on the NS subscale of the PANSS. Patients were randomized to daily monotherapy with roluperidone 32 mg, roluperidone 64 mg, or placebo in a 1:1:1 ratio. All enrolled patients were Caucasian, and 137 (56%) were male. The 3 treatment groups were balanced on all demographic and illness-related baseline characteristics. RESULTS Both doses of roluperidone were superior to placebo on both domains: Reduced Experience (p ≤ .006 for the 32 mg; p ≤ .001 for the 64 mg) with persistent superiority from Week 2 for the 64 mg dose and Week 8 for the 32 mg dose; Reduced Expression (p ≤ .003 for 32 mg; p ≤ .001 for 64 mg) with similar persistence. IMPLICATIONS Both doses of roluperidone previously improved PANSS negative symptoms in general and demonstrated tolerability in stable schizophrenia patients. The post hoc analysis reported here found the drug to work on both the reduced emotional experience and reduced emotional expression sub-scales empirically derived from the PANSS.
Collapse
Affiliation(s)
- Philip D Harvey
- University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Jay B Saoud
- Minerva Neurosciences, Inc., Waltham, MA, USA
| | | | - Svetlana Moroz
- Dnipropetrovsk Regional Clinical hospital, Dnipro 49005, Ukraine
| | | | | | | |
Collapse
|
10
|
López OV, Gorantla S, Segarra AC, Andino Norat MC, Álvarez M, Skolasky RL, Meléndez LM. Sigma-1 Receptor Antagonist (BD1047) Decreases Cathepsin B Secretion in HIV-Infected Macrophages Exposed to Cocaine. J Neuroimmune Pharmacol 2019; 14:226-240. [PMID: 30306495 PMCID: PMC6488453 DOI: 10.1007/s11481-018-9807-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 08/26/2018] [Indexed: 12/17/2022]
Abstract
Pathogenesis of HIV-associated neurocognitive disorders (HAND) is mediated through the infiltration of perivascular macrophages into the brain with the secretion of viral, neurotoxic and inflammatory proteins. One of these proteins is cathepsin B (CATB), a lysosomal cysteine protease that induces neuronal apoptosis, and increases in plasma and cerebrospinal fluid from HIV-1 infected patients (Cantres-Rosario et al. AIDS 27(3):347-356, 2013). Cocaine further potentiates CATB neurotoxicity in vitro and in vivo (Zenón et al. J NeuroImmune Pharmacol 9(5):703-715, 2014). Modulation of sigma-1 (Sig1R) by cocaine increases oxidative species, cytokines and other factors that promote lysosomal disruption. However, the role of Sig1R in CATB secretion and HIV-1 replication in macrophages exposed to cocaine is unknown. We hypothesized that pharmacological modulation of Sig1R would alter CATB secretion from HIV-1 infected macrophages in vitro and in vivo. To test our hypothesis, monocyte derived-macrophages (MDM) from HIV-1 seronegative donors were isolated, infected with HIV-1ADA, and pretreated with Sig1R antagonist (BD1047) or Sig1R agonist (PRE-084) prior to cocaine exposure and followed for 3,6,9 and 11 days post-infection (dpi). Experiments in vivo were conducted using the HIV encephalitis mouse model (HIVE) with BD1047 treatments prior to cocaine for 14 days. Results demonstrate that in presence of cocaine, BD1047 decreases CATB secretion at 11 dpi, while PRE-084 did not have an effect. In the mouse model, BD1047 treatment prior to cocaine decreased CATB expression, cleaved caspase-3 an p24 antigen levels, reduced astrocytosis, but did not increase MAP-2 or synaptophysin. Results demonstrate that Sig1R plays a role in the modulation of CATB levels in HIV-1 infected MDM exposed to cocaine in vitro and in vivo. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Omar Vélez López
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico
| | - Santhi Gorantla
- University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Annabell C Segarra
- Department of Physiology, University of Puerto Rico Medical Sciences Campus, San Juan, 00921, Puerto Rico
| | - María C Andino Norat
- Department of Biology, University of Puerto Rico Bayamón Campus, Bayamón, 00959, Puerto Rico
| | - Manuel Álvarez
- Department of Biology, University of Puerto Rico, Río Piedras Campus, San Juan, 00921, Puerto Rico
| | - Richard L Skolasky
- Orthopaedic Surgery and Physical Medicine & Rehabilitation Director, Spine Outcomes Research Center, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Loyda M Meléndez
- Department of Microbiology and Medical Zoology, School of Medicine, University of Puerto Rico Medical Sciences Campus, San Juan, 00936-5067, Puerto Rico.
| |
Collapse
|
11
|
Navarro G, Medrano M, Aguinaga D, Vega-Quiroga I, Lillo A, Jiménez J, Casanovas M, Canela EI, Mallol J, Gysling K, Franco R. Differential effect of amphetamine over the corticotropin-releasing factor CRF 2 receptor, the orexin OX 1 receptor and the CRF 2-OX 1 heteroreceptor complex. Neuropharmacology 2018; 152:102-111. [PMID: 30465812 DOI: 10.1016/j.neuropharm.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/16/2018] [Accepted: 11/09/2018] [Indexed: 11/30/2022]
Abstract
Stress is one of the factors underlying drug seeking behavior that often goes in parallel with loss of appetite. We here demonstrate that orexin 1 receptors (OX1R) may form complexes with the corticotropin releasing factor CRF2 receptor. Two specific features of the heteromer were a cross-antagonism and a blockade by CRF2 of OX1R signaling. In cells expressing one of the receptors, agonist-mediated signal transduction mechanisms were potentiated by amphetamine. Sigma 1 (σ1) and 2 (σ2) receptors are targets of drugs of abuse and, despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is not known. We here show that σ1 receptors interact with CRF2 receptors and that σ2 receptors interact with OX1R. Moreover, we show that amphetamine effect on CRF2 receptors was mediated by σ1R whereas the effect on OX1 receptors was mediated by σ2R. Amphetamine did potentiate the negative cross-talk occurring within the CRF2-OX1 receptor heteromer context, likely by a macromolecular complex involving the two sigma receptors and the two GPCRs. Finally, in vivo microdialysis experiments showed that amphetamine potentiated orexin A-induced dopamine and glutamate release in the ventral tegmental area (VTA). Remarkably, the in vivo orexin A effects were blocked by a selective CRF2R antagonist. These results show that amphetamine impacts on the OX1R-, CRF2R- and OX1R/CRF2R-mediated signaling and that cross-antagonism is instrumental for in vivo detection of GPCR heteromers. This article is part of the Special Issue entitled 'Receptor heteromers and their allosteric receptor-receptor interactions'.
Collapse
Affiliation(s)
- Gemma Navarro
- Department of Biochemistry and Physiology, Pharmacy and Food Science School, University of Barcelona, Spain; Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Medrano
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - David Aguinaga
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandro Lillo
- Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Mireia Casanovas
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Enric I Canela
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Josefa Mallol
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain; Molecular Neurobiology Laboratory, Department of Biochemistry and Molecular Biomedicine, University of Barcelona, Spain.
| |
Collapse
|
12
|
Aguinaga D, Medrano M, Vega-Quiroga I, Gysling K, Canela EI, Navarro G, Franco R. Cocaine Effects on Dopaminergic Transmission Depend on a Balance between Sigma-1 and Sigma-2 Receptor Expression. Front Mol Neurosci 2018; 11:17. [PMID: 29483862 PMCID: PMC5816031 DOI: 10.3389/fnmol.2018.00017] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/12/2018] [Indexed: 11/13/2022] Open
Abstract
Sigma σ1 and σ2 receptors are targets of cocaine. Despite sharing a similar name, the two receptors are structurally unrelated and their physiological role is unknown. Cocaine increases the level of dopamine, a key neurotransmitter in CNS motor control and reward areas. While the drug also affects dopaminergic signaling by allosteric modulations exerted by σ1R interacting with dopamine D1 and D2 receptors, the potential regulation of dopaminergic transmission by σ2R is also unknown. We here demonstrate that σ2R may form heteroreceptor complexes with D1 but not with D2 receptors. Remarkably σ1, σ2, and D1 receptors may form heterotrimers with particular signaling properties. Determination of cAMP levels, MAP kinase activation and label-free assays demonstrate allosteric interactions within the trimer. Importantly, the presence of σ2R induces bias in signal transduction as σ2R ligands increase cAMP signaling whereas reduce MAP kinase activation. These effects, which are opposite to those exerted via σ1R, suggest that the D1 receptor-mediated signaling depends on the degree of trimer formation and the differential balance of sigma receptor and heteroreceptor expression in acute versus chronic cocaine consumption. Although the physiological role is unknown, the heteroreceptor complex formed by σ1, σ2, and D1 receptors arise as relevant to convey the cocaine actions on motor control and reward circuits and as a key factor in acquisition of the addictive habit.
Collapse
Affiliation(s)
- David Aguinaga
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Mireia Medrano
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enric I Canela
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Physiology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Klawonn AM, Nilsson A, Rådberg CF, Lindström SH, Ericson M, Granseth B, Engblom D, Fritz M. The Sigma-2 Receptor Selective Agonist Siramesine (Lu 28-179) Decreases Cocaine-Reinforced Pavlovian Learning and Alters Glutamatergic and Dopaminergic Input to the Striatum. Front Pharmacol 2017; 8:714. [PMID: 29066971 PMCID: PMC5641388 DOI: 10.3389/fphar.2017.00714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 09/25/2017] [Indexed: 12/02/2022] Open
Abstract
Drug addiction is a chronic, debilitating disease that affects millions of people around the world causing a substantial societal burden. Despite decades of research efforts, treatment possibilities remain limited and relapse represents the most treatment-resistant element. Neurosteroid sigma-1 receptors have been meticulously studied in psychostimulant reinforced Pavlovian learning, while the sigma-2 receptor subtype has remained unexplored. Recent development of selective sigma-2 receptor ligands have now made it possible to investigate if the sigma-2 receptor system is a potential target to treat drug addiction. We examined the effect of the sigma-2 receptor agonist Siramesine (Lu 28-179) on cocaine-associated locomotion, Pavlovian learning, and reward neurocircuitry using electrophysiology recordings and in vivo microdialysis. We found that Siramesine significantly attenuated conditioned place preference acquisition and expression, as well as it completely blocked cocaine-primed reinstatement. Siramesine, in a similar manner as the selective sigma-1 receptor antagonist BD 1063, decreased acute locomotor responses to cocaine. Immunohistochemistry suggests co-expression of progesterone receptor membrane component 1/sigma-2 receptors and vesicular glutamate transporter 1 in presynaptic boutons of the nucleus accumbens (NAc). Whole-cell voltage clamp recordings of neurons in the NAc indicated that Siramesine decreases the presynaptic release probability of glutamate. Further, we demonstrated, via in vivo microdialysis, that Siramesine significantly decreased cocaine-evoked dopamine release in the striatum of freely moving mice. Collectively, these findings demonstrate that sigma-2 receptors regulate neurocircuitry responsible for positive reinforcement and thereby play a role in cocaine-reinforced Pavlovian behaviors.
Collapse
Affiliation(s)
- Anna M Klawonn
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Nilsson
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Carl F Rådberg
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Sarah H Lindström
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Mia Ericson
- Addiction Biology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Björn Granseth
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - David Engblom
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Michael Fritz
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
14
|
Lever SZ, Fan KH, Lever JR. Tactics for preclinical validation of receptor-binding radiotracers. Nucl Med Biol 2017; 44:4-30. [PMID: 27755986 PMCID: PMC5161541 DOI: 10.1016/j.nucmedbio.2016.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Aspects of radiopharmaceutical development are illustrated through preclinical studies of [125I]-(E)-1-(2-(2,3-dihydrobenzofuran-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-BF-PE-PIPZE), a radioligand for sigma-1 (σ1) receptors, coupled with examples from the recent literature. Findings are compared to those previously observed for [125I]-(E)-1-(2-(2,3-dimethoxy-5-yl)ethyl)-4-(iodoallyl)piperazine ([125I]-E-IA-DM-PE-PIPZE). METHODS Syntheses of E-IA-BF-PE-PIPZE and [125I]-E-IA-BF-PE-PIPZE were accomplished by standard methods. In vitro receptor binding studies and autoradiography were performed, and binding potential was predicted. Measurements of lipophilicity and protein binding were obtained. In vivo studies were conducted in mice to evaluate radioligand stability, as well as specific binding to σ1 sites in brain, brain regions and peripheral organs in the presence and absence of potential blockers. RESULTS E-IA-BF-PE-PIPZE exhibited high affinity and selectivity for σ1 receptors (Ki = 0.43 ± 0.03 nM, σ2/σ1 = 173). [125I]-E-IA-BF-PE-PIPZE was prepared in good yield and purity, with high specific activity. Radioligand binding provided dissociation (koff) and association (kon) rate constants, along with a measured Kd of 0.24 ± 0.01 nM and Bmax of 472 ± 13 fmol/mg protein. The radioligand proved suitable for quantitative autoradiography in vitro using brain sections. Moderate lipophilicity, Log D7.4 2.69 ± 0.28, was determined, and protein binding was 71 ± 0.3%. In vivo, high initial whole brain uptake, >6% injected dose/g, cleared slowly over 24 h. Specific binding represented 75% to 93% of total binding from 15 min to 24 h. Findings were confirmed and extended by regional brain biodistribution. Radiometabolites were not observed in brain (1%). CONCLUSIONS Substitution of dihydrobenzofuranylethyl for dimethoxyphenethyl increased radioligand affinity for σ1 receptors by 16-fold. While high specific binding to σ1 receptors was observed for both radioligands in vivo, [125I]-E-IA-BF-PE-PIPZE displayed much slower clearance kinetics than [125I]-E-IA-DM-PE-PIPZE. Thus, minor structural modifications of σ1 receptor radioligands lead to major differences in binding properties in vitro and in vivo.
Collapse
Affiliation(s)
- Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO, USA; University of Missouri Research Reactor Center, Columbia, MO, USA.
| | - Kuo-Hsien Fan
- Department of Chemistry, University of Missouri, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO, USA; Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| |
Collapse
|
15
|
LEVER JOHNR, FERGASON-CANTRELL EMILYA, WATKINSON LISAD, CARMACK TERRYL, LORD SARAHA, XU RONG, MILLER DENNISK, LEVER SUSANZ. Cocaine occupancy of sigma1 receptors and dopamine transporters in mice. Synapse 2016; 70:98-111. [PMID: 26618331 PMCID: PMC4724290 DOI: 10.1002/syn.21877] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/11/2015] [Accepted: 11/23/2015] [Indexed: 01/12/2023]
Abstract
Activation of sigma1 (σ1) receptors contributes to the behavioral and toxic effects of (-)-cocaine. We studied a key step, the ability of (-)-cocaine to occupy σ1 receptors in vivo, using CD-1(®) mice and the novel radioligand [(125) I]E-N-1-(3'-iodoallyl)-N'-4-(3",4"-dimethoxyphenethyl)-piperazine ([(125) I]E-IA-DM-PE-PIPZE). (-)-Cocaine displayed an ED50 of 68 μmol/kg for inhibition of specific radioligand binding in whole brain, with values between 73 and 80 μmol/kg for heart, lung, and spleen. For comparison, an ED50 of 26 μmol/kg for (-)-cocaine occupancy of striatal dopamine transporters (DAT) was determined by inhibition of [(125) I]3β-(4-iodophenyl)tropan-2β-carboxylic acid isopropyl ester ([(125) I]RTI-121) binding. A chief finding is the relatively small potency difference between (-)-cocaine occupancy of σ1 receptors and the DAT, although the DAT occupancy is likely underestimated. Interactions of (-)-cocaine with σ1 receptors were assessed further using [(125) I]E-IA-DM-PE-PIPZE for regional cerebral biodistribution studies and quantitative ex vivo autoradiography of brain sections. (-)-Cocaine binding to cerebral σ1 receptors proved directly proportional to the relative site densities known for the brain regions. Nonradioactive E-IA-DM-PE-PIPZE gave an ED50 of 0.23 μmol/kg for occupancy of cerebral σ1 receptors, and a 3.16 μmol/kg (i.p.) dose attenuated (-)-cocaine-induced locomotor hyperactivity by 30%. This effect did not reach statistical significance, but suggests that E-IA-DM-PE-PIPZE is a probable σ1 receptor antagonist. As groundwork for the in vivo studies, we used standard techniques in vitro to determine ligand affinities, site densities, and pharmacological profiles for the σ1 and σ2 receptors expressed in CD-1(®) mouse brain.
Collapse
Affiliation(s)
- JOHN R. LEVER
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - EMILY A. FERGASON-CANTRELL
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - LISA D. WATKINSON
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - TERRY L. CARMACK
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - SARAH A. LORD
- Department of Radiology and Radiopharmaceutical Sciences Institute, University of Missouri, Columbia, Missouri 65211
- Research Service, Harry S. Truman Memorial Veterans’ Hospital, Columbia, Missouri 65201
| | - RONG XU
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211
| | - DENNIS K. MILLER
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri 65211
- Center for Translational Neuroscience, University of Missouri, Columbia, Missouri 65211
| | - SUSAN Z. LEVER
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211
- MU Research Reactor Center, University of Missouri, Columbia, Missouri 65212
| |
Collapse
|
16
|
Yasui Y, Su TP. Potential Molecular Mechanisms on the Role of the Sigma-1 Receptor in the Action of Cocaine and Methamphetamine. ACTA ACUST UNITED AC 2016; 5. [PMID: 27088037 DOI: 10.4303/jdar/235970] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sigma-1 receptor (Sig-1R) is an endoplasmic reticulum membrane protein that involves a wide range of physiological functions. The Sig-1R has been shown to bind psychostimulants including cocaine and methamphetamine (METH) and thus has been implicated in the actions of those psychostimulants. For example, it has been demonstrated that the Sig-1R antagonists mitigate certain behavioral and cellular effects of psychostimulants including hyperactivity and neurotoxicity. Thus, the Sig-1R has become a potential therapeutic target of medication development against drug abuse that differs from traditional monoamine-related strategies. In this review, we will focus on the molecular mechanisms of the Sig-1R and discuss in such a manner with a hope to further understand or unveil unexplored relations between the Sig-1R and the actions of cocaine and METH, particularly in the context of cellular biological relevance.
Collapse
Affiliation(s)
- Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, Baltimore, Maryland 21224
| |
Collapse
|
17
|
Characterization of pulmonary sigma receptors by radioligand binding. Eur J Pharmacol 2015; 762:118-26. [PMID: 26004528 DOI: 10.1016/j.ejphar.2015.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 05/11/2015] [Accepted: 05/18/2015] [Indexed: 11/20/2022]
Abstract
This study establishes the expression of appreciable populations of sites on mouse lung membranes that exhibit radioligand binding properties and pharmacology consistent with assignment as sigma1 and sigma2 receptors. Specific binding of the sigma1 receptor radioligand [(3)H](+)-pentazocine reached steady state within 6h at 37°C. Saturation studies revealed high affinity binding to a single class of sites (Kd 1.36±0.04nM; Bmax 967±11fmol/mg protein). Inhibition studies showed appropriate sigma1 receptor pharmacology, including higher affinity for (+)-N-allylnormetazocine with respect to the (-)-enantiomer, and positive allosteric modulation of dextromethorphan binding by phenytoin. Using [(3)H]1,3-di(2-tolyl)guanidine in the presence of (+)-pentazocine to assess sigma2 receptor binding, steady state was achieved within 2min at 25°C. Cold saturation studies revealed one high affinity, low capacity binding site (Kd 31.8±8.3nM; Bmax 921±228fmol/mg protein) that displayed sigma2 receptor pharmacology. A very low affinity, high capacity interaction also was observed that represents saturable, but not sigma receptor specific, binding. A panel of ligands showed rank order inhibition of radioligand binding appropriate for the sigma2 receptor, with ifenprodil displaying the highest apparent affinity. In vivo, dextromethorphan inhibited the specific binding of a radioiodinated sigma1 receptor ligand in lung with an ED50 of 1.2μmol/kg, a value near the recommended dosage for the drug as a cough suppressant. Overall, the present work provides a foundation for studies of drug interactions with pulmonary sigma1 and sigma2 receptors in vitro and in vivo.
Collapse
|
18
|
Xu R, Lord SA, Peterson RM, Fergason-Cantrell EA, Lever JR, Lever SZ. Ether modifications to 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503): effects on binding affinity and selectivity for sigma receptors and monoamine transporters. Bioorg Med Chem 2015; 23:222-30. [PMID: 25468036 PMCID: PMC4274187 DOI: 10.1016/j.bmc.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/25/2014] [Accepted: 11/04/2014] [Indexed: 11/22/2022]
Abstract
Two series of novel ether analogs of the sigma (σ) receptor ligand 1-[2-(3,4-dimethoxyphenyl)ethyl]-4-(3-phenylpropyl)piperazine (SA4503) have been prepared. In one series, the alkyl portion of the 4-methoxy group was replaced with allyl, propyl, bromoethyl, benzyl, phenethyl, and phenylpropyl moieties. In the second series, the 3,4-dimethoxy was replaced with cyclic methylenedioxy, ethylenedioxy and propylenedioxy groups. These ligands, along with 4-O-des-methyl SA4503, were evaluated for σ1 and σ2 receptor affinity, and compared to SA4503 and several known ether analogs. SA4503 and a subset of ether analogs were also evaluated for dopamine transporter (DAT) and serotonin transporter (SERT) affinity. The highest σ1 receptor affinities, Ki values of 1.75-4.63 nM, were observed for 4-O-des-methyl SA4503, SA4503 and the methylenedioxy analog. As steric bulk increased, σ1 receptor affinity decreased, but only to a point. Allyl, propyl and bromoethyl substitutions gave σ1 receptor Ki values in the 20-30 nM range, while bulkier analogs having phenylalkyl, and Z- and E-iodoallyl, ether substitutions showed higher σ1 affinities, with Ki values in the 13-21 nM range. Most ligands studied exhibited comparable σ1 and σ2 affinities, resulting in little to no subtype selectivity. SA4503, the fluoroethyl analog and the methylenedioxy congener showed modest six- to fourteen-fold selectivity for σ1 sites. DAT and SERT interactions proved much more sensitive than σ receptor interactions to these structural modifications. For example, the benzyl congener (σ1Ki=20.8 nM; σ2Ki=16.4 nM) showed over 100-fold higher DAT affinity (Ki=121 nM) and 6-fold higher SERT affinity (Ki=128nM) than the parent SA4503 (DAT Ki=12650 nM; SERT Ki=760 nM). Thus, ether modifications to the SA4503 scaffold can provide polyfunctional ligands having a broader spectrum of possible pharmacological actions.
Collapse
Affiliation(s)
- Rong Xu
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Sarah A Lord
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - Ryan M Peterson
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Emily A Fergason-Cantrell
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA
| | - John R Lever
- Department of Radiology, University of Missouri, Columbia, MO 65212, USA; Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, USA.
| | - Susan Z Lever
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA; Department of MU Research Reactor Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
19
|
Lever JR, Miller DK, Fergason-Cantrell EA, Green CL, Watkinson LD, Carmack TL, Lever SZ. Relationship between cerebral sigma-1 receptor occupancy and attenuation of cocaine's motor stimulatory effects in mice by PD144418. J Pharmacol Exp Ther 2014; 351:153-63. [PMID: 25100754 PMCID: PMC4165029 DOI: 10.1124/jpet.114.216671] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 08/05/2014] [Indexed: 01/28/2023] Open
Abstract
Psychostimulant effects of cocaine are mediated partly by agonist actions at sigma-1 (σ1) receptors. Selective σ1 receptor antagonists attenuate these effects and provide a potential avenue for pharmacotherapy. However, the selective and high affinity σ1 antagonist PD144418 (1,2,3,6-tetrahydro-5-[3-(4-methylphenyl)-5-isoxazolyl]-1-propylpyridine) has been reported not to inhibit cocaine-induced hyperactivity. To address this apparent paradox, we evaluated aspects of PD144418 binding in vitro, investigated σ1 receptor and dopamine transporter (DAT) occupancy in vivo, and re-examined effects on locomotor activity. PD144418 displayed high affinity for σ1 sites (Ki 0.46 nM) and 3596-fold selectivity over σ2 sites (Ki 1654 nM) in guinea pig brain membranes. No appreciable affinity was noted for serotonin and norepinephrine transporters (Ki >100 μM), and the DAT interaction was weak (Ki 9.0 μM). In vivo, PD144418 bound to central and peripheral σ1 sites in mouse, with an ED50 of 0.22 μmol/kg in whole brain. No DAT occupancy by PD144418 (10.0 μmol/kg) or possible metabolites were observed. At doses that did not affect basal locomotor activity, PD144418 (1, 3.16, and 10 μmol/kg) attenuated cocaine-induced hyperactivity in a dose-dependent manner in mice. There was good correlation (r(2) = 0.88) of hyperactivity reduction with increasing cerebral σ1 receptor occupancy. The behavioral ED50 of 0.79 μmol/kg corresponded to 80% occupancy. Significant σ1 receptor occupancy and the ability to mitigate cocaine's motor stimulatory effects were observed for 16 hours after a single 10.0 μmol/kg dose of PD144418.
Collapse
Affiliation(s)
- John R Lever
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri (J.R.L., E.A.F.-C., L.D.W., T.L.C.); and Department of Radiology and Radiopharmaceutical Sciences Institute (J.R.L., E.A.F.-C., L.D.W., T.L.C.), Department of Medical Pharmacology and Physiology (J.R.L.), Department of Psychological Sciences (D.K.M., C.L.G.), Center for Translational Neuroscience (D.K.M.), Department of Chemistry (S.Z.L.), and MU Research Reactor Center (S.Z.L.), University of Missouri, Columbia, Missouri
| | - Dennis K Miller
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri (J.R.L., E.A.F.-C., L.D.W., T.L.C.); and Department of Radiology and Radiopharmaceutical Sciences Institute (J.R.L., E.A.F.-C., L.D.W., T.L.C.), Department of Medical Pharmacology and Physiology (J.R.L.), Department of Psychological Sciences (D.K.M., C.L.G.), Center for Translational Neuroscience (D.K.M.), Department of Chemistry (S.Z.L.), and MU Research Reactor Center (S.Z.L.), University of Missouri, Columbia, Missouri
| | - Emily A Fergason-Cantrell
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri (J.R.L., E.A.F.-C., L.D.W., T.L.C.); and Department of Radiology and Radiopharmaceutical Sciences Institute (J.R.L., E.A.F.-C., L.D.W., T.L.C.), Department of Medical Pharmacology and Physiology (J.R.L.), Department of Psychological Sciences (D.K.M., C.L.G.), Center for Translational Neuroscience (D.K.M.), Department of Chemistry (S.Z.L.), and MU Research Reactor Center (S.Z.L.), University of Missouri, Columbia, Missouri
| | - Caroline L Green
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri (J.R.L., E.A.F.-C., L.D.W., T.L.C.); and Department of Radiology and Radiopharmaceutical Sciences Institute (J.R.L., E.A.F.-C., L.D.W., T.L.C.), Department of Medical Pharmacology and Physiology (J.R.L.), Department of Psychological Sciences (D.K.M., C.L.G.), Center for Translational Neuroscience (D.K.M.), Department of Chemistry (S.Z.L.), and MU Research Reactor Center (S.Z.L.), University of Missouri, Columbia, Missouri
| | - Lisa D Watkinson
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri (J.R.L., E.A.F.-C., L.D.W., T.L.C.); and Department of Radiology and Radiopharmaceutical Sciences Institute (J.R.L., E.A.F.-C., L.D.W., T.L.C.), Department of Medical Pharmacology and Physiology (J.R.L.), Department of Psychological Sciences (D.K.M., C.L.G.), Center for Translational Neuroscience (D.K.M.), Department of Chemistry (S.Z.L.), and MU Research Reactor Center (S.Z.L.), University of Missouri, Columbia, Missouri
| | - Terry L Carmack
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri (J.R.L., E.A.F.-C., L.D.W., T.L.C.); and Department of Radiology and Radiopharmaceutical Sciences Institute (J.R.L., E.A.F.-C., L.D.W., T.L.C.), Department of Medical Pharmacology and Physiology (J.R.L.), Department of Psychological Sciences (D.K.M., C.L.G.), Center for Translational Neuroscience (D.K.M.), Department of Chemistry (S.Z.L.), and MU Research Reactor Center (S.Z.L.), University of Missouri, Columbia, Missouri
| | - Susan Z Lever
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri (J.R.L., E.A.F.-C., L.D.W., T.L.C.); and Department of Radiology and Radiopharmaceutical Sciences Institute (J.R.L., E.A.F.-C., L.D.W., T.L.C.), Department of Medical Pharmacology and Physiology (J.R.L.), Department of Psychological Sciences (D.K.M., C.L.G.), Center for Translational Neuroscience (D.K.M.), Department of Chemistry (S.Z.L.), and MU Research Reactor Center (S.Z.L.), University of Missouri, Columbia, Missouri
| |
Collapse
|