1
|
Hernandez G, Kouwenhoven WM, Poirier E, Lebied K, Lévesque D, Rompré PP. Dorsal raphe stimulation relays a reward signal to the ventral tegmental area via GluN2C NMDA receptors. PLoS One 2023; 18:e0293564. [PMID: 37930965 PMCID: PMC10627466 DOI: 10.1371/journal.pone.0293564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Glutamate relays a reward signal from the dorsal raphe (DR) to the ventral tegmental area (VTA). However, the role of the different subtypes of N-methyl-D-aspartate (NMDA) receptors is complex and not clearly understood. Therefore, we measured NMDA receptors subunits expression in limbic brain areas. In addition, we studied the effects of VTA down-regulation of GluN2C NMDA receptor on the reward signal that arises from DR electrical stimulation. METHODS Using qPCR, we identified the relative composition of the different Grin2a-d subunits of the NMDA receptors in several brain areas. Then, we used fluorescent in situ hybridization (FISH) to evaluate the colocalization of Grin2c and tyrosine hydroxylase (TH) mRNA in VTA neurons. To assess the role of GluN2C in brain stimulation reward, we downregulated this receptor using small interfering RNA (siRNA) in rats self-stimulating for electrical pulses delivered to the DR. To delineate further the specific role of GluN2C in relaying the reward signal, we pharmacologically altered the function of VTA NMDA receptors by bilaterally microinjecting the NMDA receptor antagonist PPPA. RESULTS We identified GluN2C as the most abundant subunit of the NMDA receptor expressed in the VTA. FISH revealed that about 50% of TH-positive neurons colocalize with Grin2c transcript. siRNA manipulation produced a selective down-regulation of the GluN2C protein subunit and a significant reduction in brain stimulation reward. Interestingly, PPPA enhanced brain stimulation reward, but only in rats that received the nonactive RNA sequence. CONCLUSION The present results suggest that VTA glutamate neurotransmission relays a reward signal initiated by DR stimulation by acting on GluN2C NMDA receptors.
Collapse
Affiliation(s)
- Giovanni Hernandez
- Département de Neurosciences (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| | - Willemieke M. Kouwenhoven
- Département de Pharmacologie et Physiologie (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| | - Emmanuelle Poirier
- Département de Neurosciences (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| | - Karim Lebied
- Département de Neurosciences (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| | - Daniel Lévesque
- Département de Pharmacie (Faculté de Pharmacie), Université de Montréal, Montréal, QC, Canada
| | - Pierre-Paul Rompré
- Département de Neurosciences (Faculté de Médecine), Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
2
|
Bouarab C, Wynalda M, Thompson BV, Khurana A, Cody CR, Kisner A, Polter AM. Sex-specific adaptations to VTA circuits following subchronic stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551665. [PMID: 37577542 PMCID: PMC10418168 DOI: 10.1101/2023.08.02.551665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Dysregulation of the mesolimbic reward circuitry is implicated in the pathophysiology of stress-related illnesses such as depression and anxiety. These disorders are more frequently diagnosed in females, and sex differences in the response to stress are likely to be one factor that leads to enhanced vulnerability of females. In this study, we use subchronic variable stress (SCVS), a model in which females are uniquely vulnerable to behavioral disturbances, to investigate sexually divergent mechanisms of regulation of the ventral tegmental area by stress. Using slice electrophysiology, we find that female, but not male mice have a reduction in the ex vivo firing rate of VTA dopaminergic neurons following SCVS. Surprisingly, both male and female animals show an increase in inhibitory tone onto VTA dopaminergic neurons and an increase in the firing rate of VTA GABAergic neurons. In males, however, this is accompanied by a robust increase in excitatory synaptic tone onto VTA dopamine neurons. This supports a model by which SCVS recruits VTA GABA neurons to inhibit dopaminergic neurons in both male and female mice, but males are protected from diminished functioning of the dopaminergic system by a compensatory upregulation of excitatory synapses.
Collapse
Affiliation(s)
- Chloé Bouarab
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
- Current address: Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris
| | - Megan Wynalda
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Brittney V. Thompson
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
- Current address: Department of Psychology, Florida State University, Tallahasse, FL, 32306
| | - Ambika Khurana
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| | - Caitlyn R. Cody
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
- Current address: Department of Psychology, Northeastern University, Boston, MA, 02115
| | - Alexandre Kisner
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
- Current address: Department of Neuroscience, American University, Washington DC 20016
| | - Abigail M. Polter
- Department of Pharmacology and Physiology, George Washington University School of Medicine and Health Sciences, Washington, DC 20037
| |
Collapse
|
3
|
Hahn S, Um KB, Kim SW, Kim HJ, Park MK. Proximal dendritic localization of NALCN channels underlies tonic and burst firing in nigral dopaminergic neurons. J Physiol 2023; 601:171-193. [PMID: 36398712 DOI: 10.1113/jp283716] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
In multipolar nigral dopamine (DA) neurons, the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. However, the causal link between them is unknown. Here we report that the proximal dendritic localization of NALCN underlies pacemaking and burst firing in DA neurons. Our morphological analysis of nigral DA neurons reveals that TRPC3 is ubiquitously expressed in the whole somatodendritic compartment, but NALCN is localized within the PDCs. Blocking either TRPC3 or NALCN channels abolished pacemaking. However, only blocking NALCN, not TRPC3, degraded burst discharges. Furthermore, local glutamate uncaging readily induced burst discharges within the PDCs, compared with other parts of the neuron, and NALCN channel inhibition dissipated burst generation, indicating the importance of NALCN to the high excitability of PDCs. Therefore, we conclude that PDCs serve as a common base for tonic and burst firing in nigral DA neurons. KEY POINTS: Midbrain dopamine (DA) neurons are slow pacemakers that can generate tonic and burst firings, and the highly excitable proximal dendritic compartments (PDCs) and two Na+ -permeable leak channels, TRPC3 and NALCN, play a key role in pacemaking. We find that slow tonic firing depends on the basal activity of both the NALCN and TRPC3 channels, but that burst firing does not require TRPC3 channels but relies only on NALCN channels. We find that TRPC3 is ubiquitously expressed in the entire somatodendritic compartment, but that NALCN exists only within the PDCs in nigral DA neurons. We show that NALCN channel localization confers high excitability on PDCs and is essential for burst generation in nigral DA neurons. These results suggest that PDCs serve as a common base for tonic and burst firing in nigral DA neurons.
Collapse
Affiliation(s)
- Suyun Hahn
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ki Bum Um
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - So Woon Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Hyun Jin Kim
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| | - Myoung Kyu Park
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, Korea.,Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, Korea
| |
Collapse
|
4
|
Etchepare L, Gréa H, Durand P, Bouchet D, Groc L. NMDA receptor membrane dynamics tunes the firing pattern of midbrain dopaminergic neurons. J Physiol 2021; 599:2933-2951. [PMID: 33651437 DOI: 10.1113/jp281104] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/22/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS NMDA receptors (NMDARs) expressed by dopamine neurons of the ventral tegmental area (VTA) play a central role in glutamate synapse plasticity, neuronal firing and adaptative behaviours. The NMDAR surface dynamics shapes synaptic adaptation in hippocampal networks, as well as associative memory. We investigated the basic properties and role of the NMDAR surface dynamics on cultured mesencephalic and VTA dopamine neurons in rodents. Using a combination of single molecule imaging and electrophysiological recordings, we demonstrate that NMDARs are highly diffusive at the surface of mesencephalic dopamine neurons. Unexpectedly, the NMDAR membrane dynamics per se regulates the firing pattern of VTA dopaminergic neurons, probably through a functional interplay between NMDARs receptors and small-conductance calcium-dependent potassium (SK) channels. ABSTRACT Midbrain dopaminergic (DA) neurons play a central role in major physiological brain functions, and their dysfunctions have been associated with neuropsychiatric diseases. The activity of midbrain DA neurons is controlled by ion channels and neurotransmitter receptors, such as the glutamate NMDA receptor (NMDAR) and small-conductance calcium-dependent potassium (SK) channels. However, the cellular mechanisms through which these channels tune the firing pattern of midbrain DA neurons remain unclear. Here, we investigated whether the surface dynamics and distribution of NMDARs tunes the firing pattern of midbrain DA neurons. Using a combination of single molecule imaging and electrophysiological recordings, we report that NMDARs are highly diffusive at the surface of cultured midbrain DA neurons from rodents and humans. Reducing acutely the NMDAR membrane dynamics, which leaves the ionotropic function of the receptor intact, robustly altered the firing pattern of midbrain DA neurons without altering synaptic glutamatergic transmission. The reduction of NMDAR surface dynamics reduced apamin (SK channel blocker)-induced firing change and the distribution of SK3 channels in DA neurons. Together, these data show that the surface dynamics of NMDAR, and not solely its ionotropic function, tune the firing pattern of midbrain DA neurons partly through a functional interplay with SK channel function.
Collapse
Affiliation(s)
- Laetitia Etchepare
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Hélène Gréa
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Pauline Durand
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Delphine Bouchet
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| | - Laurent Groc
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, UMR 5297, Bordeaux, F-33000, France.,CNRS, IINS UMR 5297, Bordeaux, France
| |
Collapse
|
5
|
Distinct Temporal Structure of Nicotinic ACh Receptor Activation Determines Responses of VTA Neurons to Endogenous ACh and Nicotine. eNeuro 2020; 7:ENEURO.0418-19.2020. [PMID: 32737187 PMCID: PMC7470928 DOI: 10.1523/eneuro.0418-19.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2020] [Accepted: 04/18/2020] [Indexed: 11/29/2022] Open
Abstract
The addictive component of tobacco, nicotine, acts via nicotinic acetylcholine receptors (nAChRs). The β2 subunit-containing nAChRs (β2-nAChRs) play a crucial role in the rewarding properties of nicotine and are particularly densely expressed in the mesolimbic dopamine (DA) system. Specifically, nAChRs directly and indirectly affect DA neurons in the ventral tegmental area (VTA). The understanding of ACh and nicotinic regulation of DA neuron activity is incomplete. By computational modeling, we provide mechanisms for several apparently contradictory experimental results. First, systemic knockout of β2-containing nAChRs drastically reduces DA neurons bursting, although the major glutamatergic (Glu) afferents that have been shown to evoke this bursting stay intact. Second, the most intuitive way to rescue this bursting—by re-expressing the nAChRs on VTA DA neurons—fails. Third, nAChR re-expression on VTA GABA neurons rescues bursting in DA neurons and increases their firing rate under the influence of ACh input, whereas nicotinic application results in the opposite changes in firing. Our model shows that, first, without ACh receptors, Glu excitation of VTA DA and GABA neurons remains balanced and GABA inhibition cancels the direct excitation. Second, re-expression of ACh receptors on DA neurons provides an input that impedes membrane repolarization and is ineffective in restoring firing of DA neurons. Third, the distinct responses to ACh and nicotine occur because of distinct temporal patterns of these inputs: pulsatile versus continuous. Altogether, this study highlights how β2-nAChRs influence coactivation of the VTA DA and GABA neurons required for motivation and saliency signals carried by DA neuron activity.
Collapse
|
6
|
McDougall SA, Apodaca MG, Park GI, Teran A, Baum TJ, Montejano NR. MK801-induced locomotor activity in preweanling and adolescent male and female rats: role of the dopamine and serotonin systems. Psychopharmacology (Berl) 2020; 237:2469-2483. [PMID: 32445054 PMCID: PMC7354898 DOI: 10.1007/s00213-020-05547-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 05/05/2020] [Indexed: 01/01/2023]
Abstract
RATIONALE MK801, like other NMDA receptor open-channel blockers (e.g., ketamine and phencyclidine), increases the locomotor activity of rats and mice. Whether this behavioral effect ultimately relies on monoamine neurotransmission is of dispute. OBJECTIVE The purpose of this study was to determine whether these psychopharmacological effects and underlying neural mechanisms vary according to sex and age. METHODS Across four experiments, male and female preweanling and adolescent rats were pretreated with vehicle, the monoamine-depleting agent reserpine (1 or 5 mg/kg), the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA), or both AMPT and PCPA. The locomotor activity of preweanling and adolescent rats was then measured after saline or MK801 (0.3 mg/kg) treatment. RESULTS As expected, MK801 increased the locomotor activity of all age groups and both sexes, but the stimulatory effects were significantly less pronounced in male adolescent rats. Preweanling rats and adolescent female rats were more sensitive to the effects of DA and 5-HT synthesis inhibitors, as AMPT and PCPA caused only small reductions in the MK801-induced locomotor activity of male adolescent rats. Co-administration of AMPT+PCPA or high-dose reserpine (5 mg/kg) treatment substantially reduced MK801-induced locomotor activity in both age groups and across both sexes. CONCLUSIONS These results, when combined with other recent studies, show that NMDA receptor open-channel blockers cause pronounced age-dependent behavioral effects that can vary according to sex. The neural changes underlying these sex and age differences appear to involve monoamine neurotransmission.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA.
| | - Matthew G Apodaca
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Ginny I Park
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Angie Teran
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Timothy J Baum
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| | - Nazaret R Montejano
- Department of Psychology, California State University, 5500 University Parkway, San Bernardino, CA, 92407, USA
| |
Collapse
|
7
|
Elle T, Alam M, Voigt C, Krauss JK, John N, Schwabe K. Deep brain stimulation of the thalamic centromedian-parafascicular nucleus improves behavioural and neuronal traits in a rat model of Tourette. Behav Brain Res 2020; 378:112251. [DOI: 10.1016/j.bbr.2019.112251] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/17/2019] [Accepted: 09/17/2019] [Indexed: 01/23/2023]
|
8
|
McDougall SA, Rios JW, Apodaca MG, Park GI, Montejano NR, Taylor JA, Moran AE, Robinson JAM, Baum TJ, Teran A, Crawford CA. Effects of dopamine and serotonin synthesis inhibitors on the ketamine-, d-amphetamine-, and cocaine-induced locomotor activity of preweanling and adolescent rats: sex differences. Behav Brain Res 2019; 379:112302. [PMID: 31655095 DOI: 10.1016/j.bbr.2019.112302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/01/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022]
Abstract
The pattern of ketamine-induced locomotor activity varies substantially across ontogeny and according to sex. Although ketamine is classified as an NMDA channel blocker, it appears to stimulate the locomotor activity of both male and female rats via a monoaminergic mechanism. To more precisely determine the neural mechanisms underlying ketamine's actions, male and female preweanling and adolescent rats were pretreated with vehicle, the dopamine (DA) synthesis inhibitor ∝-methyl-DL-p-tyrosine (AMPT), or the serotonin (5-HT) synthesis inhibitor 4-chloro-DL-phenylalanine methyl ester hydrochloride (PCPA). After completion of the pretreatment regimen, the locomotor activating effects of saline, ketamine, d-amphetamine, and cocaine were assessed during a 2 h test session. In addition, the ability of AMPT and PCPA to reduce dorsal striatal DA and 5-HT content was measured in male and female preweanling, adolescent, and adult rats. Results showed that AMPT and PCPA reduced, but did not fully attenuate, the ketamine-induced locomotor activity of preweanling rats and female adolescent rats. Ketamine (20 and 40 mg/kg) caused a minimal amount of locomotor activity in male adolescent rats, and this effect was not significantly modified by AMPT or PCPA pretreatment. When compared to ketamine, d-amphetamine and cocaine produced different patterns of locomotor activity across ontogeny; moreover, AMPT and PCPA pretreatment affected psychostimulant- and ketamine-induced locomotion differently. When these results are considered together, it appears that both dopaminergic and serotonergic mechanisms mediate the ketamine-induced locomotor activity of preweanling and female adolescent rats. The dichotomous actions of ketamine relative to the psychostimulants in vehicle-, AMPT-, and PCPA-treated rats, suggests that ketamine modulates DA and 5-HT neurotransmission through an indirect mechanism.
Collapse
Affiliation(s)
- Sanders A McDougall
- Department of Psychology, California State University, San Bernardino, CA, USA.
| | - Jasmine W Rios
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Matthew G Apodaca
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Ginny I Park
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Nazaret R Montejano
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Jordan A Taylor
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Andrea E Moran
- Department of Psychology, California State University, San Bernardino, CA, USA; Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Timothy J Baum
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Angie Teran
- Department of Psychology, California State University, San Bernardino, CA, USA
| | - Cynthia A Crawford
- Department of Psychology, California State University, San Bernardino, CA, USA
| |
Collapse
|
9
|
Cieślak PE, Rodriguez Parkitna J. Ablation of NMDA receptors in dopamine neurons disrupts attribution of incentive salience to reward-paired stimuli. Behav Brain Res 2019; 363:77-82. [PMID: 30711444 DOI: 10.1016/j.bbr.2019.01.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 01/04/2023]
Abstract
Midbrain dopamine (DA) neurons play a crucial role in the formation of conditioned associations between environmental cues and appetitive events. Activation of N-methyl-d-aspartate (NMDA) receptors is a key mechanism responsible for the generation of conditioned responses of DA neurons to reward cues. Here, we tested the effects of the cell type-specific inactivation of NMDA receptors in DA neurons in adult mice on stimulus-reward learning. Animals were trained in a Pavlovian learning paradigm in which they had to learn the predictive value of two conditioned stimuli, one of which (CS+) was paired with the delivery of a water reward. Over the course of conditioning, mutant mice learned that the CS+ predicted reward availability, and they approached the reward receptacle more frequently during CS+ trials than CS- trials. However, conditioned responses to the CS+ were weaker in the mutant mice, possibly indicating that they did not attribute incentive salience to the CS+. To further assess whether the attribution of incentive salience was impaired by the mutation, animals were tested in a conditioned reinforcement test. The test revealed that mutant mice made fewer instrumental responses paired with CS+ presentation, confirming that the CS+ had a weaker incentive value. Taken together, these results indicate that reward prediction learning does occur in the absence of NMDA receptors in DA neurons, but the ability of reward-paired cues to invigorate and reinforce behavior is attenuated.
Collapse
Affiliation(s)
- Przemysław Eligiusz Cieślak
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland.
| |
Collapse
|
10
|
di Volo M, Morozova EO, Lapish CC, Kuznetsov A, Gutkin B. Dynamical ventral tegmental area circuit mechanisms of alcohol-dependent dopamine release. Eur J Neurosci 2018; 50:2282-2296. [PMID: 30215874 DOI: 10.1111/ejn.14147] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/15/2018] [Accepted: 08/24/2018] [Indexed: 11/28/2022]
Abstract
A large body of data has identified numerous molecular targets through which ethanol (EtOH) acts on brain circuits. Yet how these multiple mechanisms interact to result in dysregulated dopamine (DA) release under the influence of alcohol in vivo remains unclear. In this manuscript, we delineate potential circuit-level mechanisms responsible for EtOH-dependent dysregulation of DA release from the ventral tegmental area (VTA) into its projection areas. For this purpose, we constructed a circuit model of the VTA that integrates realistic Glutamatergic (Glu) inputs and reproduces DA release observed experimentally. We modelled the concentration-dependent effects of EtOH on its principal VTA targets. We calibrated the model to reproduce the inverted U-shape dose dependence of DA neuron activity on EtOH concentration. The model suggests a primary role of EtOH-induced boost in the Ih and AMPA currents in the DA firing-rate/bursting increase. This is counteracted by potentiated GABA transmission that decreases DA neuron activity at higher EtOH concentrations. Thus, the model connects well-established in vitro pharmacological EtOH targets with its in vivo influence on neuronal activity. Furthermore, we predict that increases in VTA activity produced by moderate EtOH doses require partial synchrony and relatively low rates of the Glu afferents. We propose that the increased frequency of transient (phasic) DA peaks evoked by EtOH results from synchronous population bursts in VTA DA neurons. Our model predicts that the impact of acute ETOH on dopamine release is critically shaped by the structure of the cortical inputs to the VTA.
Collapse
Affiliation(s)
- Matteo di Volo
- Unité de Neurosciences, Information et Complexité, CNRS, Gif-sur-Yvette, France.,Group for Neural Theory, LNC INSERM U960, DEC Ecole Normale Superieure PSL University, Paris, France
| | | | - Christopher C Lapish
- Addiction Neuroscience Program, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Alexey Kuznetsov
- Department of Mathematical Sciences, Indiana University - Purdue University Indianapolis, Indianapolis, IN, USA
| | - Boris Gutkin
- Group for Neural Theory, LNC INSERM U960, DEC Ecole Normale Superieure PSL University, Paris, France.,Center for Cognition and Decision Making, NRU HSE, Moscow, Russia
| |
Collapse
|
11
|
Cieślak PE, Ahn WY, Bogacz R, Rodriguez Parkitna J. Selective Effects of the Loss of NMDA or mGluR5 Receptors in the Reward System on Adaptive Decision-Making. eNeuro 2018; 5:ENEURO.0331-18.2018. [PMID: 30302389 PMCID: PMC6175304 DOI: 10.1523/eneuro.0331-18.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 05/23/2018] [Accepted: 06/03/2018] [Indexed: 11/30/2022] Open
Abstract
Selecting the most advantageous actions in a changing environment is a central feature of adaptive behavior. The midbrain dopamine (DA) neurons along with the major targets of their projections, including dopaminoceptive neurons in the frontal cortex and basal ganglia, play a key role in this process. Here, we investigate the consequences of a selective genetic disruption of NMDA receptor and metabotropic glutamate receptor 5 (mGluR5) in the DA system on adaptive choice behavior in mice. We tested the effects of the mutation on performance in the probabilistic reinforcement learning and probability-discounting tasks. In case of the probabilistic choice, both the loss of NMDA receptors in dopaminergic neurons or the loss mGluR5 receptors in D1 receptor-expressing dopaminoceptive neurons reduced the probability of selecting the more rewarded alternative and lowered the likelihood of returning to the previously rewarded alternative (win-stay). When observed behavior was fitted to reinforcement learning models, we found that these two mutations were associated with a reduced effect of the expected outcome on choice (i.e., more random choices). None of the mutations affected probability discounting, which indicates that all animals had a normal ability to assess probability. However, in both behavioral tasks animals with targeted loss of NMDA receptors in dopaminergic neurons or mGluR5 receptors in D1 neurons were significantly slower to perform choices. In conclusion, these results show that glutamate receptor-dependent signaling in the DA system is essential for the speed and accuracy of choices, but at the same time probably is not critical for correct estimation of probable outcomes.
Collapse
Affiliation(s)
- Przemysław Eligiusz Cieślak
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, 31-343, Krakow, Poland
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul 08826, Korea
| | - Rafał Bogacz
- MRC Brain Networks Dynamics Unit, Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Institute of Pharmacology of the Polish Academy of Sciences, 31-343, Krakow, Poland
| |
Collapse
|
12
|
Galtieri DJ, Estep CM, Wokosin DL, Traynelis S, Surmeier DJ. Pedunculopontine glutamatergic neurons control spike patterning in substantia nigra dopaminergic neurons. eLife 2017; 6:30352. [PMID: 28980939 PMCID: PMC5643088 DOI: 10.7554/elife.30352] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/04/2017] [Indexed: 12/26/2022] Open
Abstract
Burst spiking in substantia nigra pars compacta (SNc) dopaminergic neurons is a key signaling event in the circuitry controlling goal-directed behavior. It is widely believed that this spiking mode depends upon an interaction between synaptic activation of N-methyl-D-aspartate receptors (NMDARs) and intrinsic oscillatory mechanisms. However, the role of specific neural networks in burst generation has not been defined. To begin filling this gap, SNc glutamatergic synapses arising from pedunculopotine nucleus (PPN) neurons were characterized using optical and electrophysiological approaches. These synapses were localized exclusively on the soma and proximal dendrites, placing them in a good location to influence spike generation. Indeed, optogenetic stimulation of PPN axons reliably evoked spiking in SNc dopaminergic neurons. Moreover, burst stimulation of PPN axons was faithfully followed, even in the presence of NMDAR antagonists. Thus, PPN-evoked burst spiking of SNc dopaminergic neurons in vivo may not only be extrinsically triggered, but extrinsically patterned as well.
Collapse
Affiliation(s)
- Daniel J Galtieri
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Chad M Estep
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Stephen Traynelis
- Department of Pharmacology, Emory University, Atlanta, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
13
|
Super-resolution microscopy reveals functional organization of dopamine transporters into cholesterol and neuronal activity-dependent nanodomains. Nat Commun 2017; 8:740. [PMID: 28963530 PMCID: PMC5622129 DOI: 10.1038/s41467-017-00790-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
Dopamine regulates reward, cognition, and locomotor functions. By mediating rapid reuptake of extracellular dopamine, the dopamine transporter is critical for spatiotemporal control of dopaminergic neurotransmission. Here, we use super-resolution imaging to show that the dopamine transporter is dynamically sequestrated into cholesterol-dependent nanodomains in the plasma membrane of presynaptic varicosities and neuronal projections of dopaminergic neurons. Stochastic optical reconstruction microscopy reveals irregular dopamine transporter nanodomains (∼70 nm mean diameter) that were highly sensitive to cholesterol depletion. Live photoactivated localization microscopy shows a similar dopamine transporter membrane organization in live heterologous cells. In neurons, dual-color dSTORM shows that tyrosine hydroxylase and vesicular monoamine transporter-2 are distinctively localized adjacent to, but not overlapping with, the dopamine transporter nanodomains. The molecular organization of the dopamine transporter in nanodomains is reversibly reduced by short-term activation of NMDA-type ionotropic glutamate receptors, implicating dopamine transporter nanodomain distribution as a potential mechanism to modulate dopaminergic neurotransmission in response to excitatory input.The dopamine transporter (DAT) has a crucial role in the regulation of neurotransmission. Here, the authors use super-resolution imaging to show that DAT clusters into cholesterol-dependent membrane regions that are reversibly regulated by ionotropic glutamate receptors activation.
Collapse
|
14
|
Baimel C, Borgland SL. Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse. Curr Top Behav Neurosci 2017; 33:283-304. [PMID: 28303403 DOI: 10.1007/7854_2016_44] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Dopamine neurons in the ventral tegmental area (VTA) are a critical part of the neural circuits that underlie reward learning and motivation. Dopamine neurons send dense projections throughout the brain and recent observations suggest that both the intrinsic properties and the functional output of dopamine neurons are dependent on projection target and are subject to neuromodulatory influences. Lateral hypothalamic hypocretin (also termed orexin) neurons project to the VTA and contain both hypocretin and dynorphin peptides in the same dense core vesicles suggesting they may be co-released. Hypocretin peptides act at excitatory Gαq protein-coupled receptors and dynorphin acts at inhibitory Gαi/o protein-coupled receptors, which are both expressed on subpopulations of dopamine neurons. This review describes a role for neuromodulation of dopamine neurons and the influence on motivated behaviour in response to natural and drug rewards.
Collapse
Affiliation(s)
- Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, 2176 Health Sciences Mall, Vancouver, BC, Canada, V6T 1Z3
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1
| | - Stephanie L Borgland
- Hotchkiss Brain Institute, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, Canada, T2N 4N1.
| |
Collapse
|
15
|
Fasoli A, Dang J, Johnson JS, Gouw AH, Fogli Iseppe A, Ishida AT. Somatic and neuritic spines on tyrosine hydroxylase-immunopositive cells of rat retina. J Comp Neurol 2017; 525:1707-1730. [PMID: 28035673 DOI: 10.1002/cne.24166] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 12/13/2016] [Accepted: 12/27/2016] [Indexed: 12/27/2022]
Abstract
Dopamine- and tyrosine hydroxylase-immunopositive cells (TH cells) modulate visually driven signals as they flow through retinal photoreceptor, bipolar, and ganglion cells. Previous studies suggested that TH cells release dopamine from varicose axons arborizing in the inner and outer plexiform layers after glutamatergic synapses depolarize TH cell dendrites in the inner plexiform layer and these depolarizations propagate to the varicosities. Although it has been proposed that these excitatory synapses are formed onto appendages resembling dendritic spines, spines have not been found on TH cells of most species examined to date or on TH cell somata that release dopamine when exposed to glutamate receptor agonists. By use of protocols that preserve proximal retinal neuron morphology, we have examined the shape, distribution, and synapse-related immunoreactivity of adult rat TH cells. We report here that TH cell somata, tapering and varicose inner plexiform layer neurites, and varicose outer plexiform layer neurites all bear spines, that some of these spines are immunopositive for glutamate receptor and postsynaptic density proteins (viz., GluR1, GluR4, NR1, PSD-95, and PSD-93), that TH cell somata and tapering neurites are also immunopositive for a γ-aminobutyric acid (GABA) receptor subunit (GABAA Rα1 ), and that a synaptic ribbon-specific protein (RIBEYE) is found adjacent to some colocalizations of GluR1 and TH in the inner plexiform layer. These results identify previously undescribed sites at which glutamatergic and GABAergic inputs may stimulate and inhibit dopamine release, especially at somata and along varicose neurites that emerge from these somata and arborize in various levels of the retina. J. Comp. Neurol. 525:1707-1730, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Anna Fasoli
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - James Dang
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Jeffrey S Johnson
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Aaron H Gouw
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Alex Fogli Iseppe
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California
| | - Andrew T Ishida
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, California.,Department of Ophthalmology and Vision Science, University of California, Sacramento, California
| |
Collapse
|
16
|
Jastrzębska K, Walczak M, Cieślak PE, Szumiec Ł, Turbasa M, Engblom D, Błasiak T, Parkitna JR. Loss of NMDA receptors in dopamine neurons leads to the development of affective disorder-like symptoms in mice. Sci Rep 2016; 6:37171. [PMID: 27853270 PMCID: PMC5112557 DOI: 10.1038/srep37171] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 10/25/2016] [Indexed: 12/28/2022] Open
Abstract
The role of changes in dopamine neuronal activity during the development of symptoms in affective disorders remains controversial. Here, we show that inactivation of NMDA receptors on dopaminergic neurons in adult mice led to the development of affective disorder-like symptoms. The loss of NMDA receptors altered activity and caused complete NMDA-insensitivity in dopamine-like neurons. Mutant mice exhibited increased immobility in the forced swim test and a decrease in social interactions. Mutation also led to reduced saccharin intake, however the preference of sweet taste was not significantly decreased. Additionally, we found that while mutant mice were slower to learn instrumental tasks, they were able to reach the same performance levels, had normal sensitivity to feedback and showed similar motivation to exert effort as control animals. Taken together these results show that inducing the loss of NMDA receptor-dependent activity in dopamine neurons is associated with development of affective disorder-like symptoms.
Collapse
Affiliation(s)
- Kamila Jastrzębska
- Laboratory of Transgenic Models, Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Magdalena Walczak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Przemysław Eligiusz Cieślak
- Laboratory of Transgenic Models, Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Łukasz Szumiec
- Laboratory of Transgenic Models, Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - Mateusz Turbasa
- Laboratory of Transgenic Models, Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| | - David Engblom
- Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE-581 85, Linköping, Sweden
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Jan Rodriguez Parkitna
- Laboratory of Transgenic Models, Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Krakow, Poland
| |
Collapse
|
17
|
Morozova EO, Myroshnychenko M, Zakharov D, di Volo M, Gutkin B, Lapish CC, Kuznetsov A. Contribution of synchronized GABAergic neurons to dopaminergic neuron firing and bursting. J Neurophysiol 2016; 116:1900-1923. [PMID: 27440240 PMCID: PMC5144690 DOI: 10.1152/jn.00232.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/17/2016] [Indexed: 12/29/2022] Open
Abstract
In the ventral tegmental area (VTA), interactions between dopamine (DA) and γ-aminobutyric acid (GABA) neurons are critical for regulating DA neuron activity and thus DA efflux. To provide a mechanistic explanation of how GABA neurons influence DA neuron firing, we developed a circuit model of the VTA. The model is based on feed-forward inhibition and recreates canonical features of the VTA neurons. Simulations revealed that γ-aminobutyric acid (GABA) receptor (GABAR) stimulation can differentially influence the firing pattern of the DA neuron, depending on the level of synchronization among GABA neurons. Asynchronous activity of GABA neurons provides a constant level of inhibition to the DA neuron and, when removed, produces a classical disinhibition burst. In contrast, when GABA neurons are synchronized by common synaptic input, their influence evokes additional spikes in the DA neuron, resulting in increased measures of firing and bursting. Distinct from previous mechanisms, the increases were not based on lowered firing rate of the GABA neurons or weaker hyperpolarization by the GABAR synaptic current. This phenomenon was induced by GABA-mediated hyperpolarization of the DA neuron that leads to decreases in intracellular calcium (Ca2+) concentration, thus reducing the Ca2+-dependent potassium (K+) current. In this way, the GABA-mediated hyperpolarization replaces Ca2+-dependent K+ current; however, this inhibition is pulsatile, which allows the DA neuron to fire during the rhythmic pauses in inhibition. Our results emphasize the importance of inhibition in the VTA, which has been discussed in many studies, and suggest a novel mechanism whereby computations can occur locally.
Collapse
Affiliation(s)
- Ekaterina O Morozova
- Department of Physics, Indiana University, Bloomington, Indiana; Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, Indiana;
| | - Maxym Myroshnychenko
- Program in Neuroscience, Indiana University, Bloomington, Indiana; Addiction Neuroscience Program, Indiana University-Purdue University, Indianapolis, Indiana; and
| | - Denis Zakharov
- Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
| | - Matteo di Volo
- Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, Indiana; Group of Neural Theory, INSERM U960, Laboratoire de Neurosciences Cognitives, Institut d'Etude de Cognition, Ecole Normale Superieure, Paris Sciences et Lettres Research University, Paris, France
| | - Boris Gutkin
- Group of Neural Theory, INSERM U960, Laboratoire de Neurosciences Cognitives, Institut d'Etude de Cognition, Ecole Normale Superieure, Paris Sciences et Lettres Research University, Paris, France; Center for Cognition and Decision Making, National Research University Higher School of Economics, Moscow, Russia
| | - Christopher C Lapish
- Addiction Neuroscience Program, Indiana University-Purdue University, Indianapolis, Indiana; and
| | - Alexey Kuznetsov
- Department of Mathematical Sciences, Indiana University-Purdue University, Indianapolis, Indiana
| |
Collapse
|
18
|
Canavier CC, Evans RC, Oster AM, Pissadaki EK, Drion G, Kuznetsov AS, Gutkin BS. Implications of cellular models of dopamine neurons for disease. J Neurophysiol 2016; 116:2815-2830. [PMID: 27582295 DOI: 10.1152/jn.00530.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/24/2016] [Indexed: 12/21/2022] Open
Abstract
This review addresses the present state of single-cell models of the firing pattern of midbrain dopamine neurons and the insights that can be gained from these models into the underlying mechanisms for diseases such as Parkinson's, addiction, and schizophrenia. We will explain the analytical technique of separation of time scales and show how it can produce insights into mechanisms using simplified single-compartment models. We also use morphologically realistic multicompartmental models to address spatially heterogeneous aspects of neural signaling and neural metabolism. Separation of time scale analyses are applied to pacemaking, bursting, and depolarization block in dopamine neurons. Differences in subpopulations with respect to metabolic load are addressed using multicompartmental models.
Collapse
Affiliation(s)
- Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, Louisiana;
| | - Rebekah C Evans
- Cellular Neurophysiology Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Andrew M Oster
- Department of Mathematics, Eastern Washington University, Cheney, Washington
| | - Eleftheria K Pissadaki
- IBM T.J. Watson Research Center, Yorktown Heights, New York.,Department of Computer Science, University of Sheffield, Sheffield, United Kingdom
| | - Guillaume Drion
- Department of Electrical Engineering and Computer Science, University of Liege, Liege, Belgium
| | - Alexey S Kuznetsov
- Department of Mathematical Sciences and Center for Mathematical Biosciences, Indiana University, Purdue University Indianapolis, Indianapolis, Indiana
| | - Boris S Gutkin
- Group for Neural Theory, LNC INSERM U960, Département d'Études Cognitives, École Normale Supérieure PSL Research University, Paris, France.,Center for Cognition and Decision Making, NRU Higher School of Economics, Moscow, Russia; and
| |
Collapse
|
19
|
Can A, Zanos P, Moaddel R, Kang HJ, Dossou KSS, Wainer IW, Cheer JF, Frost DO, Huang XP, Gould TD. Effects of Ketamine and Ketamine Metabolites on Evoked Striatal Dopamine Release, Dopamine Receptors, and Monoamine Transporters. J Pharmacol Exp Ther 2016; 359:159-70. [PMID: 27469513 DOI: 10.1124/jpet.116.235838] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/27/2016] [Indexed: 12/16/2022] Open
Abstract
Following administration at subanesthetic doses, (R,S)-ketamine (ketamine) induces rapid and robust relief from symptoms of depression in treatment-refractory depressed patients. Previous studies suggest that ketamine's antidepressant properties involve enhancement of dopamine (DA) neurotransmission. Ketamine is rapidly metabolized to (2S,6S)- and (2R,6R)-hydroxynorketamine (HNK), which have antidepressant actions independent of N-methyl-d-aspartate glutamate receptor inhibition. These antidepressant actions of (2S,6S;2R,6R)-HNK, or other metabolites, as well as ketamine's side effects, including abuse potential, may be related to direct effects on components of the dopaminergic (DAergic) system. Here, brain and blood distribution/clearance and pharmacodynamic analyses at DA receptors (D1-D5) and the DA, norepinephrine, and serotonin transporters were assessed for ketamine and its major metabolites (norketamine, dehydronorketamine, and HNKs). Additionally, we measured electrically evoked mesolimbic DA release and decay using fast-scan cyclic voltammetry following acute administration of subanesthetic doses of ketamine (2, 10, and 50 mg/kg, i.p.). Following ketamine injection, ketamine, norketamine, and multiple hydroxynorketamines were detected in the plasma and brain of mice. Dehydronorketamine was detectable in plasma, but concentrations were below detectable limits in the brain. Ketamine did not alter the magnitude or kinetics of evoked DA release in the nucleus accumbens in anesthetized mice. Neither ketamine's enantiomers nor its metabolites had affinity for DA receptors or the DA, noradrenaline, and serotonin transporters (up to 10 μM). These results suggest that neither the side effects nor antidepressant actions of ketamine or ketamine metabolites are associated with direct effects on mesolimbic DAergic neurotransmission. Previously observed in vivo changes in DAergic neurotransmission following ketamine administration are likely indirect.
Collapse
Affiliation(s)
- Adem Can
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Panos Zanos
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Ruin Moaddel
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Hye Jin Kang
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Katinia S S Dossou
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Irving W Wainer
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Joseph F Cheer
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Douglas O Frost
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Xi-Ping Huang
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| | - Todd D Gould
- Department of Psychiatry (A.C., P.Z., J.F.C., D.O.F., T.D.G.), Department of Pharmacology (D.O.F, T.D.G), and Department of Anatomy and Neurobiology (J.F.C, T.D.G), University of Maryland School of Medicine, Baltimore, Maryland; Department of Psychology, Notre Dame of Maryland University, Baltimore, Maryland (A.C.); Biomedical Research Center, National Institute on Aging, National Institutes of Health, Baltimore, Maryland (R.M., K.S.S.D., I.W.W.); National Institute of Mental Health Psychoactive Drug Screening Program, Department of Pharmacology, University of North Carolina Chapel Hill Medical School, Chapel Hill, North Carolina (H.J.K., X.-P.H.); and Mitchell Woods Pharmaceuticals, Shelton, Connecticut (I.W.W.)
| |
Collapse
|
20
|
Zakharov D, Lapish C, Gutkin B, Kuznetsov A. Synergy of AMPA and NMDA Receptor Currents in Dopaminergic Neurons: A Modeling Study. Front Comput Neurosci 2016; 10:48. [PMID: 27252643 PMCID: PMC4877376 DOI: 10.3389/fncom.2016.00048] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 05/06/2016] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic (DA) neurons display two modes of firing: low-frequency tonic and high-frequency bursts. The high frequency firing within the bursts is attributed to NMDA, but not AMPA receptor activation. In our models of the DA neuron, both biophysical and abstract, the NMDA receptor current can significantly increase their firing frequency, whereas the AMPA receptor current is not able to evoke high-frequency activity and usually suppresses firing. However, both currents are produced by glutamate receptors and, consequently, are often co-activated. Here we consider combined influence of AMPA and NMDA synaptic input in the models of the DA neuron. Different types of neuronal activity (resting state, low frequency, or high frequency firing) are observed depending on the conductance of the AMPAR and NMDAR currents. In two models, biophysical and reduced, we show that the firing frequency increases more effectively if both receptors are co-activated for certain parameter values. In particular, in the more quantitative biophysical model, the maximal frequency is 40% greater than that with NMDAR alone. The dynamical mechanism of such frequency growth is explained in the framework of phase space evolution using the reduced model. In short, both the AMPAR and NMDAR currents flatten the voltage nullcline, providing the frequency increase, whereas only NMDA prevents complete unfolding of the nullcline, providing robust firing. Thus, we confirm a major role of the NMDAR in generating high-frequency firing and conclude that AMPAR activation further significantly increases the frequency.
Collapse
Affiliation(s)
- Denis Zakharov
- Nonlinear Dynamics Department, Institute of Applied Physics, Russian Academy of Science (RAS) Nizhny Novgorod, Russia
| | - Christopher Lapish
- Department of Psychology, Indiana University-Purdue University Indianapolis (IUPUI) Indianapolis, IN, USA
| | - Boris Gutkin
- Group of Neural Theory, Ecole Normale Supérieure (ENS)Paris, France; Centre for Cognition and Decision Making, National Research University Higher School of EconomicsMoscow, Russia
| | - Alexey Kuznetsov
- Department of Mathematical Sciences and Center for Mathematical Modeling and Computational Sciences, Indiana University-Purdue University Indianapolis (IUPUI) Indianapolis, IN, USA
| |
Collapse
|
21
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
22
|
Sommer S, Hauber W. N-methyl-D-aspartate receptors in the ventral tegmental area mediate the excitatory influence of Pavlovian stimuli on instrumental performance. Brain Struct Funct 2015; 221:4399-4409. [PMID: 26691586 DOI: 10.1007/s00429-015-1170-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/07/2015] [Indexed: 10/22/2022]
Abstract
Pavlovian stimuli predictive of food can markedly amplify instrumental responding for food. This effect is termed Pavlovian-instrumental transfer (PIT). The ventral tegmental area (VTA) plays a key role in mediating PIT, however, it is yet unknown whether N-methyl-D-aspartate (NMDA)-type glutamate receptors in the VTA are involved in PIT. Here, we examined the effects of an NMDA-receptor blockade in the VTA on PIT. Immediately prior to PIT testing, rats were subjected to intra-VTA infusions of vehicle or of the NMDA-receptor antagonist 2-amino-5-phosphonopentanoic acid (AP-5) (1, 5 µg/side). In rats that received AP-5 at the lower dose, the PIT effect was intact, i.e. presentation of the Pavlovian stimulus enhanced instrumental responding. By contrast, in rats that received AP-5 at the higher dose, the PIT effect was blocked. The data suggest that NMDA receptors in the VTA mediate the activating effects of Pavlovian stimuli on instrumental responding.
Collapse
Affiliation(s)
- Susanne Sommer
- Department Animal Physiology, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany
| | - Wolfgang Hauber
- Department Animal Physiology, University of Stuttgart, Pfaffenwaldring 57, 70550, Stuttgart, Germany.
| |
Collapse
|
23
|
Belujon P, Grace AA. Regulation of dopamine system responsivity and its adaptive and pathological response to stress. Proc Biol Sci 2015; 282:rspb.2014.2516. [PMID: 25788601 DOI: 10.1098/rspb.2014.2516] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Although, historically, the norepinephrine system has attracted the majority of attention in the study of the stress response, the dopamine system has also been consistently implicated. It has long been established that stress plays a crucial role in the pathogenesis of psychiatric disorders. However, the neurobiological mechanisms that mediate the stress response and its effect in psychiatric diseases are not well understood. The dopamine system can play distinct roles in stress and psychiatric disorders. It is hypothesized that, even though the dopamine (DA) system forms the basis for a number of psychiatric disorders, the pathology is likely to originate in the afferent structures that are inducing dysregulation of the DA system. This review explores the current knowledge of afferent modulation of the stress/DA circuitry, and presents recent data focusing on the effect of stress on the DA system and its relevance to psychiatric disorders.
Collapse
Affiliation(s)
- Pauline Belujon
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
24
|
Tonic firing rate controls dendritic Ca2+ signaling and synaptic gain in substantia nigra dopamine neurons. J Neurosci 2015; 35:5823-36. [PMID: 25855191 DOI: 10.1523/jneurosci.3904-14.2015] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Substantia nigra dopamine neurons fire tonically resulting in action potential backpropagation and dendritic Ca(2+) influx. Using Ca(2+) imaging in acute mouse brain slices, we find a surprisingly steep relationship between tonic firing rate and dendritic Ca(2+). Increasing the tonic rate from 1 to 6 Hz generated Ca(2+) signals up to fivefold greater than predicted by linear summation of single spike-evoked Ca(2+)-transients. This "Ca(2+) supralinearity" was produced largely by depolarization of the interspike voltage leading to activation of subthreshold Ca(2+) channels and was present throughout the proximal and distal dendrites. Two-photon glutamate uncaging experiments show somatic depolarization enhances NMDA receptor-mediated Ca(2+) signals >400 μm distal to the soma, due to unusually tight electrotonic coupling of the soma to distal dendrites. Consequently, we find that fast tonic firing intensifies synaptically driven burst firing output in dopamine neurons. These results show that modulation of background firing rate precisely tunes dendritic Ca(2+) signaling and provides a simple yet powerful mechanism to dynamically regulate the gain of synaptic input.
Collapse
|
25
|
Yu N, Canavier CC. A Mathematical Model of a Midbrain Dopamine Neuron Identifies Two Slow Variables Likely Responsible for Bursts Evoked by SK Channel Antagonists and Terminated by Depolarization Block. JOURNAL OF MATHEMATICAL NEUROSCIENCE 2015; 5:5. [PMID: 25852980 PMCID: PMC4385104 DOI: 10.1186/s13408-015-0017-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/03/2015] [Indexed: 06/04/2023]
Abstract
Midbrain dopamine neurons exhibit a novel type of bursting that we call "inverted square wave bursting" when exposed to Ca(2+)-activated small conductance (SK) K(+) channel blockers in vitro. This type of bursting has three phases: hyperpolarized silence, spiking, and depolarization block. We find that two slow variables are required for this type of bursting, and we show that the three-dimensional bifurcation diagram for inverted square wave bursting is a folded surface with upper (depolarized) and lower (hyperpolarized) branches. The activation of the L-type Ca(2+) channel largely supports the separation between these branches. Spiking is initiated at a saddle node on an invariant circle bifurcation at the folded edge of the lower branch and the trajectory spirals around the unstable fixed points on the upper branch. Spiking is terminated at a supercritical Hopf bifurcation, but the trajectory remains on the upper branch until it hits a saddle node on the upper folded edge and drops to the lower branch. The two slow variables contribute as follows. A second, slow component of sodium channel inactivation is largely responsible for the initiation and termination of spiking. The slow activation of the ether-a-go-go-related (ERG) K(+) current is largely responsible for termination of the depolarized plateau. The mechanisms and slow processes identified herein may contribute to bursting as well as entry into and recovery from the depolarization block to different degrees in different subpopulations of dopamine neurons in vivo.
Collapse
Affiliation(s)
- Na Yu
- />Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112 USA
- />Department of Mathematics and Computer Science, Lawrence Technological University, 21000 West 10 Mile Road, Southfield, MI 48075 USA
| | - Carmen C. Canavier
- />Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, LA 70112 USA
| |
Collapse
|
26
|
Alam M, Angelov S, Stemmler M, von Wrangel C, Krauss JK, Schwabe K. Neuronal activity of the prefrontal cortex is reduced in rats selectively bred for deficient sensorimotor gating. Prog Neuropsychopharmacol Biol Psychiatry 2015; 56:174-84. [PMID: 25220677 DOI: 10.1016/j.pnpbp.2014.08.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 12/24/2022]
Abstract
Rats selectively bred for deficient prepulse inhibition (PPI), an operant measure of sensorimotor gating in which a weak prepulse stimulus attenuates the response to a subsequent startling stimulus, may be used to study certain pathophysiological mechanisms and therapeutic strategies for neuropsychiatric disorders with abnormalities in information processing, such as schizophrenia and Tourette's syndrome (TS). Little is known about neuronal activity in the medial prefrontal cortex (mPFC) and the nucleus accumbens (NAC), which are involved in the modulation of PPI. Here, we examined neuronal activity in these structures, and also in the entopeduncular nucleus (EPN), since lesions of this region alleviate the PPI deficit. Male rats with breeding-induced high and low expression of PPI (n=7, each) were anesthetized with urethane (1.4 mg/kg). Single-unit activity and local field potentials were recorded in the mPFC, the NAC and in the EPN. In the mPFC discharge rate, measures of irregularity and burst activity were significantly reduced in PPI low compared to PPI high rats (P<0.05), while analysis in the NAC showed approximately inverse behavior. In the EPN no difference between groups was found. Additionally, the oscillatory theta band activity (4-8 Hz) was enhanced and the beta band (13-30 Hz) and gamma band (30-100 Hz) activity was reduced in the NAC in PPI low rats. Reduced neuronal activity in the mPFC and enhanced activity in the NAC of PPI low rats, together with altered oscillatory behavior are clearly associated with reduced PPI. PPI low rats may thus be used to study the pathophysiology and therapeutic strategies for neuropsychiatric disorders accompanied by deficient sensorimotor gating.
Collapse
Affiliation(s)
- Mesbah Alam
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, D- 30625 Hannover, Germany
| | - Svilen Angelov
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, D- 30625 Hannover, Germany
| | - Meike Stemmler
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, D- 30625 Hannover, Germany
| | - Christof von Wrangel
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, D- 30625 Hannover, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, D- 30625 Hannover, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Str.1, D- 30625 Hannover, Germany.
| |
Collapse
|
27
|
Singh A, Liang L, Kaneoke Y, Cao X, Papa SM. Dopamine regulates distinctively the activity patterns of striatal output neurons in advanced parkinsonian primates. J Neurophysiol 2014; 113:1533-44. [PMID: 25505120 DOI: 10.1152/jn.00910.2014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nigrostriatal dopamine denervation plays a major role in basal ganglia circuitry disarray and motor abnormalities of Parkinson's disease (PD). Studies in rodent and primate models have revealed that striatal projection neurons, namely, medium spiny neurons (MSNs), increase the firing frequency. However, their activity pattern changes and the effects of dopaminergic stimulation in such conditions are unknown. Using single-cell recordings in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated primates with advanced parkinsonism, we studied MSN activity patterns in the transition to different motor states following levodopa administration. In the "off" state (baseline parkinsonian disability), a burst-firing pattern accompanied by prolonged silences (pauses) was found in 34% of MSNs, and 80% of these exhibited a levodopa response compatible with dopamine D1 receptor activation (direct pathway MSNs). This pattern was highly responsive to levodopa given that bursting/pausing almost disappeared in the "on" state (reversal of parkinsonism after levodopa injection), although this led to higher firing rates. Nonbursty MSNs fired irregularly with marked pausing that increased in the on state in the MSN subset with a levodopa response compatible with dopamine D2 receptor activation (indirect pathway MSNs), although the pause increase was not sustained in some units during the appearance of dyskinesias. Data indicate that the MSN firing pattern in the advanced parkinsonian monkey is altered by bursting and pausing changes and that dopamine differentially and inefficiently regulates these behaviorally correlated patterns in MSN subpopulations. These findings may contribute to understand the impact of striatal dysfunction in the basal ganglia network and its role in motor symptoms of PD.
Collapse
Affiliation(s)
- Arun Singh
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia
| | - Li Liang
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York
| | - Yoshiki Kaneoke
- Department of Integrative Physiology, National Institute for Physiological Sciences, Myodaiji, Okazaki, Japan
| | - Xuebing Cao
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia; Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China; and
| | - Stella M Papa
- Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, Georgia; Department of Neurology, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
28
|
Paladini C, Roeper J. Generating bursts (and pauses) in the dopamine midbrain neurons. Neuroscience 2014; 282:109-21. [DOI: 10.1016/j.neuroscience.2014.07.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/18/2014] [Accepted: 07/21/2014] [Indexed: 01/01/2023]
|
29
|
Differential modulation of reinforcement learning by D2 dopamine and NMDA glutamate receptor antagonism. J Neurosci 2014; 34:13151-62. [PMID: 25253860 DOI: 10.1523/jneurosci.0757-14.2014] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The firing pattern of midbrain dopamine (DA) neurons is well known to reflect reward prediction errors (PEs), the difference between obtained and expected rewards. The PE is thought to be a crucial signal for instrumental learning, and interference with DA transmission impairs learning. Phasic increases of DA neuron firing during positive PEs are driven by activation of NMDA receptors, whereas phasic suppression of firing during negative PEs is likely mediated by inputs from the lateral habenula. We aimed to determine the contribution of DA D2-class and NMDA receptors to appetitively and aversively motivated reinforcement learning. Healthy human volunteers were scanned with functional magnetic resonance imaging while they performed an instrumental learning task under the influence of either the DA D2 receptor antagonist amisulpride (400 mg), the NMDA receptor antagonist memantine (20 mg), or placebo. Participants quickly learned to select ("approach") rewarding and to reject ("avoid") punishing options. Amisulpride impaired both approach and avoidance learning, while memantine mildly attenuated approach learning but had no effect on avoidance learning. These behavioral effects of the antagonists were paralleled by their modulation of striatal PEs. Amisulpride reduced both appetitive and aversive PEs, while memantine diminished appetitive, but not aversive PEs. These data suggest that striatal D2-class receptors contribute to both approach and avoidance learning by detecting both the phasic DA increases and decreases during appetitive and aversive PEs. NMDA receptors on the contrary appear to be required only for approach learning because phasic DA increases during positive PEs are NMDA dependent, whereas phasic decreases during negative PEs are not.
Collapse
|
30
|
Kirkpatrick D, Edwards MA, Flowers PA, Wightman RM. Characterization of solute distribution following iontophoresis from a micropipet. Anal Chem 2014; 86:9909-16. [PMID: 25157675 PMCID: PMC4188272 DOI: 10.1021/ac5026072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/26/2014] [Indexed: 11/30/2022]
Abstract
Iontophoresis uses a current to eject solution from the tip of a barrel formed from a pulled glass capillary and has been employed as a method of drug delivery for neurochemical investigations. Much attention has been devoted to resolving perhaps the greatest limitation of iontophoresis, the inability to determine the concentration of substances delivered by ejections. To further address this issue, we evaluate the properties of typical ejections such as barrel solution velocity and its relation to the ejection current using an amperometric and liquid chromatographic approach. These properties were used to predict the concentration distribution of ejected solute that was then confirmed by fluorescence microscopy. Additionally, incorporation of oppositely charged fluorophores into the barrel investigated the role of migration on the mass transport of an ejected species. Results indicate that location relative to the barrel tip is the primary influence on the distribution of ejected species. At short distances (<100 μm), advection from electroosmotic transport of the barrel solution may significantly contribute to the distribution, but this effect can be minimized through the use of low to moderate ejection currents. However, as the distance from the source increases (>100 μm), even solute ejected using high currents exhibits diffusion-limited behavior. Lastly a time-dependent theoretical model was constructed and is used with experimental fluorescent profiles to demonstrate how iontophoresis can generate near-uniform concentration distributions near the ejection source.
Collapse
Affiliation(s)
- Douglas
C. Kirkpatrick
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Martin A. Edwards
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| | - Paul A. Flowers
- Department
of Chemistry and Physics, University of
North Carolina at Pembroke, Pembroke, North Carolina 28372, United States
| | - R. Mark Wightman
- Department of Chemistry and Department of Chemistry and Neuroscience
Center, University of North Carolina at
Chapel Hill, Chapel Hill, North Carolina 27599-3290, United States
| |
Collapse
|
31
|
Gasbarri A, Pompili A, Packard MG, Tomaz C. Habit learning and memory in mammals: Behavioral and neural characteristics. Neurobiol Learn Mem 2014; 114:198-208. [DOI: 10.1016/j.nlm.2014.06.010] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 06/11/2014] [Accepted: 06/18/2014] [Indexed: 11/26/2022]
|
32
|
Qian K, Yu N, Tucker KR, Levitan ES, Canavier CC. Mathematical analysis of depolarization block mediated by slow inactivation of fast sodium channels in midbrain dopamine neurons. J Neurophysiol 2014; 112:2779-90. [PMID: 25185810 DOI: 10.1152/jn.00578.2014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Dopamine neurons in freely moving rats often fire behaviorally relevant high-frequency bursts, but depolarization block limits the maximum steady firing rate of dopamine neurons in vitro to ∼10 Hz. Using a reduced model that faithfully reproduces the sodium current measured in these neurons, we show that adding an additional slow component of sodium channel inactivation, recently observed in these neurons, qualitatively changes in two different ways how the model enters into depolarization block. First, the slow time course of inactivation allows multiple spikes to be elicited during a strong depolarization prior to entry into depolarization block. Second, depolarization block occurs near or below the spike threshold, which ranges from -45 to -30 mV in vitro, because the additional slow component of inactivation negates the sodium window current. In the absence of the additional slow component of inactivation, this window current produces an N-shaped steady-state current-voltage (I-V) curve that prevents depolarization block in the experimentally observed voltage range near -40 mV. The time constant of recovery from slow inactivation during the interspike interval limits the maximum steady firing rate observed prior to entry into depolarization block. These qualitative features of the entry into depolarization block can be reversed experimentally by replacing the native sodium conductance with a virtual conductance lacking the slow component of inactivation. We show that the activation of NMDA and AMPA receptors can affect bursting and depolarization block in different ways, depending upon their relative contributions to depolarization versus to the total linear/nonlinear conductance.
Collapse
Affiliation(s)
- Kun Qian
- Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, Louisiana; Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, Louisiana; and
| | - Na Yu
- Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, Louisiana
| | - Kristal R Tucker
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Edwin S Levitan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Carmen C Canavier
- Department of Cell Biology and Anatomy, Louisiana State University School of Medicine, New Orleans, Louisiana; Neuroscience Center of Excellence, Louisiana State University School of Medicine, New Orleans, Louisiana; and
| |
Collapse
|
33
|
Galaj E, Manuszak M, Arastehmanesh D, Ranaldi R. Microinjections of a dopamine D1 receptor antagonist into the ventral tegmental area block the expression of cocaine conditioned place preference in rats. Behav Brain Res 2014; 272:279-85. [PMID: 25017572 DOI: 10.1016/j.bbr.2014.07.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/11/2014] [Accepted: 07/03/2014] [Indexed: 11/17/2022]
Abstract
Stimulation of dopamine (DA) D1 receptors in the ventral tegmental area (VTA) is involved in primary rewards. In the current study we investigated whether VTA D1 receptor stimulation likewise plays a role in mediating the rewarding effects of cocaine-associated stimuli, using the cocaine conditioned place preference (CPP) paradigm. Rats were prepared with cannulae so as to allow microinjections in the VTA and later conditioned to a cocaine-associated environment using the CPP paradigm. Prior to each conditioning session rats were injected with either saline or cocaine (10mg/kg, intraperitoneally) and then placed in one of the two sides of the CPP apparatus. Sessions lasted 30min a day over a period of eight days, such that rats alternated daily between consistently experiencing cocaine in one side and saline in the other. On the test day, which was conducted one day after conditioning, rats were given bilateral microinjections of one of four doses of the D1 antagonist, SCH 23390, (0, 2, 4 or 8μg/0.5μl) directly into the VTA and allowed free access to both sides of the apparatus. Preference for either side was measured as time spent in each side and compared to the same measures taken before conditioning. The D1 antagonist produced a dose-related, significant reduction in the preference for the cocaine-paired side compared to vehicle. These data suggest that the expression of cocaine conditioned place preference requires stimulation of VTA D1 receptors and, as such, are the first to suggest a role for VTA dendritically released DA in cocaine-, or other reward-, related learning.
Collapse
Affiliation(s)
- E Galaj
- Graduate Center of City University of New York, NY, United States
| | | | | | - R Ranaldi
- Graduate Center of City University of New York, NY, United States; Queens College, NY, United States.
| |
Collapse
|
34
|
Excitatory drive onto dopaminergic neurons in the rostral linear nucleus is enhanced by norepinephrine in an α1 adrenergic receptor-dependent manner. Neuropharmacology 2014; 86:116-24. [PMID: 25018040 DOI: 10.1016/j.neuropharm.2014.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 12/19/2022]
Abstract
Dopaminergic innervation of the extended amygdala regulates anxiety-like behavior and stress responsivity. A portion of this dopamine input arises from dopamine neurons located in the ventral lateral periaqueductal gray (vlPAG) and rostral (RLi) and caudal linear nuclei of the raphe (CLi). These neurons receive substantial norepinephrine input, which may prime them for involvement in stress responses. Using a mouse line that expresses eGFP under control of the tyrosine hydroxylase promoter, we explored the physiology and responsiveness to norepinephrine of these neurons. We find that RLi dopamine neurons differ from VTA dopamine neurons with respect to membrane resistance, capacitance and the hyperpolarization-activated current, Ih. Further, we found that norepinephrine increased the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) on RLi dopamine neurons. This effect was mediated through the α1 adrenergic receptor (AR), as the actions of norepinephrine were mimicked by the α1-AR agonist methoxamine and blocked by the α1-AR antagonist prazosin. This action of norepinephrine on sEPSCs was transient, as it did not persist in the presence of prazosin. Methoxamine also increased the frequency of miniature EPSCs, indicating that the α1-AR action on glutamatergic transmission likely has a presynaptic mechanism. There was also a modest decrease in sEPSC frequency with the application of the α2-AR agonist UK-14,304. These studies illustrate a potential mechanism through which norepinephrine could recruit the activity of this population of dopaminergic neurons.
Collapse
|
35
|
Abstract
G-protein-coupled inwardly rectifying potassium (GIRK) channels contribute to the resting membrane potential of many neurons, including dopamine (DA) neurons in the ventral tegmental area (VTA). VTA DA neurons are bistable, firing in two modes: one characterized by bursts of action potentials, the other by tonic firing at a lower frequency. Here we provide evidence that these firing modes drive bidirectional plasticity of GIRK channel-mediated currents. In acute midbrain slices of mice, we observed that in vitro burst activation of VTA DA neurons potentiated GIRK currents whereas tonic firing depressed these currents. This plasticity was not specific to the metabotropic receptor activating the GIRK channels, as direct activation of GIRK channels by nonhydrolyzable GTP also potentiated the currents. The plasticity of GIRK currents required NMDA receptor and CaMKII activation, and involved protein trafficking through specific PDZ domains of GIRK2c and GIRK3 subunit isoforms. Prolonged tonic firing may thus enhance the probability to switch into burst-firing mode, which then potentiates GIRK currents and favors the return to baseline. In conclusion, activity-dependent GIRK channel plasticity may represent a slow destabilization process favoring the switch between the two firing modes of VTA DA neurons.
Collapse
|
36
|
Creed MC, Ntamati NR, Tan KR. VTA GABA neurons modulate specific learning behaviors through the control of dopamine and cholinergic systems. Front Behav Neurosci 2014; 8:8. [PMID: 24478655 PMCID: PMC3897868 DOI: 10.3389/fnbeh.2014.00008] [Citation(s) in RCA: 90] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Accepted: 01/06/2014] [Indexed: 11/13/2022] Open
Abstract
The mesolimbic reward system is primarily comprised of the ventral tegmental area (VTA) and the nucleus accumbens (NAc) as well as their afferent and efferent connections. This circuitry is essential for learning about stimuli associated with motivationally-relevant outcomes. Moreover, addictive drugs affect and remodel this system, which may underlie their addictive properties. In addition to dopamine (DA) neurons, the VTA also contains approximately 30% γ-aminobutyric acid (GABA) neurons. The task of signaling both rewarding and aversive events from the VTA to the NAc has mostly been ascribed to DA neurons and the role of GABA neurons has been largely neglected until recently. GABA neurons provide local inhibition of DA neurons and also long-range inhibition of projection regions, including the NAc. Here we review studies using a combination of in vivo and ex vivo electrophysiology, pharmacogenetic and optogenetic manipulations that have characterized the functional neuroanatomy of inhibitory circuits in the mesolimbic system, and describe how GABA neurons of the VTA regulate reward and aversion-related learning. We also discuss pharmacogenetic manipulation of this system with benzodiazepines (BDZs), a class of addictive drugs, which act directly on GABAA receptors located on GABA neurons of the VTA. The results gathered with each of these approaches suggest that VTA GABA neurons bi-directionally modulate activity of local DA neurons, underlying reward or aversion at the behavioral level. Conversely, long-range GABA projections from the VTA to the NAc selectively target cholinergic interneurons (CINs) to pause their firing and temporarily reduce cholinergic tone in the NAc, which modulates associative learning. Further characterization of inhibitory circuit function within and beyond the VTA is needed in order to fully understand the function of the mesolimbic system under normal and pathological conditions.
Collapse
Affiliation(s)
- Meaghan C Creed
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| | - Niels R Ntamati
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| | - Kelly R Tan
- Department of Basic Neurosciences, Medical Faculty, University of Geneva Geneva, Switzerland
| |
Collapse
|
37
|
Solecki W, Wickham RJ, Behrens S, Wang J, Zwerling B, Mason GF, Addy NA. Differential role of ventral tegmental area acetylcholine and N-methyl-D-aspartate receptors in cocaine-seeking. Neuropharmacology 2013; 75:9-18. [PMID: 23850572 PMCID: PMC3865076 DOI: 10.1016/j.neuropharm.2013.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
Exposure to drug-associated cues evokes drug-seeking behavior and is regarded as a major cause of relapse. Cues evoke burst firing of ventral tegmental area (VTA) dopamine (DA) neurons and phasic DA release in the nucleus accumbens (NAc). Cholinergic and glutamatergic input to the VTA is suggested to gate phasic DA activity. However, the role of VTA cholinergic and glutamatergic receptors in regulating phasic dopamine release and cue-induced drug-seeking in cocaine experienced subjects is not known. In male Sprague-Dawley rats, we found that VTA inactivation strongly inhibited, while VTA stimulation promoted, cocaine-seeking behavior during early withdrawal. Blockade of phasic activated D1 receptors in the NAc core also strongly inhibited cue-induced cocaine-seeking--suggesting an important role of phasic DA activity in the VTA to NAc core circuit. Next, we examined the role of VTA acetylcholine receptors (AChRs) and N-methyl-D-aspartate receptors (NMDARs) in regulating both NAc core phasic DA release and cue-induced cocaine-seeking. In cocaine naïve subjects, VTA infusion of the nicotinic acetylcholine receptor (AChR) antagonist mecamylamine, the muscarinic AChR antagonist scopolamine, or the NMDAR antagonist AP-5, led to robust attenuation of phasic DA release in the NAc core. During early cocaine withdrawal, VTA infusion of AP-5 had limited effects on NAc phasic DA release and cue-induced cocaine-seeking while VTA infusion of mecamylamine or scopolamine robustly inhibited both phasic DA release and cocaine-seeking. The results demonstrate that VTA AChRs, but not NMDARs, strongly regulate cue-induced cocaine-seeking and phasic DA release during early cocaine withdrawal.
Collapse
Affiliation(s)
- Wojciech Solecki
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Robert J Wickham
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Shay Behrens
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Jie Wang
- Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA; Wuhan Institute of Physics and Mathematics, CAS, Hubei, PR China
| | - Blake Zwerling
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Graeme F Mason
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Diagnostic Radiology, Yale School of Medicine, New Haven, CT, USA
| | - Nii A Addy
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
38
|
Wickham R, Solecki W, Rathbun L, McIntosh JM, Addy NA. Ventral tegmental area α6β2 nicotinic acetylcholine receptors modulate phasic dopamine release in the nucleus accumbens core. Psychopharmacology (Berl) 2013; 229:73-82. [PMID: 23624852 PMCID: PMC3742574 DOI: 10.1007/s00213-013-3082-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 03/22/2013] [Indexed: 01/09/2023]
Abstract
RATIONALE Phasic dopamine (DA) signaling underlies reward learning. Cholinergic and glutamatergic inputs into the ventral tegmental area (VTA) are crucial for modulating burst firing activity and subsequent phasic DA release in the nucleus accumbens (NAc), but the specific VTA nicotinic receptor subtypes that regulate phasic DA release have not been identified. OBJECTIVE The goal was to determine the role of VTA N-methyl-D-aspartate receptors (NMDARs) and specific subtypes of nicotinic acetylcholine receptors (nAChRs) in regulating phasic DA release in the NAc core. METHODS Fast-scan cyclic voltammetry in anesthetized rats was combined with intra-VTA micro-infusion to evaluate the ability of glutamatergic and cholinergic drugs to modulate stimulated phasic DA release in the NAc core. RESULTS VTA NMDAR blockade with AP-5 decreased, while VTA NMDAR activation with NMDA increased NAc peak phasic DA release. Intra-VTA administration of the nonspecific nAChR antagonist mecamylamine produced a persistent decrease in phasic DA release. Infusion of the α6-selective antagonist α-conotoxin MII (α-ctx MII) produced a robust, but transient decrease in phasic DA, whereas infusion of selective doses of either the α4β2-selective antagonist, dihydro-beta-erythroidine, or the α7 antagonist, methyllycaconitine, had no effect. Co-infusion of AP-5 and α-ctx MII produced a similar phasic DA decrease as either drug alone, with no additive effect. CONCLUSIONS The results suggest that VTA α6β2 nAChRs, but not α4β2 or α7 nAChRs, regulate phasic DA release in the NAc core and that VTA α6β2 nAChRs and NMDA receptors act at a common site or target to regulate NAc phasic DA signaling.
Collapse
Affiliation(s)
- Robert Wickham
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
| | - Wojciech Solecki
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| | - Liza Rathbun
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
| | - J. Michael McIntosh
- Yale University School of Medicine , New Haven, CT 06511, Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Nii A. Addy
- Interdepartmental Neuroscience Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Psychiatry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Cellular and Molecular Physiology, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
39
|
Abstract
Anterograde tract-tracing and immunohistochemical methods were used to study projections from the pedunculopontine tegmental nucleus (PPN) to midbrain dopaminergic neurons in the squirrel monkey (Saimiri sciureus). The PPN harbored numerous cholinergic and glutamatergic neurons, as well as neurons that displayed both cholinergic and glutamatergic markers. Injections of anterograde tracer into the PPN led to intense fiber labeling in the substantia nigra pars compacta (SNc) and the ventral tegmental area (VTA). This pedunculonigral projection was partly bilateral. At the electron microscopic level, about 40-60% of the anterogradely labeled terminal boutons were glutamate-positive and formed asymmetric synapses with the dopaminergic neurons of the SNc-VTA complex. These data provide direct evidence for a pedunculonigral glutamatergic projection. This projection may play a crucial role in the control of the firing pattern of SNc-VTA dopaminergic neurons and could be involved in glutamate-mediated excitotoxicity that is believed to lead to SNc cell death in Parkinson's disease.
Collapse
|
40
|
Ko D, Wilson CJ, Lobb CJ, Paladini CA. Detection of bursts and pauses in spike trains. J Neurosci Methods 2012; 211:145-58. [PMID: 22939922 DOI: 10.1016/j.jneumeth.2012.08.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Revised: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 10/28/2022]
Abstract
Midbrain dopaminergic neurons in vivo exhibit a wide range of firing patterns. They normally fire constantly at a low rate, and speed up, firing a phasic burst when reward exceeds prediction, or pause when an expected reward does not occur. Therefore, the detection of bursts and pauses from spike train data is a critical problem when studying the role of phasic dopamine (DA) in reward related learning, and other DA dependent behaviors. However, few statistical methods have been developed that can identify bursts and pauses simultaneously. We propose a new statistical method, the Robust Gaussian Surprise (RGS) method, which performs an exhaustive search of bursts and pauses in spike trains simultaneously. We found that the RGS method is adaptable to various patterns of spike trains recorded in vivo, and is not influenced by baseline firing rate, making it applicable to all in vivo spike trains where baseline firing rates vary over time. We compare the performance of the RGS method to other methods of detecting bursts, such as the Poisson Surprise (PS), Rank Surprise (RS), and Template methods. Analysis of data using the RGS method reveals potential mechanisms underlying how bursts and pauses are controlled in DA neurons.
Collapse
Affiliation(s)
- D Ko
- Department of Management Science and Statistics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | | | | | | |
Collapse
|
41
|
Jeong J, Shi WX, Hoffman R, Oh J, Gore JC, Bunney BS, Peterson BS. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons. Eur J Neurosci 2012; 36:3214-23. [PMID: 22831464 DOI: 10.1111/j.1460-9568.2012.08238.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons.
Collapse
Affiliation(s)
- Jaeseung Jeong
- Department of Psychiatry, Columbia College of Physicians and Surgeons, New York, NY, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The activity of ventral tegmental area (VTA) dopamine (DA) neurons promotes behavioral responses to rewards and environmental stimuli that predict them. VTA GABA inputs synapse directly onto DA neurons and may regulate DA neuronal activity to alter reward-related behaviors; however, the functional consequences of selective activation of VTA GABA neurons remains unknown. Here, we show that in vivo optogenetic activation of VTA GABA neurons disrupts reward consummatory behavior but not conditioned anticipatory behavior in response to reward-predictive cues. In addition, direct activation of VTA GABA projections to the nucleus accumbens (NAc) resulted in detectable GABA release but did not alter reward consumption. Furthermore, optogenetic stimulation of VTA GABA neurons directly suppressed the activity and excitability of neighboring DA neurons as well as the release of DA in the NAc, suggesting that the dynamic interplay between VTA DA and GABA neurons can control the initiation and termination of reward-related behaviors.
Collapse
|
43
|
Czachowski CL, Delory MJ, Pope JD. Behavioral and neurotransmitter specific roles for the ventral tegmental area in reinforcer-seeking and intake. Alcohol Clin Exp Res 2012; 36:1659-68. [PMID: 22432593 DOI: 10.1111/j.1530-0277.2012.01774.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 01/17/2012] [Indexed: 01/21/2023]
Abstract
BACKGROUND The ventral tegmental area (VTA) is a pivotal relay site within the reinforcement circuit that has been shown to play a role in ethanol (EtOH)-motivated behaviors. The primary dopamine projections within this system originate in the VTA and innervate several areas including the nucleus accumbens (NAc) and prefrontal cortex (PFC), and the PFC has afferent glutamate projections to the VTA and the NAc. The following studies utilized 2 different operant paradigms, one focusing on reinforcer-seeking and the other on reinforcer drinking (both with an EtOH and a sucrose reinforcer solution), to elucidate regulation of these behaviors by the posterior VTA, and the specific roles of dopamine and glutamate in this region. METHODS The present experiments assessed the effects of microinjections of the glutamate (AMPA/kainate) antagonist CNQX and the dopamine D1-like antagonist SCH23390 in the posterior VTA, as well as transient chemical inactivation of this region using tetrodotoxin (TTX). In 4 separate experiments (2 dopamine, 2 glutamate, both with TTX), male Long Evans rats were trained to complete a single response requirement that resulted in access to 10% EtOH or 2% sucrose for a 20-minute drinking period. RESULTS Prior to microinjections, EtOH-reinforced subjects were consuming approximately 0.45 to 0.65 g/kg EtOH and making approximately 50 responses during intermittent nonreinforced artificial cerebrospinal fluid sessions (Sucrose groups had similar baseline response levels). Overall, TTX inactivation of the VTA consistently decreased reinforcer-seeking but not intake in all experiments. CNQX also dose-dependently decreased EtOH-seeking, with no significant effect on sucrose-seeking or reinforcer intake. SCH23390 had no significant effects on reinforcer-seeking, and very moderately decreased intake of both EtOH and sucrose. CONCLUSIONS Inactivation of the posterior VTA implicated this region in reinforcer-seeking as opposed to reinforcer intake. Overall, the present findings provide support for the importance of posterior VTA glutamate activity specifically in EtOH-seeking behavior in animals consuming pharmacologically relevant amounts of EtOH.
Collapse
Affiliation(s)
- Cristine L Czachowski
- Department of Psychiatry, Institute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
44
|
Fitzgerald GJ, Liu H, Morzorati SL. Decreased sensitivity of NMDA receptors on dopaminergic neurons from the posterior ventral tegmental area following chronic nondependent alcohol consumption. Alcohol Clin Exp Res 2012; 36:1710-9. [PMID: 22433065 DOI: 10.1111/j.1530-0277.2012.01762.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Accepted: 01/13/2012] [Indexed: 12/01/2022]
Abstract
BACKGROUND The mesocorticolimbic dopamine system mediates the reinforcing effects of salient stimuli, including drugs of abuse. Nondependent chronic alcohol consumption modifies this system, resulting in an increased number of spontaneously active dopamine neurons in the posterior ventral tegmental area (VTA) of alcohol-preferring (P) rats. Enhanced responses of postsynaptic glutamate receptors may contribute to the increase in active dopamine neurons. Thus, excitations of putative dopamine neurons to locally applied N-methyl-d-aspartic acid (NMDA; glutamate receptor subtype agonist) were evaluated. METHODS P rats were assigned to alcohol naïve (water only) or alcohol drinking (continuous access to 15% alcohol and water for 8 consecutive weeks) groups. Responses of 23 putative dopamine neurons from naïve rats and 19 putative dopamine neurons from drinking rats were assessed in vivo using microiontophoretically applied NMDA. Current-response curves for firing frequency and burst activity were constructed using nonlinear mixed effects models. Between-group comparisons were made for EC(50) (effective current producing a half maximal excitatory response), E(max) (maximal excitatory effect), and C(DB) (the current at which depolarization block-marked decrease in neuronal activity-occurred). RESULTS Drinking P rats steadily consumed alcohol over the 8-week protocol and did not exhibit signs of dependence or withdrawal. Putative dopamine neurons from drinking rats exhibited resistance to depolarization block (higher C(DB) values) and required larger doses of NMDA to elicit moderate excitatory responses (higher EC(50) values), consistent with decreased receptor affinity. Maximal excitatory responses (E(max) ) did not differ between the groups, consistent with no change in receptor number. Blood alcohol was at undetectable levels at the time of experimentation. CONCLUSIONS NMDA receptor sensitivity is decreased on posterior VTA putative dopamine neurons in P rats on a nondependent schedule of alcohol consumption. Mechanisms underlying increased spontaneous dopamine neuron activity may be independent of changes in NMDA receptor function. Decreased NMDA receptor sensitivity may precede the development of dependence.
Collapse
Affiliation(s)
- Griffin J Fitzgerald
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202-4887, USA
| | | | | |
Collapse
|
45
|
Wang LP, Li F, Wang D, Xie K, Wang D, Shen X, Tsien JZ. NMDA receptors in dopaminergic neurons are crucial for habit learning. Neuron 2012; 72:1055-66. [PMID: 22196339 DOI: 10.1016/j.neuron.2011.10.019] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/10/2011] [Indexed: 10/14/2022]
Abstract
Dopamine is crucial for habit learning. Activities of midbrain dopaminergic neurons are regulated by the cortical and subcortical signals among which glutamatergic afferents provide excitatory inputs. Cognitive implications of glutamatergic afferents in regulating and engaging dopamine signals during habit learning, however, remain unclear. Here, we show that mice with dopaminergic neuron-specific NMDAR1 deletion are impaired in a variety of habit-learning tasks, while normal in some other dopamine-modulated functions such as locomotor activities, goal-directed learning, and spatial reference memories. In vivo neural recording revealed that dopaminergic neurons in these mutant mice could still develop the cue-reward association responses; however, their conditioned response robustness was drastically blunted. Our results suggest that integration of glutamatergic inputs to DA neurons by NMDA receptors, likely by regulating associative activity patterns, is a crucial part of the cellular mechanism underpinning habit learning.
Collapse
Affiliation(s)
- Lei Phillip Wang
- Brain and Behavior Discovery Institute and Department of Neurology, Georgia Health Sciences University, Augusta, GA 30912, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Baimel C, Borgland SL, Corrigall W. Cocaine and Nicotine Research Illustrates a Range of Hypocretin Mechanisms in Addiction. SLEEP HORMONES 2012; 89:291-313. [DOI: 10.1016/b978-0-12-394623-2.00016-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
47
|
Baimel C, Borgland SL. Hypocretin modulation of drug-induced synaptic plasticity. PROGRESS IN BRAIN RESEARCH 2012; 198:123-31. [PMID: 22813972 DOI: 10.1016/b978-0-444-59489-1.00008-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ventral tegmental area (VTA) is a brain region centrally involved in the development and expression of a variety of behaviors associated with drug use. Hypocretin (hcrt), also known as orexin, is a lateral hypothalamic neuropeptide that can be released into the VTA. An increasing number of studies show that hcrt in the VTA exerts modulatory effects on a variety of behaviors produced by drugs of abuse. Importantly, at a cellular level, acute application of hcrt in the VTA potentiates N-methyl-D-aspartate receptors expressed in VTA neurons and facilitates the plasticity induced by drugs of abuse. In this review, we discuss evidence that hcrt directly targets dopamine neurons by modulating excitatory synaptic activity and that hcrt action at excitatory synapses onto VTA dopamine neurons plays a central role in motivated behaviors.
Collapse
Affiliation(s)
- Corey Baimel
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | | |
Collapse
|
48
|
Jones S, Brothwell S, Huang-Doran I, Hallett J. Ionotropic Glutamate Receptors in the Basal Ganglia. ACTA ACUST UNITED AC 2011. [DOI: 10.1201/b11284-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
49
|
Rapid dopamine signaling differentially modulates distinct microcircuits within the nucleus accumbens during sucrose-directed behavior. J Neurosci 2011; 31:13860-9. [PMID: 21957248 DOI: 10.1523/jneurosci.1340-11.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The mesolimbic dopamine projection from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) is critical in mediating reward-related behaviors, but the precise role of dopamine in this process remains unknown. We completed a series of studies to examine whether coincident changes occur in NAc cell firing and rapid dopamine release during goal-directed behaviors for sucrose and if so, to determine whether the two are causally linked. We show that distinct populations of NAc neurons differentially encode sucrose-directed behaviors, and using a combined electrophysiology/electrochemistry technique, further show that it is at those locations that rapid dopamine signaling is observed. To determine causality, NAc cell firing was recorded during selective pharmacological inactivation of dopamine burst firing using the NMDA receptor antagonist, AP-5. We show that phasic dopamine selectively modulates excitatory but not inhibitory responses of NAc neurons during sucrose-seeking behavior. Thus, rapid dopamine signaling does not exert global actions in the NAc but selectively modulates discrete NAc microcircuits that ultimately influence goal-directed actions.
Collapse
|
50
|
Morikawa H, Paladini CA. Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms. Neuroscience 2011; 198:95-111. [PMID: 21872647 DOI: 10.1016/j.neuroscience.2011.08.023] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/05/2011] [Accepted: 08/11/2011] [Indexed: 12/23/2022]
Abstract
Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis.
Collapse
Affiliation(s)
- H Morikawa
- Waggoner Center for Alcohol and Addiction Research, Section of Neurobiology, 2400 Speedway, University of Texas at Austin, Austin, TX 78712, USA.
| | | |
Collapse
|