1
|
Zhao YJ, Yin G, Liu B, Deng XQ, Cao HY, Liu Y. Variability of BMP-2 content in DBM products derived from different long bone. Cell Tissue Bank 2024; 25:697-703. [PMID: 38489016 DOI: 10.1007/s10561-024-10132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/30/2024] [Indexed: 03/17/2024]
Abstract
Demineralized bone matrix (DBM) has been regarded as an ideal bone substitute as a native carrier of bone morphogenetic proteins (BMPs) and other growth factors. However, the osteoinductive properties diverse in different DBM products. We speculate that the harvest origin further contributing to variability of BMPs contents in DBM products besides the process technology. In the study, the cortical bone of femur, tibia, humerus, and ulna from a signal donor were prepared and followed demineralizd into DBM products. Proteins in bone martix were extracted using guanidine-HCl and collagenase, respectively, and BMP-2 content was detected by sandwich enzyme-linked immunosorbent assay (ELISA). Variability of BMP-2 content was found in 4 different DBM products. By guanidine-HCl extraction, the average concentration in DBMs harvested from ulna, humerus, tibia, and femur were 0.613 ± 0.053, 0.848 ± 0.051, 3.293 ± 0.268, and 21.763 ± 0.344, respectively (p < 0.05), while using collagenase, the levels were 0.089 ± 0.004, 0.097 ± 0.004, 0.330 ± 0.012, and 1.562 ± 0.008, respectively (p < 0.05). In general, the content of BMP-2 in long bones of Lower limb was higher than that in long bones of upper limb, and GuHCl had remarkably superior extracted efficiency for BMP-2 compared to collagenase. The results suggest that the origin of cortical bones harvested to fabricate DBM products contribute to the variability of native BMP-2 content, while the protein extracted method only changes the measured values of BMP-2.
Collapse
Affiliation(s)
- Yong-Jie Zhao
- Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Gang Yin
- Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Bin Liu
- Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Xiao-Qiang Deng
- Xing'an League People's Hospital, Ulanhot, Inner Mongolia, China
| | - Hai-Yan Cao
- Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Ying Liu
- Binzhou Medical University Hospital, Binzhou, Shandong Province, China.
| |
Collapse
|
2
|
Uslu C, Tatar BE, Uyanıkgil Y, Tomruk C, Yılmaz B, Demirkol N, Bozkurt M. Evaluation of graphene oxide-doped poly-lactic-co-glycolic acid (GO-PLGA) nanofiber absorbable plates and titanium plates for bone stability and healing in mandibular corpus fractures: An experimental study. J Plast Reconstr Aesthet Surg 2024; 92:79-86. [PMID: 38507862 DOI: 10.1016/j.bjps.2024.02.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/06/2024] [Accepted: 02/22/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Open reduction with internal fixation is the preferred treatment option for displaced facial bone fractures. The superior mechanical properties of metallic plates have made them the most widely used material in existing bone fixation systems. However, after the healing period, these permanent plates can cause various problems. Alternative bioresorbable materials are being investigated to reduce these potential problems. This study compares bone stability and viability by using graphene oxide (GO)-doped poly-lactic-co-glycolic acid (PLGA) nanofiber plates and titanium plates for rats with fractured mandibles. MATERIALS AND METHODS The study included 20 male Sprague-Dawley rats, divided into four groups: a control group (Group I), a mandibular fracture group with no additional application (Group II), a mandibular fracture group repaired with titanium plates (Group III), and a mandibular fracture group repaired with GO-PLGA plates (Group IV). After 2 months, all of the rats were euthanized. A bone compression test was performed to assess bone stability, and a histological examination was performed to evaluate bone healing. RESULTS The osteocyte lacunae, Haversian ducts, canaliculi, and vascular structures of Group IV were found to be higher. In the compression test, vertical compression was applied to the bone axis, and Group IV had a higher maximum load and maximum stretch. GO-PLGA plates were found to be statistically superior to titanium plates in terms of both bone stability and bone healing (p < 0.05). CONCLUSIONS The present study found that GO-PLGA plates are more effective than titanium plates for the treatment of mandibular corpus fractures.
Collapse
Affiliation(s)
- Can Uslu
- University of Health Sciences, Bagcılar Training and Research Hospital, Department of Plastic Surgery, Istanbul, Turkey.
| | - Burak E Tatar
- Erzurum Regional Training and Research Hospital, Department of Plastic Surgery, Erzurum, Turkey
| | - Yiğit Uyanıkgil
- Ege University Faculty of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Canberk Tomruk
- Department of Histology and Embryology, Samsun University, Samsun Education and Research Hospital, Samsun, Turkey
| | - Bengi Yılmaz
- University of Health Sciences Turkey, Hamidiye Institute of Health Sciences, Department of Biomaterials, Istanbul, Turkey
| | - Nermin Demirkol
- Kocaeli University/Faculty of Technology/Department of Biomedical Engineering/Program of Biomaterials, Kocaeli, Turkey
| | - Mehmet Bozkurt
- Department of Plastic Surgery, University of Health Sciences, Bagcılar Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
3
|
Li W, Wu Y, Zhang X, Wu T, Huang K, Wang B, Liao J. Self-healing hydrogels for bone defect repair. RSC Adv 2023; 13:16773-16788. [PMID: 37283866 PMCID: PMC10240173 DOI: 10.1039/d3ra01700a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
Severe bone defects can be caused by various factors, such as tumor resection, severe trauma, and infection. However, bone regeneration capacity is limited up to a critical-size defect, and further intervention is required. Currently, the most common clinical method to repair bone defects is bone grafting, where autografts are the "gold standard." However, the disadvantages of autografts, including inflammation, secondary trauma and chronic disease, limit their application. Bone tissue engineering (BTE) is an attractive strategy for repairing bone defects and has been widely researched. In particular, hydrogels with a three-dimensional network can be used as scaffolds for BTE owing to their hydrophilicity, biocompatibility, and large porosity. Self-healing hydrogels respond rapidly, autonomously, and repeatedly to induced damage and can maintain their original properties (i.e., mechanical properties, fluidity, and biocompatibility) following self-healing. This review focuses on self-healing hydrogels and their applications in bone defect repair. Moreover, we discussed the recent progress in this research field. Despite the significant existing research achievements, there are still challenges that need to be addressed to promote clinical research of self-healing hydrogels in bone defect repair and increase the market penetration.
Collapse
Affiliation(s)
- Weiwei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Yanting Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Xu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| | - Tingkui Wu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Kangkang Huang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Beiyu Wang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University Chengdu 610041 China
| | - Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, West China Hospital of Stomatology, Sichuan University Chengdu 610041 China
| |
Collapse
|
4
|
Keshavarz M, Alizadeh P, Kadumudi FB, Orive G, Gaharwar AK, Castilho M, Golafshan N, Dolatshahi-Pirouz A. Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21476-21495. [PMID: 37073785 PMCID: PMC10165608 DOI: 10.1021/acsami.3c01717] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Several studies have shown that nanosilicate-reinforced scaffolds are suitable for bone regeneration. However, hydrogels are inherently too soft for load-bearing bone defects of critical sizes, and hard scaffolds typically do not provide a suitable three-dimensional (3D) microenvironment for cells to thrive, grow, and differentiate naturally. In this study, we bypass these long-standing challenges by fabricating a cell-free multi-level implant consisting of a porous and hard bone-like framework capable of providing load-bearing support and a softer native-like phase that has been reinforced with nanosilicates. The system was tested with rat bone marrow mesenchymal stem cells in vitro and as a cell-free system in a critical-sized rat bone defect. Overall, our combinatorial and multi-level implant design displayed remarkable osteoconductivity in vitro without differentiation factors, expressing significant levels of osteogenic markers compared to unmodified groups. Moreover, after 8 weeks of implantation, histological and immunohistochemical assays indicated that the cell-free scaffolds enhanced bone repair up to approximately 84% following a near-complete defect healing. Overall, our results suggest that the proposed nanosilicate bioceramic implant could herald a new age in the field of orthopedics.
Collapse
Affiliation(s)
- Mozhgan Keshavarz
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
| | - Parvin Alizadeh
- Department
of Materials Science and Engineering, Faculty of Engineering &
Technology, Tarbiat Modares University, P.O. Box 14115-143, Tehran 14115-143, Iran
| | - Firoz Babu Kadumudi
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Gorka Orive
- NanoBioCel
Research Group, School of Pharmacy, University
of the Basque Country (UPV/EHU), Vitoria-Gasteiz 01006, Spain
- Biomedical
Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01006, Spain
- University
Institute for Regenerative Medicine and Oral Implantology—UIRMI
(UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz 01006, Spain
- Bioaraba,
NanoBioCel Research Group, Vitoria-Gasteiz 01006, Spain
| | - Akhilesh K. Gaharwar
- Department
of Biomedical Engineering, College of Engineering, Texas A&M University, College
Station, Texas TX 77843, United States
| | - Miguel Castilho
- Department
of Biomedical Engineering, Eindhoven University
of Technology, Eindhoven 5612 AE, The Netherlands
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, Eindhoven 5612 AE, The Netherlands
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Nasim Golafshan
- Department
of Orthopedics, University Medical Center
Utrecht, Utrecht University, Utrecht 3508 GA, The Netherlands
| | - Alireza Dolatshahi-Pirouz
- DTU
Health Tech, Center for Intestinal Absorption and Transport of Biopharmaceuticals, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
5
|
van Oirschot BAJA, Geven EJW, Mikos AG, van den Beucken JJJP, Jansen JA. A Mini-Pig Mandibular Defect Model for Evaluation of Craniomaxillofacial Bone Regeneration. Tissue Eng Part C Methods 2022; 28:193-201. [PMID: 35262400 PMCID: PMC9271328 DOI: 10.1089/ten.tec.2022.0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Craniomaxillofacial bone defects represent a clinical challenge in the fields of maxillofacial surgery and (implant) dentistry. Regeneration of these bone defects requires the application of bone graft materials that facilitate new bone formation in a safe, reliable, and predictive manner. In addition to autologous bone graft, several types of (synthetic) bone substitute materials have become clinically available, and still major efforts are focused on improving such bone substitute materials by optimizing their properties. Given the regulatory necessity to evaluate the performance of new bone substitute materials for craniomaxillofacial bone regeneration in a large animal model with similarity to human bone before clinical application, we here describe a mini-pig mandibular bone defect model that allows for the creation of multiple (critical-size) bone defects within the mandibular body of a single animal. As examples of bone substitute materials, we utilize both the clinically used BioOss granules and an experimental calcium phosphate cement for filling the created defects. Regarding the latter, its advantages are the injectable application within the defect site, in which the material rapidly sets, and the tailorable degradation properties via the inclusion of hydrolytically degrading polymeric particles. For both bone substitute materials, we show the suitability of the bone defect model to assess bone regeneration via histology and micro-computed tomography. Impact statement Given the regulatory necessity to evaluate the performance of new bone substitute materials for craniomaxillofacial bone regeneration in a large animal model with similarity to the human bone before clinical application, we here describe a mini-pig mandibular bone defect model that allows for the creation of multiple (critical-size) bone defects within the mandibular body of a single animal that can be used for the evaluation of the bone regenerative capacity of new bone grafting materials as well as tissue-engineered products for alveolar bone regeneration.
Collapse
Affiliation(s)
| | | | - Antonios G Mikos
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | | - John A Jansen
- Department of Dentistry, Biomaterials, Radboudumc, Nijmegen, The Netherlands
| |
Collapse
|
6
|
Diallo AM, Rota S, Boissière M, Bardonnet R, Pauthe E, Petite H, Benoist HM, Bensidhoum M, Anagnostou F. Osteoformation potential of an allogenic partially demineralized bone matrix in critical-size defects in the rat calvarium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112207. [PMID: 34225859 DOI: 10.1016/j.msec.2021.112207] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 05/06/2021] [Accepted: 05/19/2021] [Indexed: 11/27/2022]
Abstract
Allogenic demineralized bone matrix has been developed as a reliable alternative to the autologous bone graft. In the present study, we assessed the osteoformation potential of a partially demineralized bone matrix (PDBM) in a paste form obtained without an added carrier. This formulation included the preparation of cancelous bone from femoral heads after decellularision, delipidation, demineralization in HCl and autoclaving at 121 °C. Structural and biochemical characteristics of PDBM were determined using FTIR (Fourier transform infrared spectroscopy), hydroxyproline, DNA content assays, and optical ellipsometry. The osteoformation potential was evaluated in 8-, 6-, and 4-mm-diameter rat-calvarial bone defects by in vivo micro-CT analysis, performed immediately after surgery on days 0, 15, 30, 45, and 60. Moreover, histological and histomorphometric analyses were done on day 60. PDBM was compared to cancelous bone powder (BP) before its partial demineralization. The expression levels of selected inflammation-, angiogenesis-, and bone-related genes were also investigated by RT-PCR, 3, 7, and 14 days after surgery. Compared to the control group, the PDBM group exhibited a significant increase (p < 0.05) in radiopacity in 8-mm- and 6-mm-diameter defects at all time points tested. On day 60, the amount of newly-formed bone was greater (16 and 1.6 folds; p < 0.001; respectively) compared to that in control defects. No bone formation was observed in defects filled with BP regardeless of the size. In 8-mm-diameter defect, PDBM was effective enough to induce the upregulation of genes pertinent to inflammation (i.e., TNFα, IL-6, and IL-8), angiogenesis (i.e., VEGF, VWF), and osteogenesis (ALP, RUNX2, BGLAP, SP7) by day 3 after surgery. This study showed that the tested PDBM deeply influences the early critical events involved in bone regeneration and exhibits efficient osteoformation capacity, making it an attractive graft option for treating defects in periodontal and maxillofacial areas.
Collapse
Affiliation(s)
- Ahmad Moustapha Diallo
- CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France; Service of Periodontology, Institute of Odontology and Stomatology (IOS), University Cheikh Anta Diop (UCAD), BP 5005 Dakar-Fann, Sénégal; Faculty of Medecine, Pharmacy and Odonto-Stomatology, University Cheikh Anta Diop (UCAD), BP 5005 Dakar-Fann, Sénégal
| | - Solène Rota
- ERRMECe, Research Team on Extracellular Matrix-Cellular Relationships (EA1391), Biomaterials for Health Research Group, Institute of Materials I-MAT (FD4122), CY Tech, CY University Cergy Paris, International House of Research (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France; Biobank, 3 rue Georges Charpak, 77127 Lieusaint, France
| | - Michel Boissière
- ERRMECe, Research Team on Extracellular Matrix-Cellular Relationships (EA1391), Biomaterials for Health Research Group, Institute of Materials I-MAT (FD4122), CY Tech, CY University Cergy Paris, International House of Research (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France
| | | | - Emmanuel Pauthe
- ERRMECe, Research Team on Extracellular Matrix-Cellular Relationships (EA1391), Biomaterials for Health Research Group, Institute of Materials I-MAT (FD4122), CY Tech, CY University Cergy Paris, International House of Research (MIR), rue Descartes, 95001 Neuville sur Oise cedex, France
| | - Hervé Petite
- CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France
| | - Henri M Benoist
- Service of Periodontology, Institute of Odontology and Stomatology (IOS), University Cheikh Anta Diop (UCAD), BP 5005 Dakar-Fann, Sénégal; Faculty of Medecine, Pharmacy and Odonto-Stomatology, University Cheikh Anta Diop (UCAD), BP 5005 Dakar-Fann, Sénégal
| | - Morad Bensidhoum
- CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France
| | - Fani Anagnostou
- CNRS, UMR 7052 - INSERM U1271, Laboratory of Osteoarticular Biology, Bioengineering and Bioimaging, Universiy of Paris, 10 Avenue de Verdun, 75010 Paris, France; Service of Odontology, Hôpital Pitié-Salpêtrière APHP, U.F.R. of Odontology University of Paris, 47-83 Boulevard de l'Hôpital, 75013 Paris, France.
| |
Collapse
|
7
|
Zhang T, Wei Q, Zhou H, Jing Z, Liu X, Zheng Y, Cai H, Wei F, Jiang L, Yu M, Cheng Y, Fan D, Zhou W, Lin X, Leng H, Li J, Li X, Wang C, Tian Y, Liu Z. Three-dimensional-printed individualized porous implants: A new "implant-bone" interface fusion concept for large bone defect treatment. Bioact Mater 2021; 6:3659-3670. [PMID: 33898870 PMCID: PMC8056181 DOI: 10.1016/j.bioactmat.2021.03.030] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/23/2022] Open
Abstract
Bone defect repairs are based on bone graft fusion or replacement. Current large bone defect treatments are inadequate and lack of reliable technology. Therefore, we aimed to investigate a simple technique using three-dimensional (3D)-printed individualized porous implants without any bone grafts, osteoinductive agents, or surface biofunctionalization to treat large bone defects, and systematically study its long-term therapeutic effects and osseointegration characteristics. Twenty-six patients with large bone defects caused by tumor, infection, or trauma received treatment with individualized porous implants; among them, three typical cases underwent a detailed study. Additionally, a large segmental femur defect sheep model was used to study the osseointegration characteristics. Immediate and long-term biomechanical stability was achieved, and the animal study revealed that the bone grew into the pores with gradual remodeling, resulting in a long-term mechanically stable implant-bone complex. Advantages of 3D-printed microporous implants for the repair of bone defects included 1) that the stabilization devices were immediately designed and constructed to achieve early postoperative mobility, and 2) that osseointegration between the host bone and implants was achieved without bone grafting. Our osseointegration method, in which the “implant-bone” interface fusion concept was used instead of “bone-bone” fusion, subverts the traditional idea of osseointegration. A new “implant-bone” interface fusion concept for large bone defect treatment was realized using 3D-printed porous implants. Osseointegration was achieved without bone grafting. An animal study revealed that the bone grew into the pores with gradual remodeling. Immediate and long-term biomechanical stability was achieved by this method.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Qingguang Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Hua Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Zehao Jing
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Xiaoguang Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Hong Cai
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Feng Wei
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Liang Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Miao Yu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Yan Cheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing, 100871, People's Republic of China
| | - Daoyang Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Wenhao Zhou
- Shanxi Key Laboratory of Biomedical Metal Materials, Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, People's Republic of China
| | - Xinhong Lin
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Jian Li
- Beijing AKEC Medical Company Ltd., Beijing, 102200, People's Republic of China
| | - Xinyu Li
- Beijing AKEC Medical Company Ltd., Beijing, 102200, People's Republic of China
| | - Caimei Wang
- Beijing AKEC Medical Company Ltd., Beijing, 102200, People's Republic of China
| | - Yun Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| | - Zhongjun Liu
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, People's Republic of China
| |
Collapse
|
8
|
Li D, Yang Z, Zhao X, Luo Y, Ou Y, Kang P, Tian M. A bone regeneration strategy via dual delivery of demineralized bone matrix powder and hypoxia-pretreated bone marrow stromal cells using an injectable self-healing hydrogel. J Mater Chem B 2021; 9:479-493. [PMID: 33289774 DOI: 10.1039/d0tb01924k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Demineralized bone matrix (DBM) powder is a potential alternative bone grafting material due to its bone regeneration capacity when the supply of autogenous bone is insufficient. However, the use of DBM powder alone remains challenging in many aspects in the clinic, such as its unstable osteoinductivity due to inactivation of growth factors during the preparation process, lack of bone regeneration cells, and difficulty in handling. Herein, we report a strategy that adopts a dual delivery of DBM powder and hypoxia-pretreated bone marrow stromal cells (BMSCs) using an injectable self-healing hydrogel to enhance bone regeneration and repair a cranial bone defect in a rabbit model. The injectable self-healing hydrogel was prepared based on a double crosslinking architecture, which comprised a dynamically cross-linked Schiff-base network as a self-healing component and a borax ion cross-linked physical network that strengthened its mechanical properties. The handling of the DBM powder was improved by mixing with the hydrogel, and, more importantly, the expression of osteocalcin (OCN) and vascular endothelial growth factor (VEGF) of the encapsulated BMSCs in the hydrogel was significantly up-regulated after hypoxia-pretreatment. The in vivo study demonstrated that the use of the hydrogel alone cannot heal the cranial bone defect, while the hydrogel/BMSC composite could increase the bone formation but was inferior to the hydrogel/DBM composite. Finally, the hydrogel/DBM/BMSC composite exhibited the best bone defect repairing effects among all groups. Overall, our results demonstrate that this dual delivery approach is a promising strategy to enhance bone regeneration for bone defect repair.
Collapse
Affiliation(s)
- Donghai Li
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Zhouyuan Yang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Xin Zhao
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Yue Luo
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Yi Ou
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| | - Pengde Kang
- Department of Orthopaedics Surgery, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu 610041, P. R. China.
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China.
| |
Collapse
|
9
|
Biological Evaluation of Polyvinyl Alcohol Hydrogels Enriched by Hyaluronic Acid and Hydroxyapatite. Int J Mol Sci 2020; 21:ijms21165719. [PMID: 32784986 PMCID: PMC7461130 DOI: 10.3390/ijms21165719] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022] Open
Abstract
This study aimed to develop polyvinyl alcohol (PVA) -based scaffold enriched with hyaluronic acid (HA) and hydroxyapatite (HAp) using physical crosslinking by freezing-thawing method. We accomplished biological evaluation of scaffolds, swelling degree, bioactivity assessment, and hemolytic test. The results showed that all types of scaffolds should be safe for use in the human body. The culturing of human osteoblast-like cells MG-63 and their proliferation showed better adhesion of cells due to the presence of HA and confirmed better proliferation depending on the amount of HAp. This paper gives the optimal composition of the scaffold and the optimal amount of the particular components of the scaffold. Based on our results we concluded that the best PVA/HA/HAp combination is in the ratio 3:1:2.
Collapse
|
10
|
Wang J, Li B, Pu X, Wang X, Cooper RC, Gui Q, Yang H. Injectable Multicomponent Biomimetic Gel Composed of Inter-Crosslinked Dendrimeric and Mesoporous Silica Nanoparticles Exhibits Highly Tunable Elasticity and Dual Drug Release Capacity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:10202-10210. [PMID: 32023033 PMCID: PMC10983814 DOI: 10.1021/acsami.0c01395] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
There is a growing need for cartilage defect grafts that are structurally adaptable to possess multifaceted functions to promote bone regeneration, sustain medication efficacy, and preferably remain injectable but solidify quickly upon injection. In this work, we developed an injectable multicomponent biomimetic gel (MBG) by integrating polyamidoamine dendrimer G3 (G3), mesoporous silica nanoparticles (MSNs), and dendrimer-templated silver nanoparticles (G3-Ag) into a well-defined cross-linked network. MBGs composed of one particulate component (G3 alone), i.e., MBG-1, two particulate components (G3 and MSN-NH2), i.e., MBG-2, and three particulate components (G3, MSN-NH2, and G3-Ag), i.e., MBG-3, were prepared by inter-cross-linking dendrimeric and mesoporous silica nanoparticles with poly(ethylene glycol) diglycidyl ether (PEG-DGE, Mn = 2000 g/mol) via the facile amine-epoxy click reaction. The water-soluble antibiotic isoniazid was loaded to the cross-linked PEG network, whereas the hydrophobic antibiotic rifampicin was encapsulated into mesoporous MSNs. Our studies revealed that elasticity and mechanical strengths could be modulated and enhanced significantly with the inclusion of MSNs and silver nanoparticles. Isoniazid was released rapidly while rifampicin was released over an extended period of time. In addition, MBGs showed injectability, high swelling capacity, structural stability, and cytocompatibility. Taken together, MBGs have shown structural features that allow for the development of injectable gel grafts with the ability to promote cartilage defect repair and offer antibiotic medication benefits.
Collapse
Affiliation(s)
- Juan Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Boxuan Li
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Ximing Pu
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Xingming Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China
| | - Remy C Cooper
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Qin Gui
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
| | - Hu Yang
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia 23219, United States
- Department of Pharmaceutics, Virginia Commonwealth University, Richmond, Virginia 23298, United States
- Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia 23298, United States
| |
Collapse
|
11
|
Chen Y, Ye SH, Sato H, Zhu Y, Shanov V, Tiasha T, D'Amore A, Luketich S, Wan G, Wagner WR. Hybrid scaffolds of Mg alloy mesh reinforced polymer/extracellular matrix composite for critical-sized calvarial defect reconstruction. J Tissue Eng Regen Med 2018; 12:1374-1388. [DOI: 10.1002/term.2668] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Yingqi Chen
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA USA
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Materials Science and Engineering; Southwest Jiaotong University; Chengdu China
| | - Sang-Ho Ye
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Hideyoshi Sato
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Yang Zhu
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Vesselin Shanov
- College of Engineering and Applied Science; University of Cincinnati; Cincinnati OH USA
| | - Tarannum Tiasha
- College of Engineering and Applied Science; University of Cincinnati; Cincinnati OH USA
| | - Antonio D'Amore
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Samuel Luketich
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA USA
| | - Guojiang Wan
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, College of Materials Science and Engineering; Southwest Jiaotong University; Chengdu China
| | - William R. Wagner
- McGowan Institute for Regenerative Medicine; University of Pittsburgh; Pittsburgh PA USA
- Department of Surgery; University of Pittsburgh; Pittsburgh PA USA
- Department of Chemical Engineering; University of Pittsburgh; Pittsburgh PA USA
- Department of Bioengineering; University of Pittsburgh; Pittsburgh PA USA
| |
Collapse
|
12
|
Huber E, Pobloth AM, Bormann N, Kolarczik N, Schmidt-Bleek K, Schell H, Schwabe P, Duda GN, Wildemann B. * Demineralized Bone Matrix as a Carrier for Bone Morphogenetic Protein-2: Burst Release Combined with Long-Term Binding and Osteoinductive Activity Evaluated In Vitro and In Vivo. Tissue Eng Part A 2017; 23:1321-1330. [PMID: 28351338 DOI: 10.1089/ten.tea.2017.0005] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
To allow bone defect regeneration, autologous bone grafting still represents the gold standard. However, autograft harvesting has limitations, including an additional surgery, donor site morbidity, and limited availability. Demineralized bone matrix (DBM) would represent an alternative, yet lacks sufficient osteoinductive properties. Combining DBM with a potent agent, such as bone morphogenetic protein-2 (BMP-2) might be a feasible alternative approach, optimizing an established grafting material with strong osteoinductive properties. A unique mixing device has been developed that enables perioperative handling to reach a homogeneous and standardized paste for bone defect filling. DBM proved in vitro to be a suitable carrier for BMP-2, with a documented release over 56 days at concentrations sufficient to stimulate osteogenic differentiation. At the end of the elution experiment, 56 days, bioactive BMP was still captured within the DBM. Using a sheep drill hole defect model, DBM perioperatively mixed with BMP-2 showed strong osteoinductive properties comparable to those of autologous bone and outnumbering the one of DBM alone or empty defects. Bone defect healing was enabled at diaphyseal and metaphyseal defects and thus BMP-2-doped DBM represented an easy perioperative enriching method and an efficient carrier for BMP-2. With the comparability to the clinical gold standard autologous bone, DBM mixed with BMP-2 might serve as possible alternative grafting material enabling a controlled osteogenic stimulation.
Collapse
Affiliation(s)
- Elisabeth Huber
- 1 Julius Wolff Institut, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Anne-Marie Pobloth
- 1 Julius Wolff Institut, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Nicole Bormann
- 1 Julius Wolff Institut, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Nicolai Kolarczik
- 1 Julius Wolff Institut, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Katharina Schmidt-Bleek
- 1 Julius Wolff Institut, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Hanna Schell
- 1 Julius Wolff Institut, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Philipp Schwabe
- 3 Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Georg N Duda
- 1 Julius Wolff Institut, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| | - Britt Wildemann
- 1 Julius Wolff Institut, Charité-Universitätsmedizin Berlin , Berlin, Germany .,2 Berlin-Brandenburg Center for Regenerative Therapies, Charité-Universitätsmedizin Berlin , Berlin, Germany
| |
Collapse
|