1
|
Ye Q, Taleb SJ, Zhao J, Zhao Y. Emerging role of BMPs/BMPR2 signaling pathway in treatment for pulmonary fibrosis. Biomed Pharmacother 2024; 178:117178. [PMID: 39142248 PMCID: PMC11364484 DOI: 10.1016/j.biopha.2024.117178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
Pulmonary fibrosis is a fatal and chronic lung disease that is characterized by accumulation of thickened scar in the lungs and impairment of gas exchange. The cases with unknown etiology are referred as idiopathic pulmonary fibrosis (IPF). There are currently no effective therapeutics to cure the disease; thus, the investigation of the pathogenesis of IPF is of great importance. Recent studies on bone morphogenic proteins (BMPs) and their receptors have indicated that reduction of BMP signaling in lungs may play a significant role in the development of lung fibrosis. BMPs are members of TGF-β superfamily, and they have been shown to play an anti-fibrotic role in combating TGF-β-mediated pathways. The impact of BMP receptors, in particular BMPR2, on pulmonary fibrosis is growing attraction to researchers. Previous studies on BMPR2 have often focused on pulmonary arterial hypertension (PAH). Given the strong clinical association between PAH and lung fibrosis, understanding BMPs/BMPR2-mediated signaling pathway is important for development of therapeutic strategies to treat IPF. In this review, we comprehensively review recent studies regarding the biological functions of BMPs and their receptors in lungs, especially focusing on their roles in the pathogenesis of pulmonary fibrosis and fibrosis resolution.
Collapse
Affiliation(s)
- Qinmao Ye
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Sarah J Taleb
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States
| | - Jing Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States
| | - Yutong Zhao
- Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research Institute, United States; Department of internal Medicine, the Ohio State University, Columbus, OH, United States.
| |
Collapse
|
2
|
Lv M, Xu Y, Chen P, Li J, Qin Z, Huang B, Liu Y, Tao X, Xiang J, Wang Y, Feng Y, Zheng W, Zhang Z, Li L, Liao H. TSLP enhances progestin response in endometrial cancer via androgen receptor signal pathway. Br J Cancer 2024; 130:585-596. [PMID: 38172534 PMCID: PMC10876595 DOI: 10.1038/s41416-023-02545-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The enriched proteins within in vitro fertilisation (IVF)-generated human embryonic microenvironment could reverse progestin resistance in endometrial cancer (EC). METHODS The expression of thymic stromal lymphopoietin (TSLP) in EC was evaluated by immunoblot and IHC analysis. Transcriptome sequencing screened out the downstream pathway regulated by TSLP. The role of TSLP, androgen receptor (AR) and KANK1 in regulating the sensitivity of EC to progestin was verified through a series of in vitro and in vivo experiments. RESULTS TSLP facilitates the formation of a BMP4/BMP7 heterodimer, resulting in activation of Smad5, augmenting AR signalling. AR in turn sensitises EC cells to progestin via KANK1. Downregulation of TSLP, loss of AR and KANK1 in EC patients are associated with tumour malignant progress. Moreover, exogenous TSLP could rescue the anti-tumour effect of progestin on mouse in vivo xenograft tumour. CONCLUSIONS Our findings suggest that TSLP enhances the sensitivity of EC to progestin through the BMP4/Smad5/AR/KANK1 axis, and provide a link between embryo development and cancer progress, paving the way for the establishment of novel strategy overcoming progestin resistance using embryo original factors.
Collapse
Affiliation(s)
- Mu Lv
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yuan Xu
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Peiqin Chen
- Department of Obstetrics and Gynecology, The International Peace Maternity & Child Health Hospital of China Welfare Institute, Shanghai Jiao Tong University School of Medicine, 200030, Shanghai, China
| | - Jingjie Li
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Zuoshu Qin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Baozhu Huang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Xiang Tao
- Department of Pathology, Obstetrics and Gynecology Hospital of Fudan University, 200090, Shanghai, China
| | - Jun Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Yanqiu Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China
| | - Youji Feng
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 200080, Shanghai, China
| | - Wenxin Zheng
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Zhenbo Zhang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Tongji Hospital, School of Medicine, Tongji University, 200065, Shanghai, China.
| | - Linxia Li
- Department of Obstetrics and Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, 358 Datong Road, 200137, Shanghai, China.
| | - Hong Liao
- Department of Clinical Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, 200040, Shanghai, China.
| |
Collapse
|
3
|
Park J, Jung N, Lee DJ, Oh S, Kim S, Cho SW, Kim JE, Moon HS, Park YB. Enhanced Bone Formation by Rapidly Formed Bony Wall over the Bone Defect Using Dual Growth Factors. Tissue Eng Regen Med 2023; 20:767-778. [PMID: 37079199 PMCID: PMC10352230 DOI: 10.1007/s13770-023-00534-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND In guided bone regeneration (GBR), there are various problems that occur in the bone defect after the wound healing period. This study aimed to investigate the enhancement of the osteogenic ability of the dual scaffold complex and identify the appropriate concentration of growth factors (GF) for new bone formation based on the novel GBR concept that is applying rapid bone forming GFs to the membrane outside of the bone defect. METHODS Four bone defects with a diameter of 8 mm were formed in the calvaria of New Zealand white rabbits each to perform GBR. Collagen membrane and biphasic calcium phosphate (BCP) were applied to the bone defects with the four different concetration of BMP-2 or FGF-2. After 2, 4, and 8 weeks of healing, histological, histomorphometric, and immunohistochemical analyses were conducted. RESULTS In the histological analysis, continuous forms of new bones were observed in the upper part of bone defect in the experimental groups, whereas no continuous forms were observed in the control group. In the histomorphometry, The group to which BMP-2 0.5 mg/ml and FGF-2 1.0 mg/ml was applied showed statistically significantly higher new bone formation. Also, the new bone formation according to the healing period was statistically significantly higher at 8 weeks than at 2, 4 weeks. CONCLUSION The novel GBR method in which BMP-2, newly proposed in this study, is applied to the membrane is effective for bone regeneration. In addition, the dual scaffold complex is quantitatively and qualitatively advantageous for bone regeneration and bone maintenance over time.
Collapse
Affiliation(s)
- Jaehan Park
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea
| | - Narae Jung
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea
- Department of Clinical Dentistry, BK21 FOUR Project, Oral Science Research Center, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Dong-Joon Lee
- Division in Anatomy and Developmental Biology, Department of Oral Biology, Taste Research Center, Oral Science Research Center, BK21 FOUR Project, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Seunghan Oh
- Department of Dental Biomaterials and Institute of Biomaterials and Implant, College of Dentistry, Wonkwang University, Iksan, 54538, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, Dental Research Institute, Seoul National University School of Dentistry, 101 Daehak-Ro, Jongno-Gu, Seoul, 03080, Republic of Korea
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Jong-Eun Kim
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea
| | - Hong Seok Moon
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea
| | - Young-Bum Park
- Department of Prosthodontics, Yonsei University College of Dentistry, 50-1 Yonsei-Ro, Seodaemun-Gu, Dental Hospital Room 717, Seoul, 03722, Republic of Korea.
| |
Collapse
|
4
|
Yu L, Cavelier S, Hannon B, Wei M. Recent development in multizonal scaffolds for osteochondral regeneration. Bioact Mater 2023; 25:122-159. [PMID: 36817819 PMCID: PMC9931622 DOI: 10.1016/j.bioactmat.2023.01.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/30/2022] [Accepted: 01/14/2023] [Indexed: 02/05/2023] Open
Abstract
Osteochondral (OC) repair is an extremely challenging topic due to the complex biphasic structure and poor intrinsic regenerative capability of natural osteochondral tissue. In contrast to the current surgical approaches which yield only short-term relief of symptoms, tissue engineering strategy has been shown more promising outcomes in treating OC defects since its emergence in the 1990s. In particular, the use of multizonal scaffolds (MZSs) that mimic the gradient transitions, from cartilage surface to the subchondral bone with either continuous or discontinuous compositions, structures, and properties of natural OC tissue, has been gaining momentum in recent years. Scrutinizing the latest developments in the field, this review offers a comprehensive summary of recent advances, current hurdles, and future perspectives of OC repair, particularly the use of MZSs including bilayered, trilayered, multilayered, and gradient scaffolds, by bringing together onerous demands of architecture designs, material selections, manufacturing techniques as well as the choices of growth factors and cells, each of which possesses its unique challenges and opportunities.
Collapse
Affiliation(s)
- Le Yu
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Sacha Cavelier
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, OH, 45701, USA
| | - Brett Hannon
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
| | - Mei Wei
- Biomedical Engineering Program, Ohio University, Athens, OH, 45701, USA
- Department of Mechanical Engineering, Ohio University, Athens, OH, 45701, USA
| |
Collapse
|
5
|
Ivanisova D, Bohac M, Culenova M, Smolinska V, Danisovic L. Mesenchymal-Stromal-Cell-Conditioned Media and Their Implication for Osteochondral Regeneration. Int J Mol Sci 2023; 24:ijms24109054. [PMID: 37240400 DOI: 10.3390/ijms24109054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Despite significant advances in biomedical research, osteochondral defects resulting from injury, an autoimmune condition, cancer, or other pathological conditions still represent a significant medical problem. Even though there are several conservative and surgical treatment approaches, in many cases, they do not bring the expected results and further permanent damage to the cartilage and bones occurs. Recently, cell-based therapies and tissue engineering have gradually become promising alternatives. They combine the use of different types of cells and biomaterials to induce regeneration processes or replace damaged osteochondral tissue. One of the main challenges of this approach before clinical translation is the large-scale in vitro expansion of cells without changing their biological properties, while the use of conditioned media which contains various bioactive molecules appears to be very important. The presented manuscript provides a review of the experiments focused on osteochondral regeneration by using conditioned media. In particular, the effect on angiogenesis, tissue healing, paracrine signaling, and enhancing the properties of advanced materials are pointed out.
Collapse
Affiliation(s)
- Dana Ivanisova
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martin Bohac
- Regenmed Ltd., Medena 29, 811 01 Bratislava, Slovakia
- Centre for Tissue Engineering and Regenerative Medicine-Translational Research Unit in the Branch of Regenerative Medicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Martina Culenova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
| | - Veronika Smolinska
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- Centre for Tissue Engineering and Regenerative Medicine-Translational Research Unit in the Branch of Regenerative Medicine, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovakia
- National Institute of Rheumatic Diseases, Nábrežie I. Krasku 4, 921 12 Piešťany, Slovakia
| |
Collapse
|
6
|
Jung N, Park J, Park SH, Oh S, Kim S, Cho SW, Kim JE, Moon HS, Park YB. Improving Bone Formation by Guided Bone Regeneration Using a Collagen Membrane with rhBMP-2: A Novel Concept. J Funct Biomater 2023; 14:jfb14030170. [PMID: 36976094 PMCID: PMC10056333 DOI: 10.3390/jfb14030170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023] Open
Abstract
We examined whether recombinant human bone morphogenetic protein-2 (rhBMP-2) when applied to collagen membranes, would reinforce them during guided bone regeneration. Four critical cranial bone defects were created and treated in 30 New Zealand white rabbits, including a control group, critical defect only; group 1, collagen membrane only; group 2, biphasic calcium phosphate (BCP) only; group 3, collagen membrane + BCP; group 4, collagen membrane with rhBMP-2 (1.0 mg/mL); group 5, collagen membrane with rhBMP-2 (0.5 mg/mL); group 6, collagen membrane with rhBMP-2 (1.0 mg/mL) + BCP; and group 7, collagen membrane with rhBMP-2 (0.5 mg/mL) + BCP. After a 2-, 4-, or 8-week healing period, the animals were sacrificed. The combination of collagen membranes with rhBMP-2 and BCP yielded significantly higher bone formation rates compared to the other groups (control group and groups 1-5 < groups 6 and 7; p < 0.05). A 2-week healing period yielded significantly lower bone formation than that at 4 and 8 weeks (2 < 4 = 8 weeks; p < 0.05). This study proposes a novel GBR concept in which rhBMP-2 is applied to collagen membranes outside instead of inside the grafted area, thereby inducing quantitatively and qualitatively enhanced bone regeneration in critical bone defects.
Collapse
Affiliation(s)
- Narae Jung
- Department of Clinical Dentistry, Oral Science Research Center, BK21 FOUR Project, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jaehan Park
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Sang-Hyun Park
- Osong Research Institute, TaeWoong Medical Co., Ltd., 55-7 Osongsaengmyeong 2-ro, Heungdeok-gu, Cheongju 28161, Republic of Korea
| | - Seunghan Oh
- Department of Dental Biomaterials and Institute of Biomaterials & Implant, College of Dentistry, Wonkwang University, 460 Iksandae-ro, Iksan 54538, Republic of Korea
| | - Sungtae Kim
- Department of Periodontology, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Sung-Won Cho
- Division of Anatomy and Developmental Biology, Department of Oral Biology, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jong-Eun Kim
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Hong Seok Moon
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Young-Bum Park
- Department of Prosthodontics, College of Dentistry, Yonsei University, 50-1 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| |
Collapse
|
7
|
Husteden C, Brito Barrera YA, Tegtmeyer S, Borges J, Giselbrecht J, Menzel M, Langner A, Mano JF, Schmelzer CEH, Wölk C, Groth T. Lipoplex-Functionalized Thin-Film Surface Coating Based on Extracellular Matrix Components as Local Gene Delivery System to Control Osteogenic Stem Cell Differentiation. Adv Healthc Mater 2023; 12:e2201978. [PMID: 36377486 PMCID: PMC11469139 DOI: 10.1002/adhm.202201978] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Indexed: 11/16/2022]
Abstract
A gene-activated surface coating is presented as a strategy to design smart biomaterials for bone tissue engineering. The thin-film coating is based on polyelectrolyte multilayers composed of collagen I and chondroitin sulfate, two main biopolymers of the bone extracellular matrix, which are fabricated by layer-by-layer assembly. For further functionalization, DNA/lipid-nanoparticles (lipoplexes) are incorporated into the multilayers. The polyelectrolyte multilayer fabrication and lipoplex deposition are analyzed by surface sensitive analytical methods that demonstrate successful thin-film formation, fibrillar structuring of collagen, and homogenous embedding of lipoplexes. Culture of mesenchymal stem cells on the lipoplex functionalized multilayer results in excellent attachment and growth of them, and also, their ability to take up cargo like fluorescence-labelled DNA from lipoplexes. The functionalization of the multilayer with lipoplexes encapsulating DNA encoding for transient expression of bone morphogenetic protein 2 induces osteogenic differentiation of mesenchymal stem cells, which is shown by mRNA quantification for osteogenic genes and histochemical staining. In summary, the novel gene-functionalized and extracellular matrix mimicking multilayer composed of collagen I, chondroitin sulfate, and lipoplexes, represents a smart surface functionalization that holds great promise for tissue engineering constructs and implant coatings to promote regeneration of bone and other tissues.
Collapse
Affiliation(s)
- Catharina Husteden
- Institute of PharmacyDepartment of Medicinal ChemistryMartin Luther University Halle‐WittenbergWolfgang‐Langenbeck‐Str. 406120Halle (Saale)Germany
| | - Yazmin A. Brito Barrera
- Institute of PharmacyDepartment of Biomedical MaterialsMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Str. 406120Halle (Saale)Germany
| | - Sophia Tegtmeyer
- Institute of PharmacyDepartment of Medicinal ChemistryMartin Luther University Halle‐WittenbergWolfgang‐Langenbeck‐Str. 406120Halle (Saale)Germany
| | - João Borges
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Julia Giselbrecht
- Institute of PharmacyDepartment of Medicinal ChemistryMartin Luther University Halle‐WittenbergWolfgang‐Langenbeck‐Str. 406120Halle (Saale)Germany
| | - Matthias Menzel
- Department of Biological and Macromolecular MaterialsFraunhofer Institute for Microstructure of Materials and Systems (IMWS)Walter‐Hülse‐Str. 106120Halle (Saale)Germany
| | - Andreas Langner
- Institute of PharmacyDepartment of Medicinal ChemistryMartin Luther University Halle‐WittenbergWolfgang‐Langenbeck‐Str. 406120Halle (Saale)Germany
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of AveiroCampus Universitário de SantiagoAveiro3810‐193Portugal
| | - Christian E. H. Schmelzer
- Department of Biological and Macromolecular MaterialsFraunhofer Institute for Microstructure of Materials and Systems (IMWS)Walter‐Hülse‐Str. 106120Halle (Saale)Germany
| | - Christian Wölk
- Institute of PharmacyPharmaceutical TechnologyFaculty of MedicineLeipzig University04317LeipzigGermany
| | - Thomas Groth
- Institute of PharmacyDepartment of Biomedical MaterialsMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Str. 406120Halle (Saale)Germany
- Interdisciplinary Center of Materials ScienceMartin Luther University Halle‐WittenbergHeinrich‐Damerow‐Str. 406120Halle (Saale)Germany
| |
Collapse
|
8
|
Watson E, Mikos AG. Advances in In Vitro and In Vivo Bioreactor-Based Bone Generation for Craniofacial Tissue Engineering. BME FRONTIERS 2023; 4:0004. [PMID: 37849672 PMCID: PMC10521661 DOI: 10.34133/bmef.0004] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/17/2022] [Indexed: 10/19/2023] Open
Abstract
Craniofacial reconstruction requires robust bone of specified geometry for the repair to be both functional and aesthetic. While native bone from elsewhere in the body can be harvested, shaped, and implanted within a defect, using either an in vitro or in vivo bioreactors eliminates donor site morbidity while increasing the customizability of the generated tissue. In vitro bioreactors utilize cells harvested from the patient, a scaffold, and a device to increase mass transfer of nutrients, oxygen, and waste, allowing for generation of larger viable tissues. In vivo bioreactors utilize the patient's own body as a source of cells and of nutrient transfer and involve the implantation of a scaffold with or without growth factors adjacent to vasculature, followed by the eventual transfer of vascularized, mineralized tissue to the defect site. Several different models of in vitro bioreactors exist, and several different implantation sites have been successfully utilized for in vivo tissue generation and defect repair in humans. In this review, we discuss the specifics of each bioreactor strategy, as well as the advantages and disadvantages of each and the future directions for the engineering of bony tissues for craniofacial defect repair.
Collapse
Affiliation(s)
- Emma Watson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| |
Collapse
|
9
|
Roumani S, Jeanneau C, Giraud T, Cotten A, Laucournet M, Sohier J, Pithioux M, About I. Osteogenic Potential of a Polyethylene Glycol Hydrogel Functionalized with Poly-Lysine Dendrigrafts (DGL) for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020862. [PMID: 36676600 PMCID: PMC9863473 DOI: 10.3390/ma16020862] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
Resorbable hydrogels are widely used as scaffolds for tissue engineering. These hydrogels can be modified by grafting dendrimer-linked functionalized molecules (dendrigrafts). Our aim was to develop a tunable poly(L-lysine) dendrigrafts (DGL)/PEG-based hydrogel with an inverse porosity and to investigate its osteogenic potential. DGL/PEG hydrogels were emulsified in a surfactant-containing oil solution to form microspheres. The toxicity was evaluated on Human Vascular Endothelial Cells (HUVECs) and Bone Marrow Mesenchymal Stem Cells (hMSCs) with Live/Dead and MTT assays. The effects on HUVECs were investigated through C5 Complement expression by RT-PCR and C5a/TGF-β1 secretion by ELISA. Recruitment of hMSCs was investigated using Boyden chambers and their osteogenic differentiation was studied by measuring Alkaline Phosphatase activity (ALP) and BMP-2 secretion by ELISA. Adjusting the stirring speed during the emulsification allowed to obtain spherical microspheres with tunable diameters (10-1600 µm). The cell viability rate with the hydrogel was 95 and 100% with HUVECs and hMSCs, respectively. Incubating HUVECs with the biomaterial induced a 5-fold increase in TGF-β1 and a 3-fold increase in Complement C5a release. Furthermore, HUVEC supernatants obtained after incubation with the hydrogel induced a 2.5-fold increase in hMSC recruitment. The hydrogel induced a 3-fold increase both in hMSC ALP activity and BMP-2 secretion. Overall, the functionalized hydrogel enhanced the osteogenic potential by interacting with endothelial cells and hMSCs and represents a promising tool for bone tissue engineering.
Collapse
Affiliation(s)
- Sandra Roumani
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| | | | - Thomas Giraud
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
- APHM, Hôpital Timone, Pôle Odontologie, 13005 Marseille, France
| | - Aurélie Cotten
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| | - Marc Laucournet
- Laboratory for Tissue Biology and Therapeutic Engineering (LBTI), UMR 5305, CNRS, Lyon University, 69367 Lyon, France
| | - Jérôme Sohier
- Laboratory for Tissue Biology and Therapeutic Engineering (LBTI), UMR 5305, CNRS, Lyon University, 69367 Lyon, France
| | - Martine Pithioux
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
- Aix-Marseille University, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | - Imad About
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| |
Collapse
|
10
|
Florea DA, Grumezescu V, Bîrcă AC, Vasile BȘ, Iosif A, Chircov C, Stan MS, Grumezescu AM, Andronescu E, Chifiriuc MC. Bioactive Hydroxyapatite-Magnesium Phosphate Coatings Deposited by MAPLE for Preventing Infection and Promoting Orthopedic Implants Osteointegration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7337. [PMID: 36295401 PMCID: PMC9609740 DOI: 10.3390/ma15207337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/12/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
In this study, we used the matrix-assisted pulsed laser evaporation (MAPLE) technique to obtain hydroxyapatite (Ca10(PO4)6(OH)2) and magnesium phosphate (Mg3(PO4)2) thin coatings containing bone morphogenetic protein (BMP4) for promoting implants osteointegration and further nebulized with the antibiotic ceftriaxone (CXF) to prevent peri-implant infections. The samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), infrared microscopy (IRM) and Fourier-transform infrared spectroscopy (FT-IR). Furthermore, the antimicrobial properties were evaluated on Staphylococcus aureus biofilms and the cytocompatibility on the MC3T3-E1 cell line. The obtained results proved the potential of the obtained coatings for bone implant applications, providing a significant antimicrobial and antibiofilm effect, especially in the first 48 h, and cytocompatibility in relation to murine osteoblast cells.
Collapse
Affiliation(s)
- Denisa Alexandra Florea
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Valentina Grumezescu
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Alexandra Cătălina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Andrei Iosif
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Cristina Chircov
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Miruna S. Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Politehnica University of Bucharest, 011061 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania
- The Romanian Academy, Calea Victoriei 25, District 1, 010071 Bucharest, Romania
| |
Collapse
|
11
|
BMP2 as a promising anticancer approach: functions and molecular mechanisms. Invest New Drugs 2022; 40:1322-1332. [PMID: 36040572 DOI: 10.1007/s10637-022-01298-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/22/2022] [Indexed: 10/14/2022]
Abstract
Bone morphogenetic protein 2 (BMP2), a pluripotent factor, is a member of the transforming growth factor-beta (TGF-β) superfamily and is implicated in embryonic development and postnatal homeostasis in tissues and organs. Experimental research in the contexts of physiology and pathology has indicated that BMP2 can induce macrophages to differentiate into osteoclasts and accelerate the osteolytic mechanism, aggravating cancer cell bone metastasis. Emerging studies have stressed the potent regulatory effect of BMP2 in cancer cell differentiation, proliferation, survival, and apoptosis. Complicated signaling networks involving multiple regulatory proteins imply the significant biological functions of BMP2 in cancer. In this review, we comprehensively summarized and discussed the current evidence related to the modulation of BMP2 in tumorigenesis and development, including evidence related to the roles and molecular mechanisms of BMP2 in regulating cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cancer angiogenesis and the tumor microenvironment (TME). All these findings suggest that BMP2 may be an effective therapeutic target for cancer and a new marker for assessing treatment efficacy.
Collapse
|
12
|
Comparison of rhBMP-2 in Combination with Different Biomaterials for Regeneration in Rat Calvaria Critical-Size Defects. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6281641. [PMID: 35509708 PMCID: PMC9061001 DOI: 10.1155/2022/6281641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
Abstract
Regeneration of critical bone defects requires the use of biomaterials. The incorporation of osteoinductive agents, such as bone morphogenetic proteins (BMPs), improves bone formation. This study aimed to compare the efficacy of rhBMP-2 in combination with different materials for bone regeneration in critical-sized rat calvarial defects. This was an experimental animal study using 30 rats. In each rat, two 5-mm critical-size defects were made in the calvaria (60 bone defects in total) using a trephine. All rats were randomized to one of the six groups: control (C), autograft + rhBMP-2 (A), absorbable collagen sponge + rhBMP-2 (ACS), β-tricalcium phosphate + rhBMP-2 (B-TCP), bovine xenograft + rhBMP-2 (B), and hydroxyapatite + rhBMP-2 (HA). The outcome was assessed after 4 and 8 weeks using histological description and the histological bone healing scale. Statistical analysis was performed using the Kruskal-Wallis and Mann–Whitney U tests, with a p-value set at 0.05. The average bone healing scores per group were as follows: C group, 12.5; A group, 26.5; ACS group, 18.8; B-TCP group, 26.2; HA group, 20.9; and B group, 20.9. The C group showed a significant difference between weeks 4 and 8 (p = 0.032). Among the 4-week groups, the C group showed a significant difference compared to A (p = 0.001), ACS (p = 0.017), and B-TCP (p = 0.005) groups. The 8-week experimental group did not show any significant differences between the groups. The 5-mm critical size defect in rat calvaria requires the use of bone biomaterials to heal at 4 and 8 weeks. rhBMP-2, as applied in this study, showed no difference in new bone formation when combined with bovine, B-TCP, or HA biomaterials.
Collapse
|
13
|
Structural Mapping of BMP Conformational Epitopes and Bioengineering Design of Osteogenic Peptides to Specifically Target the Epitope-Binding Sites. Cell Mol Bioeng 2022; 15:341-352. [PMID: 36119132 PMCID: PMC9474794 DOI: 10.1007/s12195-022-00725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 04/11/2022] [Indexed: 11/03/2022] Open
Abstract
Introduction Human bone morphogenetic proteins (BMPs) constitute a large family of cytokines related to members of the transforming growth factor-β superfamily, which fulfill biological functions by specificity binding to their cognate type I (BRI) and type II (BRII) receptors through conformational wrist and linear knuckle epitopes, respectively. Methods and Results We systematically examined the intermolecular recognition and interaction between the BMP proteins and BRI receptor at structural, energetic and dynamic levels. The BRI-binding site consists of three hotspot regions on BMP surface, which totally contribute ~70% potency to the BMP-BRI binding events and represent the core sections of BMP conformational wrist epitope; the contribution increases in the order: hotspot 2 (~ 8%) < hotspot 3 (~ 20%) < hotspot 1 (~ 40%). Multiple sequence alignment and structural superposition revealed a consensus sequence pattern and a similar binding mode of the three hotspots shared by most BMP members, indicating a high conservation of wrist epitope in BMP family. The three hotspots are natively folded into wellstructured U-shaped,, loop and double-stranded conformations in BMP proteins, which, however, would become largely disordered when splitting from the protein context to derive osteogenic peptides in free state, thus largely impairing their rebinding capability to BRI receptor. In this respect, cyclization strategy was employed to constrain hotspot 1/3-derived peptides into a native-like conformation, which was conducted by adding a disulfide bond across the ending arms of linear peptides based on their native conformations. Fluorescence-based assays substantiated that the cyclization can effectively improve the binding affinities of osteogenic peptides to BRI receptor by 3-6-fold. The cyclic peptides also exhibit a good selectivity for BRI over BRII (> 5-fold), confirming that they can specifically target the wrist epitope-binding site of BRI receptor. Conclusion The rationally designed cyclic peptides can be regarded as the promising lead entities that should be further chemically modified to enhance their in vivo biological stability for further bioengineering therapeutic osteogenic peptides against chondrocyte senescence and bone disorder.
Collapse
|
14
|
Takanche JS, Kim JE, Jang S, Yi HK. Insulin growth factor binding protein-3 enhances dental implant osseointegration against methylglyoxal-induced bone deterioration in a rat model. J Periodontal Implant Sci 2022; 52:155-169. [PMID: 35505576 PMCID: PMC9064780 DOI: 10.5051/jpis.2101200060] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 07/08/2021] [Accepted: 07/09/2021] [Indexed: 11/08/2022] Open
Abstract
PURPOSE The aim of this study was to determine the effect of insulin growth factor binding protein-3 (IGFBP-3) on the inhibition of glucose oxidative stress and promotion of bone formation near the implant site in a rat model of methylglyoxal (MGO)-induced bone loss. METHODS An in vitro study was performed in MC3T3 E1 cells treated with chitosan gold nanoparticles (Ch-GNPs) conjugated with IGFBP-3 cDNA followed by MGO. An in vivo study was conducted in a rat model induced by MGO administration after the insertion of a dental implant coated with IGFBP-3. RESULTS MGO treatment downregulated molecules involved in osteogenic differentiation and bone formation in MC3T3 E1 cells and influenced the bone mineral density and bone volume of the femur and alveolar bone. In contrast, IGFBP-3 inhibited oxidative stress and inflammation and enhanced osteogenesis in MGO-treated MC3T3 E1 cells. In addition, IGFBP-3 promoted bone formation by reducing inflammatory proteins in MGO-administered rats. The application of Ch-GNPs conjugated with IGFBP-3 as a coating of titanium implants enhanced osteogenesis and the osseointegration of dental implants. CONCLUSIONS This study demonstrated that IGFBP-3 could be applied as a therapeutic component in dental implants to promote the osseointegration of dental implants in patients with diabetes, which affects MGO levels.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea.,Department of Biochemistry, School of Medical Sciences, Kathmandu University, Nepal
| | - Ji-Eun Kim
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Sungil Jang
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Ho-Keun Yi
- Department of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea.
| |
Collapse
|
15
|
Proposal for a New Bioactive Kinetic Screw in an Implant, Using a Numerical Model. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A new biomechanism, Bioactive Kinetic Screw (BKS) for screws and bone implants created by the first author, is presented using a bone dental implant screw, in which the bone particles, blood, cells, and protein molecules removed during bone drilling are used as a homogeneous autogenous transplant in the same implant site, aiming to obtain primary and secondary bone stability, simplifying the surgical procedure, and improving the healing process. The new BKS is based on complex geometry. In this work, we describe the growth factor (GF) delivery properties and the in situ optimization of the use of the GF in the fixation of bone screws through a dental implant. To describe the drilling process, an explicit dynamic numerical model was created, where the results show a significant impact of the drilling process on the bone material. The simulation demonstrates that the space occupied by the screw causes stress and deformation in the bone during the perforation and removal of the particulate bone, resulting in the accumulation of material removed within the implant screw, filling the limit hole of the drill grooves present on the new BKS.
Collapse
|
16
|
Freitas GP, Lopes HB, Souza ATP, Gomes MPO, Quiles GK, Gordon J, Tye C, Stein JL, Stein GS, Lian JB, Beloti MM, Rosa AL. Mesenchymal stem cells overexpressing BMP-9 by CRISPR-Cas9 present high in vitro osteogenic potential and enhance in vivo bone formation. Gene Ther 2021; 28:748-759. [PMID: 33686254 PMCID: PMC8423866 DOI: 10.1038/s41434-021-00248-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/16/2021] [Accepted: 02/19/2021] [Indexed: 12/20/2022]
Abstract
Cell therapy is a valuable strategy for the replacement of bone grafts and repair bone defects, and mesenchymal stem cells (MSCs) are the most frequently used cells. This study was designed to genetically edit MSCs to overexpress bone morphogenetic protein 9 (BMP-9) using Clustered Regularly Interspaced Short Palindromic Repeats/associated nuclease Cas9 (CRISPR-Cas9) technique to generate iMSCs-VPRBMP-9+, followed by in vitro evaluation of osteogenic potential and in vivo enhancement of bone formation in rat calvaria defects. Overexpression of BMP-9 was confirmed by its gene expression and protein expression, as well as its targets Hey-1, Bmpr1a, and Bmpr1b, Dlx-5, and Runx2 and protein expression of SMAD1/5/8 and pSMAD1/5/8. iMSCs-VPRBMP-9+ displayed significant changes in the expression of a panel of genes involved in TGF-β/BMP signaling pathway. As expected, overexpression of BMP-9 increased the osteogenic potential of MSCs indicated by increased gene expression of osteoblastic markers Runx2, Sp7, Alp, and Oc, higher ALP activity, and matrix mineralization. Rat calvarial bone defects treated with injection of iMSCs-VPRBMP-9+ exhibited increased bone formation and bone mineral density when compared with iMSCs-VPR- and phosphate buffered saline (PBS)-injected defects. This is the first study to confirm that CRISPR-edited MSCs overexpressing BMP-9 effectively enhance bone formation, providing novel options for exploring the capability of genetically edited cells to repair bone defects.
Collapse
Affiliation(s)
- Gileade P Freitas
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Helena B Lopes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Alann T P Souza
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria Paula O Gomes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Georgia K Quiles
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Jonathan Gordon
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Coralee Tye
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont School of Medicine, Burlington, VT, USA
| | - Marcio M Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Adalberto L Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
17
|
Wei W, Dai H. Articular cartilage and osteochondral tissue engineering techniques: Recent advances and challenges. Bioact Mater 2021; 6:4830-4855. [PMID: 34136726 PMCID: PMC8175243 DOI: 10.1016/j.bioactmat.2021.05.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/20/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
In spite of the considerable achievements in the field of regenerative medicine in the past several decades, osteochondral defect regeneration remains a challenging issue among diseases in the musculoskeletal system because of the spatial complexity of osteochondral units in composition, structure and functions. In order to repair the hierarchical tissue involving different layers of articular cartilage, cartilage-bone interface and subchondral bone, traditional clinical treatments including palliative and reparative methods have showed certain improvement in pain relief and defect filling. It is the development of tissue engineering that has provided more promising results in regenerating neo-tissues with comparable compositional, structural and functional characteristics to the native osteochondral tissues. Here in this review, some basic knowledge of the osteochondral units including the anatomical structure and composition, the defect classification and clinical treatments will be first introduced. Then we will highlight the recent progress in osteochondral tissue engineering from perspectives of scaffold design, cell encapsulation and signaling factor incorporation including bioreactor application. Clinical products for osteochondral defect repair will be analyzed and summarized later. Moreover, we will discuss the current obstacles and future directions to regenerate the damaged osteochondral tissues.
Collapse
Affiliation(s)
- Wenying Wei
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan, 430070, China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, China
| |
Collapse
|
18
|
Itskovich Y, Meikle MC, Cannon RD, Farella M, Coates DE, Milne TJ. Differential behaviour and gene expression in 3D cultures of femoral- and calvarial-derived human osteoblasts under a cyclic compressive mechanical load. Eur J Oral Sci 2021; 129:e12818. [PMID: 34289176 DOI: 10.1111/eos.12818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022]
Abstract
The aim of the study was to compare the response of calvarial and femoral osteoblasts cultured in a 3D hydrogel environment to cyclic compressive mechanical loading. Human foetal femoral and calvarial osteoblasts were encapsulated in a semi-synthetic thiol-modified hyaluronan gelatin polyethylene glycol diacrylate (PEGDA) cross-linked HyStemC hydrogel. Constructs were subjected to a cyclic compressive strain of 33.4 kPa force every second for 5 s every hour for 6 h per day using FlexCell BioPress culture plates and compared to non-compressed constructs. Cell viability, mineralisation, and morphological changes were observed over 21 days. BMP2, ALP, COL1A1, COL2A1, and OCN gene expression levels were quantified. Encapsulated osteoblast numbers increased and formed hydroxyapatite over a 21-day period. Cell viability decreased under a cyclical strain when compared to cells under no strain. Femoral osteoblasts under strain expressed increased levels of BMP2 (53.9-fold) and COL1A1 (5.1-fold) mRNA compared to no strain constructs. Surprisingly, no BMP2 mRNA was detected in calvarial osteoblasts. Osteoblasts derived from endochondral (femoral) and intra-membranous (calvarial) processes behaved differently in 3D-constructs. We therefore recommend that site-specific osteoblasts be used for future bone engineering and bone replacement materials and further research undertaken to elucidate how site-specific osteoblasts respond to cyclic compressive loads.
Collapse
Affiliation(s)
- Yana Itskovich
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Murray C Meikle
- King's College Dental Institute, University of London, London, UK
| | - Richard D Cannon
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Mauro Farella
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - Trudy J Milne
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
19
|
Sturm L, Schwemberger B, Menzel U, Häckel S, Albers CE, Plank C, Rip J, Alini M, Traweger A, Grad S, Basoli V. In Vitro Evaluation of a Nanoparticle-Based mRNA Delivery System for Cells in the Joint. Biomedicines 2021; 9:biomedicines9070794. [PMID: 34356857 PMCID: PMC8301349 DOI: 10.3390/biomedicines9070794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Biodegradable and bioresponsive polymer-based nanoparticles (NPs) can be used for oligonucleotide delivery, making them a promising candidate for mRNA-based therapeutics. In this study, we evaluated and optimized the efficiency of a cationic, hyperbranched poly(amidoamine)s-based nanoparticle system to deliver tdTomato mRNA to primary human bone marrow stromal cells (hBMSC), human synovial derived stem cells (hSDSC), bovine chondrocytes (bCH), and rat tendon derived stem/progenitor cells (rTDSPC). Transfection efficiencies varied among the cell types tested (bCH 28.4% ± 22.87, rTDSPC 18.13% ± 12.07, hBMSC 18.23% ± 14.80, hSDSC 26.63% ± 8.81) and while an increase of NPs with a constant amount of mRNA generally improved the transfection efficiency, an increase of the mRNA loading ratio (2:50, 4:50, or 6:50 w/w mRNA:NPs) had no impact. However, metabolic activity of bCHs and rTDSPCs was significantly reduced when using higher amounts of NPs, indicating a dose-dependent cytotoxic response. Finally, we demonstrate the feasibility of transfecting extracellular matrix-rich 3D cell culture constructs using the nanoparticle system, making it a promising transfection strategy for musculoskeletal tissues that exhibit a complex, dense extracellular matrix.
Collapse
Affiliation(s)
- Lisa Sturm
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (L.S.); (B.S.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Bettina Schwemberger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (L.S.); (B.S.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Ursula Menzel
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (U.M.); (M.A.); (V.B.)
| | - Sonja Häckel
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (S.H.); (C.E.A.)
| | - Christoph E. Albers
- Department of Orthopaedic Surgery and Traumatology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (S.H.); (C.E.A.)
| | | | - Jaap Rip
- 20Med Therapeutics B.V., Galileiweg 8, 2333BD Leiden, The Netherlands;
| | - Mauro Alini
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (U.M.); (M.A.); (V.B.)
| | - Andreas Traweger
- Institute of Tendon and Bone Regeneration, Spinal Cord Injury & Tissue Regeneration Center Salzburg, Paracelsus Medical University, 5020 Salzburg, Austria; (L.S.); (B.S.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: (A.T.); or (S.G.)
| | - Sibylle Grad
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (U.M.); (M.A.); (V.B.)
- Department of Health Sciences and Technology, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence: (A.T.); or (S.G.)
| | - Valentina Basoli
- AO Research Institute Davos, 7270 Davos Platz, Switzerland; (U.M.); (M.A.); (V.B.)
| |
Collapse
|
20
|
Dissaux C, Ruffenach L, Bruant-Rodier C, George D, Bodin F, Rémond Y. Cleft Alveolar Bone Graft Materials: Literature Review. Cleft Palate Craniofac J 2021; 59:336-346. [PMID: 33823625 DOI: 10.1177/10556656211007692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
INTRODUCTION Since the early stages of alveolar bone grafting development, multiple types of materials have been used. Iliac cancellous bone graft (ICBG) remains the gold standard. DESIGN/METHODS A review of literature is conducted in order to describe the different bone filling possibilities, autologous or not, and to assess their effectiveness compared to ICBG. This review focused on studies reporting volumetric assessment of the alveolar cleft graft result (by computed tomography scan or cone beam computed tomography). RESULTS Grafting materials fall into 3 types: autologous bone grafts, ICBG supplementary material, and bone substitutes. Among autologous materials, no study showed the superiority of any other bone origin over iliac cancellous bone. Yet ICBG gives inconsistent results and presents donor site morbidity. Concerning supplementary material, only 3 studies could show a benefit of adding platelet-rich fibrin (1 study) or platelet-rich plasma (2 studies) to ICBG, which remains controversial in most studies. There is a lack of 3-dimensional (3D) assessment in most articles concerning the use of scaffolds. Only one study showed graft improvement when adding acellular dermal matrix to ICBG. Looking at bone substitutes highlights failures among bioceramics alone, side-effects with bone morphogenetic protein-2 composite materials, and difficulties in cell therapy setup. Studies assessing cell therapy-based substitutes show comparable efficacy with ICBG but remain too few. CONCLUSION This review highlights the lack of 3D assessments in the alveolar bone graft materials field. Nothing dethroned ICBG from its position as the gold standard treatment at this time.
Collapse
Affiliation(s)
- Caroline Dissaux
- Maxillofacial and Plastic Surgery Department, Cleft Competence Center, 36604Strasbourg University Hospital, Strasbourg, France.,Laboratoire ICUBE, Département Mécanique UMR 7357 CNRS, 36604Université de Strasbourg, Strasbourg, France
| | - Laetitia Ruffenach
- Maxillofacial and Plastic Surgery Department, Cleft Competence Center, 36604Strasbourg University Hospital, Strasbourg, France
| | - Catherine Bruant-Rodier
- Maxillofacial and Plastic Surgery Department, Cleft Competence Center, 36604Strasbourg University Hospital, Strasbourg, France
| | - Daniel George
- Laboratoire ICUBE, Département Mécanique UMR 7357 CNRS, 36604Université de Strasbourg, Strasbourg, France
| | - Frédéric Bodin
- Maxillofacial and Plastic Surgery Department, Cleft Competence Center, 36604Strasbourg University Hospital, Strasbourg, France
| | - Yves Rémond
- Laboratoire ICUBE, Département Mécanique UMR 7357 CNRS, 36604Université de Strasbourg, Strasbourg, France
| |
Collapse
|
21
|
Lin Y, Yang Y, Zhao Y, Gao F, Guo X, Yang M, Hong Q, Yang Z, Dai J, Pan C. Incorporation of heparin/BMP2 complex on GOCS-modified magnesium alloy to synergistically improve corrosion resistance, anticoagulation, and osteogenesis. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:24. [PMID: 33675428 PMCID: PMC7936966 DOI: 10.1007/s10856-021-06497-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The in vivo fast degradation and poor biocompatibility are two major challenges of the magnesium alloys in the field of artificial bone materials. In this study, graphene oxide (GO) was first functionalized by chitosan (GOCS) and then immobilized on the magnesium alloy surface, finally the complex of heparin and bone morphogenetic protein 2 was incorporated on the modified surface to synergistically improve the corrosion resistance, anticoagulation, and osteogenesis. Apart from an excellent hydrophilicity after the surface modification, a sustained heparin and BMP2 release over 14 days was achieved. The corrosion resistance of the modified magnesium alloy was significantly better than that of the control according to the results of electrochemical tests. Moreover, the corrosion rate was also significantly reduced in contrast to the control. The modified magnesium alloy not only had excellent anticoagulation, but also can significantly promote osteoblast adhesion and proliferation, upregulate the expression of alkaline phosphatase and osteocalcin, and enhance mineralization. Therefore, the method of the present study can be used to simultaneously improve the corrosion resistance and biocompatibility of the magnesium alloys targeted for the orthopedic applications.
Collapse
Affiliation(s)
- Yuebin Lin
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Ya Yang
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223003, China
| | - Yongjuan Zhao
- The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223003, China
| | - Fan Gao
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Xin Guo
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Minhui Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Qingxiang Hong
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Zhongmei Yang
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Juan Dai
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China
| | - Changjiang Pan
- Faculty of Mechanical and Material Engineering, Huaiyin Institute of Technology, Huai'an, 223003, China.
| |
Collapse
|
22
|
Takanche JS, Kim JE, Kim JS, Yi HK. Guided bone regeneration with a gelatin layer and adenoviral delivery of c-myb enhances bone healing in rat tibia. Regen Med 2020; 15:1877-1890. [PMID: 32893751 DOI: 10.2217/rme-2019-0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: Bone healing becomes problematic during certain states, such as trauma. This study verifies whether the application of c-myb with gelatin promotes bone healing during bone injuries. Materials & methods: A biodegradable membrane was modified with adenoviral vector c-myb (Ad/c-myb) and gelatin and applied in the bone injury site of rat tibia. Results: c-myb enhanced osteogenic differentiation and mineralization in bone marrow stromal cells after induction with osteogenic media. In vivo examination of rat tibia after application of the biodegradable membrane with Ad/c-myb and a gelatin layer demonstrated increased bone volume, bone mineral density, new bone formation and osteogenic molecules, compared with Ad/LacZ. Conclusion: c-myb has the potential to assist bone healing and may be applicable to the treatment of bone during injury.
Collapse
Affiliation(s)
- Jyoti Shrestha Takanche
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Ji-Eun Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Jeong-Seok Kim
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| | - Ho-Keun Yi
- Departments of Oral Biochemistry, Institute of Oral Bioscience, School of Dentistry, Jeonbuk National University, Jeonju, Korea
| |
Collapse
|
23
|
Jann J, Drevelle O, Lauzon MA, Faucheux N. Adhesion, intracellular signalling and osteogenic differentiation of mesenchymal progenitor cells and preosteoblasts on poly(epsilon)caprolactone films functionalized by peptides derived from fibronectin and/or BMP-9. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 114:111088. [DOI: 10.1016/j.msec.2020.111088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/14/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
|
24
|
Wang Z, Lee S, Li Z, Liu S, Xu Q, Zhang J, Meng D. Anterior cervical discectomy and fusion with recombinant human bone morphogenetic protein-2-adsorbed β-tricalcium phosphate granules: a preliminary report. J Orthop Surg Res 2020; 15:262. [PMID: 32665018 PMCID: PMC7359267 DOI: 10.1186/s13018-020-01760-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 06/18/2020] [Indexed: 11/16/2022] Open
Abstract
Background Anterior cervical discectomy and fusion (ACDF) is an alternative to conservative therapy in the treatment of cervical spondylopathy. This study evaluated the clinical outcome of ACDF with BMP-2-adsorbed β-tricalcium phosphate granules. Methods Thirty-two patients with cervical spondylopathy received treatment of ACDF with BMP-2-adsorbed β-tricalcium phosphate granules. The clinical outcomes were evaluated with the Japanese Orthopedic Association (JOA) scores and Neck Disability Index (NDI). Meanwhile, the cervical curvature and intervertebral heights were obtained through lateral cervical X-ray films pre- and postoperatively at each interval, and the precision of cervical fusion was assessed by three-dimensional computed tomography scan. Results The follow-up averaged 15.2 months (range 13–18). Average JOA scores significantly increased from a preoperative point (7.4 ± 1.2) to each interval after surgery (P < 0.05). NDI decreased from preoperative point (43.1 ± 9.0) to each interval after surgery (P < 0.05). The angles of cervical curvature and intervertebral heights were improved postoperatively and kept throughout the follow-up period. CT scan demonstrated a fusion rate of 82.9% at 6 months postoperatively and was improved to 100% at 12 months postoperatively. In all cases, no complications appeared and reported due to any lapse in surgical procedure skills throughout the follow-up period. Conclusions Our preliminary findings suggest that BMP-2-adsorbed β-tricalcium phosphate granules will be an effective alternative to autogenous bone grafting for cervical fusion in treating cervical spondylopathy. Our surgical procedure usingβ-tricalcium phosphate granules could improve neurological function, recover intervertebral height and cervical curvature, and could be potentially exploitable in the clinical setting.
Collapse
Affiliation(s)
- Ze Wang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Soomin Lee
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zheng Li
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shuhao Liu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qintong Xu
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jian Zhang
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Dehua Meng
- Department of Orthopaedic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
25
|
Sun P, Shi A, Shen C, Liu Y, Wu G, Feng J. Human salivary histatin-1 (Hst1) promotes bone morphogenetic protein 2 (BMP2)-induced osteogenesis and angiogenesis. FEBS Open Bio 2020; 10:1503-1515. [PMID: 32484586 PMCID: PMC7396425 DOI: 10.1002/2211-5463.12906] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/25/2020] [Accepted: 05/28/2020] [Indexed: 12/26/2022] Open
Abstract
Large‐volume bone defects can result from congenital malformation, trauma, infection, inflammation and cancer. At present, it remains challenging to treat these bone defects with clinically available interventions. Allografts, xenografts and most synthetic materials have no intrinsic osteoinductivity, and so an alternative approach is to functionalize the biomaterial with osteoinductive agents, such as bone morphogenetic protein 2 (BMP2). Because it has been previously demonstrated that human salivary histatin‐1 (Hst1) promotes endothelial cell adhesion, migration and angiogenesis, we examine here whether Hst1 can promote BMP2‐induced bone regeneration. Rats were given subcutaneous implants of absorbable collagen sponge membranes seeded with 0, 50, 200 or 500 μg Hst1 per sample and 0 or 2 μg BMP2 per sample. At 18 days postsurgery, rats were sacrificed, and implanted regional tissue was removed for micro computed tomography (microCT) analyses of new bone (bone volume, trabecular number and trabecular separation). Four samples per group were decalcified and subjected to immunohistochemical staining to analyze osteogenic and angiogenic markers. We observed that Hst1 increased BMP2‐induced new bone formation in a dose‐dependent manner. Co‐administration of 500 μg Hst1 and BMP2 resulted in the highest observed bone volume and trabecular number, the lowest trabecular separation and the highest expression of osteogenic markers and angiogenic markers. Our results suggest that coadministration of Hst1 may enhance BMP2‐induced osteogenesis and angiogenesis, and thus may have potential for development into a treatment for large‐volume bone defects.
Collapse
Affiliation(s)
- Ping Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Oral Biomedical Research of Zhejiang Province, Zhejiang University School of Stomatology, Hangzhou, China
| | - Andi Shi
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.,Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Chenxi Shen
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam (VU), Amsterdam Movement Sciences (AMS), Amsterdam, the Netherlands
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
| | - Gang Wu
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Center for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VU), Amsterdam Movement Science (AMS), Amsterdam, the Netherlands.,Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, the Netherlands
| | - Jianying Feng
- School of Dentistry, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Saito Y, Tsutsui T, Takayama A, Moroi A, Yoshizawa K, Ueki K. Effect of low-intensity pulsed ultrasound on injured temporomandibular joints with or without articular disc removal in a rabbit model. J Dent Sci 2020; 16:287-295. [PMID: 33384811 PMCID: PMC7770256 DOI: 10.1016/j.jds.2020.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Indexed: 11/30/2022] Open
Abstract
Background/purpose Dynamic stimulation can induce bone and cartilage growth. The purpose of this study was to examine the effect of low-intensity pulsed ultrasound (LIPUS) on injured temporomandibular joints (TMJs) in a rabbit model. Materials and methods Twenty-four female Japanese white rabbits (age: 12–16 weeks, weight: 2.0–2.5 kg) were equally divided into 4 groups. In two groups, discectomy was performed with (the LD group) and without (the D group) subsequent LIPUS treatment. In the other groups, a sham operation was performed with (the LC group) and without (the C group) subsequent LIPUS treatment. Two animals in each group were sacrificed at each time point (2, 4, and 8 weeks postoperatively). Mandibular measurements were made using three-dimensional computed tomography. We performed histological and immunohistochemical examination of the articular disc, and the cartilage layer and bone at the 30- and 60-degree sites in each condyle. Results There were no statistically significant differences among the groups in terms of thickness of the disc or the fibrous articular zone, or the number of BMP-2 positive cells. In terms of mandibular length, there were differences among the groups after 4 (P = 0.0498) and 8 weeks (P = 0.0260). Specifically, there was a difference between the LC group and the C group after 4 weeks (P = 0.014) and 8 weeks (P = 0.029). Conclusions This study suggests that LIPUS has little effect on cartilage after TMJ injury. It may promote bone growth in a normal TMJ, although discectomy seems to reduce this effect.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Takamitsu Tsutsui
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Akihiro Takayama
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Akinori Moroi
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Kunio Yoshizawa
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| | - Koichiro Ueki
- Department of Oral and Maxillofacial Surgery, Division of Clinical Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
27
|
Basyuni S, Ferro A, Santhanam V, Birch M, McCaskie A. Systematic scoping review of mandibular bone tissue engineering. Br J Oral Maxillofac Surg 2020; 58:632-642. [PMID: 32247521 DOI: 10.1016/j.bjoms.2020.03.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 03/14/2020] [Indexed: 12/12/2022]
Abstract
Tissue engineering is a promising alternative that may facilitate bony regeneration in small defects in compromised host tissue as well as large mandibular defects. This scoping systematic review was therefore designed to assess in vivo research on its use in the reconstruction of mandibular defects in animal models. A total of 4524 articles were initially retrieved using the search algorithm. After screening of the titles and abstracts, 269 full texts were retrieved, and a total of 72 studies included. Just two of the included studies employed osteonecrosis as the model of mandibular injury. All the rest involved the creation of a critical defect. Calcium phosphates, especially tricalcium phosphate and hydroxyapatite, were the scaffolds most widely used. All the studies that used a scaffold reported increased formation of bone when compared with negative controls. When combined with scaffolds, mesenchymal stem cells (MSC) increased the formation of new bone and improved healing. Various growth factors have been studied for their potential use in the regeneration of the maxillofacial complex. Bone morphogenic proteins (BMP) were the most popular, and all subtypes promoted significant formation of bone compared with controls. Whilst the studies published to date suggest a promising future, our review has shown that several shortfalls must be addressed before the findings can be translated into clinical practice. A greater understanding of the underlying cellular and molecular mechanisms is required to identify the optimal combination of components that are needed for predictable and feasible reconstruction or regeneration of mandibular bone. In particular, a greater understanding of the biological aspects of the regenerative triad is needed before we can to work towards widespread translation into clinical practice.
Collapse
Affiliation(s)
- S Basyuni
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom; Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - A Ferro
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - V Santhanam
- Department of Oral and Maxillo-Facial Surgery, Cambridge University Hospitals, Cambridge, United Kingdom.
| | - M Birch
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| | - A McCaskie
- Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
28
|
Peng Z, Zhao T, Zhou Y, Li S, Li J, Leblanc RM. Bone Tissue Engineering via Carbon-Based Nanomaterials. Adv Healthc Mater 2020; 9:e1901495. [PMID: 31976623 DOI: 10.1002/adhm.201901495] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/21/2019] [Indexed: 01/14/2023]
Abstract
Bone tissue engineering (BTE) has received significant attention due to its enormous potential in treating critical-sized bone defects and related diseases. Traditional materials such as metals, ceramics, and polymers have been widely applied as BTE scaffolds; however, their clinical applications have been rather limited due to various considerations. Recently, carbon-based nanomaterials attract significant interests for their applications as BTE scaffolds due to their superior properties, including excellent mechanical strength, large surface area, tunable surface functionalities, high biocompatibility as well as abundant and inexpensive nature. In this article, recent studies and advancements on the use of carbon-based nanomaterials with different dimensions such as graphene and its derivatives, carbon nanotubes, and carbon dots, for BTE are reviewed. Current challenges of carbon-based nanomaterials for BTE and future trends in BTE scaffolds development are also highlighted and discussed.
Collapse
Affiliation(s)
- Zhili Peng
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Tianshu Zhao
- School of Materials Science and Engineering, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan University, Kunming, 650091, P. R. China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| | - Shanghao Li
- MP Biomedicals, 9 Goddard, Irvine, CA, 92618, USA
| | - Jiaojiao Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, FL, 33146, USA
| |
Collapse
|
29
|
Kuterbekov M, Jonas AM, Glinel K, Picart C. Osteogenic Differentiation of Adipose-Derived Stromal Cells: From Bench to Clinics. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:461-474. [PMID: 32098603 DOI: 10.1089/ten.teb.2019.0225] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In addition to mesenchymal stem cells, adipose-derived stem/stromal cells (ASCs) are an attractive source for a large variety of cell-based therapies. One of their most important potential applications is related to the regeneration of bone tissue thanks to their capacity to differentiate in bone cells. However, this requires a proper control of their osteogenic differentiation, which depends not only on the initial characteristics of harvested cells but also on the conditions used for their culture. In this review, we first briefly describe the preclinical and clinical trials using ASCs for bone regeneration and present the quantitative parameters used to characterize the osteogenic differentiation of ASCs. We then focus on the soluble factors influencing the osteogenic differentiation of ACS, including the steroid hormones and various growth factors, notably the most osteoinductive ones, the bone morphogenetic proteins (BMPs). Impact statement Adipose-derived stromal/stem cells are reviewed for their use in bone regeneration.
Collapse
Affiliation(s)
- Mirasbek Kuterbekov
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium.,Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France
| | - Alain M Jonas
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Karine Glinel
- Institute of Condensed Matter & Nanosciences (Bio & Soft Matter), Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Picart
- Grenoble Institute of Technology, University Grenoble Alpes, LMGP, Grenoble, France.,Biomimetism and Regenerative Medicine Lab, CEA, Institute of Interdisciplinary Research of Grenoble (IRIG), Université Grenoble-Alpes/CEA/CNRS, Grenoble, France
| |
Collapse
|
30
|
Yan Y, Wang L, Ge L, Pathak JL. Osteocyte-Mediated Translation of Mechanical Stimuli to Cellular Signaling and Its Role in Bone and Non-bone-Related Clinical Complications. Curr Osteoporos Rep 2020; 18:67-80. [PMID: 31953640 DOI: 10.1007/s11914-020-00564-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Osteocytes comprise > 95% of the cellular component in bone tissue and produce a wide range of cytokines and cellular signaling molecules in response to mechanical stimuli. In this review, we aimed to summarize the molecular mechanisms involved in the osteocyte-mediated translation of mechanical stimuli to cellular signaling, and discuss their role in skeletal (bone) diseases and extra-skeletal (non-bone) clinical complications. RECENT FINDINGS Two decades before, osteocytes were assumed as a dormant cells buried in bone matrix. In recent years, emerging evidences have shown that osteocytes are pivotal not only for bone homeostasis but also for vital organ functions such as muscle, kidney, and heart. Osteocyte mechanotransduction regulates osteoblast and osteoclast function and maintains bone homeostasis. Mechanical stimuli modulate the release of osteocyte-derived cytokines, signaling molecules, and extracellular cellular vesicles that regulate not only the surrounding bone cell function and bone homeostasis but also the distant organ function in a paracrine and endocrine fashion. Mechanical loading and unloading modulate the osteocytic release of NO, PGE2, and ATPs that regulates multiple cellular signaling such as Wnt/β-catenin, RANKL/OPG, BMPs, PTH, IGF1, VEGF, sclerostin, and others. Therefore, the in-depth study of the molecular mechanism of osteocyte mechanotransduction could unravel therapeutic targets for various bone and non-bone-related clinical complications such as osteoporosis, sarcopenia, and cancer metastasis to bone.
Collapse
Affiliation(s)
- Yongyong Yan
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Liping Wang
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China
| | - Linhu Ge
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| | - Janak L Pathak
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, 510140, China.
| |
Collapse
|
31
|
Wang S, Bi W, Liu Y, Cheng J, Sun W, Wu G, Xu X. The Antagonist of Retinoic Acid Receptor α, ER-50891 Antagonizes the Inhibitive Effect of All-Trans Retinoic Acid and Rescues Bone Morphogenetic Protein 2-Induced Osteoblastogenic Differentiation. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:297-308. [PMID: 32158187 PMCID: PMC6985983 DOI: 10.2147/dddt.s215786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/04/2019] [Indexed: 12/18/2022]
Abstract
Background Hypervitaminosis A, alcoholism or medical treatment for acute promyelocytic leukaemia may cause unphysiologically high accumulation of all-trans retinoic acid (ATRA), which could inhibit osteoblastogenesis, thereby triggering osteoporosis. We have shown that bone morphogenetic protein-2 (BMP-2) can only partially antagonize the inhibitive effects of ATRA. In this study, we hypothesized that antagonists of retinoic acid receptors (RARs) could further antagonize the inhibitive effect of ATRA and rescue BMP2-induced osteoblastogenesis. Materials and Methods We first screened the dose-dependent effects of the specific antagonists of RAR α, β and γ and transforming growth factor-beta receptor (ER-50891, LE-135, MM11253, and SB-43142, respectively) on ATRA-induced inhibition of the total cell metabolic activity and proliferation of preosteoblasts. We selected ER-50891 and tested its effects on osteoblastogenesis with the presence or absence of 1 μM ATRA and/or 200 ng/mL BMP-2. We measured the following parameters: Alkaline phosphatase activity (ALP), osteocalcin (OCN) expression and extracellular matrix mineralization as well as the level of phosphorylated Smad1/5. Results ER-50891 but not LE-135, MM11253, or SB-431542 significantly antagonized the inhibition of ATRA and enhanced the total cell metabolic activity and proliferation of preosteoblasts. Dose-dependent assays show ER-50891 could also rescue ATRA inhibited OCN expression and mineralization with or without the induction of BMP. ER-50891 also suppressed the ALP activity that was synergistically enhanced by BMP and ATRA. Neither ATRA, nor ER-50891 or their combination significantly affected the level of BMP-induced phosphorylated Smad1/5. Conclusion The antagonist of RARα, ER-50891 could significantly attenuate ATRA’s inhibitive effects on BMP 2-induced osteoblastogenesis.
Collapse
Affiliation(s)
- Siqian Wang
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| | - Wenjuan Bi
- College of Stomatology, North China University of Science and Technology, Tangshan, Hebei Province, People's Republic of China
| | - Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Jiayi Cheng
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Wei Sun
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, People's Republic of China
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam (UvA) and Vrije Universiteit Amsterdam (VU), Amsterdam, The Netherlands
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong Province, People's Republic of China
| |
Collapse
|
32
|
Chen W, Zhang C, Wu Y, Su X. Soluble expression and purification of high-bioactivity recombinant human bone morphogenetic protein-2 by codon optimisation in Escherichia coli. Protein Eng Des Sel 2019; 32:153-157. [PMID: 31603219 DOI: 10.1093/protein/gzz028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/19/2019] [Accepted: 07/07/2019] [Indexed: 11/13/2022] Open
Abstract
We developed a simple method of preparing recombinant human bone morphogenetic protein-2 (rhBMP-2) with high biological activity. This rhBMP-2 was overproduced in Escherichia coli as a fusion protein with thioredoxin 6xHis-tag at its amino terminus. The cDNA fragment of human bone morphogenetic protein-2 (hBMP-2) fused to the secretion signal of alkaline phosphatase (PhoA) was expressed under T7 promoter in E. coli. After DNA sequence confirmation, the recombinant vector pETpho-bmp2 was transformed into E. coli BL21 (DE3). rhBMP-2 was produced by the recombinant strain pETpho-bmp2/BL21 (DE3) in a soluble form with an yield of 6.2 mg/L culture. Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) results showed that the molecular weight of the product was approximately 28 kD. Moreover, rhBMP-2 was secreted as a dimer with a natural structure. rhBMP-2, purified by Ni Nitrilotriacetic acid Agarose (Ni-NTA) affinity chromatography, was used to examine osteosarcoma MG-63 cells and assay the alkaline phosphatase (ALP) activity. Results showed that rhBMP-2 induced MG-63 cell differentiation. When the final concentration was 500 ng/mL, the effect was more remarkable and ALP activity reached 525% compared with that of the control group.
Collapse
Affiliation(s)
- Wei Chen
- Shaoxing University Yuanpei College, Shaoxing, Zhejiang 312000, China.,College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Caiqian Zhang
- Shaoxing University Yuanpei College, Shaoxing, Zhejiang 312000, China
| | - Yeqing Wu
- College of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Xiuping Su
- Shaoxing University Yuanpei College, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
33
|
Kämmerer PW, Pabst AM, Dau M, Staedt H, Al-Nawas B, Heller M. Immobilization of BMP-2, BMP-7 and alendronic acid on titanium surfaces: Adhesion, proliferation and differentiation of bone marrow-derived stem cells. J Biomed Mater Res A 2019; 108:212-220. [PMID: 31587476 DOI: 10.1002/jbm.a.36805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/28/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
This study analyzed the influence of titanium (TiO2 ) surface modifications with two osteogenic proteins (BMP-2, BMP-7) and an anti-osteoclastic drug (alendronic acid [AA]) on sandblasted/acid-etched (SLA) and plain TiO2 (PT) on cell adhesion, proliferation and differentiation (alkaline phosphatase [AP] and osteocalcin [OC]) of bone-marrow derived stem cells (BMSCs) after 1, 3 and 7 days in-vitro. Initially, AA surfaces showed the highest cell number and surface coverage. At day 3 and 7, BMP and AA-modified surfaces exhibited a significantly enhanced cell growth. For proliferation, at days 3 and 7, an enhancement on BMP-2, BMP-7 and AA-surfaces was seen. At day 7, SLA also showed a higher proliferation when compared to PT. Initially, AP expression was elevated on SLA and AA surfaces. At days 3 and 7, a significant increased AP expression was seen for SLA, BMP-2, BMP-7 and AA discs. For OC, SLA and AA surfaces had the highest expression after 1 day whereas after 3 and 7 days a significant difference was recorded for SLA, BMP-2, BMP-7 and AA. In conclusion, a beneficial biological effect of a chemical immobilization method of BMP-2, BMP-7 and alendronate onto titanium surfaces on BMSCs was proven.
Collapse
Affiliation(s)
- Peer W Kämmerer
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Andreas M Pabst
- Department of Oral- and Maxillofacial Surgery, Federal Armed Forces Hospital, Koblenz, Germany
| | - Michael Dau
- Department of Oral- and Maxillofacial Surgery, University Medical Center Rostock, Rostock, Germany
| | - Henning Staedt
- Private Practice and Department of Prosthodontics and Materials Science, University Medical Center Rostock, Rostock, Germany
| | - Bilal Al-Nawas
- Department of Oral- and Maxillofacial Surgery, University Medical Center Mainz, Mainz, Germany
| | - Martin Heller
- Department of Gynecology, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
34
|
Han SH, Jung SH, Lee JH. Preparation of beta-tricalcium phosphate microsphere-hyaluronic acid-based powder gel composite as a carrier for rhBMP-2 injection and evaluation using long bone segmental defect model. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:679-693. [DOI: 10.1080/09205063.2019.1601871] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Shi Huan Han
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center, Seoul, Korea
- Department of Orthopedic Surgery, YanBian University Hospital, Yanji, China
| | - Su Hyun Jung
- Research & Development Center, CG Bio Co. Ltd. Seongnam-si, Gyeonggi-do, Korea
| | - Jae Hyup Lee
- Department of Orthopedic Surgery, College of Medicine, Seoul National University, SMG-SNU Boramae Medical Center, Seoul, Korea
- Institute of Medical and Biological Engineering, Medical Research Center, Seoul National University, Medical Research Center, Seoul, Korea
| |
Collapse
|
35
|
Youn YH, Lee SJ, Choi GR, Lee HR, Lee D, Heo DN, Kim BS, Bang JB, Hwang YS, Correlo VM, Reis RL, Im SG, Kwon IK. Simple and facile preparation of recombinant human bone morphogenetic protein-2 immobilized titanium implant via initiated chemical vapor deposition technique to promote osteogenesis for bone tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:949-958. [PMID: 30948131 DOI: 10.1016/j.msec.2019.03.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 09/13/2018] [Accepted: 03/13/2019] [Indexed: 01/07/2023]
Abstract
Over the past few decades, titanium (Ti) implants have been widely used to repair fractured bones. To promote osteogenesis, immobilization of osteoinductive agents, such as recombinant human bone morphogenic protein-2 (rhBMP2), onto the Ti surface is required. In this study, we prepared rhBMP2 immobilized on glycidyl methacrylate (GMA) deposited Ti surface through initiated chemical vapor deposition (iCVD) technique. After preparation, the bio-functionalized Ti surface was characterized by physicochemical analysis. For in vitro analysis, the developed Ti was evaluated by cell proliferation, alkaline phosphatase activity, calcium deposition, and real-time polymerase chain reaction to verify their osteogenic activity against human adipose-derived stem cells (hASCs). The GMA deposited Ti surface was found to effectively immobilize a large dose of rhBMP2 as compared to untreated Ti. Additionally, rhBMP2 immobilized on Ti showed significantly enhanced osteogenic differentiation and increased calcium deposition with nontoxic cell viability. These results clearly confirm that our strategy may provide a simple, solvent-free strategy to prepare an osteoinductive Ti surface for bone tissue engineering applications.
Collapse
Affiliation(s)
- Yun Hee Youn
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal
| | - Sang Jin Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Go Ro Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hak Rae Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Donghyun Lee
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Byung-Soo Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Beum Bang
- Department of Dental Education, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yu-Shik Hwang
- Department of Maxillofacial Biomedical Engineering, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Vitor M Correlo
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal
| | - Rui L Reis
- 3B's Research Group - Biomaterials, Biodegradables and Biomimetics, University Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark - Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, GMR, Portugal; Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sung Gap Im
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
36
|
Chitosan-based nanoparticles: An overview of biomedical applications and its preparation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
37
|
Govindaraj K, Hendriks J, Lidke DS, Karperien M, Post JN. Changes in Fluorescence Recovery After Photobleaching (FRAP) as an indicator of SOX9 transcription factor activity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:107-117. [DOI: 10.1016/j.bbagrm.2018.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 10/19/2018] [Accepted: 11/05/2018] [Indexed: 11/24/2022]
|
38
|
Chen F, Bi D, Cheng C, Ma S, Liu Y, Cheng K. Bone morphogenetic protein 7 enhances the osteogenic differentiation of human dermal-derived CD105+ fibroblast cells through the Smad and MAPK pathways. Int J Mol Med 2018; 43:37-46. [PMID: 30365093 PMCID: PMC6257832 DOI: 10.3892/ijmm.2018.3938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/17/2018] [Indexed: 01/20/2023] Open
Abstract
The skin, as the largest organ of the human body, is an important source of stromal stem cells with multipotent differentiation potential. CD105+ mesenchymal stem cells exhibit a higher level of stemness than CD105− cells. In the present study, human dermal-derived CD105+ fibroblast cells (CD105+ hDDFCs) were isolated from human foreskin specimens using immunomagnetic isolation methods to examine the role of bone morphogenetic protein (BMP)-7 in osteogenic differentiation. Adenovirus-mediated recombinant BMP7 expression enhanced osteogenesis-associated gene expression, calcium deposition, and alkaline phosphatase activity. Investigation of the underlying mechanisms showed that BMP7 activated small mothers against decapentaplegic (Smad) and p38/mitogen-activated protein kinase signaling in CD105+ hDDFCs. The small interfering RNA-mediated knockdown of Smad4 or inhibition of p38 attenuated the BMP7-induced enhancement of osteogenic differentiation. In an in vivo ectopic bone formation model, the adenovirus-mediated overexpression of BMP7 enhanced bone formation from CD105+ hDDFCs. Taken together, these data indicated that adenoviral BMP7 gene transfer in CD105+ hDDFCs may be developed as an effective tool for bone tissue engineering.
Collapse
Affiliation(s)
- Fuguo Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Dan Bi
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chen Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Sunxiang Ma
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yang Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Kaixiang Cheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
39
|
Ji W, Kerckhofs G, Geeroms C, Marechal M, Geris L, Luyten FP. Deciphering the combined effect of bone morphogenetic protein 6 and calcium phosphate on bone formation capacity of periosteum derived cells-based tissue engineering constructs. Acta Biomater 2018; 80:97-107. [PMID: 30267882 DOI: 10.1016/j.actbio.2018.09.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/19/2022]
Abstract
Cell based combination products with growth factors on optimal carriers represent a promising tissue engineering strategy to treat large bone defects. In this concept, bone morphogenetic protein (BMP) and calcium phosphate (CaP)-based scaffolds can act as potent components of the constructs to steer stem cell specification, differentiation and initiate subsequent in vivo bone formation. However, limited insight into BMP dosage and the cross-talk between BMP and CaP materials, hampers the optimization of in vivo bone formation and subsequent clinical translation. Herein, we combined human periosteum derived progenitor cells with different doses of BMP6 and with three types of clinical grade CaP-scaffolds (ChronOs®, ReproBone™, & CopiOs®). Comprehensive cellular and molecular analysis was performed based on in vitro cell metabolic activity and signaling pathway activation, as well as in vivo ectopic bone forming capacity after 2 weeks and 5 weeks in nude mice. Our data showed that cells seeded on CaP scaffolds with an intermediate Ca2+ release rate combined with low or medium dosage of BMP6 demonstrated a robust new bone formation after 5 weeks, which was contributed by both donor and host cells. This phenomenon might be due to the delicate balance between Ca2+ and BMP pathways, allowing an appropriate activation of the canonical BMP signaling pathway that is required for in vivo bone formation. For high BMP6 dosage, we found that the BMP6 dosage overrides the effect of the Ca2+ release rate and this appeared to be a dominant factor for ectopic bone formation. Taken together, this study illustrates the importance of matching BMP dosage and CaP properties to allow an appropriate activation of canonical BMP signaling that is crucial for in vivo bone formation. It also provides insightful knowledge with regard to clinical translation of cell-based constructs for bone regeneration. STATEMENT OF SIGNIFICANCE: The combination of bone morphogenetic proteins (BMP) and calcium phosphate (CaP)-based biomaterials with mesenchymal stromal cells represents a promising therapeutic strategy to treat large bone defects, an unmet medical need. However, there is limited insight into the optimization of these combination products, which hampers subsequent successful clinical translation. Our data reveal a delicate balance between Ca2+ and BMP pathways, allowing an appropriate activation of canonical BMP signaling required for in vivo bone formation. Our findings illustrate the importance of matching BMP dosage and CaP properties in the development of cell-based constructs for bone regeneration.
Collapse
Affiliation(s)
- Wei Ji
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Greet Kerckhofs
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium; Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Belgium
| | - Carla Geeroms
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Marina Marechal
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Liesbet Geris
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Biomechanics Research Unit, GIGA In silico Medicine, University of Liege, Liege, Belgium
| | - Frank P Luyten
- Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium; Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium.
| |
Collapse
|
40
|
Takanche JS, Kim JE, Kim JS, Lee MH, Jeon JG, Park IS, Yi HK. Chitosan-gold nanoparticles mediated gene delivery of c-myb facilitates osseointegration of dental implants in ovariectomized rat. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S807-S817. [PMID: 30307328 DOI: 10.1080/21691401.2018.1513940] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Osseointegration of dental implants is affected by osteoporosis. The purpose of this study was overcome the implant failure and facilitate the osseointegration of dental implants by c-myb in ovariectomized (OVX)-induced osteoporosis. c-myb is a transcription factor and supports bone formation. Plasmid DNA/c-myb conjugated with chitosan-gold nanoparticles (Ch-GNPs/c-myb) promoted osteogenesis and inhibited osteoclastogenesis in MC-3T3 E1 cells. Ch-GNPs/c-myb involved the reduction of the nuclear factor of activated T-cells 1, c-Fos, and tartrate-resistant acid phosphatase-positive multinucleated osteoclasts in receptor activator of nuclear factor-κB ligand (RANKL) stimulated bone marrow macrophages. In vivo results of rat mandibles demonstrated Ch-GNP/c-myb-coated titanium (Ti) implants increased the volume and density of newly formed bone and the osseointegration of dental implant with bone by micro computed tomography examination after OVX-induced osteoporosis. Immunohistochemical analysis showed increased c-myb expression and upregulation of bone morphogenic proteins, osteoprotegerin and EphB4, as well as the downregulation of RANKL by Ch-GNP/c-myb-coated Ti implants. Hematoxylin and Eosin staining expressed new bone formation by Ch-GNP/c-myb-coated Ti implants. Our findings indicated that c-myb delivered by Ch-GNPs supports osseointegration of dental implant even in osteoporotic condition. c-myb may be applicable to support dental implant integration and treatment in age-dependent bone destruction disease.
Collapse
Affiliation(s)
| | - Ji-Eun Kim
- a Department of Oral Biochemistry , Chonbuk National University , Jeonju , Korea
| | - Jeong-Seok Kim
- a Department of Oral Biochemistry , Chonbuk National University , Jeonju , Korea
| | - Min-Ho Lee
- b Department of Dental Materials , Chonbuk National University , Jeonju , Korea
| | - Jae-Gyu Jeon
- c Department of Preventive Dentistry, Institute of Oral Bioscience, School of Dentistry , Chonbuk National University , Jeonju , Korea
| | - Il-Song Park
- d Division of Advanced Materials Engineering , Chonbuk National University , Jeonju , Korea
| | - Ho-Keun Yi
- a Department of Oral Biochemistry , Chonbuk National University , Jeonju , Korea
| |
Collapse
|
41
|
Liu Y, Ma X, Guo J, Lin Z, Zhou M, Bi W, Liu J, Wang J, Lu H, Wu G. All-trans retinoic acid can antagonize osteoblastogenesis induced by different BMPs irrespective of their dimerization types and dose-efficiencies. Drug Des Devel Ther 2018; 12:3419-3430. [PMID: 30349195 PMCID: PMC6186890 DOI: 10.2147/dddt.s178190] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction Alcoholism can lead to low mineral density, compromised regenerative bone capacity and delayed osteointegration of dental implants. This may be partially attributed to the inhibitive effect of all-trans retinoic acid (ATRA), a metabolite of alcohol, on osteoblastogenesis. Our previous studies demonstrated that heterodimeric bone morphogenetic protein 2/7 (BMP2/7) was a more potent BMP than homodimeric BMP2 or BMP7, and could antagonize the inhibitive effect of ATRA to rescue osteoblastogenesis. Materials and methods In this study, we compared the effectiveness of BMP2/7, BMP2 and BMP7 in restoring osteoblastogenesis of murine preosteoblasts upon inhibition with 1 µM ATRA, and we further analyzed the potential mechanisms. We measured the following parameters: cell viability, ALP, OCN, mineralization, the expression of osteogenic differentiation marker genes (Collagen I, ALP and OCN) and the expression of BMP signaling key genes (Dlx5, Runx2, Osterix and Smad1). Results BMP2/7 treatment alone induced significantly higher osteoblastogenesis compared to BMP2 and BMP7. When cells were treated by ATRA, BMP2/7 was superior only in rescuing cell viability and ALP activity, compared to BMP2 or BMP7. However, BMP2/7 was not superior to BMP2 or BMP7 in restoring OCN expression and extracellular mineralized nodules, or in rescuing expression of two key osteogenic genes, Dlx5 and Runx2. Irrespective of their dimeric types or potency, the selected BMPs could antagonize the inhibitory effect of ATRA on osteoblastogenesis. Conclusion The presence of ATRA, BMP2/7 still induced significantly higher cell viability and early differentiation than the homodimers. However, ATRA significantly attenuated the advantages of BMP2/7 in inducing late and final osteoblastogenic differentiation over the homodimers.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Xiaoqing Ma
- Shanghai Xuhui District Dental Center, Shanghai 200032, China
| | - Jing Guo
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Zhen Lin
- Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Miao Zhou
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou 510140, China
| | - Wenjuan Bi
- College of Stomatology, North China University of Science and Technology, Tangshan 063000, China
| | - Jinsong Liu
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325000, China
| | - Jingxiao Wang
- The First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiping Lu
- School of Stomatology, Zhejiang Chinese Medical University, Hangzhou 310053, China,
| | - Gang Wu
- Department of Oral Implantology and Prosthetic Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081LA Amsterdam, the Netherlands,
| |
Collapse
|
42
|
Li B, Ruan C, Ma Y, Huang Z, Huang Z, Zhou G, Zhang J, Wang H, Wu Z, Qiu G. Fabrication of Vascularized Bone Flaps with Sustained Release of Recombinant Human Bone Morphogenetic Protein-2 and Arteriovenous Bundle. Tissue Eng Part A 2018; 24:1413-1422. [PMID: 29676206 DOI: 10.1089/ten.tea.2018.0002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Bo Li
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Orthopedic Surgery, Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Changshun Ruan
- Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yufei Ma
- Center for Human Tissue and Organs Degeneration, Institute Biomedical and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhifeng Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Department of Orthopedic Surgery, Fourth Clinical Medical College of Peking University, Beijing Jishuitan Hospital, Beijing, China
| | - Zhenfei Huang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Gang Zhou
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hai Wang
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhihong Wu
- Central Laboratory, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory for Genetic Research of Bone and Joint Disease, Beijing, China
| | - Guixing Qiu
- Department of Orthopedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
43
|
Liang C, Peng S, Li J, Lu J, Guan D, Jiang F, Lu C, Li F, He X, Zhu H, Au DWT, Yang D, Zhang BT, Lu A, Zhang G. Inhibition of osteoblastic Smurf1 promotes bone formation in mouse models of distinctive age-related osteoporosis. Nat Commun 2018; 9:3428. [PMID: 30143635 PMCID: PMC6109183 DOI: 10.1038/s41467-018-05974-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 08/06/2018] [Indexed: 11/20/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling is essential for osteogenesis. However, recombinant human BMPs (rhBMPs) exhibit large inter-individual variations in local bone formation during clinical spinal fusion. Smurf1 ubiquitinates BMP downstream molecules for degradation. Here, we classify age-related osteoporosis based on distinct intraosseous BMP-2 levels and Smurf1 activity. One major subgroup with a normal BMP-2 level and elevated Smurf1 activity (BMP-2n/Smurf1e) shows poor response to rhBMP-2 during spinal fusion, when compared to another major subgroup with a decreased BMP-2 level and normal Smurf1 activity (BMP-2d/Smurf1n). We screen a chalcone derivative, i.e., 2-(4-cinnamoylphenoxy)acetic acid, which effectively inhibits Smurf1 activity and increases BMP signaling. For BMP-2n/Smurf1e mice, the chalcone derivative enhances local bone formation during spinal fusion. After conjugating to an osteoblast-targeting and penetrating oligopeptide (DSS)6, the chalcone derivative promotes systemic bone formation in BMP-2n/Smurf1e mice. This study demonstrates a precision medicine-based bone anabolic strategy for age-related osteoporosis. BMP promotes bone formation but its efficacy is limited in some patients. Here, the authors show that osteoporosis patients with a poor response to BMP have increased expression of Smurf1, which targets BMP effectors for degradation, and demonstrate that its chemical inhibition enhances BMP-mediated bone formation in mice.
Collapse
Affiliation(s)
- Chao Liang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Songlin Peng
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Department of Spine Surgery, Shenzhen People's Hospital, Ji Nan University Second College of Medicine, 518020, Shenzhen, China
| | - Jie Li
- School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, 999077, Hong Kong, SAR, China.,Clinical Medical Laboratory of Peking University Shenzhen Hospital, 518036, Shenzhen, China
| | - Jun Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Daogang Guan
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Feng Jiang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Zhejiang Pharmaceutical College, 315100, Ningbo, China
| | - Cheng Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Fangfei Li
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China
| | - Xiaojuan He
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China.,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.,Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Hailong Zhu
- Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China
| | - D W T Au
- Department of Biology and Chemistry, City University of Hong Kong, 999077, Hong Kong, SAR, China
| | - Dazhi Yang
- Department of Spine Surgery, Shenzhen People's Hospital, Ji Nan University Second College of Medicine, 518020, Shenzhen, China
| | - Bao-Ting Zhang
- School of Chinese Medicine, Faculty of Medicine, Chinese University of Hong Kong, 999077, Hong Kong, SAR, China.
| | - Aiping Lu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China. .,Institute of Arthritis Research, Shanghai Academy of Chinese Medical Sciences, 200032, Shanghai, China.
| | - Ge Zhang
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Integrated Bioinfomedicine and Translational Science, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, SAR, China. .,Institute of Precision Medicine and Innovative Drug Discovery, HKBU Institute for Research and Continuing Education, 518000, Shenzhen, China.
| |
Collapse
|
44
|
Bone Regenerative Engineering Using a Protein Kinase A-Specific Cyclic AMP Analogue Administered for Short Term. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018. [DOI: 10.1007/s40883-018-0063-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Zhou P, Wu J, Xia Y, Yuan Y, Zhang H, Xu S, Lin K. Loading BMP-2 on nanostructured hydroxyapatite microspheres for rapid bone regeneration. Int J Nanomedicine 2018; 13:4083-4092. [PMID: 30034234 PMCID: PMC6047624 DOI: 10.2147/ijn.s158280] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION Tissue engineering is a promising strategy for bone regeneration in repairing massive bone defects. The surface morphology of implanted materials plays a key role in bone healing; these materials incorporate osteoinductive factors to improve the efficiency of bone regeneration. MATERIALS AND METHODS In the current study, nanostructured hydroxyapatite (nHAp) micro-spheres were prepared via a hydrothermal transformation method using calcium silicate (CS) microspheres as precursors; the CS microspheres were obtained by a spray-drying method. The nHAp microspheres constructed by the nano-whiskers significantly improved the ability of the microspheres to adsorb the bioactive protein (BMP-2) and reduce its initial burst release. To evaluate the in vivo bone regeneration of microspheres, both conventional hydroxyapatite (HAp) and nHAp microspheres were either loaded with recombinant human bone morphogenetic protein-2 (rhBMP-2) or not loaded with the protein; these microspheres were implanted in rat femoral bone defects for 4 and 8 weeks. RESULTS AND DISCUSSION The results of our three-dimensional (3D) micro-computed tomography (CT) and histomorphometric observations showed that the combination of the nano-structured surface and rhBMP-2 obviously improved osteogenesis compared to conventional HAp microspheres loaded with rhBMP-2. Our results suggest that the nHAp microspheres with a nanostructured surface adsorb rhBMP-2 for rapid bone formation; they therefore show the potential to act as carriers in bone tissue regeneration.
Collapse
Affiliation(s)
- Panyu Zhou
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Jianghong Wu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Yan Xia
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Ye Yuan
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Hongyue Zhang
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Shuogui Xu
- Department of Emergency, Changhai Hospital, Second Military Medical University, Shanghai 200433, People's Republic of China,
| | - Kaili Lin
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China,
| |
Collapse
|
46
|
Wong SA, Rivera KO, Miclau T, Alsberg E, Marcucio RS, Bahney CS. Microenvironmental Regulation of Chondrocyte Plasticity in Endochondral Repair-A New Frontier for Developmental Engineering. Front Bioeng Biotechnol 2018; 6:58. [PMID: 29868574 PMCID: PMC5962790 DOI: 10.3389/fbioe.2018.00058] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The majority of fractures heal through the process of endochondral ossification, in which a cartilage intermediate forms between the fractured bone ends and is gradually replaced with bone. Recent studies have provided genetic evidence demonstrating that a significant portion of callus chondrocytes transform into osteoblasts that derive the new bone. This evidence has opened a new field of research aimed at identifying the regulatory mechanisms that govern chondrocyte transformation in the hope of developing improved fracture therapies. In this article, we review known and candidate molecular pathways that may stimulate chondrocyte-to-osteoblast transformation during endochondral fracture repair. We also examine additional extrinsic factors that may play a role in modulating chondrocyte and osteoblast fate during fracture healing such as angiogenesis and mineralization of the extracellular matrix. Taken together the mechanisms reviewed here demonstrate the promising potential of using developmental engineering to design therapeutic approaches that activate endogenous healing pathways to stimulate fracture repair.
Collapse
Affiliation(s)
- Sarah A Wong
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Kevin O Rivera
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Theodore Miclau
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Eben Alsberg
- Department of Orthopaedic Surgery and Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Ralph S Marcucio
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States.,School of Dentistry, University of California, San Francisco, San Francisco, CA, United States
| | - Chelsea S Bahney
- Department of Orthopaedic Surgery, Orthopaedic Trauma Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
47
|
Xu C, Xu J, Xiao L, Li Z, Xiao Y, Dargusch M, Lei C, He Y, Ye Q. Double-layered microsphere based dual growth factor delivery system for guided bone regeneration. RSC Adv 2018; 8:16503-16512. [PMID: 35540506 PMCID: PMC9080232 DOI: 10.1039/c8ra02072h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/19/2018] [Indexed: 11/21/2022] Open
Abstract
Microsphere based drug delivery systems show great advantages for tissue engineering. However, it is still a big challenge to fabricate microspheres with capability in delivering and controlled releasing multiple growth factors. In the present study, double-layered microspheres consisting of an inner-layer of small core particles and an outer-layer of big shell particles were developed to sequentially release cell homing factors (SDF-1) and osteoinductive growth factors (BMP-2) for bone regeneration. In vitro release testing showed that bioactivity of both growth factors retained within the microspheres and differential release of SDF-1 and BMP-2 was achieved. Microspheres with both growth factors showed an obvious chemotaxis effect on preosteoblasts by inducing more cell migration. In osteoinductive ability tests, the microspheres with both growth factors showed higher ALP activity and more mineralized modules than control groups after culturing for 2 weeks. The expression of bone development transcription factors (Runx2, OCN, Osterix) as well as Smad signals (Smad 1, 5, 8) showed higher gene expression in the dual growth factor group. Our results suggest that a double-layered microsphere system enhances the recruitment of osteogenic cells and osteoinduction, which provides a promising platform for bone regeneration.
Collapse
Affiliation(s)
- Chun Xu
- School of Dentistry, The University of Queensland Brisbane Queensland 4006 Australia
| | - Jia Xu
- College of Medicine and Dentistry, James Cook University Cairns 4878 Australia
| | - Lan Xiao
- School of Dentistry, The University of Queensland Brisbane Queensland 4006 Australia
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus Brisbane 4006 Australia
| | - Zhihao Li
- School of Dentistry, The University of Queensland Brisbane Queensland 4006 Australia
| | - Yin Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove Campus Brisbane 4006 Australia
| | - Matthew Dargusch
- ARC Research Hub for Advanced Manufacturing of Medical Devices, Centre for Advanced Materials Processing and Manufacturing, School of Mechanical and Mining Engineering, The University of Queensland Brisbane 4006 Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland Brisbane QLD 4072 Australia
| | - Yan He
- School of Dentistry, The University of Queensland Brisbane Queensland 4006 Australia
| | - Qingsong Ye
- School of Dentistry, The University of Queensland Brisbane Queensland 4006 Australia
| |
Collapse
|
48
|
Degli Esposti L, Carella F, Adamiano A, Tampieri A, Iafisco M. Calcium phosphate-based nanosystems for advanced targeted nanomedicine. Drug Dev Ind Pharm 2018. [PMID: 29528248 DOI: 10.1080/03639045.2018.1451879] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Synthetic calcium phosphates (CaPs) are the most widely accepted bioceramics for the repair and reconstruction of bone tissue defects. The recent advancements in materials science have prompted a rapid progress in the preparation of CaPs with nanometric dimensions, tailored surface characteristics, and colloidal stability opening new perspectives in their use for applications not strictly related to bone. In particular, the employment of CaPs nanoparticles as carriers of therapeutic and imaging agents has recently raised great interest in nanomedicine. CaPs nanoparticles, as well as other kinds of nanoparticles, can be engineered to specifically target the site of the disease (cells or organs), thus minimizing their dispersion in the body and undesired organism-nanoparticles interactions. The most promising and efficient approach to improve their specificity is the 'active targeting', where nanoparticles are conjugated with a targeting moiety able to recognize and bind with high efficacy and selectivity to receptors that are highly expressed only in the therapeutic site. The aim of this review is to give an overview on advanced targeted nanomedicine with a focus on the most recent reports on CaP nanoparticles-based systems, specifically designed for the active targeting. The distinctive characteristics of CaP nanoparticles with respect to the other kinds of nanomaterials used in nanomedicine are also discussed.
Collapse
Affiliation(s)
- Lorenzo Degli Esposti
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Francesca Carella
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Alessio Adamiano
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Anna Tampieri
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| | - Michele Iafisco
- a Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR) , Faenza , Italy
| |
Collapse
|
49
|
Wu C, Pan W, Feng C, Su Z, Duan Z, Zheng Q, Hua C, Li C. Grafting materials for alveolar cleft reconstruction: a systematic review and best-evidence synthesis. Int J Oral Maxillofac Surg 2018; 47:345-356. [DOI: 10.1016/j.ijom.2017.08.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 05/30/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
|
50
|
Efficacy of rhBMP-2 Loaded PCL/ β-TCP/bdECM Scaffold Fabricated by 3D Printing Technology on Bone Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2876135. [PMID: 29682530 PMCID: PMC5848108 DOI: 10.1155/2018/2876135] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 11/23/2022]
Abstract
This study was undertaken to evaluate the effect of 3D printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) scaffold containing bone demineralized and decellularized extracellular matrix (bdECM) and human recombinant bone morphogenetic protein-2 (rhBMP-2) on bone regeneration. Scaffolds were divided into PCL/β-TCP, PCL/β-TCP/bdECM, and PCL/β-TCP/bdECM/BMP groups. In vitro release kinetics of rhBMP-2 were determined with respect to cell proliferation and osteogenic differentiation. These three reconstructive materials were implanted into 8 mm diameter calvarial bone defect in male Sprague-Dawley rats. Animals were sacrificed four weeks after implantation for micro-CT, histologic, and histomorphometric analyses. The findings obtained were used to calculate new bone volumes (mm3) and new bone areas (%). Excellent cell bioactivity was observed in the PCL/β-TCP/bdECM and PCL/β-TCP/bdECM/BMP groups, and new bone volume and area were significantly higher in the PCL/β-TCP/bdECM/BMP group than in the other groups (p < .05). Within the limitations of this study, bdECM printed PCL/β-TCP scaffolds can reproduce microenvironment for cells and promote adhering and proliferating the cells onto scaffolds. Furthermore, in the rat calvarial defect model, the scaffold which printed rhBMP-2 loaded bdECM stably carries rhBMP-2 and enhances bone regeneration confirming the possibility of bdECM as rhBMP-2 carrier.
Collapse
|