1
|
Thacharodi A, Hassan S, Singh T, Mandal R, Chinnadurai J, Khan HA, Hussain MA, Brindhadevi K, Pugazhendhi A. Bioremediation of polycyclic aromatic hydrocarbons: An updated microbiological review. CHEMOSPHERE 2023; 328:138498. [PMID: 36996919 DOI: 10.1016/j.chemosphere.2023.138498] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/08/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
A class of organic priority pollutants known as PAHs is of critical public health and environmental concern due to its carcinogenic properties as well as its genotoxic, mutagenic, and cytotoxic properties. Research to eliminate PAHs from the environment has increased significantly due to awareness about their negative effects on the environment and human health. Various environmental factors, including nutrients, microorganisms present and their abundance, and the nature and chemical properties of the PAH affect the biodegradation of PAHs. A large spectrum of bacteria, fungi, and algae have ability to degrade PAHs with the biodegradation capacity of bacteria and fungi receiving the most attention. A considerable amount of research has been conducted in the last few decades on analyzing microbial communities for their genomic organization, enzymatic and biochemical properties capable of degrading PAH. While it is true that PAH degrading microorganisms offer potential for recovering damaged ecosystems in a cost-efficient way, new advances are needed to make these microbes more robust and successful at eliminating toxic chemicals. By optimizing some factors like adsorption, bioavailability and mass transfer of PAHs, microorganisms in their natural habitat could be greatly improved to biodegrade PAHs. This review aims to comprehensively discuss the latest findings and address the current wealth of knowledge in the microbial bioremediation of PAHs. Additionally, recent breakthroughs in PAH degradation are discussed in order to facilitate a broader understanding of the bioremediation of PAHs in the environment.
Collapse
Affiliation(s)
- Aswin Thacharodi
- Department of Biochemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Saqib Hassan
- Division of Non-Communicable Diseases, Indian Council of Medical Research (ICMR), New Delhi, 110029, India; Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Tripti Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, 201309, India
| | - Ramkrishna Mandal
- Department of Chemistry, University of Otago, Dunedin, 9054, New Zealand
| | - Jeganathan Chinnadurai
- Department of Research and Development, Dr. Thacharodi's Laboratories, No. 24, 5th Cross, Thanthaiperiyar Nagar, Ellapillaichavadi, Puducherry, 605005, India
| | - Hilal Ahmad Khan
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Mir Ashiq Hussain
- Department of Chemistry, Pondicherry University, Puducherry, 605014, India
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali,140103, India.
| |
Collapse
|
2
|
Kwak JI, Nam SH, Kim SW, Bajagain R, Jeong SW, An YJ. Changes in soil properties after remediation influence the performance and survival of soil algae and earthworm. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:189-196. [PMID: 30826545 DOI: 10.1016/j.ecoenv.2019.02.079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Previous research on soil remediation focused on soil properties and not on its effects on soil ecosystems. The present study investigated the adverse effects of soil physicochemical changes due to remediation on the biological indicators Chlorococcum infusionum and Chlamydomonas reinhardtii (algae) and Eisenia andrei (earthworm). Soil physicochemical properties, concentrations of total, bioavailable, and water-soluble heavy metals in soil were measured before and after remediation. Changes in soil pH, electrical conductivity, total nitrogen, and total phosphorous immediately after soil remediation were the primary causes of the biomass and photosynthetic activity inhibition observed in C. infusionum and C. reinhardtii, and the survival, normality, and burrowing behavior decrease observed in E. andrei in remediated soils showing dramatic changes in those properties. These findings suggest that remediated soils need some time to recover before restoring their functions, although heavy metals are no longer contaminating the soil.
Collapse
Affiliation(s)
- Jin Il Kwak
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Shin Woong Kim
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Rishikesh Bajagain
- Department of Environmental Engineering, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Kunsan 54150, Republic of Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
3
|
Lors C, Ponge JF, Damidot D. Environmental hazard assessment by the Ecoscore system to discriminate PAH-polluted soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:26747-26756. [PMID: 28803428 DOI: 10.1007/s11356-017-9906-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
A bioassay battery-integrated index was applied to different soils sampled from a former coke factory, with the aim to evaluate the discriminating capacity of the Ecoscore system (ES) to assess the environmental hazard of PAH-polluted soils. Two soils from a former coke factory, polluted with polycyclic aromatic hydrocarbons (PAHs), were evaluated for their ecotoxicity to terrestrial and aquatic organisms and their genotoxicity. These soils have been already presented in a previous paper but data have been reanalyzed for the present article in an endeavor to standardize the ES. One soil was sampled in the untreated site and the second underwent a windrow treatment. While these soils had a similar total concentrations of US-EPA 16PAHs (around 3000 mg kg-1), different ecoscores were obtained when subjected to a set of solid- and liquid-phase bioassays measuring acute, chronic, and genotoxic effects. The total PAH content of the soil is not a pertinent parameter to assess soil pollution hazards contrary to the ES. ES is a robust method to classify soils according to their toxicity level. Four levels of toxicity have been defined: no (ecoscore = 0), weak (0 < ecoscore ≤33), moderate (33 < ecoscore ≤67), and strong toxicity (67 < ecoscore ≤ 100). The combination of chemical and toxicological data highlights the relationship between three-ring PAHs and acute ecotoxicity. Conversely, chronic effects of water extracts on algal growth could be explained by high molecular weight PAHs, such as five- and six-ring PAHs.
Collapse
Affiliation(s)
- Christine Lors
- IMT Lille Douai, EA 4515 - LGCgE - Laboratoire de Génie Civil et Géoenvironnement, Département Génie Civil & Environnemental, 941 rue Charles-Bourseul, 59508, Douai, France.
- Université Lille Nord de France, 1bis rue Georges Lefèvre, 59044, Lille Cedex, France.
| | - Jean-François Ponge
- Muséum National d'Histoire Naturelle, CNRS UMR 7179, 4 Avenue du Petit Château, 91800, Brunoy, France
| | - Denis Damidot
- IMT Lille Douai, EA 4515 - LGCgE - Laboratoire de Génie Civil et Géoenvironnement, Département Génie Civil & Environnemental, 941 rue Charles-Bourseul, 59508, Douai, France
- Université Lille Nord de France, 1bis rue Georges Lefèvre, 59044, Lille Cedex, France
| |
Collapse
|
4
|
Sivaram AK, Logeshwaran P, Subashchandrabose SR, Lockington R, Naidu R, Megharaj M. Comparison of plants with C3 and C4 carbon fixation pathways for remediation of polycyclic aromatic hydrocarbon contaminated soils. Sci Rep 2018; 8:2100. [PMID: 29391433 PMCID: PMC5794979 DOI: 10.1038/s41598-018-20317-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
The phytoremediation technique has been demonstrated to be a viable option for the remediation of polycyclic aromatic hydrocarbons (PAHs) contaminated sites. This study evaluated the potential applicability of plants with C3 and C4 carbon fixation pathways for the phytoremediation of recalcitrant high molecular weight (HMW) PAHs contaminated soil. A 60 and 120-day greenhouse study was conducted which showed higher degradation of HMW PAHs in soil grown with C4 plants when compared to C3 plants. Also, no PAHs were detected in the maize cobs, sunflower, wallaby, and Sudan grass seeds at the end of the experiment. The effect of plants in modifying the microbial community and dynamics in the rhizosphere was also examined by measuring soil biochemical properties such as dehydrogenase activity and water-soluble phenols. The results demonstrate a substantial difference in the microbial populations between planted and unplanted soils, which in turn facilitate the degradation of PAHs. To the best of our knowledge, this study for the first time evaluated the phytoremediation efficacy through the A. cepa cyto- and genotoxicity assay which should be considered as an integral part of all remediation experiments.
Collapse
Affiliation(s)
- Anithadevi Kenday Sivaram
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Panneerselvan Logeshwaran
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Robin Lockington
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science, The University of Newcastle (UoN), University Drive, Callaghan, NSW 2308, Australia.
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, 5095, Australia.
- Cooperative Research Centre for Contamination Assessment and Remediation of the Environments, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
5
|
Nam SH, Moon J, Kim SW, Kim H, Jeong SW, An YJ. Rapid in situ assessment for predicting soil quality using an algae-soaked disc seeding assay. ENVIRONMENTAL MONITORING AND ASSESSMENT 2017; 189:637. [PMID: 29143886 DOI: 10.1007/s10661-017-6358-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/06/2017] [Indexed: 06/07/2023]
Abstract
The soil quality of remediated land is altered and this land consequently exerts unexpected biological effects on terrestrial organisms. Therefore, field evaluation of such land should be conducted using biological indicators. Algae are a promising new biological indicator since they are a food source for organisms in higher soil trophic levels and easily sampled from the soil. Field evaluation of soil characteristics is preferred to be testing in laboratory conditions because many biological effects cannot be duplicated during laboratory evaluations. Herein, we describe a convenient and rapid algae-soaked disc seeding assay for assessing soil quality in the field based on soil algae. The collection of algae is easy and rapid and the method predicts the short-term quality of contaminated, remediated, and amended farm and paddy soils. The algae-soaked disc seeding assay is yet to be extensively evaluated, and the method cannot be applied to loamy sand soil in in situ evaluations. The algae-soaked disc seeding assay is recommended for prediction of soil quality in in situ evaluations because it reflects all variations in the environment. The algae-soaked disc seeding assay will help to develop management strategies for in situ evaluation.
Collapse
Affiliation(s)
- Sun-Hwa Nam
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Jongmin Moon
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Shin Woong Kim
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea
| | - Hakyeong Kim
- Department of Environmental Engineering, Kunsan National University, Kunsan, 54150, South Korea
| | - Seung-Woo Jeong
- Department of Environmental Engineering, Kunsan National University, Kunsan, 54150, South Korea
| | - Youn-Joo An
- Department of Environmental Health Science, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
6
|
Bori J, Vallès B, Ortega L, Riva MC. Bioassays with terrestrial and aquatic species as monitoring tools of hydrocarbon degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:18694-18703. [PMID: 27312898 DOI: 10.1007/s11356-016-7097-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
In this study chemical analyses and ecotoxicity tests were applied for the assessment of a heavily hydrocarbon-contaminated soil prior and after the application of a remediation procedure that consisted in the stimulation of soil autochthonous populations of hydrocarbon degraders in static-ventilated biopiles. Terrestrial bioassays were applied in mixtures of test soils and artificial control soil and studied the survival and reproduction of Eisenia fetida and the avoidance response of E. fetida and Folsomia candida. Effects on aquatic organisms were studied by means of acute tests with Vibrio fischeri, Raphidocelis subcapitata, and Daphnia magna performed on aqueous elutriates from test soils. The bioremediation procedure led to a significant reduction in the concentration of hydrocarbons (from 34264 to 3074 mg kg(-1), i.e., 91 % decrease) and toxicity although bioassays were not able to report a percentage decrease of toxicity as high as the percentage reduction. Sublethal tests proved the most sensitive terrestrial bioassays and avoidance tests with earthworms and springtails showed potential as monitoring tools of hydrocarbon remediation due to their high sensitivity and short duration. The concentrations of hydrocarbons in water extracts from test soils were 130 and 100 μg L(-1) before and after remediation, respectively. Similarly to terrestrial tests, most aquatic bioassays detected a significant reduction in toxicity, which was almost negligible at the end of the treatment. D. magna survival was the most affected by soil elutriates although toxicity to the crustacean was associated to the salinity of the samples rather than to the concentration of hydrocarbons. Ecotoxicity tests with aqueous soil elutriates proved less relevant in the assessment of hydrocarbon-contaminated soils due to the low hydrosolubility of hydrocarbons and the influence of the physicochemical parameters of the aquatic medium.
Collapse
Affiliation(s)
- Jaume Bori
- Center for Research and Innovation in Toxicology (CRIT-Innotex Center), Technical University of Catalonia (UPC), Ctra. Nac. 150 Km 15, 08227, Terrassa (Barcelona), Spain.
| | - Bettina Vallès
- Center for Research and Innovation in Toxicology (CRIT-Innotex Center), Technical University of Catalonia (UPC), Ctra. Nac. 150 Km 15, 08227, Terrassa (Barcelona), Spain
| | - Lina Ortega
- Geotecnia 2000 (Grupo ATISAE), Tres Cantos, Madrid, Spain
| | - Maria Carme Riva
- Center for Research and Innovation in Toxicology (CRIT-Innotex Center), Technical University of Catalonia (UPC), Ctra. Nac. 150 Km 15, 08227, Terrassa (Barcelona), Spain
| |
Collapse
|
7
|
Ghosal D, Ghosh S, Dutta TK, Ahn Y. Current State of Knowledge in Microbial Degradation of Polycyclic Aromatic Hydrocarbons (PAHs): A Review. Front Microbiol 2016; 7:1369. [PMID: 27630626 PMCID: PMC5006600 DOI: 10.3389/fmicb.2016.01369] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 08/18/2016] [Indexed: 12/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) include a group of organic priority pollutants of critical environmental and public health concern due to their toxic, genotoxic, mutagenic and/or carcinogenic properties and their ubiquitous occurrence as well as recalcitrance. The increased awareness of their various adverse effects on ecosystem and human health has led to a dramatic increase in research aimed toward removing PAHs from the environment. PAHs may undergo adsorption, volatilization, photolysis, and chemical oxidation, although transformation by microorganisms is the major neutralization process of PAH-contaminated sites in an ecologically accepted manner. Microbial degradation of PAHs depends on various environmental conditions, such as nutrients, number and kind of the microorganisms, nature as well as chemical property of the PAH being degraded. A wide variety of bacterial, fungal and algal species have the potential to degrade/transform PAHs, among which bacteria and fungi mediated degradation has been studied most extensively. In last few decades microbial community analysis, biochemical pathway for PAHs degradation, gene organization, enzyme system, genetic regulation for PAH degradation have been explored in great detail. Although, xenobiotic-degrading microorganisms have incredible potential to restore contaminated environments inexpensively yet effectively, but new advancements are required to make such microbes effective and more powerful in removing those compounds, which were once thought to be recalcitrant. Recent analytical chemistry and genetic engineering tools might help to improve the efficiency of degradation of PAHs by microorganisms, and minimize uncertainties of successful bioremediation. However, appropriate implementation of the potential of naturally occurring microorganisms for field bioremediation could be considerably enhanced by optimizing certain factors such as bioavailability, adsorption and mass transfer of PAHs. The main purpose of this review is to provide an overview of current knowledge of bacteria, halophilic archaea, fungi and algae mediated degradation/transformation of PAHs. In addition, factors affecting PAHs degradation in the environment, recent advancement in genetic, genomic, proteomic and metabolomic techniques are also highlighted with an aim to facilitate the development of a new insight into the bioremediation of PAH in the environment.
Collapse
Affiliation(s)
- Debajyoti Ghosal
- Environmental Engineering Laboratory, Department of Civil Engineering, Yeungnam UniversityGyeongsan, South Korea
| | - Shreya Ghosh
- Disasters Prevention Research Institute, Yeungnam UniversityGyeongsan, South Korea
| | - Tapan K. Dutta
- Department of Microbiology, Bose InstituteKolkata, India
| | - Youngho Ahn
- Environmental Engineering Laboratory, Department of Civil Engineering, Yeungnam UniversityGyeongsan, South Korea
- Disasters Prevention Research Institute, Yeungnam UniversityGyeongsan, South Korea
| |
Collapse
|
8
|
Chibwe L, Geier MC, Nakamura J, Tanguay RL, Aitken MD, Simonich SLM. Aerobic Bioremediation of PAH Contaminated Soil Results in Increased Genotoxicity and Developmental Toxicity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015. [PMID: 26200254 PMCID: PMC4666737 DOI: 10.1021/acs.est.5b00499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The formation of more polar and toxic polycyclic aromatic hydrocarbon (PAH) transformation products is one of the concerns associated with the bioremediation of PAH-contaminated soils. Soil contaminated with coal tar (prebioremediation) from a former manufactured gas plant (MGP) site was treated in a laboratory scale bioreactor (postbioremediation) and extracted using pressurized liquid extraction. The soil extracts were fractionated, based on polarity, and analyzed for 88 PAHs (unsubstituted, oxygenated, nitrated, and heterocyclic PAHs). The PAH concentrations in the soil tested, postbioremediation, were lower than their regulatory maximum allowable concentrations (MACs), with the exception of the higher molecular weight PAHs (BaA, BkF, BbF, BaP, and IcdP), most of which did not undergo significant biodegradation. The soil extract fractions were tested for genotoxicity using the DT40 chicken lymphocyte bioassay and developmental toxicity using the embryonic zebrafish (Danio rerio) bioassay. A statistically significant increase in genotoxicity was measured in the unfractionated soil extract, as well as in four polar soil extract fractions, postbioremediation (p < 0.05). In addition, a statistically significant increase in developmental toxicity was measured in one polar soil extract fraction, postbioremediation (p < 0.05). A series of morphological abnormalities, including peculiar caudal fin malformations and hyperpigmentation in the tail, were measured in several soil extract fractions in embryonic zebrafish, both pre- and postbioremediation. The increased toxicity measured postbioremediation is not likely due to the 88 PAHs measured in this study (including quinones), because most were not present in the toxic polar fractions and/or because their concentrations did not increase postbioremediation. However, the increased toxicity measured postbioremediation is likely due to hydroxylated and carboxylated transformation products of the 3- and 4-ring PAHs (PHE, 1MPHE, 2MPHE, PRY, BaA, and FLA) that were most degraded.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
| | - Mitra C. Geier
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Jun Nakamura
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| | - Michael D. Aitken
- Department of Environmental Sciences & Engineering, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Staci L. Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
- Corresponding Author Address: 1141 Agricultural and Life Sciences, Corvallis, OR 97331-7301, USA; telephone: (541) 737-9194; fax: (541) 737-0497;
| |
Collapse
|
9
|
Bertrand O, Mondamert L, Grosbois C, Dhivert E, Bourrain X, Labanowski J, Desmet M. Storage and source of polycyclic aromatic hydrocarbons in sediments downstream of a major coal district in France. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 207:329-340. [PMID: 26444225 DOI: 10.1016/j.envpol.2015.09.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 09/07/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
During the 20th century, the local economy of the Upper Loire Basin (ULB) was essentially based on industrial coal mining extraction. One of the major French coal districts with associated urban/industrial activities and numerous coking/gas plants were developed in the Ondaine-Furan subbasins, two tributaries of the upper Loire main stream. To determine the compositional assemblage, the level and the potential sources of contamination, the historical sedimentary chronicle of the 16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) has been investigated. PAH concentrations were determined using gas chromatography/mass spectrometry (GC/MS) in a dated core, sampled in the Villerest flood-control reservoir located downstream of the Ondaine-Furan corridor (OFC). The most contaminated sediments were deposited prior to 1983 (Σ16PAHs ca. 4429-13,348 ng/g) and during flood events (Σ16PAHs ca. 6380 ng/g - 1996 flood; 5360 ng/g - 2003 flood; 6075 ng/g - 2008 flood), especially in medium and high molecular weight PAHs. Among them, typical pyrogenic PAHs such as FLT, PYR, BbF and BaP were prevalent in most of the core samples. In addition, some PAHs last decade data is available from the Loire Bretagne Water Agency and were analyzed using high-performance liquid chromatography with postcolumn fluorescence derivatization (HPLC/FLD). These results confirm that the most highly contaminated sediments were found downstream of OFC (Σ16PAHs ca. 2264-7460 ng/g). According to the observed molecular distribution, PAHs are originated largely from high-temperature pyrolytic processes. Major sources of pyrogenic PAHs have been emphasized by calculation of specific ratios and by comparison to reported data. Atmospheric deposition of urban and industrial areas, wood combustion and degraded coal tar derived from former factories of coking/gas plants seem to be the major pyrogenic sources. Specifically, particular solid transport conditions that can occur during major flood events lead us to emphasize weathering of former contamination sources, such as more preserved coal tar.
Collapse
Affiliation(s)
- O Bertrand
- Université François Rabelais de Tours, EA 6293 GéHCO, Parc de Grandmont, 37200 Tours, France; CNRS/INSU, ISTO, UMR 7327, 45071 Orléans, France.
| | - L Mondamert
- Université de Poitiers, UMR 7285 IC2MP, 4 rue Michel Brunet, 86022 Poitiers Cedex, France
| | - C Grosbois
- Université François Rabelais de Tours, EA 6293 GéHCO, Parc de Grandmont, 37200 Tours, France
| | - E Dhivert
- Université François Rabelais de Tours, EA 6293 GéHCO, Parc de Grandmont, 37200 Tours, France
| | - X Bourrain
- Agence de l'Eau Loire-Bretagne, 9 Avenue Buffon, CS 36339, 45063 Orléans Cedex 2, France
| | - J Labanowski
- Université de Poitiers, UMR 7285 IC2MP, 4 rue Michel Brunet, 86022 Poitiers Cedex, France
| | - M Desmet
- Université François Rabelais de Tours, EA 6293 GéHCO, Parc de Grandmont, 37200 Tours, France
| |
Collapse
|
10
|
Hanser O, Biache C, Boulangé M, Parant S, Lorgeoux C, Billet D, Michels R, Faure P. Evolution of dissolved organic matter during abiotic oxidation of coal tar--comparison with contaminated soils under natural attenuation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1431-1443. [PMID: 25146121 DOI: 10.1007/s11356-014-3465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
In former coal transformation plants (coking and gas ones), the major organic contamination of soils is coal tar, mainly composed of polycyclic aromatic compounds (PACs). Air oxidation of a fresh coal tar was chosen to simulate the abiotic natural attenuation impact on PAC-contaminated soils. Water-leaching experiments were subsequently performed on fresh and oxidized coal tars to study the influence of oxidation on dissolved organic matter (DOM) quality and quantity. The characterization of the DOM was performed using a combination of molecular and spectroscopic techniques (high-performance liquid chromatography-size-exclusion chromatography (HPLC-SEC), 3D fluorescence, and gas chromatography coupled with mass spectrometry (GC-MS)) and compared with the DOM from contaminated soils sampled on the field exposed to natural attenuation for several decades. An increase in the oxygenated polycyclic aromatic compound concentrations was observed with abiotic oxidation both in the coal tar and the associated DOM. Polycyclic aromatic hydrocarbon concentrations in the leachates exceeded pure water solubility limits, suggesting that co-solvation with other soluble organic compounds occurred. Furthermore, emission excitation matrix analysis combined with synchronous fluorescence spectra interpretation and size-exclusion chromatography suggests that oxidation induced condensation reactions which were responsible for the formation of higher-molecular weight compounds and potentially mobilized by water. Thus, the current composition of the DOM in aged soils may at least partly result from (1) a depletion in lower-molecular weight compounds of the initial contamination stock and (2) an oxidative condensation leading to the formation of a higher-molecular weight fraction. Abiotic oxidation and water leaching may therefore be a significant combination contributing to the evolution of coal tar-contaminated soils under natural attenuation.
Collapse
Affiliation(s)
- Ogier Hanser
- Université de Lorraine, GeoRessources, UMR 7359, 54506, Vandœuvre-lès-Nancy, France
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Biache C, Mansuy-Huault L, Faure P. Impact of oxidation and biodegradation on the most commonly used polycyclic aromatic hydrocarbon (PAH) diagnostic ratios: Implications for the source identifications. JOURNAL OF HAZARDOUS MATERIALS 2014; 267:31-39. [PMID: 24413049 DOI: 10.1016/j.jhazmat.2013.12.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/14/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Based on the isomer stability during their formation, PAH diagnostic ratios have been extensively used to determine PAH contamination origin. Nevertheless, it is known that these isomers do not present the same physicochemical properties and that reactions occurring during the transport from an atmospheric source induce changes in the diagnostic ratios. Yet, little is known about reactions occurring in soils contaminated by other sources such as coal tar and coal. Innovative batch experiments of abiotic oxidation and microbial incubations were performed to discriminate independently the influence of these two major processes occurring in soils on the diagnostic ratios of major PAH sources. Three samples were studied, a coking plant soil and two major PAH sources in this soil, namely coal and coal tar. The combustion signature of the coking plant soil showed the major influence of coal tar in the soil sample composition. Some of these ratios were drastically affected by oxidation and biodegradation processes inducing a change in the source signature. The coal tar signature changed to petrogenic source after oxidation with the anthracene/(anthracene+phenanthrene) ratio. According to this ratio, the initial petrogenic signature of the coal changed to a combustion signature after the biodegradation experiment.
Collapse
Affiliation(s)
- Coralie Biache
- University of Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy F-54506, France; CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy F-54506, France.
| | - Laurence Mansuy-Huault
- University of Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy F-54506, France; CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy F-54506, France
| | - Pierre Faure
- University of Lorraine, LIEC, UMR7360, Vandœuvre-lès-Nancy F-54506, France; CNRS, LIEC, UMR7360, Vandœuvre-lès-Nancy F-54506, France
| |
Collapse
|
12
|
Ortega-Calvo JJ, Tejeda-Agredano MC, Jimenez-Sanchez C, Congiu E, Sungthong R, Niqui-Arroyo JL, Cantos M. Is it possible to increase bioavailability but not environmental risk of PAHs in bioremediation? JOURNAL OF HAZARDOUS MATERIALS 2013; 261:733-45. [PMID: 23583067 DOI: 10.1016/j.jhazmat.2013.03.042] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 02/28/2013] [Accepted: 03/16/2013] [Indexed: 05/21/2023]
Abstract
The current poor predictability of end points associated with the bioremediation of polycyclic aromatic hydrocarbons (PAHs) is a large limitation when evaluating its viability for treating contaminated soils and sediments. However, we have seen a wide range of innovations in recent years, such as an the improved use of surfactants, the chemotactic mobilization of bacterial inoculants, the selective biostimulation at pollutant interfaces, rhizoremediation and electrobioremediation, which increase the bioavailability of PAHs but do not necessarily increase the risk to the environment. The integration of these strategies into practical remediation protocols would be beneficial to the bioremediation industry, as well as improve the quality of the environment.
Collapse
Affiliation(s)
- J J Ortega-Calvo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apartado 1052, E-41080 Seville, Spain.
| | | | | | | | | | | | | |
Collapse
|
13
|
Khan MI, Cheema SA, Tang X, Hashmi MZ, Shen C, Park J, Chen Y. A battery of bioassays for the evaluation of phenanthrene biotoxicity in soil. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:47-55. [PMID: 23440446 DOI: 10.1007/s00244-013-9879-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
A battery of bioassays was used to assess the ecotoxicological risk of soil spiked with a range of phenanthrene levels (0.95, 6.29, 38.5, 58.7, 122, and 303 μg g(-1) dry soil) and aged for 69 days. Multiple species (viz. Brassica rapa, Eisenia feotida, Vibrio fischeri), representing different trophic levels, were used as bioindicator organisms. Among acute toxicity assays tested, the V. fischeri luminescence inhibition assay was the most sensitive indicator of phenanthrene biotoxicity. More than 15 % light inhibition was found at the lowest phenanthrene level (0.95 μg g(-1)). Furthermore, comet assay using E. fetida was applied to assess genotoxicity of phenanthrene. The strong correlation (r (2) ≥ 0.94) between phenanthrene concentration and DNA damage indicated that comet assay is appropriate for testing the genotoxic effects of phenanthrene-contaminated soil. In the light of these results, we conclude that the Microtox test and comet assay are robust and sensitive bioassays to be employed for the risk evaluation of polycyclic aromatic hydrocarbon-contaminated soil.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou 310029, Poeples's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Khan MI, Cheema SA, Tang X, Shen C, Sahi ST, Jabbar A, Park J, Chen Y. Biotoxicity assessment of pyrene in soil using a battery of biological assays. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 63:503-512. [PMID: 22941450 DOI: 10.1007/s00244-012-9793-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/26/2012] [Indexed: 06/01/2023]
Abstract
A test battery, composed of a range of biological assays, was applied to evaluate the ecological health of soil aged for 69 days and spiked with a range of pyrene levels (1.04, 8.99, 41.5, 72.6, 136, and 399 μg g(-1) dry soil; Soxhlet-extracted concentrations after 69 days of aging). Chinese cabbage (Brassica rapa), earthworm (Eisenia fetida), and bacteria (Vibrio fischeri) were used as test organisms to represent different trophic levels. Among the acute ecotoxicity bioassays used, the V. fischeri luminescence inhibition assay was the most sensitive indicator of pyrene toxicity. We observed >8 % light inhibition at the lowest concentration (1.04 μg g(-1)) pyrene, and this inhibition increased to 60 % at 72.6 μg g(-1). The sensitivity ranking for toxicity of the pyrene-contaminated soil in the present study was in the following decreasing order: root elongation of Chinese cabbage < earthworm mortality (14 days) < earthworm mortality (28 days) < luminescence inhibition (15 min) < luminescence inhibition (5 min). In addition, genotoxic effects of pyrene were also evaluated by using comet assay in E. fetida. The strong relationship between DNA damage and soil pyrene levels showed that comet assay is suitable for testing the genotoxicity of pyrene-polluted soil. In addition, tail moment was well correlated with soil pyrene levels (r (2) = 0.99). Thus, tail moment may be the most informative DNA-damage parameter representing the results of comet assay. Based on these results, the earthworm DNA damage assay and Microtox test are rapid and sensitive bioassays and can be used to assess the risk of soil with low to high levels of hydrocarbon pollution. Furthermore, an analysis of the toxic effects at several trophic levels is essential for a more comprehensive understanding of the damage caused by highly contaminated soil.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Hu J, Nakamura J, Richardson SD, Aitken MD. Evaluating the effects of bioremediation on genotoxicity of polycyclic aromatic hydrocarbon-contaminated soil using genetically engineered, higher eukaryotic cell lines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4607-13. [PMID: 22443351 PMCID: PMC3348858 DOI: 10.1021/es300020e] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Bioremediation is one of the commonly applied remediation strategies at sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, remediation goals are typically based on removal of the target contaminants rather than on broader measures related to health risks. We investigated changes in the toxicity and genotoxicity of PAH-contaminated soil from a former manufactured-gas plant site before and after two simulated bioremediation processes: a sequencing batch bioreactor system and a continuous-flow column system. Toxicity and genotoxicity of the residues from solvent extracts of the soil were determined by the chicken DT40 B-lymphocyte isogenic cell line and its DNA-repair-deficient mutants. Although both bioremediation processes significantly removed PAHs from the contaminated soil (bioreactor 69% removal, column 84% removal), bioreactor treatment resulted in an increase in toxicity and genotoxicity over the course of a treatment cycle, whereas long-term column treatment resulted in a decrease in toxicity and genotoxicity. However, when screening with a battery of DT40 mutants for genotoxicity profiling, we found that column treatment induced DNA damage types that were not observed in untreated soil. Toxicity and genotoxicity bioassays can supplement chemical analysis-based risk assessment for contaminated soil when evaluating the efficacy of bioremediation.
Collapse
Affiliation(s)
| | - Jun Nakamura
- Corresponding authors: Jun Nakamura (T: 1-919-966-6140; F: 1-919-966-6123; ); Michael D. Aitken (T: 1-919-966-1024; F: 1-919-966-7911; ). Address: Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, U.S.A
| | | | - Michael D. Aitken
- Corresponding authors: Jun Nakamura (T: 1-919-966-6140; F: 1-919-966-6123; ); Michael D. Aitken (T: 1-919-966-1024; F: 1-919-966-7911; ). Address: Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, U.S.A
| |
Collapse
|
16
|
Elgh-Dalgren K, Arwidsson Z, Camdzija A, Sjöberg R, Ribé V, Waara S, Allard B, von Kronhelm T, van Hees PAW. Laboratory and pilot scale soil washing of PAH and arsenic from a wood preservation site: changes in concentration and toxicity. JOURNAL OF HAZARDOUS MATERIALS 2009; 172:1033-1040. [PMID: 19699582 DOI: 10.1016/j.jhazmat.2009.07.092] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 05/28/2023]
Abstract
Soil washing of a soil with a mixture of both polycyclic aromatic hydrocarbons (PAH) and As was evaluated in laboratory and pilot scale, utilizing both single and mixtures of different additives. The highest level of decontamination was achieved with a combination of 0.213 M of the chelating agent MGDA and 3.2 x CMC* of a non-ionic, alkyl glucoside surfactant at pH 12 (Ca(OH)(2)). This combination managed to reach Swedish threshold values within 1 0 min of treatment when performed at elevated temperature (50 degrees C), with initial contaminant concentrations of As=105+/-4 mg/kg and US-EPA PAH(16)=46.0+/-2.3mg/kg. The main mechanisms behind the removal were the pH effect for As and a combination of SOM ionization as a result of high pH and micellar solubilization for PAHs. Implementation of the laboratory results utilizing a pilot scale equipment did not improve the performance, which may be due to the shorter contact time between the washing solution and the particles, or changes in physical characteristics of the leaching solution due to the elevated pressure utilized. The ecotoxicological evaluation, Microtox, demonstrated that all soil washing treatments increased the toxicity of soil leachates, possibly due to increased availability of contaminants and toxicity of soil washing solutions to the test organism.
Collapse
Affiliation(s)
- Kristin Elgh-Dalgren
- Man-Technology-Environment Research Center, School of Science and Technology, Orebro University, SE-701 82 Orebro, Sweden.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Domene X, Ramírez W, Mattana S, Alcañiz JM, Andrés P. Ecological risk assessment of organic waste amendments using the species sensitivity distribution from a soil organisms test battery. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2008; 155:227-236. [PMID: 18295946 DOI: 10.1016/j.envpol.2007.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 11/24/2007] [Accepted: 12/06/2007] [Indexed: 05/25/2023]
Abstract
Safe amendment rates (the predicted no-effect concentration or PNEC) of seven organic wastes were estimated from the species sensitivity distribution of a battery of soil biota tests and compared with different realistic amendment scenarios (different predicted environmental concentrations or PEC). None of the wastes was expected to exert noxious effects on soil biota if applied according either to the usual maximum amendment rates in Europe or phosphorus demands of crops (below 2 tonnes DM ha(-1)). However, some of the wastes might be problematic if applied according to nitrogen demands of crops (above 2 tonnes DM ha(-1)). Ammonium content and organic matter stability of the studied wastes are the most influential determinants of the maximum amendment rates derived in this study, but not pollutant burden. This finding indicates the need to stabilize wastes prior to their reuse in soils in order to avoid short-term impacts on soil communities.
Collapse
Affiliation(s)
- Xavier Domene
- Centre for Ecological Research and Forestry Applications (CREAF) and Unit of Ecology, Department of Animal and Plant Biology and Ecology, Autonomous University of Barcelona, E-08193 Cerdanyola del Vallès, Barcelona, Spain.
| | | | | | | | | |
Collapse
|
18
|
Lin X, Li X, Li P, Li F, Zhang L, Zhou Q. Evaluation of plant-microorganism synergy for the remediation of diesel fuel contaminated soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 81:19-24. [PMID: 18493697 DOI: 10.1007/s00128-008-9438-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 04/14/2008] [Indexed: 05/15/2023]
Abstract
The remediation of diesel fuel contaminated soil over a 2-year period by the plant-microorganism synergy was evaluated. Results indicated that the growth of Astragalus adsurgens was affected significantly, when the diesel fuel concentration was higher than 10 g kg(-1) dry soil. After a 2-year period, the removal of diesel fuel was >67%, and about 58-70% removal of aromatic hydrocarbons was obtained in these treatments. The removal of diesel fuel and its components was 13-30% higher than that of plant alone. These results show that an appropriate plant-microorganism synergy may serve as a low-cost, effective remedial technology for diesel-contaminated soil.
Collapse
Affiliation(s)
- Xin Lin
- Key Laboratory of Environmental Engineering, Shenyang, 110044, People's Republic of China
| | | | | | | | | | | |
Collapse
|
19
|
Hamdi H, Benzarti S, Manusadzianas L, Aoyama I, Jedidi N. Solid-phase bioassays and soil microbial activities to evaluate PAH-spiked soil ecotoxicity after a long-term bioremediation process simulating landfarming. CHEMOSPHERE 2007; 70:135-43. [PMID: 17686508 DOI: 10.1016/j.chemosphere.2007.06.043] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 06/07/2007] [Accepted: 06/20/2007] [Indexed: 05/16/2023]
Abstract
The residual ecotoxicity of long-term bioremediated soils concomitantly spiked with three PAHs at four levels (15, 75, 150, 300 mg Sigma 3 PAHs kg(-1) soil) was evaluated using physico-chemical analyses, solid-phase bioassays and soil microbial activities. The pot-scale bioremediation process consisted of weekly moderate waterings in the presence or absence of sewage sludge compost (SSC) under greenhouse conditions. After 15 months, anthracene and pyrene were almost completely degraded whereas benzo[a]pyrene was still persisting, most apparently in SSC-amended soil treatments. However, no apparent toxic effects of the residual PAHs could be detected. SSC application at 40 t ha(-1) was performed to valorize the biowaste and stimulate PAH biodegradation but caused soil salinization and pH reduction at the end of the bioremediation process. Consequently, SSC-amended soils were characterized by strong phytotoxicity to lettuce and had adverse effects on the ostracod Heterocypris incongruens. Despite the smaller number of culturable bacterial populations in SSC-amended soils, soil enzymatic activities were not affected by the organic amendment and residual PAHs; and the bioremediation efficiency was likely to be more limited by the bioavailability of PAHs rather than by the total number of PAH-degraders.
Collapse
Affiliation(s)
- Helmi Hamdi
- Research Institute for Bioresources, Okayama University, Kurashiki, Japan.
| | | | | | | | | |
Collapse
|
20
|
Hwang HM, Hu X, Zhao X. Enhanced bioremediation of polycyclic aromatic hydrocarbons by environmentally friendly techniques. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:313-352. [PMID: 18000785 DOI: 10.1080/10590500701704011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are recognized as a worldwide environmental contamination problem because of their intrinsic chemical stability, high resistance to various transformation processes, and toxicity property. Because of the wide distribution of the PAHs in the environment, human exposure to the PAHs is likely to occur from dermal contact, ingestion of particles, inhalation of airborne dust, or bioaccumulation in the food chains. Therefore, their remediation is considered indispensable for environmental clean up and human health. The objective of this article is to provide a quick review on toxicity of PAHs, biodegradation of PAHs, influence of selected environmental factors on PAHs biodegradation, selected techniques for enhancing biodegradation of PAHs, and a detailed description of two environmentally friendly techniques used in our laboratory for PAHs enhanced bioremediation. Finally, an overview on the green chemistry concept and its relevance to development of several environmental fingerprinting tools for predicting successful PAHs detoxification are discussed.
Collapse
Affiliation(s)
- Huey-Min Hwang
- Department of Biology, Jackson State University, Jackson, Mississippi 39217, USA.
| | | | | |
Collapse
|
21
|
Eom IC, Rast C, Veber AM, Vasseur P. Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 67:190-205. [PMID: 17382389 DOI: 10.1016/j.ecoenv.2006.12.020] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2006] [Revised: 11/22/2006] [Accepted: 12/14/2006] [Indexed: 05/14/2023]
Abstract
Soil samples from a former cokery site polluted with polycyclic aromatic hydrocarbons (PAHs) were assessed for their toxicity to terrestrial and aquatic organisms and for their mutagenicity. The total concentration of the 16 PAHs listed as priority pollutants by the US Environmental Protection Agency (US-EPA) was 2634+/-241 mg/kgdw in soil samples. The toxicity of water-extractable pollutants from the contaminated soil samples was evaluated using acute (Vibrio fischeri; Microtox test, Daphnia magna) and chronic (Pseudokirchneriella subcapitata, Ceriodaphnia dubia) bioassays and the EC values were expressed as percentage water extract in the test media (v/v). Algal growth (EC50-3d=2.4+/-0.2% of the water extracts) and reproduction of C. dubia (EC50-7d=4.3+/-0.6%) were the most severely affected, compared to bacterial luminescence (EC50-30 min=12+/-3%) and daphnid viability (EC50-48 h=30+/-3%). The Ames and Mutatox tests indicated mutagenicity of water extracts, while no response was found with the umu test. The toxicity of the soil samples was assessed on the survival and reproduction of earthworms (Eisenia fetida) and collembolae (Folsomia candida), and on the germination and growth of higher plants (Lactuca sativa L.: lettuce and Brassica chinensis J.: Chinese cabbage). The EC50 values were expressed as percentage contaminated soil in ISO soil test medium (weight per weight-w/w) and indicated severe effects on reproduction of the collembola F. candida (EC50-28 d=5.7%) and the earthworm E. fetida (EC50-28 d=18% and EC50-56 d=8%, based on cocoon and juvenile production, respectively). Survival of collembolae was already affected at a low concentration of the contaminated soil (EC50-28 d=11%). The viability of juvenile earthworms was inhibited at much lower concentrations of the cokery soil (EC50-14 d=28%) than the viability of adults (EC50-14 d=74%). Only plant growth was inhibited (EC50-17d=26%) while germination was not. Chemical analyses of water extracts allowed us to identify inorganic water-extractable pollutants as responsible for toxicity on aquatic species, especially copper for effects on D. magna and C. dubia. The soil toxicity on collembolae and earthworms could be explained by 4 PAH congeners-fluorene, phenanthrene, pyrene, and fluoranthene. Yet, toxicity of the cokery soil as a whole was much lower than toxicity that could be deduced from the concentration of each congener in spiked soils, indicating that pollutants in the soil became less bioavailable with ageing.
Collapse
Affiliation(s)
- I C Eom
- NIER, Environmental Research Complex, Kyungseo-Dong, Seo-Gu, 404-170 Incheon, South Korea.
| | | | | | | |
Collapse
|
22
|
Abdel Migid HM, Azab YA, Ibrahim WM. Use of plant genotoxicity bioassay for the evaluation of efficiency of algal biofilters in bioremediation of toxic industrial effluent. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2007; 66:57-64. [PMID: 16376989 DOI: 10.1016/j.ecoenv.2005.10.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2004] [Revised: 09/10/2005] [Accepted: 10/15/2005] [Indexed: 05/05/2023]
Abstract
The toxicity and efficacy of an algal-based bioremediation technology were assessed through bioassays for ecological risk of contaminated industrial effluents. The algal bioremoval of heavy metals was evaluated using an in vitro approach. Phytogenotoxicity tests were conducted with Allium cepa and Vicia faba plants to evaluate the genotoxicity of the industrial effluents before and after treatment with different kinds of algal biofilters (BF). Root cells were exposed for 24 h to different dilutions of both raw and treated effluent of a chemical fertilizer factory. Three cytogenetic endpoints were used to assess the mutagenic potencies of the industrial effluent: mitotic inhibition, mitotic chromosome aberrations, and nuclear irregularities in interphase cells. Before algal treatment, the industrial effluent caused strong genotoxic effects represented by severe inhibition in mitotic activity of meristematic cells and high frequency of both chromosome and nucleus abnormalities. After algal treatment, the cytotoxic effects of 30% and 60% concentrations of the treated effluent were comparable to those of 5% and 10% concentrations before treatment, respectively, and the frequency of both chromosome and nuclear abnormalities declined by approximately 50%. Statistical analysis of the data indicates a significant reduction in genotoxicity associated with a remarkable reduction in heavy metal concentrations after bioremediation by algal BF. The Allium and Vicia genotoxicity approach was effective in monitoring bioremediated effluent for toxicity.
Collapse
Affiliation(s)
- Hala M Abdel Migid
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Dakahlia 23355, Egypt.
| | | | | |
Collapse
|
23
|
Hamdi H, Manusadzianas L, Aoyama I, Jedidi N. Effects of anthracene, pyrene and benzo[a]pyrene spiking and sewage sludge compost amendment on soil ecotoxicity during a bioremediation process. CHEMOSPHERE 2006; 65:1153-62. [PMID: 16725180 DOI: 10.1016/j.chemosphere.2006.03.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2005] [Revised: 03/28/2006] [Accepted: 03/28/2006] [Indexed: 05/09/2023]
Abstract
The fate of spiked anthracene, pyrene and benzo[a]pyrene in soil with or without sewage sludge compost was assessed during a 6-month bioremediation process simulating landfarming. Bioassays and physico-chemical analyses were employed to monitor toxicity change in soil samples and elutriates through ten sampling campaigns. Pearson product-moment correlation coefficient was determined to measure the strength of relationship between bioassays and physico-chemical analyses. The PAH dissipation in soil was enhanced after the first water addition, and the remaining amounts at the end of the experiment were positively correlated to the number of benzene rings and the presence of sewage sludge compost. Toxicity of soil elutriates to Daphnia magna was evident at early stages, originating exclusively from sewage sludge compost amendment. The lettuce root elongation was continuously inhibited by elutriates for all the treatments including control soil, probably due to high salinity or to unaddressed leachable phytotoxic compounds that were present in the experimental soil. The newly developed direct solid-phase chronic toxicity test using ostracod (Heterocypris incongruens) succeeded in evaluating the soil-bound PAH toxicity, as PAHs could not be detected in elutriates.
Collapse
Affiliation(s)
- Helmi Hamdi
- Research Institute for Bioresources, Okayama University, Chuo 2-20-1, Kurashiki Shi 710-0046, Japan
| | | | | | | |
Collapse
|
24
|
Fernández MD, Vega MM, Tarazona JV. Risk-based ecological soil quality criteria for the characterization of contaminated soils. Combination of chemical and biological tools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2006; 366:466-84. [PMID: 16574196 DOI: 10.1016/j.scitotenv.2006.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 12/15/2005] [Accepted: 01/16/2006] [Indexed: 05/08/2023]
Abstract
This paper describes the development of soil quality criteria for the characterization of soils focused on the potential risk to the ecosystem. The approach combines both Generic Soil Quality standards (GSQs) for individual chemicals and direct ecotoxicity assays on soil samples taken from the site. Criteria establish three main risk levels with their corresponding trigger values. The trigger values to determine high risk or "polluted" soils are exclusively based on direct toxicity assessments. The trigger values for the other categories are established by a combination of the application of GSQs and the results of bioassays. Low-risk is assumed when no toxicity is observed and GSQs based on precautionary ecotoxicity thresholds are not exceeded; high-risk must be considered if acute toxicity above the proposed trigger value is observed in soil or leachate samples. In between these levels, the risk cannot be elucidated and a site-specific assessment is required. The GSQs take into account the current or future land use, thus defining three categories: industrial soils, urban/residential soils and natural/agricultural/forest soils, each of them with different ecological requirements. The GSQ values are established following an inverse risk assessment methodology, integrating ecotoxicity and exposure models and setting the soil levels associated to pre-established criteria for the assumption of low risk. The proposed methodology covers all relevant ecological receptors and processes, soil organisms, potential contamination of ground and surface waters, and exposure of terrestrial vertebrates due to bioaccumulation and biomagnification. Exposure routes and protection criteria are defined in each protection goal. The relevance of each receptor and route is established according to the land use.
Collapse
Affiliation(s)
- María Dolores Fernández
- Laboratory for Ecotoxicology, Department of the Environment, INIA, Ctra. A Coruña, km. 7,5, 28040 Madrid, Spain
| | | | | |
Collapse
|