1
|
Rattner BA, Wazniak CE, Lankton JS, McGowan PC, Drovetski SV, Egerton TA. Review of harmful algal bloom effects on birds with implications for avian wildlife in the Chesapeake Bay region. HARMFUL ALGAE 2022; 120:102319. [PMID: 36470599 DOI: 10.1016/j.hal.2022.102319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/17/2023]
Abstract
The Chesapeake Bay, along the mid-Atlantic coast of North America, is the largest estuary in the United States and provides critical habitat for wildlife. In contrast to point and non-point source release of pesticides, metals, and industrial, personal care and household use chemicals on biota in this watershed, there has only been scant attention to potential exposure and effects of algal toxins on wildlife in the Chesapeake Bay region. As background, we first review the scientific literature on algal toxins and harmful algal bloom (HAB) events in various regions of the world that principally affected birds, and to a lesser degree other wildlife. To examine the situation for the Chesapeake, we compiled information from government reports and databases summarizing wildlife mortality events for 2000 through 2020 that were associated with potentially toxic algae and HAB events. Summary findings indicate that there have been few wildlife mortality incidents definitively linked to HABs, other mortality events that were suspected to be related to HABs, and more instances in which HABs may have indirectly contributed to or occurred coincident with wildlife mortality. The dominant toxins found in the Chesapeake Bay drainage that could potentially affect wildlife are microcystins, with concentrations in water approaching or exceeding human-based thresholds for ceasing recreational use and drinking water at a number of locations. As an increasing trend in HAB events in the U.S. and in the Chesapeake Bay have been reported, additional information on HAB toxin exposure routes, comparative sensitivity among species, consequences of sublethal exposure, and better diagnostic and risk criteria would greatly assist in predicting algal toxin hazard and risks to wildlife.
Collapse
Affiliation(s)
- Barnett A Rattner
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD 20705, USA.
| | - Catherine E Wazniak
- Maryland Department of Natural Resources, Resource Assessment Service, Annapolis, MD 21401, USA
| | - Julia S Lankton
- U.S. Geological Survey, National Wildlife Health Center, Madison, WI 53711, USA
| | - Peter C McGowan
- U.S. Fish and Wildlife Service, Chesapeake Bay Field Office, Annapolis, MD 21401, USA
| | - Serguei V Drovetski
- U.S. Geological Survey, Eastern Ecological Science Center at the Patuxent Research Refuge, Beltsville, MD 20705, USA
| | - Todd A Egerton
- Virginia Department of Health, Division of Shellfish Safety and Waterborne Hazards, Norfolk, VA 23510, USA
| |
Collapse
|
2
|
Reporting of Freshwater Cyanobacterial Poisoning in Terrestrial Wildlife: A Systematic Map. Animals (Basel) 2022; 12:ani12182423. [PMID: 36139281 PMCID: PMC9494982 DOI: 10.3390/ani12182423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/26/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Harmful cyanobacterial blooms (cyanoHABs) have been reported globally, threatening human and animal health. They are encouraged by the warming climate and agricultural pollution creating nutrient-rich, warm environments, ideal for cyanobacterial proliferation. The cyanotoxins produced by these blooms have caused poisonings in many wildlife species; however, these cases are severely underreported, and many are likely missed. The aim of this systematic map was to collate, organise, and characterise all existing reports of cyanotoxin poisonings in terrestrial wildlife. We conducted a search of the published literature using online databases, yielding a total of 45 cases detailing incidents involving terrestrial wildlife. There is no current standard method for the reporting and diagnosis of cyanotoxin intoxication cases, and we provide recommendations on this to include both clinical diagnostic tools and investigative chemistry techniques. Less than half of all cases employed robust methods of detection and diagnosis based on our recommendations. Most cases were investigated after poisonings had already occurred, and only nine reports mentioned any effort to mitigate the effects of harmful cyanobacteria on terrestrial wildlife. This systematic map details terrestrial wildlife cyanotoxin intoxications from a diagnostic perspective, identifying how reporting can be improved, leading to more successful mitigation and investigative efforts in the future. Abstract Global warming and over-enrichment of freshwater systems have led to an increase in harmful cyanobacterial blooms (cyanoHABs), affecting human and animal health. The aim of this systematic map was to detail the current literature surrounding cyanotoxin poisonings in terrestrial wildlife and identify possible improvements to reports of morbidity and mortality from cyanotoxins. A systematic search was conducted using the electronic databases Scopus and Web of Science, yielding 5059 published studies identifying 45 separate case reports of wildlife poisonings from North America, Africa, Europe, and Asia. Currently, no gold standard for the diagnosis of cyanotoxin intoxication exists for wildlife, and we present suggested guidelines here. These involved immunoassays and analytical chemistry techniques to identify the toxin involved, PCR to identify the cyanobacterial species involved, and evidence of ingestion or exposure to cyanotoxins in the animals affected. Of the 45 cases, our recommended methods concurred with 48.9% of cases. Most often, cases were investigated after a mortality event had already occurred, and where mitigation was implemented, only three cases were successful in their efforts. Notably, only one case of invasive cyanobacteria was recorded in this review despite invasive species being known to occur throughout the globe; this could explain the underreporting of invasive cyanobacteria. This systematic map highlights the perceived absence of robust detection, surveillance, and diagnosis of cyanotoxin poisoning in wildlife. It may be true that wildlife is less susceptible to these poisoning events; however, the true rates of poisoning are likely much more than is reported in the literature.
Collapse
|
3
|
Cyanotoxins and the Nervous System. Toxins (Basel) 2021; 13:toxins13090660. [PMID: 34564664 PMCID: PMC8472772 DOI: 10.3390/toxins13090660] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022] Open
Abstract
Cyanobacteria are capable of producing a wide range of bioactive compounds with many considered to be toxins. Although there are a number of toxicological outcomes with respect to cyanobacterial exposure, this review aims to examine those which affect the central nervous system (CNS) or have neurotoxicological properties. Such exposures can be acute or chronic, and we detail issues concerning CNS entry, detection and remediation. Exposure can occur through a variety of media but, increasingly, exposure through air via inhalation may have greater significance and requires further investigation. Even though cyanobacterial toxins have traditionally been classified based on their primary mode of toxicity, increasing evidence suggests that some also possess neurotoxic properties and include known cyanotoxins and unknown compounds. Furthermore, chronic long-term exposure to these compounds is increasingly being identified as adversely affecting human health.
Collapse
|
4
|
Breinlinger S, Phillips TJ, Haram BN, Mareš J, Martínez Yerena JA, Hrouzek P, Sobotka R, Henderson WM, Schmieder P, Williams SM, Lauderdale JD, Wilde HD, Gerrin W, Kust A, Washington JW, Wagner C, Geier B, Liebeke M, Enke H, Niedermeyer THJ, Wilde SB. Hunting the eagle killer: A cyanobacterial neurotoxin causes vacuolar myelinopathy. Science 2021; 371:eaax9050. [PMID: 33766860 PMCID: PMC8318203 DOI: 10.1126/science.aax9050] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
Vacuolar myelinopathy is a fatal neurological disease that was initially discovered during a mysterious mass mortality of bald eagles in Arkansas in the United States. The cause of this wildlife disease has eluded scientists for decades while its occurrence has continued to spread throughout freshwater reservoirs in the southeastern United States. Recent studies have demonstrated that vacuolar myelinopathy is induced by consumption of the epiphytic cyanobacterial species Aetokthonos hydrillicola growing on aquatic vegetation, primarily the invasive Hydrilla verticillata Here, we describe the identification, biosynthetic gene cluster, and biological activity of aetokthonotoxin, a pentabrominated biindole alkaloid that is produced by the cyanobacterium A. hydrillicola We identify this cyanobacterial neurotoxin as the causal agent of vacuolar myelinopathy and discuss environmental factors-especially bromide availability-that promote toxin production.
Collapse
Affiliation(s)
- Steffen Breinlinger
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Tabitha J Phillips
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Brigette N Haram
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Jan Mareš
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - José A Martínez Yerena
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Hrouzek
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Roman Sobotka
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - W Matthew Henderson
- Office of Research and Development, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Peter Schmieder
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Susan M Williams
- Department of Population Health, Poultry Diagnostic and Research Center, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | | | - H Dayton Wilde
- Horticulture Department, University of Georgia, Athens, GA, USA
| | - Wesley Gerrin
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
| | - Andreja Kust
- Biology Centre of the Czech Academy of Sciences, Institute of Hydrobiology, České Budějovice, Czech Republic
| | - John W Washington
- Office of Research and Development, Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Christoph Wagner
- Institute of Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Benedikt Geier
- Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | - Manuel Liebeke
- Max Planck Institute for Marine Microbiology (MPIMM), Bremen, Germany
| | | | - Timo H J Niedermeyer
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| | - Susan B Wilde
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA.
| |
Collapse
|
5
|
Vacuolar myelinopathy: waterbird risk on a southeastern impoundment co-infested with Hydrilla verticillata and Aetokthonos hydrillicola. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02282-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Maerz JC, Wilde SB, Terrell VK, Haram B, Trimmer RC, Nunez C, Cork E, Pessier A, Lannoo S, Lannoo MJ, Diamond SL. Seasonal and plant specific vulnerability of amphibian tadpoles to the invasion of a novel cyanobacteria. Biol Invasions 2018. [DOI: 10.1007/s10530-018-1861-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
7
|
Andersson M, Karlsson O, Brandt I. The environmental neurotoxin β-N-methylamino-l-alanine (l-BMAA) is deposited into birds' eggs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 147:720-724. [PMID: 28942274 DOI: 10.1016/j.ecoenv.2017.09.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/12/2017] [Indexed: 06/07/2023]
Abstract
The neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disorders. BMAA is also a known developmental neurotoxin and research indicates that the sources of human and wildlife exposure may be more diverse than previously anticipated. The aim of the present study was therefore to examine whether BMAA can be transferred into birds' eggs. Egg laying quail were dosed with 14C-labeled BMAA. The distribution of radioactivity in the birds and their laid eggs was then examined at different time points by autoradiography and phosphoimaging analysis. To evaluate the metabolic stability of the BMAA molecule, the distribution of 14C-methyl- and 14C-carboxyl-labeled BMAA were compared. The results revealed a pronounced incorporation of radioactivity in the eggs, predominantly in the yolk but also in the albumen. Imaging analysis showed that the concentrations of radioactivity in the liver decreased about seven times between the 24h and the 72h time points, while the concentrations in egg yolk remained largely unchanged. At 72h the egg yolk contained about five times the concentration of radioactivity in the liver. Both BMAA preparations gave rise to similar distribution pattern in the bird tissues and in the eggs, indicating metabolic stability of the labeled groups. The demonstrated deposition into eggs warrants studies of BMAAs effects on bird development. Moreover, birds' eggs may be a source of human BMAA exposure, provided that the laying birds are exposed to BMAA via their diet.
Collapse
Affiliation(s)
- Marie Andersson
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Oskar Karlsson
- Department of Pharmaceutical Biosciences, Uppsala University, SE-751 24 Uppsala, Sweden; Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, SE-17176 Stockholm, Sweden
| | - Ingvar Brandt
- Department of Environmental Toxicology, Uppsala University, SE-752 36 Uppsala, Sweden.
| |
Collapse
|
8
|
Patterns and mechanisms of invasive plant impacts on North American birds: a systematic review. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1377-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Cattau CE, Fletcher RJ, Reichert BE, Kitchens WM. Counteracting effects of a non-native prey on the demography of a native predator culminate in positive population growth. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:1952-1968. [PMID: 27755742 DOI: 10.1890/15-1020.1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 10/07/2015] [Accepted: 01/28/2016] [Indexed: 05/26/2023]
Abstract
Identifying impacts of non-native species on native populations is central to conservation and ecology. While effects of non-native predators on native prey populations have recently received much attention, impacts of introduced prey on native predator populations are less understood. Non-native prey can influence predator behavior and demography through direct and indirect pathways, yet quantitative assessments of the relative impacts of multiple, potentially counteracting, effects on native predator population growth remain scarce. Using ≈20 years of range-wide monitoring data, we tested for effects of a recently introduced, rapidly spreading non-native prey species (Pomacea maculata) on the behavior and demography of the endangered Snail Kite (Rostrhamus sociabilis). Previous studies found that food-handling difficulties caused by the large size of P. maculata (relative to the native P. paludosa) can lead to energetic deficiencies in juvenile kites, suggesting the potential for evolutionary traps to occur. However, high densities of P. maculata populations could facilitate kites by providing supplemental food resources. Contrary to prior hypotheses, we found that juvenile apparent survival increased ≈50% in wetlands invaded by non-native snails. Breeding rates and number of young fledged/successful nests were also positively associated with non-native snail presence, suggesting direct trophic benefits to kites. We found no direct effects of the invasive snail on adult survival or daily nest survival rates. Kite movements and breeding distribution closely tracked the spread of non-native snail populations. Since 2005, kites have been heavily concentrated in northern regions where non-native snails have established. This geographic shift has had hidden costs, as use of northern regions is associated with lower adult survival. Despite negative impacts to this key vital rate, matrix population modeling indicated that the multifarious effects of the non-native snail invasion on kites culminated in increased population growth rates, likely lowering short-term extinction risks. Results suggest that considering only particular components of behavior or demography may be inadequate to infer the population-dynamic importance of non-native prey on native predators, including their role in creating potential evolutionary traps. Our findings provide information pertinent to Everglades restoration, highlighting potential management trade-offs for non-native species that may aid imperiled species recovery yet disrupt other native communities.
Collapse
Affiliation(s)
- Christopher E Cattau
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 32611, USA.
- Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, Florida, 32611, USA.
| | - Robert J Fletcher
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 32611, USA
| | - Brian E Reichert
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 32611, USA
- Florida Cooperative Fish and Wildlife Research Unit, University of Florida, Gainesville, Florida, 32611, USA
| | - Wiley M Kitchens
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, 32611, USA
| |
Collapse
|
10
|
Backer LC, Miller M. Sentinel Animals in a One Health Approach to Harmful Cyanobacterial and Algal Blooms. Vet Sci 2016; 3:E8. [PMID: 27152315 PMCID: PMC4852742 DOI: 10.3390/vetsci3020008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/08/2016] [Accepted: 04/14/2016] [Indexed: 12/02/2022] Open
Abstract
People, domestic animals, and wildlife are all exposed to numerous environmental threats, including harmful algal blooms (HABs). However, because animals exhibit wide variations in diet, land use and biology, they are often more frequently or heavily exposed to HAB toxins than are people occupying the same habitat, making them sentinels for human exposures. Historically, we have taken advantage of unique physiological characteristics of animals, such as the sensitivity of canaries to carbon monoxide, to more quickly recognize threats and help protect human health. As HAB events become more severe and widespread worldwide, exposure and health outcome data for animals can be extremely helpful to predict, prevent, and evaluate human exposures and health outcomes. Applying a One Health approach to investigation of HABs means that lessons learned from animal sentinels can be applied to protect people, animals and our shared environment.
Collapse
Affiliation(s)
- Lorraine C. Backer
- National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway NE, MS F-60, Chamblee, GA 30341, USA
| | - Melissa Miller
- Office of Spill Prevention and Response, Department of Fish and Wildlife, Marine Wildlife Veterinary Care and Research Center, 1451 Shaffer Rd, Santa Cruz, CA 95060, USA;
- School of Veterinary Medicine, University of California at Davis, Davis, CA 95616, USA
| |
Collapse
|
11
|
Walton K, Berry JP. Indole Alkaloids of the Stigonematales (Cyanophyta): Chemical Diversity, Biosynthesis and Biological Activity. Mar Drugs 2016; 14:md14040073. [PMID: 27058546 PMCID: PMC4849077 DOI: 10.3390/md14040073] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/28/2016] [Accepted: 03/31/2016] [Indexed: 12/22/2022] Open
Abstract
The cyanobacteria are well recognized as producers of a wide array of bioactive metabolites including toxins, and potential drug candidates. However, a limited number of taxa are generally considered with respect to both of these aspects. That said, the order Stigonematales, although largely overlooked in this regard, has become increasingly recognized as a source of bioactive metabolites relevant to both human and environmental health. In particular, the hapalindoles and related indole alkaloids (i.e., ambiguines, fischerindoles, welwitindolinones) from the order, represent a diverse, and phylogenetically characteristic, class of secondary metabolites with biological activity suggestive of potential as both environmental toxins, and promising drug discovery leads. The present review gives an overview of the chemical diversity of biologically active metabolites from the Stigonematales—and particularly the so-called hapalindole-type alkaloids—including their biosynthetic origins, and their pharmacologically and toxicologically relevant bioactivities. Taken together, the current evidence suggests that these alkaloids, and the associated cyanobacterial taxa from the order, warrant future consideration as both potentially harmful (i.e., “toxic”) algae, and as promising leads for drug discovery.
Collapse
Affiliation(s)
- Katherine Walton
- Department of Chemistry and Biochemistry, Marine Science Program, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA.
| | - John P Berry
- Department of Chemistry and Biochemistry, Marine Science Program, Florida International University, 3000 NE 151st Street, North Miami, FL 33181, USA.
| |
Collapse
|
12
|
ALTERNATE FOOD-CHAIN TRANSFER OF THE TOXIN LINKED TO AVIAN VACUOLAR MYELINOPATHY AND IMPLICATIONS FOR THE ENDANGERED FLORIDA SNAIL KITE (ROSTRHAMUS SOCIABILIS). J Wildl Dis 2016; 52:335-44. [PMID: 26981686 DOI: 10.7589/2015-03-061] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Avian vacuolar myelinopathy (AVM) is a neurologic disease causing recurrent mortality of Bald Eagles ( Haliaeetus leucocephalus ) and American Coots ( Fulica americana ) at reservoirs and small impoundments in the southern US. Since 1994, AVM is considered the cause of death for over 170 Bald Eagles and thousands of American Coots and other species of wild birds. Previous studies link the disease to an uncharacterized toxin produced by a recently described cyanobacterium, Aetokthonos hydrillicola gen. et sp. nov. that grows epiphytically on submerged aquatic vegetation (SAV). The toxin accumulates, likely in the gastrointestinal tract of waterbirds that consume SAV, and birds of prey are exposed when feeding on the moribund waterbirds. Aetokthonos hydrillicola has been identified in all reservoirs where AVM deaths have occurred and was identified growing abundantly on an exotic SAV hydrilla ( Hydrilla verticillata ) in Lake Tohopekaliga (Toho) in central Florida. Toho supports a breeding population of a federally endangered raptor, the Florida Snail Kite ( Rostrhamus sociabilis ) and a dense infestation of an exotic herbivorous aquatic snail, the island applesnail ( Pomacea maculata ), a primary source of food for resident Snail Kites. We investigated the potential for transmission in a new food chain and, in laboratory feeding trials, confirmed that the AVM toxin was present in the hydrilla/A. hydrillicola matrix collected from Toho. Additionally, laboratory birds that were fed apple snails feeding on hydrilla/A. hydrillicola material from a confirmed AVM site displayed clinical signs (3/5), and all five developed brain lesions unique to AVM. This documentation of AVM toxin in central Florida and the demonstration of AVM toxin transfer through invertebrates indicate a significant risk to the already diminished population of endangered Snail Kites.
Collapse
|
13
|
Testai E, Scardala S, Vichi S, Buratti FM, Funari E. Risk to human health associated with the environmental occurrence of cyanobacterial neurotoxic alkaloids anatoxins and saxitoxins. Crit Rev Toxicol 2016; 46:385-419. [PMID: 26923223 DOI: 10.3109/10408444.2015.1137865] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cyanobacteria are ubiquitous photosynthetic micro-organisms forming blooms and scums in surface water; among them some species can produce cyanotoxins giving rise to some concern for human health and animal life. To date, more than 65 cyanobacterial neurotoxins have been described, of which the most studied are the groups of anatoxins and saxitoxins (STXs), comprising many different variants. In freshwaters, the hepatotoxic microcystins represent the most frequently detected cyanotoxin: on this basis, it could appear that neurotoxins are less relevant, but the low frequency of detection may partially reflect an a priori choice of target analytes, the low method sensitivity and the lack of certified standards. Cyanobacterial neurotoxins target cholinergic synapses or voltage-gated ion channels, blocking skeletal and respiratory muscles, thus leading to death by respiratory failure. This review reports and analyzes the available literature data on environmental occurrence of cyanobacterial neurotoxic alkaloids, namely anatoxins and STXs, their biosynthesis, toxicology and epidemiology, derivation of guidance values and action limits. These data are used as the basis to assess the risk posed to human health, identify critical exposure scenarios and highlight the major data gaps and research needs.
Collapse
Affiliation(s)
- Emanuela Testai
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Simona Scardala
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Susanna Vichi
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Franca M Buratti
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| | - Enzo Funari
- a Environment and Primary Prevention Department , Istituto Superiore di Sanità , Rome , Italy
| |
Collapse
|
14
|
Weberg MA, Murphy BR, Rypel AL, Copeland JR. A Survey of the New River Aquatic Plant Community in Response to Recent Triploid Grass Carp Introductions into Claytor Lake, Virginia. SOUTHEAST NAT 2015. [DOI: 10.1656/058.014.0211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Hilborn ED, Beasley VR. One health and cyanobacteria in freshwater systems: animal illnesses and deaths are sentinel events for human health risks. Toxins (Basel) 2015; 7:1374-95. [PMID: 25903764 PMCID: PMC4417972 DOI: 10.3390/toxins7041374] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/10/2015] [Accepted: 04/13/2015] [Indexed: 11/17/2022] Open
Abstract
Harmful cyanobacterial blooms have adversely impacted human and animal health for thousands of years. Recently, the health impacts of harmful cyanobacteria blooms are becoming more frequently detected and reported. However, reports of human and animal illnesses or deaths associated with harmful cyanobacteria blooms tend to be investigated and reported separately. Consequently, professionals working in human or in animal health do not always communicate findings related to these events with one another. Using the One Health concept of integration and collaboration among health disciplines, we systematically review the existing literature to discover where harmful cyanobacteria-associated animal illnesses and deaths have served as sentinel events to warn of potential human health risks. We find that illnesses or deaths among livestock, dogs and fish are all potentially useful as sentinel events for the presence of harmful cyanobacteria that may impact human health. We also describe ways to enhance the value of reports of cyanobacteria-associated illnesses and deaths in animals to protect human health. Efficient monitoring of environmental and animal health in a One Health collaborative framework can provide vital warnings of cyanobacteria-associated human health risks.
Collapse
Affiliation(s)
- Elizabeth D Hilborn
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Val R Beasley
- Department of Veterinary and Biomedical Sciences, College of Agricultural Sciences, the Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
16
|
Cagide E, Becher PG, Louzao MC, Espiña B, Vieytes MR, Jüttner F, Botana LM. Hapalindoles from the Cyanobacterium Fischerella: Potential Sodium Channel Modulators. Chem Res Toxicol 2014; 27:1696-706. [DOI: 10.1021/tx500188a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Eva Cagide
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Paul G. Becher
- Institute
of Plant Biology, Limnological
Station, University of Zürich, 8802 Kilchberg, Switzerland
| | - M. Carmen Louzao
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Begoña Espiña
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Mercedes R. Vieytes
- Departamento
de Fisiología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Friedrich Jüttner
- Institute
of Plant Biology, Limnological
Station, University of Zürich, 8802 Kilchberg, Switzerland
| | - Luis M. Botana
- Departamento
de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| |
Collapse
|
17
|
Mercurio AD, Hernandez SM, Maerz JC, Yabsley MJ, Ellis AE, Coleman AL, Shelnutt LM, Fischer JR, Wilde SB. Experimental feeding of Hydrilla verticillata colonized by stigonematales cyanobacteria induces vacuolar myelinopathy in painted turtles (Chrysemys picta). PLoS One 2014; 9:e93295. [PMID: 24695109 PMCID: PMC3973599 DOI: 10.1371/journal.pone.0093295] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 03/03/2014] [Indexed: 11/18/2022] Open
Abstract
Vacuolar myelinopathy (VM) is a neurologic disease primarily found in birds that occurs when wildlife ingest submerged aquatic vegetation colonized by an uncharacterized toxin-producing cyanobacterium (hereafter “UCB” for “uncharacterized cyanobacterium”). Turtles are among the closest extant relatives of birds and many species directly and/or indirectly consume aquatic vegetation. However, it is unknown whether turtles can develop VM. We conducted a feeding trial to determine whether painted turtles (Chrysemys picta) would develop VM after feeding on Hydrilla (Hydrilla verticillata), colonized by the UCB (Hydrilla is the most common “host” of UCB). We hypothesized turtles fed Hydrilla colonized by the UCB would exhibit neurologic impairment and vacuolation of nervous tissues, whereas turtles fed Hydrilla free of the UCB would not. The ability of Hydrilla colonized by the UCB to cause VM (hereafter, “toxicity”) was verified by feeding it to domestic chickens (Gallus gallus domesticus) or necropsy of field collected American coots (Fulica americana) captured at the site of Hydrilla collections. We randomly assigned ten wild-caught turtles into toxic or non-toxic Hydrilla feeding groups and delivered the diets for up to 97 days. Between days 82 and 89, all turtles fed toxic Hydrilla displayed physical and/or neurologic impairment. Histologic examination of the brain and spinal cord revealed vacuolations in all treatment turtles. None of the control turtles exhibited neurologic impairment or had detectable brain or spinal cord vacuolations. This is the first evidence that freshwater turtles can become neurologically impaired and develop vacuolations after consuming toxic Hydrilla colonized with the UCB. The southeastern United States, where outbreaks of VM occur regularly and where vegetation colonized by the UCB is common, is also a global hotspot of freshwater turtle diversity. Our results suggest that further investigations into the effect of the putative UCB toxin on wild turtles in situ are warranted.
Collapse
Affiliation(s)
- Albert D. Mercurio
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, Wildlife Health Building, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| | - Sonia M. Hernandez
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, Wildlife Health Building, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - John C. Maerz
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Michael J. Yabsley
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, Wildlife Health Building, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Angela E. Ellis
- The Athens Veterinary Diagnostic Laboratory, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Amanda L. Coleman
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| | - Leslie M. Shelnutt
- The University of Georgia College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - John R. Fischer
- Southeastern Cooperative Wildlife Disease Study (SCWDS), Department of Population Health, Wildlife Health Building, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Susan B. Wilde
- D. B. Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, United States of America
| |
Collapse
|
18
|
Haynie RS, Bowerman WW, Williams SK, Morrison JR, Grizzle JM, Fischer JM, Wilde SB. Triploid grass carp susceptibility and potential for disease transfer when used to control aquatic vegetation in reservoirs with avian vacuolar myelinopathy. JOURNAL OF AQUATIC ANIMAL HEALTH 2013; 25:252-259. [PMID: 24341766 DOI: 10.1080/08997659.2013.833556] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Avian vacuolar myelinopathy (AVM) is an often-lethal neurologic disease that affects waterbirds and their avian predators (i.e., bald eagles Haliaeetus leucocephalus) in the southern United States. Feeding trials and field surveys provided evidence that AVM is caused by a toxin-producing, undescribed cyanobacterium (UCB), which grows as an epiphyte on the leaves of submerged aquatic vegetation (SAV). Reservoirs with documented AVM epornitics support dense growth of nonnative SAV. Waterbirds ingest the toxin when feeding on aquatic plants with the epiphytic UCB, and secondary intoxication occurs when raptors consume these birds. Vegetation management has been proposed as a means to reduce waterbird exposure to the putative toxin. We fed aquatic vegetation with and without the UCB to triploid Grass Carp Ctenopharyngodon idella in laboratory and field trials. Only Grass Carp that ingested aquatic vegetation with the UCB developed lesions in the central nervous system. The lesions (viewed using light microscopy) appeared similar to those in birds diagnosed with AVM. Grass Carp that received aquatic vegetation without the UCB were unaffected. Grass Carp tissues from each treatment were fed to domestic chickens Gallus domesticus (an appropriate laboratory model for AVM) in a laboratory trial; the chickens displayed no neurologic signs, and histology revealed a lack of the diagnostic lesions in brain tissues. Results from our trials suggest that (1) triploid Grass Carp are susceptible to the AVM toxin, although no fish mortalities were documented; and (2) the toxin was not accumulated in Grass Carp tissues, and the risk to piscivorous avifauna is likely low. However, a longer exposure time and analysis of sublethal effects may be prudent to further evaluate the efficacy and risk of using triploid Grass Carp to manage aquatic vegetation in a system with frequent AVM outbreaks.
Collapse
Affiliation(s)
- Rebecca S Haynie
- a Warnell School of Forestry and Natural Resources, 180 East Green Street , University of Georgia , Athens , Georgia , 30602 , USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Brand CJ. Wildlife mortality investigation and disease research: contributions of the USGS National Wildlife Health Center to endangered species management and recovery. ECOHEALTH 2013; 10:446-454. [PMID: 24419670 PMCID: PMC3938848 DOI: 10.1007/s10393-013-0897-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 12/12/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
The U.S. Geological Survey-National Wildlife Health Center (NWHC) provides diagnostic services, technical assistance, applied research, and training to federal, state, territorial, and local government agencies and Native American tribes on wildlife diseases and wildlife health issues throughout the United States and its territories, commonwealth, and freely associated states. Since 1975, >16,000 carcasses and specimens from vertebrate species listed under the Endangered Species Act have been submitted to NWHC for determination of causes of morbidity or mortality or assessment of health/disease status. Results from diagnostic investigations, analyses of the diagnostic database, technical assistance and consultation, field investigation of epizootics, and wildlife disease research by NWHC wildlife disease specialists have contributed importantly to the management and recovery of listed species.
Collapse
Affiliation(s)
- Christopher J Brand
- U.S. Geological Survey, National Wildlife Health Center, 6006 Schroeder Rd., Madison, WI, 53711, USA,
| |
Collapse
|
20
|
Byers JE, McDowell WG, Dodd SR, Haynie RS, Pintor LM, Wilde SB. Climate and pH predict the potential range of the invasive apple snail (Pomacea insularum) in the southeastern United States. PLoS One 2013; 8:e56812. [PMID: 23451090 PMCID: PMC3579942 DOI: 10.1371/journal.pone.0056812] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 01/14/2013] [Indexed: 11/19/2022] Open
Abstract
Predicting the potential range of invasive species is essential for risk assessment, monitoring, and management, and it can also inform us about a species' overall potential invasiveness. However, modeling the distribution of invasive species that have not reached their equilibrium distribution can be problematic for many predictive approaches. We apply the modeling approach of maximum entropy (MaxEnt) that is effective with incomplete, presence-only datasets to predict the distribution of the invasive island apple snail, Pomacea insularum. This freshwater snail is native to South America and has been spreading in the USA over the last decade from its initial introductions in Texas and Florida. It has now been documented throughout eight southeastern states. The snail's extensive consumption of aquatic vegetation and ability to accumulate and transmit algal toxins through the food web heighten concerns about its spread. Our model shows that under current climate conditions the snail should remain mostly confined to the coastal plain of the southeastern USA where it is limited by minimum temperature in the coldest month and precipitation in the warmest quarter. Furthermore, low pH waters (pH <5.5) are detrimental to the snail's survival and persistence. Of particular note are low-pH blackwater swamps, especially Okefenokee Swamp in southern Georgia (with a pH below 4 in many areas), which are predicted to preclude the snail's establishment even though many of these areas are well matched climatically. Our results elucidate the factors that affect the regional distribution of P. insularum, while simultaneously presenting a spatial basis for the prediction of its future spread. Furthermore, the model for this species exemplifies that combining climatic and habitat variables is a powerful way to model distributions of invasive species.
Collapse
Affiliation(s)
- James E Byers
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America.
| | | | | | | | | | | |
Collapse
|
21
|
Pikula J, Bandouchova H, Hilscherova K, Paskova V, Sedlackova J, Adamovsky O, Knotkova Z, Lany P, Machat J, Marsalek B, Novotny L, Pohanka M, Vitula F. Combined exposure to cyanobacterial biomass, lead and the Newcastle virus enhances avian toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2010; 408:4984-4992. [PMID: 20701952 DOI: 10.1016/j.scitotenv.2010.07.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Revised: 07/02/2010] [Accepted: 07/15/2010] [Indexed: 05/29/2023]
Abstract
Under environmental conditions, wild birds can be exposed to multiple stressors including natural toxins, anthropogenic pollutants and infectious agents at the same time. This experimental study was successful in testing the hypothesis that adverse effects of cyanotoxins, heavy metals and a non-pathogenic immunological challenge combine to enhance avian toxicity. Mortality occurred in combined exposures to naturally occurring cyanobacterial biomass and lead shots, lead shots and Newcastle vaccination as well as in single lead shot exposure. Mostly acute effects around day 10 were observed. On day 30 of exposure, there were no differences in the liver accumulation of lead in single and combined exposure groups. Interestingly, liver microcystin levels were elevated in birds co-exposed to cyanobacterial biomass together with lead or lead and the Newcastle virus. Significant differences in body weights between all Pb-exposed and Pb-non-exposed birds were found on days 10 and 20. Single exposure to cyanobacterial biomass resulted in hepatic vacuolar dystrophy, whereas co-exposure with lead led to more severe granular dystrophy. Haematological changes were associated with lead exposure, in particular. Biochemical analysis revealed a decrease in glucose and an increase in lactate dehydrogenase in single and combined cyanobacterial and lead exposures, which also showed a decreased antibody response to vaccination. The combined exposure of experimental birds to sub-lethal doses of individual stressors is ecologically realistic. It brings together new pieces of knowledge on avian health. In light of this study, investigators of wild bird die-offs should be circumspect when evaluating findings of low concentrations of contaminants that would not result in mortality on a separate basis. As such it has implications for wildlife biologists, veterinarians and conservationists of avian biodiversity.
Collapse
Affiliation(s)
- Jiri Pikula
- University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1/3, 612 42 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Microcystin production in epiphytic cyanobacteria on submerged macrophytes. Toxicon 2010; 55:1346-52. [DOI: 10.1016/j.toxicon.2010.02.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 11/21/2022]
|
23
|
Bidigare RR, Christensen SJ, Wilde SB, Banack SA. Cyanobacteria and BMAA: Possible linkage with avian vacuolar myelinopathy (AVM) in the south-eastern United States. ACTA ACUST UNITED AC 2009; 10 Suppl 2:71-3. [DOI: 10.3109/17482960903273056] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Wiley FE, Twiner MJ, Leighfield TA, Wilde SB, Van Dolah FM, Fischer JR, Bowerman WW. An extract of Hydrilla verticillata and associated epiphytes induces avian vacuolar myelinopathy in laboratory mallards. ENVIRONMENTAL TOXICOLOGY 2009; 24:362-368. [PMID: 18825730 DOI: 10.1002/tox.20424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Avian vacuolar myelinopathy (AVM) is a neurological disease affecting bald eagles (Haliaeetus leucocephalus), American coots (Fulica americana), waterfowl, and other birds in the southeastern United States. The cause of the disease is unknown, but is thought to be a naturally produced toxin. AVM is associated with aquatic macrophytes, most frequently hydrilla (Hydrilla verticillata), and researchers have linked the disease to an epiphytic cyanobacterial species associated with the macrophytes. The goal of this study was to develop an extraction protocol for separating the putative toxin from a hydrilla-cyanobacterial matrix. Hydrilla samples were collected from an AVM-affected reservoir (J. Strom Thurmond Lake, SC) and confirmed to contain the etiologic agent by mallard (Anas platyrhynchos) bioassay. These samples were then extracted using a solvent series of increasing polarity: hexanes, acetone, and methanol. Control hydrilla samples from a reference reservoir with no history of AVM (Lake Marion, SC) were extracted in parallel. Resulting extracts were administered to mallards by oral gavage. Our findings indicate that the methanol extracts of hydrilla collected from the AVM-affected site induced the disease in laboratory mallards. This study provides the first data documenting for an "extractable" AVM-inducing agent.
Collapse
Affiliation(s)
- Faith E Wiley
- Department of Forestry and Natural Resources, Clemson University, South Carolina 29634, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Kite-Powell HL, Fleming LE, Backer LC, Faustman EM, Hoagland P, Tsuchiya A, Younglove LR, Wilcox BA, Gast RJ. Linking the oceans to public health: current efforts and future directions. Environ Health 2008; 7 Suppl 2:S6. [PMID: 19025677 PMCID: PMC2586713 DOI: 10.1186/1476-069x-7-s2-s6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We review the major linkages between the oceans and public health, focusing on exposures and potential health effects due to anthropogenic and natural factors including: harmful algal blooms, microbes, and chemical pollutants in the oceans; consumption of seafood; and flooding events. We summarize briefly the current state of knowledge about public health effects and their economic consequences; and we discuss priorities for future research.We find that:* There are numerous connections between the oceans, human activities, and human health that result in both positive and negative exposures and health effects (risks and benefits); and the study of these connections comprises a new interdisciplinary area, "oceans and human health."* The state of present knowledge about the linkages between oceans and public health varies. Some risks, such as the acute health effects caused by toxins associated with shellfish poisoning and red tide, are relatively well understood. Other risks, such as those posed by chronic exposure to many anthropogenic chemicals, pathogens, and naturally occurring toxins in coastal waters, are less well quantified. Even where there is a good understanding of the mechanism for health effects, good epidemiological data are often lacking. Solid data on economic and social consequences of these linkages are also lacking in most cases.* The design of management measures to address these risks must take into account the complexities of human response to warnings and other guidance, and the economic tradeoffs among different risks and benefits. Future research in oceans and human health to address public health risks associated with marine pathogens and toxins, and with marine dimensions of global change, should include epidemiological, behavioral, and economic components to ensure that resulting management measures incorporate effective economic and risk/benefit tradeoffs.
Collapse
Affiliation(s)
- Hauke L Kite-Powell
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Lora E Fleming
- Departments of Epidemiology & Public Health and Marine Biology & Fisheries, Miller School of Medicine and Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Clinical Research Building, 10th Floor (R669), 1120 NW 14th Street, Miami, Florida, USA
| | - Lorraine C Backer
- National Center for Environmental Health, US Centers for Disease Control and Prevention, 4770 Buford Highway NE, MS F-57, Chamblee, Georgia, USA
| | - Elaine M Faustman
- Center on Human Development and Disability, University of Washington, Seattle, Washington, USA
- Pacific Northwest Center for Human Health and Ocean Studies, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Porter Hoagland
- Marine Policy Center, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Ami Tsuchiya
- Pacific Northwest Center for Human Health and Ocean Studies, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Lisa R Younglove
- Pacific Northwest Center for Human Health and Ocean Studies, Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, Washington, USA
| | - Bruce A Wilcox
- Department of Tropical Medicine, Medical Microbiology and Pharmacology, John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii, USA
| | - Rebecca J Gast
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
26
|
Aguiar R, Fiore MF, Franco MW, Ventrella MC, Lorenzi AS, Vanetti CA, Alfenas AC. A NOVEL EPIPHYTIC CYANOBACTERIAL SPECIES FROM THE GENUS BRASILONEMA CAUSING DAMAGE TO EUCALYPTUS LEAVES(1). JOURNAL OF PHYCOLOGY 2008; 44:1322-1334. [PMID: 27041729 DOI: 10.1111/j.1529-8817.2008.00584.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A cyanobacterial mat colonizing the leaves of Eucalyptus grandis was determined to be responsible for serious damage affecting the growth and development of whole plants under the clonal hybrid nursery conditions. The dominant cyanobacterial species was isolated in BG-11 medium lacking a source of combined nitrogen and identified by cell morphology characters and molecular phylogenetic analysis (16S rRNA gene and cpcBA-IGS sequences). The isolated strain represents a novel species of the genus Brasilonema and is designated Brasilonema octagenarum strain UFV-E1. Thin sections of E. grandis leaves analyzed by light and electron microscopy showed that the B. octagenarum UFV-E1 filaments penetrate into the leaf mesophyll. The depth of infection and the mechanism by which the cyanobacterium invades leaf tissue were not determined. A major consequence of colonization by this cyanobacterium is a reduction in photosynthesis in the host since the cyanobacterial mats decrease the amount of light incident on leaf surfaces. Moreover, the cyanobacteria also interfere with stomatal gas exchange, decreasing CO2 assimilation. To our knowledge, this is the first report of an epiphytic cyanobacterial species causing damage to E. grandis leaves.
Collapse
Affiliation(s)
- Rosane Aguiar
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marli Fatima Fiore
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Maione Wittig Franco
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marília Contin Ventrella
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Adriana Sturion Lorenzi
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Cláudia A Vanetti
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Acelino Couto Alfenas
- Plant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilPlant Biology Department, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilCenter for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, São Paulo, BrazilMicroscopy & Microanalysis Center, Federal University of Viçosa, Viçosa, Minas Gerais, BrazilPlant Pathology Department, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
27
|
Abstract
Waterfowl populations may serve as sentinel species for natural and anthropogenic toxicologic problems in the environment. Unfortunately, many toxins cause nonspecific clinical signs, acute mortality, and subtle or no pathologic changes, making toxicologic investigations extremely difficult. The purpose of this article is to review important waterfowl toxins, including heavy metals, pesticides, botulism, mycotoxins, algal toxins, and petroleum oil. When applicable, clinical signs, diagnosis, pathologic findings, and treatment are discussed. Although most of the information in the literature is based on wild waterfowl populations or experimental toxicologic investigations, the information is also applicable to captive waterfowl populations.
Collapse
Affiliation(s)
- Laurel A Degernes
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| |
Collapse
|
28
|
Stewart I, Seawright AA, Shaw GR. Cyanobacterial poisoning in livestock, wild mammals and birds – an overview. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:613-37. [DOI: 10.1007/978-0-387-75865-7_28] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
29
|
Occurrence of Cyanobacterial Harmful Algal Blooms Workgroup Report. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:45-103. [DOI: 10.1007/978-0-387-75865-7_3] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 619:675-732. [PMID: 18461789 DOI: 10.1007/978-0-387-75865-7_32] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This paper reviews the rapidly expanding literature on the ecological effects of cyanobacterial toxins. The study employs a qualitative meta-analysis from the literature examining results from a large number of independent studies and extracts general patterns from the literature or signals contradictions. The meta-analysis is set up by putting together two large tables--embodying a large and representative part of the literature (see Appendix A). The first table (Table A.1) reviews the presence (concentrations) of different cyanobacterial toxins in the tissues of various groups of aquatic biota after exposure via different routes, experimentally in the lab or via natural routes in the environment. The second table (Table A.2) reviews the dose dependent effect of toxins on biota. The great majority of studies deal with the presence and effects of microcystin, especially of the MC-LR congener. Although this may partly be justified--MC-LR is an abundant and highly toxic protein--our review also emphasizes what is known about (i) other MC congeners (a number of studies showed a preferred accumulation of the less toxic variant MC-RR in animal tissues), (ii) nodularin (data on a range of biota from studies on the Baltic Sea), (iii) neurotoxins like anatoxin-a(s), which are conspicuously often present at times when mass mortalities of birds occur, (iv) a few studies on the presence and effects of cylindrospermposin, as well as (v) the first examples of ecological effects of newly identified bioactive compounds, like microviridin-J. Data were reorganized to assess to what extent bioconcentration (uptake and concentration of toxins from the water) or biomagnification (uptake and concentration via the food) of cyanobacterial toxins occurs in ecosystems. There is little support for the occurrence of biomagnification, and this reduces the risk for biota at higher trophic levels. Rather than biomagnification biodilution seems to occur in the foodweb with toxins being subject to degradation and excretion at every level. Nevertheless toxins were present at all tropic levels, indicating that some vectorial transport must take place, and in sufficient quantities for effects to possibly occur. Feeding seemed to be the most important route for exposure of aquatic biota to cyanobacterial toxins. A fair number of studies focus on dissolved toxins, but in those studies purified toxin typically is used, and biota do not appear very sensitive to this form of exposure. More effects are found when crude cyanobacterial cell lysates are used, indicating that there may be synergistic effects between different bioactive compounds. Aquatic biota are by no means defenseless against toxic cyanobacteria. Several studies indicate that those species that are most frequently exposed to toxins in their natural environment are also the most tolerant. Protection includes behavioral mechanisms, detoxication of MC and NODLN by conjugation with glutathione, and fairly rapid depuration and excretion. A common theme in much of the ecological studies is that of modulating factors. Effects are seldom straightforward, but are dependent on factors like the (feeding) condition of the animals, environmental conditions and the history of exposure (acclimation and adaptation to toxic cyanobacteria). This makes it harder to generalize on what is known about ecological effects of cyanobacterial toxins. The paper concludes by summarizing the risks for birds, fish, macroinvertebrates and zooplankton. Although acute (lethal) effects are mentioned in the literature, mass mortalities of--especially--fish are more likely to be the result of multiple stress factors that co-occur during cyanobacterial blooms. Bivalves appear remarkably resistant, whilst the harmful effects of cyanobacteria on zooplankton vary widely and the specific contribution of toxins is hard to evaluate.
Collapse
|
31
|
Skocovska B, Hilscherova K, Babica P, Adamovsky O, Bandouchova H, Horakova J, Knotkova Z, Marsalek B, Paskova V, Pikula J. Effects of cyanobacterial biomass on the Japanese quail. Toxicon 2007; 49:793-803. [PMID: 17217976 DOI: 10.1016/j.toxicon.2006.11.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2006] [Revised: 11/29/2006] [Accepted: 11/29/2006] [Indexed: 11/24/2022]
Abstract
Mortality of wild aquatic birds has recently been attributed to cyanobacterial toxins. Despite this, no experimental studies on the effects of defined doses of microcystins administered orally to birds exist. In this experiment, four groups of male Japanese quails daily ingesting 10ml of Microcystis biomass containing 0.045, 0.459, 4.605 or 46.044mug of microcystins, respectively, for 10 and 30 days, showed no mortality. Histopathological hepatic changes in birds after the biomass exposure included cloudy swelling of hepatocytes, vacuolar dystrophy, steatosis and hyperplasia of lymphatic centres. On subcellular level, shrunken nuclei of hepatocytes containing ring-like nucleoli, cristolysis within mitochondria and vacuoles with pseudomyelin structures were present. Vacuolar degeneration of the testicular germinative epithelium was found in two exposed males. Statistically significant differences in biochemical parameters were on day 10 of exposure only. They comprised increased activities of lactate dehydrogenase and a drop in blood glucose in birds receiving the highest dose of the biomass. Principal component analysis revealed a pattern of responses in biochemical parameters on day 10 that clearly separated the two greatest exposure groups from the controls and lower exposures. The results indicate that diagnosis of microcystin intoxication solely based on clinical biochemical and haematological parameters is hardly possible in birds.
Collapse
Affiliation(s)
- B Skocovska
- Department of Veterinary Ecology and Environmental Protection, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, Brno, Czech Republic
| | | | | | | | | | | | | | | | | | | |
Collapse
|