1
|
Rivera-González KS, Reynolds PM, Lipinski RJ. Examination of piperonyl butoxide developmental toxicity as a Sonic hedgehog pathway inhibitor targeting limb and palate morphogenesis. Reprod Toxicol 2024; 130:108716. [PMID: 39255949 DOI: 10.1016/j.reprotox.2024.108716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
Piperonyl butoxide (PBO) is a pesticide synergist with widespread use and human exposure that was discovered to inhibit Sonic hedgehog (Shh) signaling, a pathway required for numerous developmental processes. Previous examinations of PBO's potential for developmental toxicity have generated seemingly conflicting results. We investigated the impact of acute PBO exposure targeting Shh pathway activity during palate and limb morphogenesis. Timed-pregnant C57BL/6 J mice were exposed to a single PBO dose (67-1800 mg/kg) at gestational day (GD) 9.75, and litters were collected at GD10.25 and GD10.75 to examine Shh pathway activity or GD17 for phenotypic assessment. PBO exposure induced dose-dependent limb malformations and cleft palate in the highest dose group. Following PBO exposure, reduced expression of the Shh pathway activity markers Gli1 and Ptch1 was observed in the embryonic limb buds and craniofacial processes. These findings provide additional evidence that prenatal PBO exposure targeting Shh pathway activity can result in malformations in mice that parallel common etiologically complex human birth defects.
Collapse
Affiliation(s)
- Kenneth S Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Porsha M Reynolds
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
2
|
Lavillaureix A, Rollier P, Kim A, Panasenkava V, De Tayrac M, Carré W, Guyodo H, Faoucher M, Poirel E, Akloul L, Quélin C, Whalen S, Bos J, Broekema M, van Hagen JM, Grand K, Allen-Sharpley M, Magness E, McLean SD, Kayserili H, Altunoglu U, En Qi Chong A, Xue S, Jeanne M, Almontashiri N, Habhab W, Vanlerberghe C, Faivre L, Viora-Dupont E, Philippe C, Safraou H, Laffargue F, Mittendorf L, Abou Jamra R, Patil SJ, Dalal A, Sarma AS, Keren B, Reversade B, Dubourg C, Odent S, Dupé V. DISP1 deficiency: Monoallelic and biallelic variants cause a spectrum of midline craniofacial malformations. Genet Med 2024; 26:101126. [PMID: 38529886 DOI: 10.1016/j.gim.2024.101126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 03/21/2024] [Accepted: 03/21/2024] [Indexed: 03/27/2024] Open
Abstract
PURPOSE DISP1 encodes a transmembrane protein that regulates the secretion of the morphogen, Sonic hedgehog, a deficiency of which is a major cause of holoprosencephaly (HPE). This disorder covers a spectrum of brain and midline craniofacial malformations. The objective of the present study was to better delineate the clinical phenotypes associated with division transporter dispatched-1 (DISP1) variants. METHODS This study was based on the identification of at least 1 pathogenic variant of the DISP1 gene in individuals for whom detailed clinical data were available. RESULTS A total of 23 DISP1 variants were identified in heterozygous, compound heterozygous or homozygous states in 25 individuals with midline craniofacial defects. Most cases were minor forms of HPE, with craniofacial features such as orofacial cleft, solitary median maxillary central incisor, and congenital nasal pyriform aperture stenosis. These individuals had either monoallelic loss-of-function variants or biallelic missense variants in DISP1. In individuals with severe HPE, the DISP1 variants were commonly found associated with a variant in another HPE-linked gene (ie, oligogenic inheritance). CONCLUSION The genetic findings we have acquired demonstrate a significant involvement of DISP1 variants in the phenotypic spectrum of midline defects. This underlines its importance as a crucial element in the efficient secretion of Sonic hedgehog. We also demonstrated that the very rare solitary median maxillary central incisor and congenital nasal pyriform aperture stenosis combination is part of the DISP1-related phenotype. The present study highlights the clinical risks to be flagged up during genetic counseling after the discovery of a pathogenic DISP1 variant.
Collapse
Affiliation(s)
- Alinoë Lavillaureix
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Paul Rollier
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Artem Kim
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Center for Genetic Epidemiology, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Veranika Panasenkava
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Marie De Tayrac
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Génétique Moléculaire et Génomique, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Wilfrid Carré
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Génétique Moléculaire et Génomique, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Hélène Guyodo
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Marie Faoucher
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Génétique Moléculaire et Génomique, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Elisabeth Poirel
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Linda Akloul
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Chloé Quélin
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Sandra Whalen
- APHP, Sorbonne Université, Département de Génétique, Centre de Référence Maladies Rares des Anomalies du Développement et Syndromes Malformatifs, Hôpital Trousseau & Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jessica Bos
- Department of Human Genetics, Section Clinical Genetic, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Marjoleine Broekema
- Department of Human Genetics, Section Clinical Genetic, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Johanna M van Hagen
- Department of Human Genetics, Section Clinical Genetic, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Katheryn Grand
- Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Emily Magness
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX
| | - Scott D McLean
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX; Division of Clinical Genetics, Christus Children's, San Antonio, TX
| | - Hülya Kayserili
- Department of Medical Genetics, Koç University School of Medicine, Istanbul, Turkey
| | - Umut Altunoglu
- Department of Medical Genetics, Koç University School of Medicine, Istanbul, Turkey
| | - Angie En Qi Chong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Shifeng Xue
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Médéric Jeanne
- Service de Génétique, FHU GenOMedS, CHRU de Tours, Tours, France; UMR1253, iBrain, Inserm, University of Tours, Tours, France
| | - Naif Almontashiri
- Center for Genetics and Inherited Diseases (CGID), Taibah University, Madinah, Saudi Arabia
| | - Wisam Habhab
- Department of Genetic Medicine, Faculty of Medicine, Princess Al-Jawhara Al-Brahim Center of Excellence in Research of Hereditary Disorders, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Laurence Faivre
- Centre de Référence Anomalies du Développement et Syndromes Malformatifs, FHU TRANSLAD, Centre Hospitalier Universitaire, Dijon, France; Genetics of Developmental Disorders, INSERM UMR1231, Université de Bourgogne, Dijon, France
| | - Eléonore Viora-Dupont
- Genetics of Developmental Disorders, INSERM UMR1231, Université de Bourgogne, Dijon, France; Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Centre Hospitalier Universitaire, Dijon, France
| | - Christophe Philippe
- Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Centre Hospitalier Universitaire, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon, Dijon, France
| | - Hana Safraou
- Centre de Référence Déficiences Intellectuelles de Causes Rares, FHU TRANSLAD, Centre Hospitalier Universitaire, Dijon, France; Unité Fonctionnelle Innovation en Diagnostic Génomique des Maladies Rares, CHU Dijon, Dijon, France
| | - Fanny Laffargue
- CHU Clermont Ferrand, Service de Génétique Clinique, Clermont Ferrand, France
| | - Luisa Mittendorf
- Department for Children and Adolescents, University Hospital Leipzig, Leipzig, Germany
| | | | | | - Ashwin Dalal
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Asodu Sandeep Sarma
- Diagnostics Division, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, India
| | - Boris Keren
- APHP, Sorbonne Université, Département de Génétique Médicale, GH Pitié Salpêtrière, Paris, France
| | - Bruno Reversade
- Laboratory of Human Genetics and Therapeutics, Genome Institute of Singapore (GIS), A∗STAR, Department of Physiology, Cardiovascular Disease, Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Department of Medical Genetics, Koç University School of Medicine, Istanbul, Turkey; Laboratory of Human Genetics and Therapeutics Smart-Health Initiative, BESE, KAUST, Thuwal, Kingdom of Saudi Arabia
| | - Christèle Dubourg
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France; Génétique Moléculaire et Génomique, FHU GenOMedS, CHU de Rennes, Rennes, France
| | - Sylvie Odent
- Génétique Clinique, Centre de Référence Maladies Rares CLAD-Ouest, ERN-ITHACA, FHU GenOMedS, CHU de Rennes, Rennes, France; Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France
| | - Valérie Dupé
- Univ Rennes, CNRS, INSERM, IGDR (Institut de Génétique et Développement de Rennes)-UMR 6290, Rennes, France.
| |
Collapse
|
3
|
Martinez-Mayer J, Brinkmeier ML, O'Connell SP, Ukagwu A, Marti MA, Miras M, Forclaz MV, Benzrihen MG, Cheung LYM, Camper SA, Ellsworth BS, Raetzman LT, Pérez-Millán MI, Davis SW. Knockout mice with pituitary malformations help identify human cases of hypopituitarism. Genome Med 2024; 16:75. [PMID: 38822427 PMCID: PMC11140907 DOI: 10.1186/s13073-024-01347-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Congenital hypopituitarism (CH) and its associated syndromes, septo-optic dysplasia (SOD) and holoprosencephaly (HPE), are midline defects that cause significant morbidity for affected people. Variants in 67 genes are associated with CH, but a vast majority of CH cases lack a genetic diagnosis. Whole exome and whole genome sequencing of CH patients identifies sequence variants in genes known to cause CH, and in new candidate genes, but many of these are variants of uncertain significance (VUS). METHODS The International Mouse Phenotyping Consortium (IMPC) is an effort to establish gene function by knocking-out all genes in the mouse genome and generating corresponding phenotype data. We used mouse embryonic imaging data generated by the Deciphering Mechanisms of Developmental Disorders (DMDD) project to screen 209 embryonic lethal and sub-viable knockout mouse lines for pituitary malformations. RESULTS Of the 209 knockout mouse lines, we identified 51 that have embryonic pituitary malformations. These genes not only represent new candidates for CH, but also reveal new molecular pathways not previously associated with pituitary organogenesis. We used this list of candidate genes to mine whole exome sequencing data of a cohort of patients with CH, and we identified variants in two unrelated cases for two genes, MORC2 and SETD5, with CH and other syndromic features. CONCLUSIONS The screening and analysis of IMPC phenotyping data provide proof-of-principle that recessive lethal mouse mutants generated by the knockout mouse project are an excellent source of candidate genes for congenital hypopituitarism in children.
Collapse
Affiliation(s)
- Julian Martinez-Mayer
- Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina
| | - Michelle L Brinkmeier
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Sean P O'Connell
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC, 29208, USA
| | - Arnold Ukagwu
- Department of Physiology, Southern Illinois University, 1135 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Marcelo A Marti
- Instituto de Química Biológica de La Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mirta Miras
- Hospital De Niños de La Santísima Trinidad, Córdoba, Argentina
| | - Maria V Forclaz
- Servicio de Endocrinología, Hospital Posadas, Buenos Aires, Argentina
| | - Maria G Benzrihen
- Servicio de Endocrinología, Hospital Posadas, Buenos Aires, Argentina
| | - Leonard Y M Cheung
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
- Department of Physiology and Biophyscis, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, 1241 Catherine St., Ann Arbor, MI, 48109-5618, USA
| | - Buffy S Ellsworth
- Department of Physiology, Southern Illinois University, 1135 Lincoln Dr, Carbondale, IL, 62901, USA
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois, Champaign-Urbana, Urbana, IL, 61801, USA
| | - Maria I Pérez-Millán
- Institute of Biosciences, Biotechnology and Translational Biology (iB3), University of Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria, C1428EGA, Buenos Aires, Argentina.
| | - Shannon W Davis
- Department of Biological Sciences, University of South Carolina, 715 Sumter St., Columbia, SC, 29208, USA.
| |
Collapse
|
4
|
Saumweber E, Mzoughi S, Khadra A, Werberger A, Schumann S, Guccione E, Schmeisser MJ, Kühl SJ. Prdm15 acts upstream of Wnt4 signaling in anterior neural development of Xenopus laevis. Front Cell Dev Biol 2024; 12:1316048. [PMID: 38444828 PMCID: PMC10912572 DOI: 10.3389/fcell.2024.1316048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 02/02/2024] [Indexed: 03/07/2024] Open
Abstract
Mutations in PRDM15 lead to a syndromic form of holoprosencephaly (HPE) known as the Galloway-Mowat syndrome (GAMOS). While a connection between PRDM15, a zinc finger transcription factor, and WNT/PCP signaling has been established, there is a critical need to delve deeper into their contributions to early development and GAMOS pathogenesis. We used the South African clawed frog Xenopus laevis as the vertebrate model organism and observed that prdm15 was enriched in the tissues and organs affected in GAMOS. Furthermore, we generated a morpholino oligonucleotide-mediated prdm15 knockdown model showing that the depletion of Prdm15 leads to abnormal eye, head, and brain development, effectively recapitulating the anterior neural features in GAMOS. An analysis of the underlying molecular basis revealed a reduced expression of key genes associated with eye, head, and brain development. Notably, this reduction could be rescued by the introduction of wnt4 RNA, particularly during the induction of the respective tissues. Mechanistically, our data demonstrate that Prdm15 acts upstream of both canonical and non-canonical Wnt4 signaling during anterior neural development. Our findings describe severe ocular and anterior neural abnormalities upon Prdm15 depletion and elucidate the role of Prdm15 in canonical and non-canonical Wnt4 signaling.
Collapse
Affiliation(s)
- Ernestine Saumweber
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Slim Mzoughi
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Arin Khadra
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Anja Werberger
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Ernesto Guccione
- Center of OncoGenomics and Innovative Therapeutics (COGIT), Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New-York, NY, United States
| | - Michael J. Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Focus Program Translational Neurosciences, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Susanne J. Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
5
|
Mori M, Takeshita S, Nakamura N, Mizuno Y, Tomita A, Aoyama M, Kakita H, Yamada Y. Efficacy of tolvaptan in an infant with syndrome of inappropriate antidiuretic hormone secretion associated with holoprosencephaly: A case report. World J Clin Cases 2023; 11:6262-6267. [PMID: 37731562 PMCID: PMC10507562 DOI: 10.12998/wjcc.v11.i26.6262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/31/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Holoprosencephaly (HPE) is a congenital malformation with various degrees of incomplete separation of the cerebral hemispheres due to differentiation disorders of the forebrain. Although HPE with diabetes insipidus due to associated pituitary dysfunction has been reported, HPE with the syndrome of inappropriate antidiuretic hormone secretion (SIADH) is very rare. Tolvaptan, a vasopressin V2 receptor antagonist, is effective in adults with SIADH. However, there is no report of its efficacy in infants with SIADH. The purpose of this report is to demonstrate that tolvaptan is effective for SIADH in infants and that administration of tolvaptan eliminates the need for restriction of water intake and sodium administration. CASE SUMMARY A 2414-g female infant was born at 38 wk by normal vaginal delivery. Facial anomalies and head magnetic resonance imaging indicated semilobar HPE. After birth, she had hyponatremia due to SIADH and was treated using water and sodium restriction. However, she developed an exaggerated response to the fluid restrictions, resulting in large fluctuations in serum sodium levels. Subsequent administration of tolvaptan improved the fluctuations in serum sodium levels without the need for adjustment of water or sodium administration. Serum sodium was maintained within the normal range after discontinuation of tolvaptan at 80 d of life. There were no side effects, such as hypernatremia or liver dysfunction, during the administration of tolvaptan. CONCLUSION This is the first report on the safety and efficacy of tolvaptan in an infant with SIADH associated with HPE.
Collapse
Affiliation(s)
- Mari Mori
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| | - Satoru Takeshita
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya 467-8603, Japan
| | - Nami Nakamura
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Pediatrics, Aichi Medical University, Nagakute 480-1195, Japan
| | - Yuki Mizuno
- Department of Pharmacy, Aichi Medical University, Nagakute 480-1195, Japan
| | - Akiko Tomita
- Department of Pharmacy, Aichi Medical University, Nagakute 480-1195, Japan
| | - Mineyoshi Aoyama
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya 467-8603, Japan
| | - Hiroki Kakita
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
- Department of Pathobiology, Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya 467-8603, Japan
| | - Yasumasa Yamada
- Department of Perinatal and Neonatal Medicine, Aichi Medical University, Nagakute 480-1195, Japan
| |
Collapse
|
6
|
Kovács MV, Charchat-Fichman H, Landeira-Fernandez J, Medina AE, Krahe TE. Combined exposure to alcohol and cannabis during development: Mechanisms and outcomes. Alcohol 2023; 110:1-13. [PMID: 36740025 PMCID: PMC10372841 DOI: 10.1016/j.alcohol.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Exposure to substances of abuse during pregnancy can have long-lasting effects on offspring. Alcohol is one of the most widely used substances of abuse that leads to the most severe consequences. Recent studies in the United States, Canada, and the United Kingdom showed that between 1% and 7% of all children exhibit signs and symptoms of fetal alcohol spectrum disorder (FASD). Despite preventive campaigns, the rate of children with FASD has not decreased during recent decades. Alcohol consumption often accompanies exposure to such drugs as tobacco, cocaine, opioids, and cannabis. These interactions can be synergistic and exacerbate the deleterious consequences of developmental alcohol exposure. The present review focuses on interactions between alcohol and cannabis exposure and the potential consequences of these interactions.
Collapse
Affiliation(s)
- Martina V Kovács
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - Helenice Charchat-Fichman
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - J Landeira-Fernandez
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil
| | - Alexandre E Medina
- Department of Pediatrics - School of Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, United States.
| | - Thomas E Krahe
- Departamento de Psicologia, Laboratório de Neurociência do Comportamento, Pontifícia Universidade Católica do Rio de Janeiro, Rua Marquês de São Vicente, 225, Gávea - Rio de Janeiro, RJ, 22451-900, Brazil.
| |
Collapse
|
7
|
Udaykumar N, Zaidi MAA, Rai A, Sen J. CNKSR2, a downstream mediator of retinoic acid signaling, modulates the Ras/Raf/MEK pathway to regulate patterning and invagination of the chick forebrain roof plate. Development 2023; 150:286897. [PMID: 36734326 DOI: 10.1242/dev.200857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023]
Abstract
During embryonic development, the forebrain roof plate undergoes invagination, leading to separation of the cerebral hemispheres. Any defects in this process, in humans, lead to middle interhemispheric holoprosencephaly (MIH-HPE). In this study, we have identified a previously unreported downstream mediator of retinoic acid (RA) signaling, CNKSR2, which is expressed in the forebrain roof plate in the chick embryo. Knockdown of CNKSR2 affects invagination, cell proliferation and patterning of the roof plate, similar to the phenotypes observed upon inhibition of RA signaling. We further demonstrate that CNKSR2 functions by modulating the Ras/Raf/MEK signaling. This appears to be crucial for patterning of the forebrain roof plate and its subsequent invagination, leading to the formation of the cerebral hemispheres. Thus, a set of novel molecular players have been identified that regulate the morphogenesis of the avian forebrain.
Collapse
Affiliation(s)
- Niveda Udaykumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Mohd Ali Abbas Zaidi
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Aishwarya Rai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
| | - Jonaki Sen
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016 Uttar Pradesh, India
- Mehta Family Center for Engineering in Medicine (MFCEM), Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
8
|
Jacobs E, Whitehead MT. Clinical spectrum of orbital and ocular abnormalities on fetal MRI. Pediatr Radiol 2023; 53:121-130. [PMID: 35867110 DOI: 10.1007/s00247-022-05439-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/13/2022] [Accepted: 06/17/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Fetal magnetic resonance imaging (MRI) may reveal sonographically occult ocular abnormalities. When discovered, acquired causes and genetic associations must be sought. OBJECTIVE We aim to evaluate a fetal cohort with orbit and/or globe malformations to determine whether there are imaging patterns that suggest the underlying cause. MATERIALS AND METHODS We searched all fetal MRI reports performed at an academic children's hospital over 9 consecutive years for orbit and/or globe abnormalities. Each positive exam and all follow-up MRIs were evaluated for interocular distance, globe size, shape and signal, and brain malformations. Genetic and clinical diagnoses were recorded from the medical record. RESULTS Seventy-six of 3,085 fetuses (2.5%) were diagnosed with ocular and/or globe abnormalities; 50% had postnatal follow-up MR exams, all confirming the fetal MRI findings. Ninety-two percent (70/76) had concurrent brain malformations. Sixty-seven percent (51/76) were diagnosed with an underlying disorder and 39% of these were genetically proven. The most common diagnoses with ocular globe abnormalities included CHARGE (coloboma of the eye, heart anomaly, choanal atresia, retardation and genital and ear anomalies) syndrome, trisomy 13 syndrome, dystroglycanopathy, holoprosencephaly and diencephalic-mesencephalic junction dysplasia. Genetic diagnoses were more likely with ocular globe abnormalities than isolated orbital abnormalities (P=0.04). Sixty-seven percent of fetuses with ocular calcifications, hemorrhage and/or lens abnormalities had potential maternal risk factors (P=0.03). CONCLUSION Malformed ocular globes are associated with brain malformations and genetic abnormalities. Ocular calcifications, hemorrhage and/or lens abnormalities may be associated with maternal risk factors. Genetic work-up should be considered when an ocular globe size or shape abnormality is detected.
Collapse
Affiliation(s)
- Erica Jacobs
- The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC, 20052, USA.
| | - Matthew T Whitehead
- The George Washington University School of Medicine and Health Sciences, 2300 I Street NW, Washington, DC, 20052, USA.,Department of Neuroradiology, Children's National Hospital, Washington, DC, USA
| |
Collapse
|
9
|
Bihamba Bira L, Sikakulya FK, Mumbere M, Mathe J. Synophtalmia on a newborn. SAGE Open Med Case Rep 2022; 10:2050313X221131651. [PMID: 36267337 PMCID: PMC9577069 DOI: 10.1177/2050313x221131651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Synophtalmia or cyclopia is a rare presentation of alobar holoprosencephaly. Cases which have been reported are stillborn or dead in post-delivery period. We are presenting a 3000-g live full-term newborn girl delivered by caesarean section with a well-marked cyclopia, but who died 30 min post-delivery. The case did not present with other abnormalities. The literature showed that genetic disorders are associated with cyclopia. A prenatal anomaly scan can help in the early detection of the condition and timely termination of the pregnancy can be conducted.
Collapse
Affiliation(s)
- Laetitia Bihamba Bira
- Hopital de Mutwanga, Territoire de
Beni, Nord-Kivu, Democratic Republic of the Congo
| | - Franck Katembo Sikakulya
- Faculty of Medicine, Université
Catholique du Graben, Butembo, Democratic Republic of the Congo,Department of Surgery, Faculty of
Clinical Medicine and Dentistry, Kampala International University Western Campus,
Ishaka-Bushenyi, Uganda,Franck Katembo Sikakulya, Department of
Surgery, Faculty of Clinical Medicine and Dentistry, Kampala International
University Western Campus, Ishaka-Bushenyi, PO.Box 70, Uganda.
| | - Mupenzi Mumbere
- Faculty of Medicine, Université
Catholique du Graben, Butembo, Democratic Republic of the Congo
| | - Jeff Mathe
- Faculty of Medicine, Université
Catholique du Graben, Butembo, Democratic Republic of the Congo
| |
Collapse
|
10
|
Barratt KS, Drover KA, Thomas ZM, Arkell RM. Patterning of the antero-ventral mammalian brain: Lessons from holoprosencephaly comparative biology in man and mouse. WIREs Mech Dis 2022; 14:e1552. [PMID: 35137563 DOI: 10.1002/wsbm.1552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/30/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022]
Abstract
Adult form and function are dependent upon the activity of specialized signaling centers that act early in development at the embryonic midline. These centers instruct the surrounding cells to adopt a positional fate and to form the patterned structures of the phylotypic embryo. Abnormalities in these processes have devastating consequences for the individual, as exemplified by holoprosencephaly in which anterior midline development fails, leading to structural defects of the brain and/or face. In the 25 years since the first association between human holoprosencephaly and the sonic hedgehog gene, a combination of human and animal genetic studies have enhanced our understanding of the genetic and embryonic causation of this congenital defect. Comparative biology has extended the holoprosencephaly network via the inclusion of gene mutations from multiple signaling pathways known to be required for anterior midline formation. It has also clarified aspects of holoprosencephaly causation, showing that it arises when a deleterious variant is present within a permissive genome, and that environmental factors, as well as embryonic stochasticity, influence the phenotypic outcome of the variant. More than two decades of research can now be distilled into a framework of embryonic and genetic causation. This framework means we are poised to move beyond our current understanding of variants in signaling pathway molecules. The challenges now at the forefront of holoprosencephaly research include deciphering how the mutation of genes involved in basic cell processes can also cause holoprosencephaly, determining the important constituents of the holoprosencephaly permissive genome, and identifying environmental compounds that promote holoprosencephaly. This article is categorized under: Congenital Diseases > Stem Cells and Development Congenital Diseases > Genetics/Genomics/Epigenetics Congenital Diseases > Molecular and Cellular Physiology Congenital Diseases > Environmental Factors.
Collapse
Affiliation(s)
- Kristen S Barratt
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kyle A Drover
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Zoe M Thomas
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Ruth M Arkell
- John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
11
|
Rivera-González KS, Beames TG, Lipinski RJ. Response to Osimitz and Droege, 2021. CHEMOSPHERE 2022; 288:132598. [PMID: 34666071 PMCID: PMC8688311 DOI: 10.1016/j.chemosphere.2021.132598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Kenneth S Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tyler G Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
12
|
Patel TN, Dhanyamraju PK. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies. J Biomed Res 2021; 36:1-9. [PMID: 34963676 PMCID: PMC8894283 DOI: 10.7555/jbr.35.20210139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
Collapse
Affiliation(s)
- Trupti N Patel
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore Campus, Vellore, Tamil Nadu 632014, India
| | - Pavan Kumar Dhanyamraju
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA.,Penn State Cancer Institute, Hershey, PA 17033, USA
| |
Collapse
|
13
|
Sakaria RP, Zaveri PG, Holtrop S, Zhang J, Brown CW, Pivnick EK. Case Report: An Infant With Kabuki Syndrome, Alobar Holoprosencephaly and Truncus Arteriosus: A Case for Whole Exome Sequencing in Neonates With Congenital Anomalies. Front Genet 2021; 12:766316. [PMID: 34899850 PMCID: PMC8660850 DOI: 10.3389/fgene.2021.766316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Kabuki syndrome is a rare multiple anomalies syndrome associated with mutations in KMT2D or KDM6A. It is characterized by infantile hypotonia, developmental delay and/or intellectual disability, long palpebral fissures with everted lateral third of the lower eyelids and typical facial features. Intracranial anomalies occur infrequently in patients with KS and holoprosencephaly has only been recently described. Additionally, though congenital heart diseases are common in patients with KS, to our knowledge truncus arteriosus has never been reported in a patient with KS. We present an unusual case of KS in an infant with holoprosencephaly and truncus arteriosus with partial anomalous pulmonary venous return. Duo whole exome sequencing in our patient identified a pathogenic nonsense variant in exon 10 of KMT2D (c.2782C > T; p. Gln928*) establishing the diagnosis. This report further expands the phenotypic spectrum of patients with Kabuki syndrome and emphasizes the utility of performing large scale sequencing in neonates with multiple congenital anomalies.
Collapse
Affiliation(s)
- Rishika P Sakaria
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Parul G Zaveri
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Memphis, TN, United States
| | | | - Jie Zhang
- Le Bonheur Children's Hospital, Memphis, TN, United States.,Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chester W Brown
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Le Bonheur Children's Hospital, Memphis, TN, United States
| | - Eniko K Pivnick
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN, United States.,Department of Ophthalmology, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
Sanger TJ, Harding L, Kyrkos J, Turnquist AJ, Epperlein L, Nunez SA, Lachance D, Dhindsa S, Stroud JT, Diaz RE, Czesny B. Environmental Thermal Stress Induces Neuronal Cell Death and Developmental Malformations in Reptiles. Integr Org Biol 2021; 3:obab033. [PMID: 34877473 PMCID: PMC8643577 DOI: 10.1093/iob/obab033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 09/25/2021] [Accepted: 11/12/2021] [Indexed: 12/19/2022] Open
Abstract
Every stage of organismal life history is being challenged by global warming. Many species are already experiencing temperatures approaching their physiological limits; this is particularly true for ectothermic species, such as lizards. Embryos are markedly sensitive to thermal insult. Here, we demonstrate that temperatures currently experienced in natural nesting areas can modify gene expression levels and induce neural and craniofacial malformations in embryos of the lizard Anolis sagrei. Developmental abnormalities ranged from minor changes in facial structure to significant disruption of anterior face and forebrain. The first several days of postoviposition development are particularly sensitive to this thermal insult. These results raise new concern over the viability of ectothermic species under contemporary climate change. Herein, we propose and test a novel developmental hypothesis that describes the cellular and developmental origins of those malformations: cell death in the developing forebrain and abnormal facial induction due to disrupted Hedgehog signaling. Based on similarities in the embryonic response to thermal stress among distantly related species, we propose that this developmental hypothesis represents a common embryonic response to thermal insult among amniote embryos. Our results emphasize the importance of adopting a broad, multidisciplinary approach that includes both lab and field perspectives when trying to understand the future impacts of anthropogenic change on animal development.
Collapse
Affiliation(s)
- Thomas J Sanger
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Laura Harding
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Judith Kyrkos
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Alexandrea J Turnquist
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Lilian Epperlein
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Sylvia A Nunez
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Dryden Lachance
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - Seerat Dhindsa
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| | - James T Stroud
- Department of Biology, Washington University in St. Louis, Campus Box 1137. One Brookings Drive St. Louis, MO 63130-4899, USA
| | - Raul E Diaz
- Department of Biological Sciences, California State University, Los Angeles, 5151 State University Dr., Los Angeles, CA 90032, USA
| | - Beata Czesny
- Department of Biology, Loyola University Chicago, 1050 Sheridan Rd., Chicago, IL 60660, USA
| |
Collapse
|
15
|
Lo HF, Hong M, Szutorisz H, Hurd YL, Krauss RS. Δ9-Tetrahydrocannabinol inhibits Hedgehog-dependent patterning during development. Development 2021; 148:272342. [PMID: 34610637 DOI: 10.1242/dev.199585] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/23/2021] [Indexed: 12/20/2022]
Abstract
Many developmental disorders are thought to arise from an interaction between genetic and environmental risk factors. The Hedgehog (HH) signaling pathway regulates myriad developmental processes, and pathway inhibition is associated with birth defects, including holoprosencephaly (HPE). Cannabinoids are HH pathway inhibitors, but little is known of their effects on HH-dependent processes in mammalian embryos, and their mechanism of action is unclear. We report that the psychoactive cannabinoid Δ9-tetrahydrocannabinol (THC) induces two hallmark HH loss-of-function phenotypes (HPE and ventral neural tube patterning defects) in Cdon mutant mice, which have a subthreshold deficit in HH signaling. THC therefore acts as a 'conditional teratogen', dependent on a complementary but insufficient genetic insult. In vitro findings indicate that THC is a direct inhibitor of the essential HH signal transducer smoothened. The canonical THC receptor, cannabinoid receptor-type 1, is not required for THC to inhibit HH signaling. Cannabis consumption during pregnancy may contribute to a combination of risk factors underlying specific developmental disorders. These findings therefore have significant public health relevance.
Collapse
Affiliation(s)
- Hsiao-Fan Lo
- Department of Cell, Developmental, and Regenerative Biology, New York, NY 10029, USA
| | - Mingi Hong
- Department of Cell, Developmental, and Regenerative Biology, New York, NY 10029, USA
| | - Henrietta Szutorisz
- Addiction Institute and Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yasmin L Hurd
- Addiction Institute and Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert S Krauss
- Department of Cell, Developmental, and Regenerative Biology, New York, NY 10029, USA
| |
Collapse
|
16
|
Fitriasari S, Trainor PA. Diabetes, Oxidative Stress, and DNA Damage Modulate Cranial Neural Crest Cell Development and the Phenotype Variability of Craniofacial Disorders. Front Cell Dev Biol 2021; 9:644410. [PMID: 34095113 PMCID: PMC8174788 DOI: 10.3389/fcell.2021.644410] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Craniofacial malformations are among the most common birth defects in humans and they often have significant detrimental functional, aesthetic, and social consequences. To date, more than 700 distinct craniofacial disorders have been described. However, the genetic, environmental, and developmental origins of most of these conditions remain to be determined. This gap in our knowledge is hampered in part by the tremendous phenotypic diversity evident in craniofacial syndromes but is also due to our limited understanding of the signals and mechanisms governing normal craniofacial development and variation. The principles of Mendelian inheritance have uncovered the etiology of relatively few complex craniofacial traits and consequently, the variability of craniofacial syndromes and phenotypes both within families and between families is often attributed to variable gene expression and incomplete penetrance. However, it is becoming increasingly apparent that phenotypic variation is often the result of combinatorial genetic and non-genetic factors. Major non-genetic factors include environmental effectors such as pregestational maternal diabetes, which is well-known to increase the risk of craniofacial birth defects. The hyperglycemia characteristic of diabetes causes oxidative stress which in turn can result in genotoxic stress, DNA damage, metabolic alterations, and subsequently perturbed embryogenesis. In this review we explore the importance of gene-environment associations involving diabetes, oxidative stress, and DNA damage during cranial neural crest cell development, which may underpin the phenotypic variability observed in specific craniofacial syndromes.
Collapse
Affiliation(s)
| | - Paul A Trainor
- Stowers Institute for Medical Research, Kansas City, MO, United States.,Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS, United States
| |
Collapse
|
17
|
Balestrini S, Lopez SM, Chinthapalli K, Sargsyan N, Demurtas R, Vos S, Altmann A, Suttie M, Hammond P, Sisodiya SM. Increased facial asymmetry in focal epilepsies associated with unilateral lesions. Brain Commun 2021; 3:fcab068. [PMID: 34222868 PMCID: PMC8244637 DOI: 10.1093/braincomms/fcab068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/20/2021] [Accepted: 03/11/2021] [Indexed: 12/22/2022] Open
Abstract
The epilepsies are now conceptualized as network disruptions: focal epilepsies are considered to have network alterations in the hemisphere of seizure onset, whilst generalized epilepsies are considered to have bi-hemispheric network changes. Increasingly, many epilepsies are also considered to be neurodevelopmental disorders, with early changes in the brain underpinning seizure biology. The development of the structure of the face is influenced by complex molecular interactions between surface ectoderm and underlying developing forebrain and neural crest cells. This influence is likely to continue postnatally, given the evidence of facial growth changes over time in humans until at least 18 years of age. In this case-control study, we hypothesized that people with lateralized focal epilepsies (i.e. unilateral network changes) have an increased degree of facial asymmetry, compared with people with generalized epilepsies or controls without epilepsy. We applied three-dimensional stereophotogrammetry and dense surface models to evaluate facial asymmetry in people with epilepsy, aiming to generate new tools to explore pathophysiological mechanisms in epilepsy. We analysed neuroimaging data to explore the correlation between face and brain asymmetry. We consecutively recruited 859 people with epilepsy attending the epilepsy clinics at a tertiary referral centre. We used dense surface modelling of the full face and signature analyses of three-dimensional facial photographs to analyse facial differences between 378 cases and 205 healthy controls. Neuroimaging around the time of the facial photograph was available for 234 cases. We computed the brain asymmetry index between contralateral regions. Cases with focal symptomatic epilepsy associated with unilateral lesions showed greater facial asymmetry compared to controls (P = 0.0001, two-sample t-test). This finding was confirmed by linear regression analysis after controlling for age and gender. We also found a significant correlation between duration of illness and the brain asymmetry index of total average cortical thickness (r = -0.19, P = 0.0075) but not for total average surface area (r = 0.06, P = 0.3968). There was no significant correlation between facial asymmetry and asymmetry of regional cortical thickness or surface area. We propose that the greater facial asymmetry in cases with focal epilepsy caused by unilateral abnormality might be explained by early unilateral network disruption, and that this is independent of underlying brain asymmetry. Three-dimensional stereophotogrammetry and dense surface modelling are a novel powerful phenotyping tool in epilepsy that may permit greater understanding of pathophysiology in epilepsy, and generate further insights into the development of cerebral networks underlying epilepsy, and the genetics of facial and neural development.
Collapse
Affiliation(s)
- Simona Balestrini
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London.,Chalfont Centre for Epilepsy, Gerrards Cross, UK
| | - Seymour M Lopez
- Department of Medical Physics, Centre for Medical Image Computing, UCL, London, UK
| | - Krishna Chinthapalli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London.,Chalfont Centre for Epilepsy, Gerrards Cross, UK
| | - Narek Sargsyan
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London.,Chalfont Centre for Epilepsy, Gerrards Cross, UK
| | - Rita Demurtas
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London.,Chalfont Centre for Epilepsy, Gerrards Cross, UK
| | - Sjoerd Vos
- Department of Medical Physics, Centre for Medical Image Computing, UCL, London, UK.,Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Andre Altmann
- Department of Medical Physics, Centre for Medical Image Computing, UCL, London, UK
| | - Michael Suttie
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.,Big Data Institute, Old Road Campus, University of Oxford, Oxford, UK
| | - Peter Hammond
- Nuffield Department of Women's & Reproductive Health, University of Oxford, Oxford, UK.,Big Data Institute, Old Road Campus, University of Oxford, Oxford, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London.,Chalfont Centre for Epilepsy, Gerrards Cross, UK
| |
Collapse
|
18
|
Roth DM, Bayona F, Baddam P, Graf D. Craniofacial Development: Neural Crest in Molecular Embryology. Head Neck Pathol 2021; 15:1-15. [PMID: 33723764 PMCID: PMC8010074 DOI: 10.1007/s12105-021-01301-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
Abstract
Craniofacial development, one of the most complex sequences of developmental events in embryology, features a uniquely transient, pluripotent stem cell-like population known as the neural crest (NC). Neural crest cells (NCCs) originate from the dorsal aspect of the neural tube and migrate along pre-determined routes into the developing branchial arches and frontonasal plate. The exceptional rates of proliferation and migration of NCCs enable their diverse contribution to a wide variety of craniofacial structures. Subsequent differentiation of these cells gives rise to cartilage, bones, and a number of mesenchymally-derived tissues. Deficiencies in any stage of differentiation can result in facial clefts and abnormalities associated with craniofacial syndromes. A small number of conserved signaling pathways are involved in controlling NC differentiation and craniofacial development. They are used in a reiterated fashion to help define precise temporospatial cell and tissue formation. Although many aspects of their cellular and molecular control have yet to be described, it is clear that together they form intricately integrated signaling networks required for spatial orientation and developmental stability and plasticity, which are hallmarks of craniofacial development. Mutations that affect the functions of these signaling pathways are often directly or indirectly identified in congenital syndromes. Clinical applications of NC-derived mesenchymal stem/progenitor cells, persistent into adulthood, hold great promise for tissue repair and regeneration. Realization of NCC potential for regenerative therapies motivates understanding of the intricacies of cell communication and differentiation that underlie the complexities of NC-derived tissues.
Collapse
Affiliation(s)
- Daniela Marta Roth
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 7020N Katz Group Centre for Pharmacy & Health Research, 11361-87 Avenue, Edmonton, Alberta, AB T6G 2E1 Canada
| | - Francy Bayona
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 7020N Katz Group Centre for Pharmacy & Health Research, 11361-87 Avenue, Edmonton, Alberta, AB T6G 2E1 Canada
| | - Pranidhi Baddam
- School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 7020N Katz Group Centre for Pharmacy & Health Research, 11361-87 Avenue, Edmonton, Alberta, AB T6G 2E1 Canada
| | - Daniel Graf
- Alberta Dental Association & College Chair for Oral Health Research, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, 7020N Katz Group Centre for Pharmacy & Health Research, 11361-87 Avenue, Edmonton, Alberta, AB T6G 2E1 Canada
| |
Collapse
|
19
|
Congenital Malformations in Sea Turtles: Puzzling Interplay between Genes and Environment. Animals (Basel) 2021; 11:ani11020444. [PMID: 33567785 PMCID: PMC7915190 DOI: 10.3390/ani11020444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Congenital malformations can lead to embryonic mortality in many species, and sea turtles are no exception. Genetic and/or environmental alterations occur during early development in the embryo, and may produce aberrant phenotypes, many of which are incompatible with life. Causes of malformations are multifactorial; genetic factors may include mutations, chromosomal aberrations, and inbreeding effects, whereas non-genetic factors may include nutrition, hyperthermia, low moisture, radiation, and contamination. It is possible to monitor and control some of these factors (such as temperature and humidity) in nesting beaches, and toxic compounds in feeding areas, which can be transferred to the embryo through their lipophilic properties. In this review, we describe possible causes of different types of malformations observed in sea turtle embryos, as well as some actions that may help reduce embryonic mortality. Abstract The completion of embryonic development depends, in part, on the interplay between genetic factors and environmental conditions, and any alteration during development may affect embryonic genetic and epigenetic regulatory pathways leading to congenital malformations, which are mostly incompatible with life. Oviparous reptiles, such as sea turtles, that produce numerous eggs in a clutch that is buried on the beach provide an opportunity to study embryonic mortality associated with malformations that occur at different times during development, or that prevent the hatchling from emerging from the nest. In sea turtles, the presence of congenital malformations frequently leads to mortality. A few years ago, a detailed study was performed on external congenital malformations in three species of sea turtles from the Mexican Pacific and Caribbean coasts, the hawksbill turtle, Eretmochelys imbricata (n = 23,559 eggs), the green turtle, Chelonia mydas (n = 17,690 eggs), and the olive ridley, Lepidochelys olivacea (n = 20,257 eggs), finding 63 types of congenital malformations, of which 38 were new reports. Of the three species, the olive ridley showed a higher incidence of severe anomalies in the craniofacial region (49%), indicating alterations of early developmental pathways; however, several malformations were also observed in the body, including defects in the carapace (45%) and limbs (33%), as well as pigmentation disorders (20%), indicating that deviations occurred during the middle and later stages of development. Although intrinsic factors (i.e., genetic mutations or epigenetic modifications) are difficult to monitor in the field, some environmental factors (such as the incubation temperature, humidity, and probably the status of feeding areas) are, to some extent, less difficult to monitor and/or control. In this review, we describe the aetiology of different malformations observed in sea turtle embryos, and provide some actions that can reduce embryonic mortality.
Collapse
|
20
|
Rivera-González KS, Beames TG, Lipinski RJ. Examining the developmental toxicity of piperonyl butoxide as a Sonic hedgehog pathway inhibitor. CHEMOSPHERE 2021; 264:128414. [PMID: 33007564 PMCID: PMC9158378 DOI: 10.1016/j.chemosphere.2020.128414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 05/05/2023]
Abstract
Piperonyl butoxide (PBO) is a semisynthetic chemical present in hundreds of pesticide formulations used in agricultural, commercial, and residential settings. PBO acts as a pesticide synergist by inhibiting insect cytochrome P450 enzymes and is often present at much higher concentrations than active insecticidal ingredients. PBO was recently discovered to also inhibit Sonic hedgehog (Shh) signaling, a key molecular pathway in embryonic development and in brain and face morphogenesis. Recent animal model studies have shown that in utero PBO exposure can cause overt craniofacial malformations or more subtle neurodevelopmental abnormalities. Related adverse developmental outcomes in humans are etiologically heterogeneous, and, while studies are limited, PBO exposure during pregnancy has been linked to neurodevelopmental deficits. Contextualized in PBO's newly recognized mechanism as a Shh signaling inhibitor, these findings support more rigorous examination of the developmental toxicity of PBO and its potential contribution to etiologically complex human birth defects. In this review, we highlight environmental sources of human PBO exposure and summarize existing animal studies examining the developmental impact of prenatal PBO exposure. Also presented are critical knowledge gaps in our understanding of PBO's pharmacokinetics and potential role in gene-environment and environment-environment interactions that should be addressed to better understand the human health impact of environmental PBO exposure.
Collapse
Affiliation(s)
- Kenneth S Rivera-González
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Tyler G Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA; Molecular and Environmental Toxicology Graduate Training Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
21
|
Abstract
Pituitary stalk interruption syndrome (PSIS) is a distinct developmental defect of the pituitary gland identified by magnetic resonance imaging and characterized by a thin, interrupted, attenuated or absent pituitary stalk, hypoplasia or aplasia of the adenohypophysis, and an ectopic posterior pituitary. The precise etiology of PSIS still remains elusive or incompletely confirmed in most cases. Adverse perinatal events, including breech delivery and hypoxia, were initially proposed as the underlying mechanism affecting the hypothalamic-pituitary axis. Nevertheless, recent findings have uncovered a wide variety of PSIS-associated molecular defects in genes involved in pituitary development, holoprosencephaly (HPE), neural development, and other important cellular processes such as cilia function. The application of whole exome sequencing (WES) in relatively large cohorts has identified an expanded pool of potential candidate genes, mostly related to the Wnt, Notch, and sonic hedgehog signaling pathways that regulate pituitary growth and development during embryogenesis. Importantly, WES has revealed coexisting pathogenic variants in a significant number of patients; therefore, pointing to a multigenic origin and inheritance pattern of PSIS. The disorder is characterized by inter- and intrafamilial variability and incomplete or variable penetrance. Overall, PSIS is currently viewed as a mild form of an expanded HPE spectrum. The wide and complex clinical manifestations include evolving pituitary hormone deficiencies (with variable timing of onset and progression) and extrapituitary malformations. Severe and life-threatening symptomatology is observed in a subset of patients with complete pituitary hormone deficiency during the neonatal period. Nevertheless, most patients are referred later in childhood for growth retardation. Prompt and appropriate hormone substitution therapy constitutes the cornerstone of treatment. Further studies are needed to uncover the etiopathogenesis of PSIS.
Collapse
Affiliation(s)
- Antonis Voutetakis
- Department of Pediatrics, School of Medicine, Democritus University of Thrace, Alexandroupolis, Thrace, Greece.
| |
Collapse
|
22
|
Diaz C, Puelles L. Developmental Genes and Malformations in the Hypothalamus. Front Neuroanat 2020; 14:607111. [PMID: 33324176 PMCID: PMC7726113 DOI: 10.3389/fnana.2020.607111] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
The hypothalamus is a heterogeneous rostral forebrain region that regulates physiological processes essential for survival, energy metabolism, and reproduction, mainly mediated by the pituitary gland. In the updated prosomeric model, the hypothalamus represents the rostralmost forebrain, composed of two segmental regions (terminal and peduncular hypothalamus), which extend respectively into the non-evaginated preoptic telencephalon and the evaginated pallio-subpallial telencephalon. Complex genetic cascades of transcription factors and signaling molecules rule their development. Alterations of some of these molecular mechanisms acting during forebrain development are associated with more or less severe hypothalamic and pituitary dysfunctions, which may be associated with brain malformations such as holoprosencephaly or septo-optic dysplasia. Studies on transgenic mice with mutated genes encoding critical transcription factors implicated in hypothalamic-pituitary development are contributing to understanding the high clinical complexity of these pathologies. In this review article, we will analyze first the complex molecular genoarchitecture of the hypothalamus resulting from the activity of previous morphogenetic signaling centers and secondly some malformations related to alterations in genes implicated in the development of the hypothalamus.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, Albacete, Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, Murcia, Spain
| |
Collapse
|
23
|
Llambrich S, Wouters J, Himmelreich U, Dierssen M, Sharpe J, Gsell W, Martínez-Abadías N, Vande Velde G. ViceCT and whiceCT for simultaneous high-resolution visualization of craniofacial, brain and ventricular anatomy from micro-computed tomography. Sci Rep 2020; 10:18772. [PMID: 33128010 PMCID: PMC7599226 DOI: 10.1038/s41598-020-75720-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Up to 40% of congenital diseases present disturbances of brain and craniofacial development resulting in simultaneous alterations of both systems. Currently, the best available method to preclinically visualize the brain and the bones simultaneously is to co-register micro-magnetic resonance (µMR) and micro-computed tomography (µCT) scans of the same specimen. However, this requires expertise and access to both imaging techniques, dedicated software and post-processing knowhow. To provide a more affordable, reliable and accessible alternative, recent research has focused on optimizing a contrast-enhanced µCT protocol using iodine as contrast agent that delivers brain and bone images from a single scan. However, the available methods still cannot provide the complete visualization of both the brain and whole craniofacial complex. In this study, we have established an optimized protocol to diffuse the contrast into the brain that allows visualizing the brain parenchyma and the complete craniofacial structure in a single ex vivo µCT scan (whiceCT). In addition, we have developed a new technique that allows visualizing the brain ventricles using a bilateral stereotactic injection of iodine-based contrast (viceCT). Finally, we have tested both techniques in a mouse model of Down syndrome, as it is a neurodevelopmental disorder with craniofacial, brain and ventricle defects. The combined use of viceCT and whiceCT provides a complete visualization of the brain and bones with intact craniofacial structure of an adult mouse ex vivo using a single imaging modality.
Collapse
Affiliation(s)
- Sergi Llambrich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Jens Wouters
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG, The Barcelona Institute of Science and Technology, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - James Sharpe
- EMBL Barcelona, European Molecular Biology Laboratory, Barcelona, Spain Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Spain
| | - Willy Gsell
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium.,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium
| | - Neus Martínez-Abadías
- GREAB-Research Group in Biological Anthropology. Department of Evolutionary Biology, Ecology and Environmental Sciences, BEECA. Universitat de Barcelona, Barcelona, Spain
| | - Greetje Vande Velde
- Biomedical Imaging, Department of Imaging and Pathology, Faculty of Medicine, KU Leuven, Herestraat 49 O&N1 box 505, 3000, Leuven, Belgium. .,Molecular Small Animal Imaging Centre (MoSAIC), KU Leuven, Leuven, Belgium.
| |
Collapse
|
24
|
Beames TG, Lipinski RJ. Gene-environment interactions: aligning birth defects research with complex etiology. Development 2020; 147:147/21/dev191064. [PMID: 32680836 DOI: 10.1242/dev.191064] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Developmental biologists rely on genetics-based approaches to understand the origins of congenital abnormalities. Recent advancements in genomics have made it easier than ever to investigate the relationship between genes and disease. However, nonsyndromic birth defects often exhibit non-Mendelian inheritance, incomplete penetrance or variable expressivity. The discordance between genotype and phenotype indicates that extrinsic factors frequently impact the severity of genetic disorders and vice versa. Overlooking gene-environment interactions in birth defect etiology limits our ability to identify and eliminate avoidable risks. We present mouse models of sonic hedgehog signaling and craniofacial malformations to illustrate both the importance of and current challenges in resolving gene-environment interactions in birth defects. We then prescribe approaches for overcoming these challenges, including use of genetically tractable and environmentally responsive in vitro systems. Combining emerging technologies with molecular genetics and traditional animal models promises to advance our understanding of birth defect etiology and improve the identification and protection of vulnerable populations.
Collapse
Affiliation(s)
- Tyler G Beames
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA .,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
25
|
Misawa R, Minami T, Okamoto A, Ikeuchi Y. A Light-Inducible Hedgehog Signaling Activator Modulates Proliferation and Differentiation of Neural Cells. ACS Chem Biol 2020; 15:1595-1603. [PMID: 32343549 DOI: 10.1021/acschembio.0c00195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Hedgehog signaling pathway shapes our body by regulating the proliferation and differentiation of cells. The spatial and temporal distribution pattern of its ligands finely controls the activity of the Hedgehog pathway during development. To model the control of Hedgehog signaling activities in vitro, we developed a light-inducible Hedgehog signaling activator 6-nitroveratryloxy-carbonyl Smoothened agonist (NVOC-SAG). NVOC-SAG controls the proliferation of mouse cerebellar granule neuron precursor cells and ventral and neural differentiation of human iPS cells in a light dependent manner. The compound provides a new method to control Hedgehog signaling activities.
Collapse
|
26
|
Abstract
Humans have sought to understand the embryo for millennia. Paradoxically, even as technical and intellectual innovations bring us ever closer to a transformative understanding of developmental biology, our discipline faces an "image problem." We should face this problem by acknowledging that developmental biology is fundamental to the human experience.
Collapse
Affiliation(s)
- John B Wallingford
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
27
|
Zohn IE. Hsp90 and complex birth defects: A plausible mechanism for the interaction of genes and environment. Neurosci Lett 2020; 716:134680. [PMID: 31821846 DOI: 10.1016/j.neulet.2019.134680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
How genes and environment interact to cause birth defects is not well understood, but key to developing new strategies to modify risk. The threshold model has been proposed to represent this complex interaction. This model stipulates that while environmental exposure or genetic mutation alone may not result in a defect, factors in combination increase phenotypic variability resulting in more individuals crossing the disease threshold where birth defects manifest. Many environmental factors that contribute to birth defects induce widespread cellular stress and misfolding of proteins. Yet, the impact of the stress response on the threshold model is not typically considered in discephering the etiology of birth defects. This mini-review will explore a potential mechanism for gene-environment interactions co-opted from studies of evolution. This model stipulates that heat shock proteins that mediate the stress response induced by environmental factors can influence the number of individuals that cross disease thresholds resulting in increased incidence of birth defects. Studies in the field of evolutionary biology have demonstrated that heat shock proteins and Hsp90 in particular provide a link between environmental stress, genotype and phenotype. Hsp90 is a highly expressed molecular chaperone that assists a wide variety of protein clients with folding and conformational changes needed for proper function. Hsp90 also chaperones client proteins with potentially deleterious amino acid changes to suppress variation caused by genetic mutations. However, upon exposure to stress, Hsp90 abandons its normal physiological clients and is diverted to assist with the misfolded protein response. This can impact the activity of signaling pathways that involve Hsp90 clients as well as unmask suppressed protein variation, essentially creating complex traits in a single step. In this capacity Hsp90 acts as an evolutionary capacitor allowing stored variation to accumulate and then become expressed in times of stress. This mechanism provides a substrate which natural selection can act upon at the population level allowing survival of the species with selective pressure. However, at the level of the individual, this mechanism can result in simultaneous expression of deleterious variants as well as reduced activity of a variety of Hsp90 chaperoned pathways, potentially shifting phenotypic variability over the disease threshold resulting in birth defects.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Genetic Medicine Research, Children's National Health System, Washington, DC, 20010, USA.
| |
Collapse
|
28
|
Grabow S, Kueh AJ, Ke F, Vanyai HK, Sheikh BN, Dengler MA, Chiang W, Eccles S, Smyth IM, Jones LK, de Sauvage FJ, Scott M, Whitehead L, Voss AK, Strasser A. Subtle Changes in the Levels of BCL-2 Proteins Cause Severe Craniofacial Abnormalities. Cell Rep 2019; 24:3285-3295.e4. [PMID: 30232009 DOI: 10.1016/j.celrep.2018.08.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 05/17/2018] [Accepted: 08/16/2018] [Indexed: 12/18/2022] Open
Abstract
Apoptotic cell death removes unwanted cells and is regulated by interactions between pro-survival and pro-apoptotic members of the BCL-2 protein family. The regulation of apoptosis is thought to be crucial for normal embryonic development. Accordingly, complete loss of pro-survival MCL-1 or BCL-XL (BCL2L1) causes embryonic lethality. However, it is not known whether minor reductions in pro-survival proteins could cause developmental abnormalities. We explored the rate-limiting roles of MCL-1 and BCL-XL in development and show that combined loss of single alleles of Mcl-1 and Bcl-x causes neonatal lethality. Mcl-1+/-;Bcl-x+/- mice display craniofacial anomalies, but additional loss of a single allele of pro-apoptotic Bim (Bcl2l11) restores normal development. These findings demonstrate that the control of cell survival during embryogenesis is finely balanced and suggest that some human craniofacial defects, for which causes are currently unknown, may be due to subtle imbalances between pro-survival and pro-apoptotic BCL-2 family members.
Collapse
Affiliation(s)
- Stephanie Grabow
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Andrew J Kueh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Francine Ke
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Hannah K Vanyai
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Bilal N Sheikh
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Michael A Dengler
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - William Chiang
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Samantha Eccles
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
| | - Ian M Smyth
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Anatomy and Developmental Biology and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Lynelle K Jones
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, VIC 3800, Australia; Department of Anatomy and Developmental Biology and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | | | - Mark Scott
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC 3052, Australia.
| |
Collapse
|
29
|
Okuhara S, Birjandi AA, Adel Al-Lami H, Sagai T, Amano T, Shiroishi T, Xavier GM, Liu KJ, Cobourne MT, Iseki S. Temporospatial sonic hedgehog signalling is essential for neural crest-dependent patterning of the intrinsic tongue musculature. Development 2019; 146:146/21/dev180075. [PMID: 31719045 DOI: 10.1242/dev.180075] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/17/2019] [Indexed: 01/20/2023]
Abstract
The tongue is a highly specialised muscular organ with a complex anatomy required for normal function. We have utilised multiple genetic approaches to investigate local temporospatial requirements for sonic hedgehog (SHH) signalling during tongue development. Mice lacking a Shh cis-enhancer, MFCS4 (ShhMFCS4/-), with reduced SHH in dorsal tongue epithelium have perturbed lingual septum tendon formation and disrupted intrinsic muscle patterning, with these defects reproduced following global Shh deletion from E10.5 in pCag-CreERTM; Shhflox/flox embryos. SHH responsiveness was diminished in local cranial neural crest cell (CNCC) populations in both mutants, with SHH targeting these cells through the primary cilium. CNCC-specific deletion of orofaciodigital syndrome 1 (Ofd1), which encodes a ciliary protein, in Wnt1-Cre; Ofdfl/Y mice led to a complete loss of normal myotube arrangement and hypoglossia. In contrast, mesoderm-specific deletion of Ofd1 in Mesp1-Cre; Ofdfl/Y embryos resulted in normal intrinsic muscle arrangement. Collectively, these findings suggest key temporospatial requirements for local SHH signalling in tongue development (specifically, lingual tendon differentiation and intrinsic muscle patterning through signalling to CNCCs) and provide further mechanistic insight into the tongue anomalies seen in patients with disrupted hedgehog signalling.
Collapse
Affiliation(s)
- Shigeru Okuhara
- Section of Molecular Craniofacial Embryology, Graduate School of Dental and Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| | - Anahid A Birjandi
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Hadeel Adel Al-Lami
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Tomoko Sagai
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Takanori Amano
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Toshihiko Shiroishi
- Mammalian Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan
| | - Guilherme M Xavier
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Karen J Liu
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Martyn T Cobourne
- Centre for Craniofacial and Regenerative Biology, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London SE1 9RT, UK
| | - Sachiko Iseki
- Section of Molecular Craniofacial Embryology, Graduate School of Dental and Medical Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8510, Japan
| |
Collapse
|
30
|
Garcia KE, Stewart WG, Espinosa MG, Gleghorn JP, Taber LA. Molecular and mechanical signals determine morphogenesis of the cerebral hemispheres in the chicken embryo. Development 2019; 146:146/20/dev174318. [PMID: 31604710 DOI: 10.1242/dev.174318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 07/30/2019] [Indexed: 01/16/2023]
Abstract
During embryonic development, the telecephalon undergoes extensive growth and cleaves into right and left cerebral hemispheres. Although molecular signals have been implicated in this process and linked to congenital abnormalities, few studies have examined the role of mechanical forces. In this study, we quantified morphology, cell proliferation and tissue growth in the forebrain of chicken embryos during Hamburger-Hamilton stages 17-21. By altering embryonic cerebrospinal fluid pressure during development, we found that neuroepithelial growth depends on not only chemical morphogen gradients but also mechanical feedback. Using these data, as well as published information on morphogen activity, we developed a chemomechanical growth law to mathematically describe growth of the neuroepithelium. Finally, we constructed a three-dimensional computational model based on these laws, with all parameters based on experimental data. The resulting model predicts forebrain shapes consistent with observations in normal embryos, as well as observations under chemical or mechanical perturbation. These results suggest that molecular and mechanical signals play important roles in early forebrain morphogenesis and may contribute to the development of congenital malformations.
Collapse
Affiliation(s)
- Kara E Garcia
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Wade G Stewart
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - M Gabriela Espinosa
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| | - Jason P Gleghorn
- Department of Biomedical Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Larry A Taber
- Department of Biomedical Engineering, Washington University, 1 Brookings Drive, St. Louis, MO 63130, USA
| |
Collapse
|
31
|
Everson JL, Sun MR, Fink DM, Heyne GW, Melberg CG, Nelson KF, Doroodchi P, Colopy LJ, Ulschmid CM, Martin AA, McLaughlin MT, Lipinski RJ. Developmental Toxicity Assessment of Piperonyl Butoxide Exposure Targeting Sonic Hedgehog Signaling and Forebrain and Face Morphogenesis in the Mouse: An in Vitro and in Vivo Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107006. [PMID: 31642701 PMCID: PMC6867268 DOI: 10.1289/ehp5260] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Piperonyl butoxide (PBO) is a pesticide synergist used in residential, commercial, and agricultural settings. PBO was recently found to inhibit Sonic hedgehog (Shh) signaling, a key developmental regulatory pathway. Disruption of Shh signaling is linked to birth defects, including holoprosencephaly (HPE), a malformation of the forebrain and face thought to result from complex gene-environment interactions. OBJECTIVES The impact of PBO on Shh signaling in vitro and forebrain and face development in vivo was examined. METHODS The influence of PBO on Shh pathway transduction was assayed in mouse and human cell lines. To examine its teratogenic potential, a single dose of PBO (22-1,800mg/kg) was administered by oral gavage to C57BL/6J mice at gestational day 7.75, targeting the critical period for HPE. Gene-environment interactions were investigated using Shh+/- mice, which model human HPE-associated genetic mutations. RESULTS PBO attenuated Shh signaling in vitro through a mechanism similar to that of the known teratogen cyclopamine. In utero PBO exposure caused characteristic HPE facial dysmorphology including dose-dependent midface hypoplasia and hypotelorism, with a lowest observable effect level of 67mg/kg. Median forebrain deficiency characteristic of HPE was observed in severely affected animals, whereas all effective doses disrupted development of Shh-dependent transient forebrain structures that generate cortical interneurons. Normally silent heterozygous Shh null mutations exacerbated PBO teratogenicity at all doses tested, including 33mg/kg. DISCUSSION These findings demonstrate that prenatal PBO exposure can cause overt forebrain and face malformations or neurodevelopmental disruptions with subtle or no craniofacial dysmorphology in mice. By targeting Shh signaling as a sensitive mechanism of action and examining gene-environment interactions, this study defined a lowest observable effect level for PBO developmental toxicity in mice more than 30-fold lower than previously recognized. Human exposure to PBO and its potential contribution to etiologically complex birth defects should be rigorously examined. https://doi.org/10.1289/EHP5260.
Collapse
Affiliation(s)
- Joshua L. Everson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Miranda R. Sun
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Dustin M. Fink
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Galen W. Heyne
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Cal G. Melberg
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kia F. Nelson
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Padydeh Doroodchi
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Lydia J. Colopy
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Caden M. Ulschmid
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alexander A. Martin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Matthew T. McLaughlin
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Robert J. Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
32
|
Periyasamy S, John S, Padmavati R, Rajendren P, Thirunavukkarasu P, Gratten J, Vinkhuyzen A, McRae A, Holliday EG, Nyholt DR, Nancarrow D, Bakshi A, Hemani G, Nertney D, Smith H, Filippich C, Patel K, Fowdar J, McLean D, Tirupati S, Nagasundaram A, Gundugurti PR, Selvaraj K, Jegadeesan J, Jorde LB, Wray NR, Brown MA, Suetani R, Giacomotto J, Thara R, Mowry BJ. Association of Schizophrenia Risk With Disordered Niacin Metabolism in an Indian Genome-wide Association Study. JAMA Psychiatry 2019; 76:1026-1034. [PMID: 31268507 PMCID: PMC6613304 DOI: 10.1001/jamapsychiatry.2019.1335] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Importance Genome-wide association studies (GWASs) in European populations have identified more than 100 schizophrenia-associated loci. A schizophrenia GWAS in a unique Indian population offers novel findings. Objective To discover and functionally evaluate genetic loci for schizophrenia in a GWAS of a unique Indian population. Design, Setting, and Participants This GWAS included a sample of affected individuals, family members, and unrelated cases and controls. Three thousand ninety-two individuals were recruited and diagnostically ascertained via medical records, hospitals, clinics, and clinical networks in Chennai and surrounding regions. Affected participants fulfilled DSM-IV diagnostic criteria for schizophrenia. Unrelated control participants had no personal or family history of psychotic disorder. Recruitment, genotyping, and analysis occurred in consecutive phases beginning January 1, 2001. Recruitment was completed on February 28, 2018, and genotyping and analysis are ongoing. Main Outcomes and Measures Associations of single-nucleotide polymorphisms and gene expression with schizophrenia. Results The study population included 1321 participants with schizophrenia, 885 family controls, and 886 unrelated controls. Among participants with schizophrenia, mean (SD) age was 39.1 (11.4) years, and 52.7% were male. This sample demonstrated uniform ethnicity, a degree of inbreeding, and negligible rates of substance abuse. A novel genome-wide significant association was observed between schizophrenia and a chromosome 8q24.3 locus (rs10866912, allele A; odds ratio [OR], 1.27 [95% CI, 1.17-1.38]; P = 4.35 × 10-8) that attracted support in the schizophrenia Psychiatric Genomics Consortium 2 data (rs10866912, allele A; OR, 1.04 [95% CI, 1.02-1.06]; P = 7.56 × 10-4). This locus has undergone natural selection, with the risk allele A declining in frequency from India (approximately 72%) to Europe (approximately 43%). rs10866912 directly modifies the abundance of the nicotinate phosphoribosyltransferase gene (NAPRT1) transcript in brain cortex (normalized effect size, 0.79; 95% CI, 0.6-1.0; P = 5.8 × 10-13). NAPRT1 encodes a key enzyme for niacin metabolism. In Indian lymphoblastoid cell lines, (risk) allele A of rs10866912 was associated with NAPRT1 downregulation (AA: 0.74, n = 21; CC: 1.56, n = 17; P = .004). Preliminary zebrafish data further suggest that partial loss of function of NAPRT1 leads to abnormal brain development. Conclusions and Relevance Bioinformatic analyses and cellular and zebrafish gene expression studies implicate NAPRT1 as a novel susceptibility gene. Given this gene's role in niacin metabolism and the evidence for niacin deficiency provoking schizophrenialike symptoms in neuropsychiatric diseases such as pellagra and Hartnup disease, these results suggest that the rs10866912 genotype and niacin status may have implications for schizophrenia susceptibility and treatment.
Collapse
Affiliation(s)
- Sathish Periyasamy
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Sujit John
- Schizophrenia Research Foundation, Chennai, India
| | | | | | | | - Jacob Gratten
- Mater Research Institute and University of Queensland, Translational Research Institute, Brisbane, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Anna Vinkhuyzen
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Allan McRae
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | | | - Dale R Nyholt
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Biomedical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | | | - Andrew Bakshi
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Gibran Hemani
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Medical Research Council Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Deborah Nertney
- Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Heather Smith
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Cheryl Filippich
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Kalpana Patel
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Javed Fowdar
- Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | - Duncan McLean
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Srinivasan Tirupati
- Psychiatric Rehabilitation Service, Hunter New England Mental Health, Newcastle, Australia
| | | | | | | | | | - Lynn B Jorde
- Department of Human Genetics, University of Utah, Salt Lake City
| | - Naomi R Wray
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matthew A Brown
- Institute of Health and Biomedical Innovation, Translational Research Institute, Princess Alexandra Hospital, Queensland University of Technology, Brisbane, Australia
| | - Rachel Suetani
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | - Jean Giacomotto
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| | | | - Bryan J Mowry
- Queensland Brain Institute, University of Queensland, Brisbane, Australia.,Queensland Centre for Mental Health Research, West Moreton Hospital and Health Service, University of Queensland, Brisbane, Australia
| |
Collapse
|
33
|
Palencia-Campos A, Martínez-Fernández ML, Altunoglu U, Soto-Bielicka P, Torres A, Marín P, Aller E, Şentürk L, Berköz Ö, Yıldıran M, Kayserili H, Gil-Camarero E, Colli-Lista G, Sanchís-Calvo A, Carretero A, Guillén-Navarro E, López-González V, Ballesta-Martínez M, Rosell J, Aglan MS, Temtamy S, Otaify GA, Cuevas-Catalina L, Torres-Saavedra MN, Nevado J, Tenorio J, Lapunzina P, Bermejo-Sánchez E, Ruiz-Pérez VL. Heterozygous pathogenic variants in GLI1 are a common finding in isolated postaxial polydactyly A/B. Hum Mutat 2019; 41:265-276. [PMID: 31549748 DOI: 10.1002/humu.23921] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/24/2019] [Accepted: 09/17/2019] [Indexed: 12/14/2022]
Abstract
Postaxial polydactyly (PAP) is a frequent limb malformation consisting in the duplication of the fifth digit of the hand or foot. Morphologically, this condition is divided into type A and B, with PAP-B corresponding to a more rudimentary extra-digit. Recently, biallelic truncating variants in the transcription factor GLI1 were reported to be associated with a recessive disorder, which in addition to PAP-A, may include syndromic features. Moreover, two heterozygous subjects carrying only one inactive copy of GLI1 were also identified with PAP. Herein, we aimed to determine the level of involvement of GLI1 in isolated PAP, a condition previously established to be autosomal dominantly inherited with incomplete penetrance. We analyzed the coding region of GLI1 in 95 independent probands with nonsyndromic PAP and found 11.57% of these subjects with single heterozygous pathogenic variants in this gene. The detected variants lead to premature termination codons or result in amino acid changes in the DNA-binding domain of GLI1 that diminish its transactivation activity. Family segregation analysis of these variants was consistent with dominant inheritance with incomplete penetrance. We conclude that heterozygous changes in GLI1 underlie a significant proportion of sporadic or familial cases of isolated PAP-A/B.
Collapse
Affiliation(s)
- Adrián Palencia-Campos
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain
| | - María-Luisa Martínez-Fernández
- ECEMC (Spanish Collaborative Study of Congenital Malformations), Research Unit on Congenital Anomalies, Institute of Health Carlos III, Madrid, Spain
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | | | - Antonio Torres
- Paediatric Unit, Hospital San Juan de La Cruz, Úbeda, Spain
| | - Purificación Marín
- Dysmorphology and Neonatology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Elena Aller
- CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain.,Genetic Unit, Hospital La Fe, Valencia, Spain
| | - Leyli Şentürk
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ömer Berköz
- Department of Reconstructive and aesthetic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Mehmet Yıldıran
- Department of Reconstructive and aesthetic Surgery, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Hülya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Medical Genetics Department, Koç University School of Medicine, Istanbul, Turkey
| | | | | | | | - Alba Carretero
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain
| | -
- Paediatric Units from different hospitals, all part of ECEMC (Spanish Collaborative Study of Congenital Malformations) Clinical Network, Spain
| | - Encarna Guillén-Navarro
- CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain.,Genetic Medicine Unit, Paediatric Unit, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Vanesa López-González
- CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain.,Genetic Medicine Unit, Paediatric Unit, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - María Ballesta-Martínez
- CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain.,Genetic Medicine Unit, Paediatric Unit, Hospital Clínico Universitario Virgen de la Arrixaca, IMIB-Arrixaca, Murcia, Spain
| | - Jordi Rosell
- CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain.,Genetic Unit, Hospital Son Espases, Palma de Mallorca, Spain
| | - Mona S Aglan
- Department of Clinical Genetics, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Samia Temtamy
- Department of Clinical Genetics, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Ghada A Otaify
- Department of Clinical Genetics, Human Genetics and Genome Research Division, Centre of Excellence of Human Genetics, National Research Centre, Cairo, Egypt
| | - Lourdes Cuevas-Catalina
- ECEMC (Spanish Collaborative Study of Congenital Malformations), Research Unit on Congenital Anomalies, Institute of Health Carlos III, Madrid, Spain
| | - María-Nieves Torres-Saavedra
- ECEMC (Spanish Collaborative Study of Congenital Malformations), Research Unit on Congenital Anomalies, Institute of Health Carlos III, Madrid, Spain.,CS Federica Montseny, Unidad Asistencial Sureste, Madrid, Spain
| | - Julian Nevado
- Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
| | - Jair Tenorio
- CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain.,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
| | - Pablo Lapunzina
- CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain.,Institute of Medical and Molecular Genetics (INGEMM)-IdiPAZ, Hospital Universitario La Paz-UAM, Madrid, Spain
| | - Eva Bermejo-Sánchez
- ECEMC (Spanish Collaborative Study of Congenital Malformations), Research Unit on Congenital Anomalies, Institute of Health Carlos III, Madrid, Spain.,Institute of Rare Diseases Research (IIER), Institute of Health Carlos III, Madrid, Spain
| | - Víctor L Ruiz-Pérez
- Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain.,CIBER de Enfermedades Raras (CIBERER), Institute of Health Carlos III, Spain
| |
Collapse
|
34
|
Ohuchi H, Sato K, Habuta M, Fujita H, Bando T. Congenital eye anomalies: More mosaic than thought? Congenit Anom (Kyoto) 2019; 59:56-73. [PMID: 30039880 DOI: 10.1111/cga.12304] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/13/2022]
Abstract
The eye is a sensory organ that primarily captures light and provides the sense of sight, as well as delivering non-visual light information involving biological rhythms and neurophysiological activities to the brain. Since the early 1990s, rapid advances in molecular biology have enabled the identification of developmental genes, genes responsible for human congenital diseases, and relevant genes of mutant animals with various anomalies. In this review, we first look at the development of the eye, and we highlight seminal reports regarding archetypal gene defects underlying three developmental ocular disorders in humans: (1) holoprosencephaly (HPE), with cyclopia being exhibited in the most severe cases; (2) microphthalmia, anophthalmia, and coloboma (MAC) phenotypes; and (3) anterior segment dysgenesis (ASDG), known as Peters anomaly and its related disorders. The recently developed methods, such as next-generation sequencing and genome editing techniques, have aided the discovery of gene mutations in congenital eye diseases and gene functions in normal eye development. Finally, we discuss Pax6-genome edited mosaic eyes and propose that somatic mosaicism in developmental gene mutations should be considered a causal factor for variable phenotypes, sporadic cases, and de novo mutations in human developmental disorders.
Collapse
Affiliation(s)
- Hideyo Ohuchi
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Keita Sato
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Munenori Habuta
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Hirofumi Fujita
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | - Tetsuya Bando
- Department of Cytology and Histology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| |
Collapse
|
35
|
Grinblat Y, Lipinski RJ. A forebrain undivided: Unleashing model organisms to solve the mysteries of holoprosencephaly. Dev Dyn 2019; 248:626-633. [PMID: 30993762 DOI: 10.1002/dvdy.41] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/10/2019] [Accepted: 04/10/2019] [Indexed: 12/13/2022] Open
Abstract
Evolutionary conservation and experimental tractability have made animal model systems invaluable tools in our quest to understand human embryogenesis, both normal and abnormal. Standard genetic approaches, particularly useful in understanding monogenic diseases, are no longer sufficient as research attention shifts toward multifactorial outcomes. Here, we examine this progression through the lens of holoprosencephaly (HPE), a common human malformation involving incomplete forebrain division, and a classic example of an etiologically complex outcome. We relate the basic underpinning of HPE pathogenesis to critical cell-cell interactions and signaling molecules discovered through embryological and genetic approaches in multiple model organisms, and discuss the role of the mouse model in functional examination of HPE-linked genes. We then outline the most critical remaining gaps to understanding human HPE, including the conundrum of incomplete penetrance/expressivity and the role of gene-environment interactions. To tackle these challenges, we outline a strategy that leverages new and emerging technologies in multiple model systems to solve the puzzle of HPE.
Collapse
Affiliation(s)
- Yevgenya Grinblat
- Department of Integrative Biology, University of Wisconsin, Madison, Wisconsin.,Department of Neuroscience, University of Wisconsin, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin, Madison, Wisconsin
| | - Robert J Lipinski
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin.,Molecular and Environmental Toxicology Center, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
36
|
Xiong J, Xiang B, Chen X, Cai T. Case report: a novel mutation in ZIC2 in an infant with microcephaly, holoprosencephaly, and arachnoid cyst. Medicine (Baltimore) 2019; 98:e14780. [PMID: 30855487 PMCID: PMC6417543 DOI: 10.1097/md.0000000000014780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
RATIONALE Holoprosencephaly (HPE) is a severe congenital brain malformation resulting from failed or incomplete forebrain division in early pregnancy. PATIENT CONCERNS In this study, we reported a 9-month old infant girl with mild microcephaly, semilobor HPE, and arachnoid cyst. DIAGNOSES Potential genetic defects were screened directly using trio-case whole exome sequencing (WES) rather than traditional karyotype, microarray, and Sanger sequencing of select genes. OUTCOMES A previous unpublished de novo missense mutation (c.1069C >G, p.H357D) in the 3rd zinc finger domain (ZFD3) of the ZIC2 gene was identified in the affected individual, but not in the parents. Sanger sequencing using specific primers verified the mutation. Extensive bioinformatics analysis confirmed the pathogenicity of this extremely rare mutation. Phenotype-genotype analysis revealed significant correlation between the 3rd zinc-finger domain with semilobor HPE. LESSONS These findings expanded the spectrum of the ZIC2 gene mutations and associated clinical manifestations, which is the first identification of a mutated ZIC2 gene in a Han infant girl with mild microcephaly, semilobor HPE, and arachnoid cyst.
Collapse
Affiliation(s)
- Jianjun Xiong
- College of Basic Medical Science, Jiujiang University, Jiujiang, Jiangxi
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| | - Bingwu Xiang
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Xiang Chen
- Physical Medicine and Rehabilitation Center, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang, China
| | - Tao Cai
- Experimental Medicine Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD
| |
Collapse
|
37
|
Honey EM, Bütow KW, Zwahlen RA. Holoprosencephaly with Clefts: Data of 85 Patients, Treatment and Outcome: Part 1: History, Subdivisions, and Data on 85 Holoprosencephalic Cleft Patients. Ann Maxillofac Surg 2019; 9:140-145. [PMID: 31293943 PMCID: PMC6585219 DOI: 10.4103/ams.ams_50_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
CONTEXT Cleft patients with Holoprosencephaly (HPE) constitute a controversy due to a variable facial appearance. HPE appearance varies from only a columella to a prolabium-premaxilla complex agenesis up to a common unilateral or bilateral cleft lip and palate with a single central incisor, various brain deformities, and/or even normal brain development. It is challenging to designate such various appearances, to understand their etiopathogenesis, and to choose the most appropriate management. Literature was reviewed for diagnostic criteria, pregnancy history, clinical findings, brain development, survival rate, initial perioperative management, and postsurgical midfacial growth in cleft patients with HPE. The findings were compared with a clinical database of 85 cleft patients with HPE at the Department of Maxillofacial and Oral Surgery, University of Pretoria. AIMS OF PART 1 The aim of the study is to overcome disparities widely existing among clinicians regarding definitive diagnostic criteria, especially in cases with a common appearance of a uni- or bilateral cleft lip alveolus or cleft lip, alveolus and palate deformity, and cases presenting facial structural agenesis. MATERIALS AND METHODS A literature search related to diagnostic criteria was compared to results of a cleft HPE database from a single tertiary institution. RESULTS HPE cleft cases can be allocated to one of the following subdivisions: (1) columella complex agenesis (Ag-Colum), (2) prolabium-premaxilla-columella complex agenesis in cleft lip-alveolus deformities (Ag-CLA), (3) prolabium-premaxilla-columella agenesis in cases with complete cleft lip alveolus palate (Ag-CLAP), and (4) standard type (holoprosencephaly in patients with a standard cleft) with uni- or bilateral CLA or CLAP, hard and soft palate cleft (hPsP), and atrophic premaxillae, with or without single central incisor. Further, incidence, variation in brain development, and appearances in HPE cleft patients of different races and gender, epilepsy, and early death are discussed. Conclusion: This paper adds new data and facts to the existing literature related to cleft lip and palate patients suffering from HPE.
Collapse
Affiliation(s)
- Engela M. Honey
- Facial Cleft Deformity Clinic, Department of Maxillo-Facial and Oral Surgery, University of Pretoria, Pretoria, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Science, University of Pretoria, Pretoria, South Africa
| | - Kurt W. Bütow
- Facial Cleft Deformity Clinic, Department of Maxillo-Facial and Oral Surgery, University of Pretoria, Pretoria, South Africa
- Suite A2 Maxillo-Facial Surgery, The Life Wilgers Hospital, Pretoria, South Africa
| | - Roger Arthur Zwahlen
- Private Practice in Oral and Maxillofacial Surgery, Grand-Places 16, Fribourg, Switzerland
| |
Collapse
|
38
|
Scher MS. Fetal neurology: Principles and practice with a life-course perspective. HANDBOOK OF CLINICAL NEUROLOGY 2019; 162:1-29. [PMID: 31324306 DOI: 10.1016/b978-0-444-64029-1.00001-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Clinical service, educational, and research components of a fetal/neonatal neurology program are anchored by the disciplines of developmental origins of health and disease and life-course science as programmatic principles. Prenatal participation provides perspectives on maternal, fetal, and placental contributions to health or disease for fetal and subsequent neonatal neurology consultations. This program also provides an early-life diagnostic perspective for neurologic specialties concerned with brain health and disease throughout childhood and adulthood. Animal models and birth cohort studies have demonstrated how the science of epigenetics helps to understand gene-environment interactions to better predict brain health or disease. Fetal neurology consultations provide important diagnostic contributions during critical or sensitive periods of brain development when future neurotherapeutic interventions will maximize adaptive neuroplasticity. Age-specific normative neuroinformatics databases that employ computer-based strategies to integrate clinical/demographic, neuroimaging, neurophysiologic, and genetic datasets will more accurately identify either symptomatic patients or those at risk for brain disorders who would benefit from preventive, rescue, or reparative treatment choices throughout the life span.
Collapse
Affiliation(s)
- Mark S Scher
- Division of Pediatric Neurology, Case Western Reserve University, Cleveland, OH, United States.
| |
Collapse
|
39
|
Abstract
Disorders of the developing nervous system may be of genetic origin, comprising congenital malformations of spine and brain as well as metabolic or vascular disorders that affect normal brain development. Acquired causes include congenital infections, hypoxic-ischemic or traumatic brain injury, and a number of rare neoplasms. This chapter focuses on the clinical presentation and workup of neurogenetic disorders presenting in the fetal or neonatal period. After a summary of the most frequent clinical presentations, clues from history taking and clinical examination are illustrated with short case reports. This is followed by a discussion of the different tools available for the workup of neurogenetic disorders, including the various genetic techniques with their advantages and disadvantages. The implications of a molecular genetic diagnosis for the patient and family are addressed in the section on counseling. The chapter concludes with a proposed workflow that may help the clinician when confronted with a potential neurogenetic disorder in the fetal or neonatal period.
Collapse
|
40
|
Abstract
Cell-to-cell communication is fundamental for embryo development and subsequent tissue homeostasis. This communication is often mediated by a small number of signaling pathways in which a secreted ligand binds to the surface of a target cell, thereby activating signal transduction. In vertebrate neural development, these signaling mechanisms are repeatedly used to obtain different and context-dependent outcomes. Part of the versatility of these communication mechanisms depends on their finely tuned regulation that controls timing, spatial localization, and duration of the signaling. The existence of secreted antagonists, which prevent ligand–receptor interaction, is an efficient mechanism to regulate some of these pathways. The Hedgehog family of signaling proteins, however, activates a pathway that is controlled largely by the positive or negative activity of membrane-bound proteins such as Cdon, Boc, Gas1, or Megalin/LRP2. In this review, we will use the development of the vertebrate retina, from its early specification to neurogenesis, to discuss whether there is an advantage to the use of such regulators, pointing to unresolved or controversial issues.
Collapse
Affiliation(s)
- Viviana Gallardo
- Centro de Biología Molecular , CSIC-UAM, Madrid, 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| | - Paola Bovolenta
- Centro de Biología Molecular , CSIC-UAM, Madrid, 28049, Spain.,CIBER de Enfermedades Raras (CIBERER), Madrid, 28029, Spain
| |
Collapse
|
41
|
Lehalle D, Altunoglu U, Bruel AL, Assoum M, Duffourd Y, Masurel A, Baujat G, Bessieres B, Captier G, Edery P, Elçioğlu NH, Geneviève D, Goldenberg A, Héron D, Grotto S, Marlin S, Putoux A, Rossi M, Saugier-Veber P, Triau S, Cabrol C, Vézain M, Vincent-Delorme C, Thauvin-Robinet C, Thevenon J, Vabres P, Callier P, Kayserili H, Faivre L. The oculoauriculofrontonasal syndrome: Further clinical characterization and additional evidence suggesting a nontraditional mode of inheritance. Am J Med Genet A 2018; 176:2740-2750. [PMID: 30548201 DOI: 10.1002/ajmg.a.40662] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/01/2018] [Accepted: 08/23/2018] [Indexed: 12/22/2022]
Abstract
The oculoauriculofrontonasal syndrome (OAFNS) is a rare disorder characterized by the association of frontonasal dysplasia (widely spaced eyes, facial cleft, and nose abnormalities) and oculo-auriculo-vertebral spectrum (OAVS)-associated features, such as preauricular ear tags, ear dysplasia, mandibular asymmetry, epibulbar dermoids, eyelid coloboma, and costovertebral anomalies. The etiology is unknown so far. This work aimed to identify molecular bases for the OAFNS. Among a cohort of 130 patients with frontonasal dysplasia, accurate phenotyping identified 18 individuals with OAFNS. We describe their clinical spectrum, including the report of new features (micro/anophtalmia, cataract, thyroid agenesis, polymicrogyria, olfactory bulb hypoplasia, and mandibular cleft), and emphasize the high frequency of nasal polyps in OAFNS (56%). We report the negative results of ALX1, ALX3, and ALX4 genes sequencing and next-generation sequencing strategy performed on blood-derived DNA from respectively, four and four individuals. Exome sequencing was performed in four individuals, genome sequencing in one patient with negative exome sequencing result. Based on the data from this series and the literature, diverse hypotheses can be raised regarding the etiology of OAFNS: mosaic mutation, epigenetic anomaly, oligogenism, or nongenetic cause. In conclusion, this series represents further clinical delineation work of the rare OAFNS, and paves the way toward the identification of the causing mechanism.
Collapse
Affiliation(s)
- Daphné Lehalle
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Unité fonctionnelle de Génétique Clinique, Centre Hospitalier Intercommunal de Créteil, Dijon, France
| | - Umut Altunoglu
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey
| | - Ange-Line Bruel
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Mirna Assoum
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Yannis Duffourd
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Alice Masurel
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France
| | - Geneviève Baujat
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| | - Bettina Bessieres
- Unite d'embryofoetopathologie, Service d'Histologie-Embryologie-Cytogénétique, Hôpital Necker - Enfants Malades, APHP, Paris, France
| | - Guillaume Captier
- Service de chirurgie orthopédique et plastique pédiatrique, Hôpital Lapeyronie, CHU Montpellier, Montpellier, France
| | - Patrick Edery
- Service de génétique et Centre de Référence des Anomalies du développement de la région Auvergne-Rhône-Alpes, CHU de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028 CNRS UMR 5292, UCB Lyon 1, Lyon, France
| | - Nursel H Elçioğlu
- Department of Pediatric Genetics, Marmara University Medical School, Istanbul, Turkey.,Eastern Mediterranean University Medical School, Mersin, Turkey
| | - David Geneviève
- Genetic Department for Rare Disease and Personalised Medicine, Clinical Division, Montpellier University, Inserm U1183, Montpellier, France.,Centre de référence des anomalies du développement et syndromes malformatifs, Sud-Ouest Occitanie, France
| | - Alice Goldenberg
- Department of Genetics, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Delphine Héron
- AP-HP, Hôpital de la Pitié-Salpêtrière, Département de Génétique, Paris, France.,Centre de Référence "déficiences intellectuelles de causes rares", Paris, France.,Groupe de Recherche Clinique (GRC) "déficience intellectuelle et autisme" UPMC, Paris, France.,INSERM, U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Paris, France.,Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Sarah Grotto
- Department of Genetics, Rouen University Hospital, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | - Sandrine Marlin
- Service de Génétique, INSERM U781, Hôpital Necker-Enfants Malades, Institut Imagine, University Sorbonne-Paris-Cité, Paris, France
| | - Audrey Putoux
- Service de génétique et Centre de Référence des Anomalies du développement de la région Auvergne-Rhône-Alpes, CHU de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028 CNRS UMR 5292, UCB Lyon 1, Lyon, France
| | - Massimiliano Rossi
- Service de génétique et Centre de Référence des Anomalies du développement de la région Auvergne-Rhône-Alpes, CHU de Lyon, Lyon, France.,Centre de Recherche en Neurosciences de Lyon, INSERM U1028 CNRS UMR 5292, UCB Lyon 1, Lyon, France
| | - Pascale Saugier-Veber
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | | | - Myriam Vézain
- Normandie Univ, UNIROUEN, Inserm U1245 and Rouen University Hospital, Department of Genetics, Normandy Centre for Genomic and Personalized Medicine, Rouen, France
| | | | - Christel Thauvin-Robinet
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Julien Thevenon
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Pierre Vabres
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France.,Service de Dermatologie, CHU Dijon, Dijon, France
| | - Patrick Callier
- Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| | - Hulya Kayserili
- Medical Genetics Department, Istanbul Medical Faculty, Istanbul University, Istanbul, Turkey.,Koç University School of Medicine (KUSoM) Medical Genetics Department, İstanbul, Turkey
| | - Laurence Faivre
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs de l'Interrégion Est, Centre Hospitalier Universitaire Dijon, Dijon, France.,Equipe GAD, INSERM LNC UMR 1231, Faculté de Médecine, Université de Bourgogne Franche-Comté, Dijon, France
| |
Collapse
|
42
|
Leombroni M, Khalil A, Liberati M, D'Antonio F. Fetal midline anomalies: Diagnosis and counselling part 2: Septal anomalies. Eur J Paediatr Neurol 2018; 22:963-971. [PMID: 30470535 DOI: 10.1016/j.ejpn.2018.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/26/2018] [Accepted: 08/27/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Martina Leombroni
- Department of Obstetrics and Gynecology, University of Chieti, Chieti, Italy
| | - Asma Khalil
- Fetal Medicine Unit, Division of Developmental Sciences, St. George's University of London, London, United Kingdom
| | - Marco Liberati
- Department of Obstetrics and Gynecology, University of Chieti, Chieti, Italy
| | - Francesco D'Antonio
- Womeńs Health and Perinatology Research Group, Department of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway; Department of Obstetrics and Gynaecology, University Hospital of Northern Norway, Tromsø, Norway.
| |
Collapse
|
43
|
Chen SD, Yang JL, Hwang WC, Yang DI. Emerging Roles of Sonic Hedgehog in Adult Neurological Diseases: Neurogenesis and Beyond. Int J Mol Sci 2018; 19:ijms19082423. [PMID: 30115884 PMCID: PMC6121355 DOI: 10.3390/ijms19082423] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 08/10/2018] [Accepted: 08/13/2018] [Indexed: 12/14/2022] Open
Abstract
Sonic hedgehog (Shh), a member of the hedgehog (Hh) family, was originally recognized as a morphogen possessing critical characters for neural development during embryogenesis. Recently, however, Shh has emerged as an important modulator in adult neural tissues through different mechanisms such as neurogenesis, anti-oxidation, anti-inflammation, and autophagy. Therefore, Shh may potentially have clinical application in neurodegenerative diseases and brain injuries. In this article, we present some examples, including ours, to show different aspects of Shh signaling and how Shh agonists or mimetics are used to alter the neuronal fates in various disease models, both in vitro and in vivo. Other potential mechanisms that are discussed include alteration of mitochondrial function and anti-aging effect; both are critical for age-related neurodegenerative diseases. A thorough understanding of the protective mechanisms elicited by Shh may provide a rationale to design innovative therapeutic regimens for various neurodegenerative diseases.
Collapse
Affiliation(s)
- Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
- College of Medicine, Chang Gung University, Taoyuan City 33302, Taiwan.
| | - Jenq-Lin Yang
- Institute for Translational Research in Biomedicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung City 83301, Taiwan.
| | - Wei-Chao Hwang
- Department of Neurology, Taipei City Hospital, Taipei 11556, Taiwan.
| | - Ding-I Yang
- Institute of Brain Science, National Yang-Ming University, Taipei 11221, Taiwan.
- Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan.
| |
Collapse
|
44
|
Roessler E, Hu P, Marino J, Hong S, Hart R, Berger S, Martinez A, Abe Y, Kruszka P, Thomas JW, Mullikin JC, Wang Y, Wong WSW, Niederhuber JE, Solomon BD, Richieri-Costa A, Ribeiro-Bicudo LA, Muenke M. Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-β, hedgehog, and FGF signaling. Hum Mutat 2018; 39:1416-1427. [PMID: 29992659 DOI: 10.1002/humu.23590] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 01/01/2023]
Abstract
Here, we applied targeted capture to examine 153 genes representative of all the major vertebrate developmental pathways among 333 probands to rank their relative significance as causes for holoprosencephaly (HPE). We now show that comparisons of variant transmission versus nontransmission among 136 HPE Trios indicates some reported genes now lack confirmation, while novel genes are implicated. Furthermore, we demonstrate that variation of modest intrinsic effect can synergize with these driver mutations as gene modifiers.
Collapse
Affiliation(s)
- Erich Roessler
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ping Hu
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Sungkook Hong
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Rachel Hart
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Seth Berger
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Ariel Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yu Abe
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - James W Thomas
- NIH Intramural Sequencing Center, NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - James C Mullikin
- NIH Intramural Sequencing Center, NISC, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | -
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Yupeng Wang
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - Wendy S W Wong
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - John E Niederhuber
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia
| | - Benjamin D Solomon
- Inova Translational Medicine Institute, Virginia Commonwealth University School of Medicine, Falls Church, Virginia.,Presently the Managing Director, GeneDx, Gaithersburg, Maryland
| | - Antônio Richieri-Costa
- Hospital for the Rehabilitation of Craniofacial Anomalies, São Paulo University, São Paulo, Brazil
| | - L A Ribeiro-Bicudo
- Institute of Bioscience, Department of Genetics, Federal University of Goias, Goias, Brazil
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
45
|
Fallet‐Bianco C. Neuropathology of holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:214-228. [DOI: 10.1002/ajmg.c.31623] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 04/19/2018] [Accepted: 04/22/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Catherine Fallet‐Bianco
- Department of Pathology, CHU Sainte‐Justine‐Chemin de la Côte Sainte‐CatherineUniversité de Montreal, MontrealQuébec Canada
| |
Collapse
|
46
|
Kaucka M, Petersen J, Tesarova M, Szarowska B, Kastriti ME, Xie M, Kicheva A, Annusver K, Kasper M, Symmons O, Pan L, Spitz F, Kaiser J, Hovorakova M, Zikmund T, Sunadome K, Matise MP, Wang H, Marklund U, Abdo H, Ernfors P, Maire P, Wurmser M, Chagin AS, Fried K, Adameyko I. Signals from the brain and olfactory epithelium control shaping of the mammalian nasal capsule cartilage. eLife 2018; 7:34465. [PMID: 29897331 PMCID: PMC6019068 DOI: 10.7554/elife.34465] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 06/12/2018] [Indexed: 12/14/2022] Open
Abstract
Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.
Collapse
Affiliation(s)
- Marketa Kaucka
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Julian Petersen
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Marketa Tesarova
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Bara Szarowska
- Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Maria Eleni Kastriti
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| | - Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Kicheva
- Institute of Science and Technology IST Austria, Klosterneuburg, Austria
| | - Karl Annusver
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Maria Kasper
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.,Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Orsolya Symmons
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Leslie Pan
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Francois Spitz
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.,Genomics of Animal Development Unit, Institut Pasteur, Paris, France
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Maria Hovorakova
- Department of Developmental Biology, Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Kazunori Sunadome
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Michael P Matise
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Hui Wang
- Department of Neuroscience & Cell Biology, Rutgers-Robert Wood Johnson Medical School, Piscataway, United States
| | - Ulrika Marklund
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hind Abdo
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pascal Maire
- Department of Development, Reproduction and Cancer, Institute Cochin, Paris, France
| | - Maud Wurmser
- Department of Development, Reproduction and Cancer, Institute Cochin, Paris, France
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Neurosciences, Medical University Vienna, Vienna, Austria
| |
Collapse
|
47
|
Williams MA, Letra A. The Changing Landscape in the Genetic Etiology of Human Tooth Agenesis. Genes (Basel) 2018; 9:genes9050255. [PMID: 29772684 PMCID: PMC5977195 DOI: 10.3390/genes9050255] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/01/2018] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Despite much progress in understanding the genetics of syndromic tooth agenesis (TA), the causes of the most common, isolated TA remain elusive. Recent studies have identified novel genes and variants contributing to the etiology of TA, and revealed new pathways in which tooth development genes belong. Further, the use of new research approaches including next-generation sequencing has provided increased evidence supporting an oligogenic inheritance model for TA, and may explain the phenotypic variability of the condition. In this review, we present current knowledge about the genetic mechanisms underlying syndromic and isolated TA in humans, and highlight the value of incorporating next-generation sequencing approaches to identify causative and/or modifier genes that contribute to the etiology of TA.
Collapse
Affiliation(s)
- Meredith A Williams
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Center for Craniofacial Research, University of Texas Health Science Center at Houston School of Dentistry, Houston, TX 77054, USA.
- Pediatric Research Center, University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
48
|
Martinez AF, Kruszka PS, Muenke M. Extracephalic manifestations of nonchromosomal, nonsyndromic holoprosencephaly. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2018; 178:246-257. [PMID: 29761634 DOI: 10.1002/ajmg.c.31616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/29/2018] [Accepted: 04/11/2018] [Indexed: 12/13/2022]
Abstract
Nonchromosomal, nonsyndromic holoprosencephaly (NCNS-HPE) has traditionally been considered as a condition of brain and craniofacial maldevelopment. In this review, we present the results of a comprehensive literature search supporting a wide spectrum of extracephalic manifestations identified in patients with NCNS-HPE. These manifestations have been described in case reports and in large cohorts of patients with "single-gene" mutations, suggesting that the NCNS-HPE phenotype can be more complex than traditionally thought. Likely, a complex network of interacting genetic variants and environmental factors is responsible for these systemic abnormalities that deviate from the usual brain and craniofacial findings in NCNS-HPE. In addition to the systemic consequences of pituitary dysfunction (as a direct result of brain midline defects), here we describe a number of extracephalic findings of NCNS-HPE affecting various organ systems. It is our goal to provide a guide of extracephalic features for clinicians given the important clinical implications of these manifestations for the management and care of patients with HPE and their mutation-positive relatives. The health risks associated with some manifestations (e.g., fatty liver disease) may have historically been neglected in affected families.
Collapse
Affiliation(s)
- Ariel F Martinez
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Paul S Kruszka
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Maximilian Muenke
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
49
|
Link between the causative genes of holoprosencephaly: Zic2 directly regulates Tgif1 expression. Sci Rep 2018; 8:2140. [PMID: 29391420 PMCID: PMC5794963 DOI: 10.1038/s41598-018-20242-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/15/2018] [Indexed: 02/07/2023] Open
Abstract
One of the causal genes for holoprosencephaly (HPE) is ZIC2 (HPE5). It belongs to the zinc finger protein of the cerebellum (Zic) family of genes that share a C2H2-type zinc finger domain, similar to the GLI family of genes. In order to clarify the role of Zic2 in gene regulation, we searched for its direct target genes using chromatin immunoprecipitation (ChIP). We identified TGIF1 (HPE4), another holoprosencephaly-causative gene in humans. We identified Zic2-binding sites (ZBS) on the 5′ flanking region of Tgif1 by in vitro DNA binding assays. ZBS were essential for Zic2-dependent transcriptional activation in reporter gene assays. Zic2 showed a higher affinity to ZBS than GLI-binding sequences. Zic2-binding to the cis-regulatory element near the Tgif1 promoter may be involved in the mechanism underlying forebrain development and incidences of HPE.
Collapse
|
50
|
Abstract
The ZIC2 transcription factor is one of the most commonly mutated genes in Holoprosencephaly (HPE) probands. HPE is a severe congenital defect of forebrain development which occurs when the cerebral hemispheres fail to separate during the early stages of organogenesis and is typically associated with mispatterning of the embryonic midline. Recent study of genotype-phenotype correlations in HPE cases has defined distinctive features of ZIC2-associated HPE presentation and genetics, revealing that ZIC2 mutation does not produce the craniofacial abnormalities generally thought to characterise HPE but leads to a range of non-forebrain phenotypes. Furthermore, the studies confirm the extent of ZIC2 allelic heterogeneity and that pathogenic variants of ZIC2 are associated with both classic and middle interhemispheric variant (MIHV) HPE which arise from defective ventral and dorsal forebrain patterning, respectively. An allelic series of mouse mutants has helped to delineate the cellular and molecular mechanisms by which one gene leads to defects in these related but distinct embryological processes.
Collapse
Affiliation(s)
- Kristen S Barratt
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia
| | - Ruth M Arkell
- Early Mammalian Development Laboratory, John Curtin School of Medical Research, The Australian National University, Canberra, ACT, Australia.
| |
Collapse
|