1
|
Xu J, Li X, Chen S, Chen L, Tang J, Chen P, Cai N, Xu Y. Integrative analyses of morpho-physiological, biochemical, and transcriptomic reveal the seedling growth response of Pinus yunnanensis to nitrogen and phosphorus fertilization. FRONTIERS IN PLANT SCIENCE 2025; 15:1405638. [PMID: 39931342 PMCID: PMC11807977 DOI: 10.3389/fpls.2024.1405638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Appropriate nitrogen (N) and phosphorus (P) fertilization is critical for plant growth and production. Pinus yunnanensis, a silvicultural tree in southwestern China, faces economic and ecological limitations due to nutrient deficiency in the soils in its distribution areas. The slow growth of this species during the seedling stage exacerbates these problems. Therefore, it is important to realize the regulating effects of N and P proportioning fertilization on seedling growth to enhance nutrient-use efficiency. In this study, variations in morphological, physiological, and biochemical characteristics of seedlings were analyzed under nine treatments of NP proportioning in an open nursery using a regression design. Growth in height and basal diameter increased and showed an approximate tendency in all treatments. The maximum biomass accumulation was observed at 480 d after treatment in roots of T5 (14.714 g) (application N 0.4 g·per-1 and P 3 g·per-1), stems of T5 (12.654 g), leaves of T9 (24.261 g) (application N 0.8 g·per-1 and P 6 g·per-1), aboveground parts of T9 (35.402 g) and individuals of T5 (49 g). The total chlorophyll content peaked in the leaves at 120 d and was correlated with the peak levels of N, P, and K in leaves. The content and reserves of nutrient elements in the organs of seedlings subjected to NP proportioning were significantly higher than those in unfertilized seedlings. Analysis of nutrient utilization efficiency revealed that T5 demonstrated superior seedling growth performance. Appropriate fertilization dosage of N and P for P. yunnanensis seedlings in this study was 0.32 g·per-1-0.58 g·per-1 and 3.02 g·per-1-4.95 g·per-1 respectively, using path analysis and regression equation. Transcriptomic sequencing revealed that there were 2,301 DEGs between T5 and T1 (control), which were involved in the uptake and assimilation of nutrients, biosynthesis of phytohormones and secondary metabolites, and photosynthesis. Additionally, the abundance of genes involved in cell division and proliferation, cellulose biosynthesis, and cell wall extension were dramatically upregulated, which potentially correlated with enhanced seedling growth. In conclusion, this study provides comprehensive information on the response of seedlings to varying proportions of N and P and may promote the growth of P. yunnanensis seedlings by optimizing the proportion of N and P in fertilizers.
Collapse
Affiliation(s)
- Junfei Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Xiyan Li
- Technology Promotion Department, Kunming Station of Forestry and Grassland Science and Technology Promotion, Kunming, China
| | - Shi Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Lin Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Junrong Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Peizhen Chen
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Nianhui Cai
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| | - Yulan Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Southwest China, Southwest Forestry University, Kunming, China
- The Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
2
|
Coatsworth P, Cotur Y, Naik A, Asfour T, Collins ASP, Olenik S, Zhou Z, Gonzalez-Macia L, Chao DY, Bozkurt T, Güder F. Time-resolved chemical monitoring of whole plant roots with printed electrochemical sensors and machine learning. SCIENCE ADVANCES 2024; 10:eadj6315. [PMID: 38295162 PMCID: PMC10830104 DOI: 10.1126/sciadv.adj6315] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024]
Abstract
Traditional single-point measurements fail to capture dynamic chemical responses of plants, which are complex, nonequilibrium biological systems. We report TETRIS (time-resolved electrochemical technology for plant root environment in situ chemical sensing), a real-time chemical phenotyping system for continuously monitoring chemical signals in the often-neglected plant root environment. TETRIS consisted of low-cost, highly scalable screen-printed electrochemical sensors for monitoring concentrations of salt, pH, and H2O2 in the root environment of whole plants, where multiplexing allowed for parallel sensing operation. TETRIS was used to measure ion uptake in tomato, kale, and rice and detected differences between nutrient and heavy metal ion uptake. Modulation of ion uptake with ion channel blocker LaCl3 was monitored by TETRIS and machine learning used to predict ion uptake. TETRIS has the potential to overcome the urgent "bottleneck" in high-throughput screening in producing high-yielding plant varieties with improved resistance against stress.
Collapse
Affiliation(s)
- Philip Coatsworth
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Yasin Cotur
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Atharv Naik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Tarek Asfour
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Alex Silva-Pinto Collins
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Selin Olenik
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Zihao Zhou
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Laura Gonzalez-Macia
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| | - Dai-Yin Chao
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tolga Bozkurt
- Imperial College London, Department of Life Sciences, Royal School of Mines, SW7 2AZ London, UK
| | - Firat Güder
- Imperial College London, Department of Bioengineering, Royal School of Mines, SW7 2AZ London, UK
| |
Collapse
|
3
|
Kumar V, Wegener M, Knieper M, Kaya A, Viehhauser A, Dietz KJ. Strategies of Molecular Signal Integration for Optimized Plant Acclimation to Stress Combinations. Methods Mol Biol 2024; 2832:3-29. [PMID: 38869784 DOI: 10.1007/978-1-0716-3973-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Plant growth and survival in their natural environment require versatile mitigation of diverse threats. The task is especially challenging due to the largely unpredictable interaction of countless abiotic and biotic factors. To resist an unfavorable environment, plants have evolved diverse sensing, signaling, and adaptive molecular mechanisms. Recent stress studies have identified molecular elements like secondary messengers (ROS, Ca2+, etc.), hormones (ABA, JA, etc.), and signaling proteins (SnRK, MAPK, etc.). However, major gaps remain in understanding the interaction between these pathways, and in particular under conditions of stress combinations. Here, we highlight the challenge of defining "stress" in such complex natural scenarios. Therefore, defining stress hallmarks for different combinations is crucial. We discuss three examples of robust and dynamic plant acclimation systems, outlining specific plant responses to complex stress overlaps. (a) The high plasticity of root system architecture is a decisive feature in sustainable crop development in times of global climate change. (b) Similarly, broad sensory abilities and apparent control of cellular metabolism under adverse conditions through retrograde signaling make chloroplasts an ideal hub. Functional specificity of the chloroplast-associated molecular patterns (ChAMPs) under combined stresses needs further focus. (c) The molecular integration of several hormonal signaling pathways, which bring together all cellular information to initiate the adaptive changes, needs resolving.
Collapse
Affiliation(s)
- Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Melanie Wegener
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Armağan Kaya
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Andrea Viehhauser
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
4
|
Tiziani R, Pranter M, Valentinuzzi F, Pii Y, Luigimaria B, Cesco S, Mimmo T. Unraveling plant adaptation to single and combined nutrient deficiencies in a dicotyledonous and a monocotyledonous plant species. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111793. [PMID: 37454818 DOI: 10.1016/j.plantsci.2023.111793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Nutrient deficiencies considerably limit agricultural production worldwide. However, while single deficiencies are widely studied, combined deficiencies are poorly addressed. Hence, the aim of this paper was to study single and combined deficiencies of iron (Fe) and phosphorus (P) in barley (Hordeum vulgare) and tomato (Solanum lycopersicum). Plants were grown in hydroponics and root exudation was measured over the growing period. At harvest, root morphology and root and shoot ionome was assessed. Shoot-to-root-ratio decreased in both species and in all nutrient deficiencies, besides in -Fe tomato. Barley root growth was enhanced in plants subjected to double deficiency behaving similarly to -P, while tomato reduced root morphology parameters in all treatments. To cope with the nutrient deficiency barley exuded mostly chelants, while tomato relied on organic acids. Moreover, tomato exhibited a slight exudation increase over time not detected in barley. Overall, in none of the species the double deficiency caused a substantial increase in root exudation. Multivariate statistics emphasized that all the treatments were significantly different from each other in tomato, while in barley only -Fe was statistically different from the other treatments. Our findings highlight that the response of the studied plants in double deficiencies is not additive but plant specific.
Collapse
Affiliation(s)
- Raphael Tiziani
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy.
| | - Marion Pranter
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Fabio Valentinuzzi
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Youry Pii
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Borruso Luigimaria
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Stefano Cesco
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy
| | - Tanja Mimmo
- Free University of Bolzano, Faculty of Agricultural, Environmental and Food Sciences, Piazza Universitá 5, 39100 Bolzano, Italy; Competence Centre of Plant Health, Free University of Bolzano, Piazza Universitá 1, 39100 Bolzano, Italy
| |
Collapse
|
5
|
Liu G, Rui L, Yang Y, Liu R, Li H, Ye F, You C, Zhang S. Identification and Functional Characterization of MdNRT1.1 in Nitrogen Utilization and Abiotic Stress Tolerance in Malus domestica. Int J Mol Sci 2023; 24:ijms24119291. [PMID: 37298242 DOI: 10.3390/ijms24119291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Nitrate is one of the main sources of nitrogen for plant growth. Nitrate transporters (NRTs) participate in nitrate uptake and transport, and they are involved in abiotic stress tolerance. Previous studies have shown that NRT1.1 has a dual role in nitrate uptake and utilization; however, little is known about the function of MdNRT1.1 in regulating apple growth and nitrate uptake. In this study, apple MdNRT1.1, a homolog of Arabidopsis NRT1.1, was cloned and functionally identified. Nitrate treatment induced an increased transcript level of MdNRT1.1, and overexpression of MdNRT1.1 promoted root development and nitrogen utilization. Ectopic expression of MdNRT1.1 in Arabidopsis repressed tolerance to drought, salt, and ABA stresses. Overall, this study identified a nitrate transporter, MdNRT1.1, in apples and revealed how MdNRT1.1 regulates nitrate utilization and abiotic stress tolerance.
Collapse
Affiliation(s)
- Guodong Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Yuying Yang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Ranxin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Hongliang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Fan Ye
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Chunxiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, China
| |
Collapse
|
6
|
Li J, Li W, Xu L, Wang M, Zhou W, Li S, Tan W, Wang Q, Xing W, Liu D. Acclimation of sugar beet in morphological, physiological and BvAMT1.2 expression under low and high nitrogen supply. PLoS One 2022; 17:e0278327. [PMID: 36445927 PMCID: PMC9707788 DOI: 10.1371/journal.pone.0278327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Understanding the response and tolerance mechanisms of nitrogen (N) stress is essential for the taproot plant of sugar beet. Hence, in this study, low (0.5 and 3 mmol/L; N0.5 and N3), moderate (5 mmol/L; N5; control) and high (10 and 12 mmol/L; N10 and N12) N were imposed to sugar beet to comparatively investigate the growth and physiological changes, and expression pattern of the gene involving ammonia transporting at different seedling stages. The results showed that, different from N5 which could induce maximum biomass of beet seedlings, low N was more likely to inhibit the growth of beet seedlings than high N treatments. Morphological differences and adverse factors increased significantly with extension of stress time, but sugar beet seedlings displayed a variety of physical responses to different N concentrations to adapt to N abnormal. At 14 d, the chlorophyll content, leaf and root surface area, total dry weight and nitrogen content of seedlings treated with N0.5 decreased 15.83%, 53.65%, 73.94%, 78.08% and 24.88% respectively, compared with N12; however, the root shoot ratio increased significantly as well as superoxide dismutase (SOD), peroxidase (POD), glutamine synthetase (GS) activity and malondialdehyde (MDA) and proline content, especially in root. The expression of BvAMT1.2 was also regulated in an N concentration-dependent manner, and was mainly involved in the tolerance of beet leaves to N stress, which significantly positively correlated to GS activity on the basis of its high affinity to N. It can be deduced that the stored nutrients under low N could only maintain relatively stable root growth, and faced difficulty in being transported to the shoots. Sugar beet was relatively resilient to N0.5 stress according to the mean affiliation function analysis. These results provide a theoretical basis for the extensive cultivation of sugar beet in N-stressed soil.
Collapse
Affiliation(s)
- Jiajia Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wangsheng Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Lingqing Xu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Man Wang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wanting Zhou
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Siqi Li
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wenbo Tan
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Qiuhong Wang
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
- * E-mail: (WX); (DL)
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin, P. R. China
- Key Laboratory of Sugar Beet Genetics and Breeding, Heilongjiang Province Common College/College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, P. R. China
- * E-mail: (WX); (DL)
| |
Collapse
|
7
|
Cantabella D, Karpinska B, Teixidó N, Dolcet-Sanjuan R, Foyer CH. Non-volatile signals and redox mechanisms are required for the responses of Arabidopsis roots to Pseudomonas oryzihabitans. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6971-6982. [PMID: 36001048 DOI: 10.1093/jxb/erac346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Soil bacteria promote plant growth and protect against environmental stresses, but the mechanisms involved remain poorly characterized, particularly when there is no direct contact between the roots and bacteria. Here, we explored the effects of Pseudomonas oryzihabitans PGP01 on the root system architecture (RSA) in Arabidopsis thaliana seedlings. Significant increases in lateral root (LR) density were observed when seedlings were grown in the presence of P. oryzihabitans, as well as an increased abundance of transcripts associated with altered nutrient transport and phytohormone responses. However, no bacterial transcripts were detected on the root samples by RNAseq analysis, demonstrating that the bacteria do not colonize the roots. Separating the agar containing bacteria from the seedlings prevented the bacteria-induced changes in RSA. Bacteria-induced changes in RSA were absent from mutants defective in ethylene response factor (ERF109), glutathione synthesis (pad2-1, cad2-1, and rax1-1) and in strigolactone synthesis (max3-9 and max4-1) or signalling (max2-3). However, the P. oryzihabitans-induced changes in RSA were similar in the low ascorbate mutants (vtc2-1and vtc2-2) to the wild-type controls. Taken together, these results demonstrate the importance of non-volatile signals and redox mechanisms in the root architecture regulation that occurs following long-distance perception of P. oryzihabitans.
Collapse
Affiliation(s)
- Daniel Cantabella
- Institute of Research and Agrofood technology (IRTA) Postharvest Program, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
- IRTA, Plant In Vitro Culture Laboratory, Fruticulture Program, Barcelona, Spain
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Barbara Karpinska
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Neus Teixidó
- Institute of Research and Agrofood technology (IRTA) Postharvest Program, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, 25003 Lleida, Catalonia, Spain
| | | | - Christine H Foyer
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
8
|
Ojeda-Rivera JO, Alejo-Jacuinde G, Nájera-González HR, López-Arredondo D. Prospects of genetics and breeding for low-phosphate tolerance: an integrated approach from soil to cell. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4125-4150. [PMID: 35524816 PMCID: PMC9729153 DOI: 10.1007/s00122-022-04095-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/31/2022] [Indexed: 05/04/2023]
Abstract
Improving phosphorus (P) crop nutrition has emerged as a key factor toward achieving a more resilient and sustainable agriculture. P is an essential nutrient for plant development and reproduction, and phosphate (Pi)-based fertilizers represent one of the pillars that sustain food production systems. To meet the global food demand, the challenge for modern agriculture is to increase food production and improve food quality in a sustainable way by significantly optimizing Pi fertilizer use efficiency. The development of genetically improved crops with higher Pi uptake and Pi-use efficiency and higher adaptability to environments with low-Pi availability will play a crucial role toward this end. In this review, we summarize the current understanding of Pi nutrition and the regulation of Pi-starvation responses in plants, and provide new perspectives on how to harness the ample repertoire of genetic mechanisms behind these adaptive responses for crop improvement. We discuss on the potential of implementing more integrative, versatile, and effective strategies by incorporating systems biology approaches and tools such as genome editing and synthetic biology. These strategies will be invaluable for producing high-yielding crops that require reduced Pi fertilizer inputs and to develop a more sustainable global agriculture.
Collapse
Affiliation(s)
- Jonathan Odilón Ojeda-Rivera
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Gerardo Alejo-Jacuinde
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Héctor-Rogelio Nájera-González
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA
| | - Damar López-Arredondo
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
9
|
Li Y, Yang X, Liu H, Wang W, Wang C, Ding G, Xu F, Wang S, Cai H, Hammond JP, White PJ, Shabala S, Yu M, Shi L. Local and systemic responses conferring acclimation of Brassica napus roots to low phosphorus conditions. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4753-4777. [PMID: 35511123 DOI: 10.1093/jxb/erac177] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
Due to the non-uniform distribution of inorganic phosphate (Pi) in the soil, plants modify their root architecture to improve acquisition of this nutrient. In this study, a split-root system was employed to assess the nature of local and systemic signals that modulate root architecture of Brassica napus grown with non-uniform Pi availability. Lateral root (LR) growth was regulated systemically by non-uniform Pi distribution, by increasing the second-order LR (2°LR) density in compartments with high Pi supply but decreasing it in compartments with low Pi availability. Transcriptomic profiling identified groups of genes regulated, both locally and systemically, by Pi starvation. The number of systemically induced genes was greater than the number of genes locally induced, and included genes related to abscisic acid (ABA) and jasmonic acid (JA) signalling pathways, reactive oxygen species (ROS) metabolism, sucrose, and starch metabolism. Physiological studies confirmed the involvement of ABA, JA, sugars, and ROS in the systemic Pi starvation response. Our results reveal the mechanistic basis of local and systemic responses of B. napus to Pi starvation and provide new insights into the molecular and physiological basis of root plasticity.
Collapse
Affiliation(s)
- Yalin Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xinyu Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - HaiJiang Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Wei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Chuang Wang
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hongmei Cai
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - John P Hammond
- School of Agriculture, Policy and Development, University of Reading, Reading, UK
| | - Philip J White
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- The James Hutton Institute, Invergowrie, Dundee, UK
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tas, Australia
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, Foshan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Ravelo-Ortega G, Pelagio-Flores R, López-Bucio J, Campos-García J, Reyes de la Cruz H, López-Bucio JS. Early sensing of phosphate deprivation triggers the formation of extra root cap cell layers via SOMBRERO through a process antagonized by auxin signaling. PLANT MOLECULAR BIOLOGY 2022; 108:77-91. [PMID: 34855067 DOI: 10.1007/s11103-021-01224-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
The role of the root cap in the plant response to phosphate deprivation has been scarcely investigated. Here we describe early structural, physiological and molecular changes prior to the determinate growth program of the primary roots under low Pi and unveil a critical function of the transcription factor SOMBRERO in low Pi sensing. Mineral nutrient distribution in the soil is uneven and roots efficiently adapt to improve uptake and assimilation of sparingly available resources. Phosphate (Pi) accumulates in the upper layers and thus short and branched root systems proliferate to better exploit organic and inorganic Pi patches. Here we report an early adaptive response of the Arabidopsis primary root that precedes the entrance of the meristem into the determinate developmental program that is a hallmark of the low Pi sensing mechanism. In wild-type seedlings transferred to low Pi medium, the quiescent center domain in primary root tips increases as an early response, as revealed by WOX5:GFP expression and this correlates with a thicker root tip with extra root cap cell layers. The halted primary root growth in WT seedlings could be reversed upon transfer to medium supplemented with 250 µM Pi. Mutant and gene expression analysis indicates that auxin signaling negatively affects the cellular re-specification at the root tip and enabled identification of the transcription factor SOMBRERO as a critical element that orchestrates both the formation of extra root cap layers and primary root growth under Pi scarcity. Moreover, we provide evidence that low Pi-induced root thickening or the loss-of-function of SOMBRERO is associated with expression of phosphate transporters at the root tip. Our data uncover a developmental window where the root tip senses deprivation of a critical macronutrient to improve adaptation and surveillance.
Collapse
Affiliation(s)
- Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Ramón Pelagio-Flores
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Jesús Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México
| | - Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B1, Ciudad Universitaria, C.P. 58030, Morelia, Michoacán, México.
| |
Collapse
|
11
|
Lhamo D, Luan S. Potential Networks of Nitrogen-Phosphorus-Potassium Channels and Transporters in Arabidopsis Roots at a Single Cell Resolution. FRONTIERS IN PLANT SCIENCE 2021; 12:689545. [PMID: 34220911 PMCID: PMC8242960 DOI: 10.3389/fpls.2021.689545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 05/24/2021] [Indexed: 05/08/2023]
Abstract
Nitrogen (N), phosphorus (P), and potassium (K) are three major macronutrients essential for plant life. These nutrients are acquired and transported by several large families of transporters expressed in plant roots. However, it remains largely unknown how these transporters are distributed in different cell-types that work together to transfer the nutrients from the soil to different layers of root cells and eventually reach vasculature for massive flow. Using the single cell transcriptomics data from Arabidopsis roots, we profiled the transcriptional patterns of putative nutrient transporters in different root cell-types. Such analyses identified a number of uncharacterized NPK transporters expressed in the root epidermis to mediate NPK uptake and distribution to the adjacent cells. Some transport genes showed cortex- and endodermis-specific expression to direct the nutrient flow toward the vasculature. For long-distance transport, a variety of transporters were shown to express and potentially function in the xylem and phloem. In the context of subcellular distribution of mineral nutrients, the NPK transporters at subcellular compartments were often found to show ubiquitous expression patterns, which suggests function in house-keeping processes. Overall, these single cell transcriptomic analyses provide working models of nutrient transport from the epidermis across the cortex to the vasculature, which can be further tested experimentally in the future.
Collapse
Affiliation(s)
- Dhondup Lhamo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States
| | | |
Collapse
|
12
|
Raya-González J, Ojeda-Rivera JO, Mora-Macias J, Oropeza-Aburto A, Ruiz-Herrera LF, López-Bucio J, Herrera-Estrella L. MEDIATOR16 orchestrates local and systemic responses to phosphate scarcity in Arabidopsis roots. THE NEW PHYTOLOGIST 2021; 229:1278-1288. [PMID: 33034045 DOI: 10.1111/nph.16989] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi ) is a critical macronutrient for the biochemical and molecular functions of cells. Under phosphate limitation, plants manifest adaptative strategies to increase phosphate scavenging. However, how low phosphate sensing links to the transcriptional machinery remains unknown. The role of the MEDIATOR (MED) transcriptional co-activator, through its MED16 subunit in Arabidopsis root system architecture remodeling in response to phosphate limitation was assessed. Its critical function acting over the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1)-ALUMINUM-ACTIVATED MALATE TRANSPORT1 (ALMT1) signaling module was tested through a combination of genetic, biochemical, and genome-wide transcriptomic approaches. Root system configuration in response to phosphate scarcity involved MED16 functioning, which modulates the expression of a large set of low-phosphate-induced genes that respond to local and systemic signals in the Arabidopsis root tip, including those directly activated by STOP1. Biomolecular fluorescence complementation analysis suggests that MED16 is required for the transcriptional activation of STOP1 targets, including the membrane permease ALMT1, to increase malate exudation in response to low phosphate. Our results unveil the function of a critical transcriptional component, MED16, in the root adaptive responses to a scarce plant macronutrient, which helps understanding how plant cells orchestrate root morphogenesis to gene expression with the STOP1-ALMT1 module.
Collapse
Affiliation(s)
- Javier Raya-González
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
- Facultad de Químico Farmacobiología, Avenida Tzintzuntzan 173, Col. Matamoros, Morelia, Michoacán, Mexico
| | - Jonathan Odilón Ojeda-Rivera
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
| | - Javier Mora-Macias
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
| | - Araceli Oropeza-Aburto
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, 58030, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria, Morelia, Michoacán, 58030, Mexico
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, 36821 Campus Irapuato, Guanajuato, Mexico
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Box 42122, Lubbock, TX, 79409, USA
| |
Collapse
|
13
|
Xin W, Zhang L, Gao J, Zhang W, Yi J, Zhen X, Bi C, He D, Liu S, Zhao X. Adaptation Mechanism of Roots to Low and High Nitrogen Revealed by Proteomic Analysis. RICE (NEW YORK, N.Y.) 2021; 14:5. [PMID: 33411084 PMCID: PMC7790981 DOI: 10.1186/s12284-020-00443-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/06/2020] [Indexed: 05/13/2023]
Abstract
BACKGROUND Nitrogen-based nutrients are the main factors affecting rice growth and development. Root systems play an important role in helping plants to obtain nutrients from the soil. Root morphology and physiology are often closely related to above-ground plant organs performance. Therefore, it is important to understand the regulatory effects of nitrogen (N) on rice root growth to improve nitrogen use efficiency. RESULTS In this study, changes in the rice root traits under low N (13.33 ppm), normal N (40 ppm) and high N (120 ppm) conditions were performed through root morphology analysis. These results show that, compared with normal N conditions, root growth is promoted under low N conditions, and inhibited under high N conditions. To understand the molecular mechanism underlying the rice root response to low and high N conditions, comparative proteomics analysis was performed using a tandem mass tag (TMT)-based approach, and differentially abundant proteins (DAPs) were further characterized. Compared with normal N conditions, a total of 291 and 211 DAPs were identified under low and high N conditions, respectively. The abundance of proteins involved in cell differentiation, cell wall modification, phenylpropanoid biosynthesis, and protein synthesis was differentially altered, which was an important reason for changes in root morphology. Furthermore, although both low and high N can cause nitrogen stress, rice roots revealed obvious differences in adaptation to low and high N. CONCLUSIONS These results provide insights into global changes in the response of rice roots to nitrogen availability and may facilitate the development of rice cultivars with high nitrogen use efficiency through root-based genetic improvements.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Lina Zhang
- Graduate School of Agricultural Science, Tohoku University, Sendai, 981-8555, Japan
| | - Jiping Gao
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| | - Wenzhong Zhang
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China.
| | - Jun Yi
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoxi Zhen
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Congyuan Bi
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Dawei He
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Shiming Liu
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xinyu Zhao
- Key Laboratory of Northern Japonica Rice Genetics and Breeding, Ministry of Education and Liaoning Province, Key Laboratory of Northeast Rice Biology and Genetics and Breeding, Ministry of Agriculture, Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
14
|
Wang X, Shen J, Hedden P, Phillips AL, Thomas SG, Ge Y, Ashton RW, Whalley WR. Wheat growth responses to soil mechanical impedance are dependent on phosphorus supply. SOIL & TILLAGE RESEARCH 2021; 205:104754. [PMID: 33390631 PMCID: PMC7729824 DOI: 10.1016/j.still.2020.104754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 06/12/2023]
Abstract
Increased mechanical impedance induced by soil drying or compaction causes reduction in plant growth and crop yield. However, how mechanical impedance interacts with nutrient stress has been largely unknown. Here, we investigated the effect of mechanical impedance on the growth of wheat seedlings under contrasting phosphorus (P) supply in a sand culture system which allows the mechanical impedance to be independent of water and nutrient availability. Two wheat genotypes containing the Rht-B1a (tall) or Rht-B1c (gibberellin-insensitive dwarf) alleles in the Cadenza background were used and their shoot and root traits were determined. Mechanical impedance caused a significant reduction in plant growth under sufficient P supply, including reduced shoot and root biomass, leaf area and total root length. By contrast, under low P supply, mechanical impedance did not affect biomass, tiller number, leaf length, and nodal root number in both wheat genotypes, indicating that the magnitude of the growth restriction imposed by mechanical impedance was dependent on P supply. The interaction effect between mechanical impedance and P level was significant on most plant traits except for axial and lateral root length, suggesting an evident physical and nutritional interaction. Our findings provide valuable insights into the integrated effects of plants in response to both soil physical and nutritional stresses. Understanding the response patterns is critical for optimizing soil tillage and nutrient management in the field.
Collapse
Affiliation(s)
- Xin Wang
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, MoE, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, PR China
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | - Jianbo Shen
- Department of Plant Nutrition, College of Resources and Environmental Sciences, Key Laboratory of Plant-Soil Interactions, MoE, National Academy of Agriculture Green Development, China Agricultural University, Beijing, 100193, PR China
| | - Peter Hedden
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
- Laboratory of Growth Regulators, Czech Academy of Sciences, Institute of Experimental Botany & Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | | | | | - Yaoxiang Ge
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
- College of Biology and Pharmacy, Yulin Normal University, Yulin, 537000, PR China
| | - Rhys W. Ashton
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | |
Collapse
|
15
|
Kumar V, Vogelsang L, Schmidt RR, Sharma SS, Seidel T, Dietz KJ. Remodeling of Root Growth Under Combined Arsenic and Hypoxia Stress Is Linked to Nutrient Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:569687. [PMID: 33193499 PMCID: PMC7644957 DOI: 10.3389/fpls.2020.569687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/06/2020] [Indexed: 05/29/2023]
Abstract
Root architecture responds to environmental stress. Stress-induced metabolic and nutritional changes affect the endogenous root development program. Transcriptional and translational changes realize the switch between stem cell proliferation and cell differentiation, lateral root or root hair formation and root functionality for stress acclimation. The current work explores the effects of stress combination of arsenic toxicity (As) and hypoxia (Hpx) on root development in Arabidopsis thaliana. As revealed previously, combined As and Hpx treatment leads to severe nutritional disorder evident from deregulation of root transcriptome and plant mineral contents. Both As and Hpx were identified to pose stress-specific constraints on root development that lead to unique root growth phenotype under their combination. Besides inhibition of root apical meristem (RAM) activity under all stresses, As induced lateral root growth while root hair density and lengths were strongly increased by Hpx and HpxAs-treatments. A dual stimulation of phosphate (Pi)-starvation response was observed for HpxAs-treated plant roots; however, the response under HpxAs aligned more with Hpx than As. Transcriptional evidence along with biochemical data suggests involvement of PHOSPHATE STARVATION RESPONSE 1; PHR1-dependent systemic signaling. Pi metabolism-related transcripts in close association with cellular iron homeostasis modulate root development under HpxAs. Early redox potential changes in meristematic cells, differential ROS accumulation in root hair zone cell layers and strong deregulation of NADPH oxidases, NADPH-dependent oxidoreductases and peroxidases signify a role of redox and ROS signaling in root architecture remodeling under HpxAs. Differential aquaporin expression suggests transmembrane ROS transport to regulate root hair induction and growth. Reorganization of energy metabolism through NO-dependent alternate oxidase, lactate fermentation, and phosphofructokinase seems crucial under HpxAs. TOR and SnRK-signaling network components were potentially involved in control of sustainable utilization of available energy reserves for root hair growth under combined stress as well as recovery on reaeration. Findings are discussed in context of combined stress-induced signaling in regulation of root development in contrast to As and Hpx alone.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
- Department of Biosciences, Himachal Pradesh University, Shimla, India
| | - Lara Vogelsang
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Romy R. Schmidt
- Department of Plant Biotechnology, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Shanti S. Sharma
- Department of Botany, School of Life Sciences, Sikkim University, Gangtok, India
| | - Thorsten Seidel
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| | - Karl-Josef Dietz
- Department of Biochemistry and Physiology of Plants, Faculty of Biology, University of Bielefeld, Bielefeld, Germany
| |
Collapse
|
16
|
Zhang JC, Wang XN, Sun W, Wang XF, Tong XS, Ji XL, An JP, Zhao Q, You CX, Hao YJ. Phosphate regulates malate/citrate-mediated iron uptake and transport in apple. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110526. [PMID: 32563464 DOI: 10.1016/j.plantsci.2020.110526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
The accumulation of iron (Fe) in the apical meristem is considered as a critical factor involved in limiting the elongation of roots under low phosphate (Pi) conditions. Furthermore, the antagonism between Fe and Pi largely affects the effective utilization of Fe. Although the lack of Pi serves to increase the effectiveness of Fe in rice under both Fe-sufficient and Fe-deficient conditions, the underlying physiological mechanism governing this phenomenon is still unclear. In this study, we found that low Pi alleviated the Fe-deficiency phenotype in apples. Additionally, low Pi treatments increased ferric-chelated reductase (FCR) activity in the rhizosphere, promoted proton exocytosis, and enhanced the Fe concentration in both the roots and shoots. In contrast, high Pi treatments inhibited this process. Under conditions of low Pi, malate and citrate exudation from apple roots occurred under both Fe-sufficient and Fe-deficient conditions. In addition, treatment with 0.5 mM malate and citrate effectively alleviated the Fe and Pi deficiencies. Taken together, these data support the conclusion that a low Pi supply promotes organic acids exudation and enhances Fe absorption during Fe deficiency in apples.
Collapse
Affiliation(s)
- Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Na Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Wei Sun
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xian-Song Tong
- Funing Agricultural Bureau, Wenshan, 663400, Yunnan, China
| | - Xing-Long Ji
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Jian-Ping An
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Qiang Zhao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, MOA Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China.
| |
Collapse
|
17
|
Jiménez-Vázquez KR, García-Cárdenas E, Barrera-Ortiz S, Ortiz-Castro R, Ruiz-Herrera LF, Ramos-Acosta BP, Coria-Arellano JL, Sáenz-Mata J, López-Bucio J. The plant beneficial rhizobacterium Achromobacter sp. 5B1 influences root development through auxin signaling and redistribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1639-1654. [PMID: 32445404 DOI: 10.1111/tpj.14853] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/10/2020] [Accepted: 05/15/2020] [Indexed: 05/20/2023]
Abstract
Roots provide physical and nutritional support to plant organs that are above ground and play critical roles for adaptation via intricate movements and growth patterns. Through screening the effects of bacterial isolates from roots of halophyte Mesquite (Prosopis sp.) on Arabidopsis thaliana, we identified Achromobacter sp. 5B1 as a probiotic bacterium that influences plant functional traits. Detailed genetic and architectural analyses in Arabidopsis grown in vitro and in soil, cell division measurements, auxin transport and response gene expression and brefeldin A treatments demonstrated that root colonization with Achromobacter sp. 5B1 changes the growth and branching patterns of roots, which were related to auxin perception and redistribution. Expression analysis of auxin transport and signaling revealed a redistribution of auxin within the primary root tip of wild-type seedlings by Achromobacter sp. 5B1 that is disrupted by brefeldin A and correlates with repression of auxin transporters PIN1 and PIN7 in root provasculature, and PIN2 in the epidermis and cortex of the root tip, whereas expression of PIN3 was enhanced in the columella. In seedlings harboring AUX1, EIR1, AXR1, ARF7ARF19, TIR1AFB2AFB3 single, double or triple loss-of-function mutations, or in a dominant (gain-of-function) mutant of SLR1, the bacterium caused primary roots to form supercoils that are devoid of lateral roots. The changes in growth and root architecture elicited by the bacterium helped Arabidopsis seedlings to resist salt stress better. Thus, Achromobacter sp. 5B1 fine tunes both root movements and the auxin response, which may be important for plant growth and environmental adaptation.
Collapse
Affiliation(s)
- Kirán R Jiménez-Vázquez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Elizabeth García-Cárdenas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Randy Ortiz-Castro
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351 El Haya, Xalapa, Veracruz, 91070, México
| | - León F Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| | - Blanca P Ramos-Acosta
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - Jessica L Coria-Arellano
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - Jorge Sáenz-Mata
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad S/N, Frac. Filadelfia, Gómez Palacio, Durango, C.P. 35010, México
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán, C. P. 58030, México
| |
Collapse
|
18
|
An Integrated Analysis of the Rice Transcriptome and Metabolome Reveals Root Growth Regulation Mechanisms in Response to Nitrogen Availability. Int J Mol Sci 2019; 20:ijms20235893. [PMID: 31771277 PMCID: PMC6928638 DOI: 10.3390/ijms20235893] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/20/2019] [Accepted: 11/21/2019] [Indexed: 01/09/2023] Open
Abstract
Nitrogen is an essential nutrient for plant growth and basic metabolic processes. Root systems play an important role in the ability of plants to obtain nutrients from the soil, and are closely related to the growth and development of above-ground plants. Root morphology analysis showed that root growth was induced under low-nitrogen conditions and inhibited under high-nitrogen conditions. To better understand the molecular mechanisms and metabolic basis underlying the rice root response to nitrogen availability, an integrated analysis of the rice root transcriptome and metabolome under three environmental conditions (low-, control, and high-nitrogen conditions) was conducted. A total of 262 and 262 differentially level metabolites were identified under low- and high-nitrogen conditions, respectively. A total of 696 and 808 differentially expressed genes were identified under low- and high-nitrogen conditions, respectively. For both the differentially expressed genes and metabolites, KEGG pathway analysis indicated that amino acid metabolism, carbon and nitrogen metabolism, phenylpropanoid metabolism, and phytohormones’ signal transduction were significantly affected by nitrogen availability. Additionally, variable levels of 65 transcription factors (TFs) were identified in rice leaves exposed to high and low nitrogen, covering 22 TF families. These results also indicate that there is a significant difference in the transcriptional regulation mechanisms of rice roots between low and high nitrogen. In summary, our study provides new information for a further understanding of the response of rice roots to low-nitrogen and high-nitrogen conditions.
Collapse
|
19
|
Raya-González J, Ortiz-Castro R, López-Bucio J. Determinate root development in the halted primary root1 mutant of Arabidopsis correlates with death of root initial cells and an enhanced auxin response. PROTOPLASMA 2019; 256:1657-1666. [PMID: 31273542 DOI: 10.1007/s00709-019-01409-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/26/2019] [Indexed: 06/09/2023]
Abstract
The transit from indeterminate to determinate root developmental program compromises growth and causes the differentiation of the meristem, but a direct link between this process with auxin signaling and/or viability of initial cells remains untested. Here, through the isolation and characterization of the halted primary root1 (hpr1) mutant of Arabidopsis, which develops primary and lateral roots with genetically stable determinate growth after germination, we show that the differentiation of the root meristem correlates with enhanced auxin responsiveness and is preceded by the death of provasculature initial cells in both primary and lateral roots. Supplementation of indole-3-acetic acid causes both a dose-dependent repression of primary root growth and an induction of DR5:uidA expression in wild-type seedlings, and these effects were exacerbated in hpr1 mutants. The damage of provasculature initial cells in the root of hpr1 mutants occurred at earlier times than the full differentiation of the meristem, and correlates with a reduced expression domain of CycB1:uidA and PRZ:uidA. Thus, HPR1 plays critical functions for stem cell maintenance, auxin homeostasis, cell division in the meristem, and indeterminate root growth.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A1', Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, Mexico
- Facultad de Químico Farmacobiología, Universidad Michoacana de San Nicolás de Hidalgo, Tzintzuntzan 173, Matamoros, C. P., 58240, Morelia, Michoacán, Mexico
| | - Randy Ortiz-Castro
- Catedrático CONACYT-Instituto de Ecología, A.C., Red de Estudios Moleculares Avanzados, Edificio B, Campus III, Carretera Antigua a Coatepec 351, El Haya, C. P., 91070, Xalapa, Veracruz, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio A1', Ciudad Universitaria, C. P., 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
20
|
López-Bucio JS, Salmerón-Barrera GJ, Ravelo-Ortega G, Raya-González J, León P, de la Cruz HR, Campos-García J, López-Bucio J, Guevara-García ÁA. Mitogen-activated protein kinase 6 integrates phosphate and iron responses for indeterminate root growth in Arabidopsis thaliana. PLANTA 2019; 250:1177-1189. [PMID: 31190117 DOI: 10.1007/s00425-019-03212-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/06/2019] [Indexed: 05/21/2023]
Abstract
A MAPK module, of which MPK6 kinase is an important component, is involved in the coordination of the responses to Pi and Fe in the primary root meristem of Arabidopsis thaliana. Phosphate (Pi) deficiency induces determinate primary root growth in Arabidopsis through cessation of cell division in the meristem, which is linked to an increased iron (Fe) accumulation. Here, we show that Mitogen-Activated Protein Kinase6 (MPK6) has a role in Arabidopsis primary root growth under low Pi stress. MPK6 activity is induced in roots in response to low Pi, and such induction is enhanced by Fe supplementation, suggesting an MPK6 role in coordinating Pi/Fe balance in mediating root growth. The differentiation of the root meristem induced by low Pi levels correlates with altered expression of auxin-inducible genes and auxin transporter levels via MPK6. Our results indicate a critical role of the MPK6 kinase in coordinating meristem cell activity to Pi and Fe availability for proper primary root growth.
Collapse
Affiliation(s)
- Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| | | | - Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Patricia León
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, CP 62250, Cuernavaca, Morelos, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | | |
Collapse
|
21
|
Santos Teixeira JA, Ten Tusscher KH. The Systems Biology of Lateral Root Formation: Connecting the Dots. MOLECULAR PLANT 2019; 12:784-803. [PMID: 30953788 DOI: 10.1016/j.molp.2019.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 05/29/2023]
Abstract
The root system is a major determinant of a plant's access to water and nutrients. The architecture of the root system to a large extent depends on the repeated formation of new lateral roots. In this review, we discuss lateral root development from a systems biology perspective. We focus on studies combining experiments with computational modeling that have advanced our understanding of how the auxin-centered regulatory modules involved in different stages of lateral root development exert their specific functions. Moreover, we discuss how these regulatory networks may enable robust transitions from one developmental stage to the next, a subject that thus far has received limited attention. In addition, we analyze how environmental factors impinge on these modules, and the different manners in which these environmental signals are being integrated to enable coordinated developmental decision making. Finally, we provide some suggestions for extending current models of lateral root development to incorporate multiple processes and stages. Only through more comprehensive models we can fully elucidate the cooperative effects of multiple processes on later root formation, and how one stage drives the transition to the next.
Collapse
Affiliation(s)
- J A Santos Teixeira
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - K H Ten Tusscher
- Computational Developmental Biology Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
22
|
Méndez-Bravo A, Ruiz-Herrera LF, Cruz-Ramírez A, Guzman P, Martínez-Trujillo M, Ortiz-Castro R, López-Bucio J. CONSTITUTIVE TRIPLE RESPONSE1 and PIN2 act in a coordinate manner to support the indeterminate root growth and meristem cell proliferating activity in Arabidopsis seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:175-186. [PMID: 30823995 DOI: 10.1016/j.plantsci.2018.11.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/24/2018] [Accepted: 11/28/2018] [Indexed: 05/26/2023]
Abstract
The plant hormone ethylene induces auxin biosynthesis and transport and modulates root growth and branching. However, its function on root stem cells and the identity of interacting factors for the control of meristem activity remains unclear. Genetic analysis for primary root growth in wild-type (WT) Arabidopsis thaliana seedlings and ethylene-related mutants showed that the loss-of-function of CONSTITUTIVE TRIPLE RESPONSE1 (CTR1) inhibits cell division and elongation. This phenotype is associated with an increase in the expression of the auxin transporter PIN2 and a drastic decrease in the expression of key factors for stem cell niche maintenance such as PLETHORA1, SHORT ROOT and SCARECROW. While the root stem cell niche is affected in ctr1 mutants, its maintenance is severely compromised in the ctr1-1eir1-1(pin2) double mutant, in which an evident loss of proliferative capacity of the meristematic cells leads to a fully differentiated root meristem shortly after germination. Root traits affected in ctr1-1 mutants could be restored in ctr1-1ein2-1 double mutants. These results reveal that ethylene perception via CTR1 and EIN2 in the root modulates the proliferative capacity of root stem cells via affecting the expression of genes involved in the two major pathways, AUX-PIN-PLT and SCR-SHR, which are key factors for proper root stem cell niche maintenance.
Collapse
Affiliation(s)
- Alejandro Méndez-Bravo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, Mexico
| | - Plinio Guzman
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, Mexico
| | - Miguel Martínez-Trujillo
- Facultad de Biología, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - Randy Ortiz-Castro
- Red de estudios moleculares avanzados, Instituto de Ecología A. C., Carretera Antigua a Coatepec 351, El Haya, C. P. 91070, Xalapa, Veracruz, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
23
|
Zhang H, Mi L, Xu L, Yu C, Li C, Chen C. Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange (Citrus sinensis). Sci Rep 2019; 9:2156. [PMID: 30770885 PMCID: PMC6377710 DOI: 10.1038/s41598-018-38185-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
GRAS genes are suggested to be grouped into plant-specific transcriptional regulatory families that have been reported to participate in multiple processes, including plant development, phytohormone signaling, the formation of symbiotic relationships, and response to environmental signals. GRAS genes have been characterized in a number of plant species, but little is known about this gene family in Citrus sinensis. In this study, we identified a total of 50 GRAS genes and characterized the gene structures, conserved motifs, genome localizations and cis-elements within their promoter regions. According to their structural and phylogenetic features, the identified sweet orange GRAS members were divided into 11 subgroups, of which subfamily CsGRAS34 was sweet orange-specific. Based on publicly available RNA-seq data generated from callus, flower, leaf and fruit in sweet orange, we found that some sweet orange GRAS genes exhibited tissue-specific expression patterning. Three of the six members of subfamily AtSHR, particularly CsGRAS9, and two of the six members of subfamily AtPAT1 were preferentially expressed in leaf. Moreover, protein-protein interactions with CsGRAS were predicted. Gene expression analysis was performed under conditions of phosphate deficiency, and GA3 and NaCl treatment to identify the potential functions of GRAS members in regulating stress and hormone responses. This study provides the first comprehensive understanding of the GRAS gene family in the sweet orange genome. As such, the study generates valuable information for further gene function analysis and identifying candidate genes to improve abiotic stress tolerance in citrus plants.
Collapse
Affiliation(s)
- Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Limin Mi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxiu Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Fincheira P, Quiroz A. Physiological response of Lactuca sativa exposed to 2-nonanone emitted by Bacillus sp. BCT9. Microbiol Res 2019; 219:49-55. [PMID: 30642466 DOI: 10.1016/j.micres.2018.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 09/10/2018] [Accepted: 11/02/2018] [Indexed: 01/09/2023]
Abstract
Volatile organic compounds (VOCs) released from bacterial species have been reported as plant growth inducers. In this sense, Lactuca sativa was used as model vegetable to prospect the effects of 2-nonanone released by Bacillus sp. BCT9 at cellular and organ structure level, so we present preliminary results about the physiological effects. In this study, 2-day-old L. sativa were exposed to 2-nonanone for 10 days under two delivery systems: 1) 2-nonanone (abrupt delivery) and 2) 2-nonanone + lanolin (controlled delivery). The X-ray elemental microanalysis, scanning electron and confocal laser microscopies techniques were used to evaluate physiological changes "in vivo" conditions. The results indicated that 2-nonanone increased root and shoot length independently of 2-nonanone delivery system after 7 days of exposition. Additionally, 2-nonanone elicited the increase of anthocyanin and not affects chlorophyll content and electrolyte leakage percentage. The abrupt delivery elicited the increase of both length and density of root hair without causing changes in size of cell epidermis, while controlled delivery induced stomatal opening. Besides, 2-nonanone exposition did not modify the composition and distribution of carbon, nitrogen, phosphorus, potassium, and chlorine in the surface of plant tissue. The results suggested that 2-nonanone acts as a bacterial signal molecule to elicit changes related to root development without damaging the external morphology while epidermal cells at leaf level are not affected, suggesting that 2-nonanone can be an important tool to apply to vegetables.
Collapse
Affiliation(s)
- Paola Fincheira
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco, Chile; Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile
| | - Andrés Quiroz
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile; Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco, Chile.
| |
Collapse
|
25
|
Izzo LG, Romano LE, De Pascale S, Mele G, Gargiulo L, Aronne G. Chemotropic vs Hydrotropic Stimuli for Root Growth Orientation in Microgravity. FRONTIERS IN PLANT SCIENCE 2019; 10:1547. [PMID: 31824550 PMCID: PMC6883720 DOI: 10.3389/fpls.2019.01547] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 11/05/2019] [Indexed: 05/11/2023]
Abstract
Understanding how plants respond to spaceflight and extraterrestrial environments is crucial to develop life-support systems intended for long-term human explorations. Gravity is a main factor influencing root development and orientation, typically masking other tropisms. Considering that reduced levels of gravity affect many plant responses in space, the interaction of other tropic stimuli in microgravity represents the frontier to be investigated aiming at life-support systems optimization. In this paper we report on MULTITROP (Multiple-Tropism: interaction of gravity, nutrient and water stimuli for root orientation in microgravity), an experiment performed on the International Space Station during the Expedition 52/53. Scientific aim of the experiment was to disentangle hydrotropism from chemotropism for root orientation in absence of the gravity stimulus. Among several species relevant to space farming, Daucus carota was selected for the experiment because of its suitability with the experimental hardware and setup. At launch site, carrot seeds were placed between two disks of inert substrate (one imbibed with water and the other with a disodium phosphate solution) and integrated into a hardware developed, refurbished and flight-certificated by Kayser Italia. Post-flight, a Ground Reference Experiment was performed. Root development and orientation of seedlings grown in microgravity and at 1g condition were measured through 3D-image analysis procedures after imaging with X-ray microtomography. Radicle protruded preferentially from the ventral side of the seed due to the asymmetric position of the embryo. Such a phenomenon did not prevent the achievement of MULTITROP scientific goal but should be considered for further experiments on radicle growth orientation in microgravity. The experiment conducted in space verified that the primary root of carrot shows a positive chemotropism towards disodium phosphate solution in the absence of the gravity stimulus. On Earth, the positive chemotropism was masked by the dominant effect of gravity and roots developed downward regardless of the presence/absence of nutrients in the substrate. Taking advantage of altered gravity conditions and using other chemical compounds, further studies should be performed to deepen our understanding of root chemotropic response and its interaction with other tropisms.
Collapse
Affiliation(s)
- Luigi Gennaro Izzo
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
- *Correspondence: Luigi Gennaro Izzo,
| | - Leone Ermes Romano
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Stefania De Pascale
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Giacomo Mele
- Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council, Ercolano, Italy
| | - Laura Gargiulo
- Institute for Agricultural and Forest Systems in the Mediterranean, National Research Council, Ercolano, Italy
| | - Giovanna Aronne
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| |
Collapse
|
26
|
Singh AP, Fridman Y, Holland N, Ackerman-Lavert M, Zananiri R, Jaillais Y, Henn A, Savaldi-Goldstein S. Interdependent Nutrient Availability and Steroid Hormone Signals Facilitate Root Growth Plasticity. Dev Cell 2018; 46:59-72.e4. [DOI: 10.1016/j.devcel.2018.06.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 03/27/2018] [Accepted: 06/04/2018] [Indexed: 12/16/2022]
|
27
|
Nadeem F, Ahmad Z, Wang R, Han J, Shen Q, Chang F, Diao X, Zhang F, Li X. Foxtail Millet [ Setaria italica (L.) Beauv.] Grown under Low Nitrogen Shows a Smaller Root System, Enhanced Biomass Accumulation, and Nitrate Transporter Expression. FRONTIERS IN PLANT SCIENCE 2018; 9:205. [PMID: 29520286 PMCID: PMC5826958 DOI: 10.3389/fpls.2018.00205] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Foxtail millet (FM) [Setaria italica (L.) Beauv.] is a grain and forage crop well adapted to nutrient-poor soils. To date little is known how FM adapts to low nitrogen (LN) at the morphological, physiological, and molecular levels. Using the FM variety Yugu1, we found that LN led to lower chlorophyll contents and N concentrations, and higher root/shoot and C/N ratios and N utilization efficiencies under hydroponic culture. Importantly, enhanced biomass accumulation in the root under LN was in contrast to a smaller root system, as indicated by significant decreases in total root length; crown root number and length; and lateral root number, length, and density. Enhanced carbon allocation toward the root was rather for significant increases in average diameter of the LN root, potentially favorable for wider xylem vessels or other anatomical alterations facilitating nutrient transport. Lower levels of IAA and CKs were consistent with a smaller root system and higher levels of GA may promote root thickening under LN. Further, up-regulation of SiNRT1.1, SiNRT2.1, and SiNAR2.1 expression and nitrate influx in the root and that of SiNRT1.11 and SiNRT1.12 expression in the shoot probably favored nitrate uptake and remobilization as a whole. Lastly, more soluble proteins accumulated in the N-deficient root likely as a result of increases of N utilization efficiencies. Such "excessive" protein-N was possibly available for shoot delivery. Thus, FM may preferentially transport carbon toward the root facilitating root thickening/nutrient transport and allocate N toward the shoot maximizing photosynthesis/carbon fixation as a primary adaptive strategy to N limitation.
Collapse
Affiliation(s)
- Faisal Nadeem
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Zeeshan Ahmad
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Ruifeng Wang
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Jienan Han
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Qi Shen
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Feiran Chang
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xianmin Diao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fusuo Zhang
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
| | - Xuexian Li
- Key Laboratory of Plant–Soil Interactions, Ministry of Education, Department of Plant Nutrition, China Agricultural University, Beijing, China
- *Correspondence: Xuexian Li,
| |
Collapse
|
28
|
Ayala-Rodríguez JÁ, Barrera-Ortiz S, Ruiz-Herrera LF, López-Bucio J. Folic acid orchestrates root development linking cell elongation with auxin response and acts independently of the TARGET OF RAPAMYCIN signaling in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 264:168-178. [PMID: 28969797 DOI: 10.1016/j.plantsci.2017.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/12/2017] [Accepted: 09/16/2017] [Indexed: 05/10/2023]
Abstract
Folic acid is a precursor of tetrahydrofolate (vitamin B9), which is an essential cofactor in most organisms, acting as a carrier for one-carbon units in enzymatic reactions. In this work, we employed pharmacological, genetic and confocal imaging strategies to unravel the signaling mechanism by which folic acid modulates root growth and development. Folic acid supplementation inhibits primary root elongation and induces lateral root formation in a concentration-dependent manner. An analysis of the expression of cell cycle genes pCycD6;1:GFP and CycB1:uidA, and cell expansion Exp7:uidA showed that folic acid promotes cell division but prevented cell elongation, and this correlated with altered expression of auxin-responsive DR5:GFP gene, and PIN1:PIN1:GFP, PIN3:PIN3:GFP, and PIN7:PIN7:GFP auxin transporters at the columella and vasculature of primary roots, whereas mutants defective in auxin signaling (tir1/afb1/afb2 [receptors], slr1 [repressor] and arf7/arf19 [transcription factors]) were less sensitive to folic acid induced primary root shortening and lateral root proliferation. Comparison of growth of WT and TARGET OF RAPAMYCIN (TOR) antisense lines indicates that folic acid acts by an alternative mechanism to this central regulator. Thus, folic acid modulation of root architecture involves auxin and acts independently of the TOR kinase to influence basic cellular programs.
Collapse
Affiliation(s)
- Juan Ángel Ayala-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, Mexico
| | - Salvador Barrera-Ortiz
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio B3, Ciudad Universitaria. C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
29
|
Ferrieri AP, Machado RAR, Arce CCM, Kessler D, Baldwin IT, Erb M. Localized micronutrient patches induce lateral root foraging and chemotropism in Nicotiana attenuata. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:759-771. [PMID: 28650091 DOI: 10.1111/jipb.12566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/23/2017] [Indexed: 12/16/2023]
Abstract
Nutrients are distributed unevenly in the soil. Phenotypic plasticity in root growth and proliferation may enable plants to cope with this variation and effectively forage for essential nutrients. However, how micronutrients shape root architecture of plants in their natural environments is poorly understood. We used a combination of field and laboratory-based assays to determine the capacity of Nicotiana attenuata to direct root growth towards localized nutrient patches in its native environment. Plants growing in nature displayed a particular root phenotype consisting of a single primary root and a few long, shallow lateral roots. Analysis of bulk soil surrounding the lateral roots revealed a strong positive correlation between lateral root placement and micronutrient gradients, including copper, iron and zinc. In laboratory assays, the application of localized micronutrient salts close to lateral root tips led to roots bending in the direction of copper and iron. This form of chemotropism was absent in ethylene and jasmonic acid deficient lines, suggesting that it is controlled in part by these two hormones. This work demonstrates that directed root growth underlies foraging behavior, and suggests that chemotropism and micronutrient-guided root placement are important factors that shape root architecture in nature.
Collapse
Affiliation(s)
- Abigail P Ferrieri
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ricardo A R Machado
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Carla C M Arce
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Danny Kessler
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Matthias Erb
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| |
Collapse
|
30
|
MsmiR156 affects global gene expression and promotes root regenerative capacity and nitrogen fixation activity in alfalfa. Transgenic Res 2017; 26:541-557. [DOI: 10.1007/s11248-017-0024-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/18/2017] [Indexed: 10/19/2022]
|
31
|
Manoli A, Trevisan S, Voigt B, Yokawa K, Baluška F, Quaggiotti S. Nitric Oxide-Mediated Maize Root Apex Responses to Nitrate are Regulated by Auxin and Strigolactones. FRONTIERS IN PLANT SCIENCE 2016; 6:1269. [PMID: 26834770 PMCID: PMC4722128 DOI: 10.3389/fpls.2015.01269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/28/2015] [Indexed: 05/20/2023]
Abstract
Nitrate (NO3 (-)) is a key element for crop production but its levels in agricultural soils are limited. Plants have developed mechanisms to cope with these NO3 (-) fluctuations based on sensing nitrate at the root apex. Particularly, the transition zone (TZ) of root apex has been suggested as a signaling-response zone. This study dissects cellular and molecular mechanisms underlying NO3 (-) resupply effects on primary root (PR) growth in maize, confirming nitric oxide (NO) as a putative modulator. Nitrate restoration induced PR elongation within the first 2 h, corresponding to a stimulation of cell elongation at the basal border of the TZ. Xyloglucans (XGs) immunolocalization together with Brefeldin A applications demonstrated that nitrate resupply induces XG accumulation. This effect was blocked by cPTIO (NO scavenger). Transcriptional analysis of ZmXET1 confirmed the stimulatory effect of nitrate on XGs accumulation in cells of the TZ. Immunolocalization analyses revealed a positive effect of nitrate resupply on auxin and PIN1 accumulation, but a transcriptional regulation of auxin biosynthesis/transport/signaling genes was excluded. Short-term nitrate treatment repressed the transcription of genes involved in strigolactones (SLs) biosynthesis and transport, mainly in the TZ. Enhancement of carotenoid cleavage dioxygenases (CCDs) transcription in presence of cPTIO indicated endogenous NO as a negative modulator of CCDs activity. Finally, treatment with the SLs-biosynthesis inhibitor (TIS108) restored the root growth in the nitrate-starved seedlings. Present report suggests that the NO-mediated root apex responses to nitrate are accomplished in cells of the TZ via integrative actions of auxin, NO and SLs.
Collapse
Affiliation(s)
- Alessandro Manoli
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PaduaPadua, Italy
| | - Sara Trevisan
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PaduaPadua, Italy
| | - Boris Voigt
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Ken Yokawa
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
- Department of Biological Sciences, Tokyo Metropolitan UniversityTokyo, Japan
| | - František Baluška
- Department of Plant Cell Biology, Institute of Cellular and Molecular Botany, University of BonnBonn, Germany
| | - Silvia Quaggiotti
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of PaduaPadua, Italy
| |
Collapse
|