1
|
Tan X, Chen C, Gao X, Wang H, Zhang Y, Li T. SMG5, a component of nonsense-mediated mRNA decay, is essential for the mouse spermatogonial differentiation and maintenance. FASEB J 2024; 38:e70268. [PMID: 39704269 DOI: 10.1096/fj.202402422r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Mammalian spermatogenesis is a tightly controlled cellular process including spermatogonial development and differentiation, meiosis of spermatocyte, and the morphological specification of haploid spermatozoa, during which the post-transcriptional gene regulations are vital but poorly understood. Nonsense-mediated mRNA decay (NMD), a highly conserved post-transcriptional regulatory mechanism of gene expression in eukaryotes, recently emerges as a licensing mechanism in cell fate transition, including stem cell differentiation and organogenesis. The function of NMD in spermatogonial development remains elusive. Here we found knockout of SMG5, an important component of the NMD machinery, in embryonic germ cells led to the failure of spermatogenesis and male infertility. SMG5 null resulted in defective differentiation and maintenance of spermatogonia, which affected initiation of meiosis, ultimately caused a "Sertoli cell-only" phenotype. Transcriptome analysis revealed that SMG5 loss led to serious defects in NMD with targets features including PTC, long 3' UTR, and 5' uORFs. Furthermore, SMG5 loss downregulates gene transcripts involved in spermatogonia expansion and differentiation. During the spermatogonial differentiation, the deletion of SMG5 led to hyperactivation of the p38 MAPK signaling pathway, which triggered widespread cell death. These results suggest that SMG5 mediated NMD plays an important role in spermatogenesis by regulating the p38 MAPK signaling pathway.
Collapse
Affiliation(s)
- Xiao Tan
- State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China
| | - Chengyan Chen
- State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China
| | - Xiyao Gao
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, P.R. China
| | - Hua Wang
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, P.R. China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China
| | - Tangliang Li
- State Key Laboratory of Microbial Technology, Shandong University-Qingdao Campus, Qingdao, P.R. China
- Zhejiang Key Laboratory of Medical Epigenetics, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, P.R. China
- Department of Gastroenterology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, P.R. China
| |
Collapse
|
2
|
Barbarin-Bocahu I, Ulryck N, Rigobert A, Ruiz Gutierrez N, Decourty L, Raji M, Garkhal B, Le Hir H, Saveanu C, Graille M. Structure of the Nmd4-Upf1 complex supports conservation of the nonsense-mediated mRNA decay pathway between yeast and humans. PLoS Biol 2024; 22:e3002821. [PMID: 39331656 PMCID: PMC11463774 DOI: 10.1371/journal.pbio.3002821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 10/09/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway clears eukaryotic cells of mRNAs containing premature termination codons (PTCs) or normal stop codons located in specific contexts. It therefore plays an important role in gene expression regulation. The precise molecular mechanism of the NMD pathway has long been considered to differ substantially from yeast to metazoa, despite the involvement of universally conserved factors such as the central ATP-dependent RNA-helicase Upf1. Here, we describe the crystal structure of the yeast Upf1 bound to its recently identified but yet uncharacterized partner Nmd4, show that Nmd4 stimulates Upf1 ATPase activity and that this interaction contributes to the elimination of NMD substrates. We also demonstrate that a region of Nmd4 critical for the interaction with Upf1 in yeast is conserved in the metazoan SMG6 protein, another major NMD factor. We show that this conserved region is involved in the interaction of SMG6 with UPF1 and that mutations in this region affect the levels of endogenous human NMD substrates. Our results support the universal conservation of the NMD mechanism in eukaryotes.
Collapse
Affiliation(s)
- Irène Barbarin-Bocahu
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nathalie Ulryck
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Amandine Rigobert
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Nadia Ruiz Gutierrez
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Laurence Decourty
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Mouna Raji
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Bhumika Garkhal
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Hervé Le Hir
- Institut de Biologie de l’Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, PSL Research University, Paris, France
| | - Cosmin Saveanu
- Institut Pasteur, Université Paris Cité, Unité Biologie des ARN des Pathogènes Fongiques, Paris, France
| | - Marc Graille
- Laboratoire de Biologie Structurale de la Cellule (BIOC), CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
3
|
Zhuravskaya A, Yap K, Hamid F, Makeyev EV. Alternative splicing coupled to nonsense-mediated decay coordinates downregulation of non-neuronal genes in developing mouse neurons. Genome Biol 2024; 25:162. [PMID: 38902825 PMCID: PMC11188260 DOI: 10.1186/s13059-024-03305-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 06/07/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND The functional coupling between alternative pre-mRNA splicing (AS) and the mRNA quality control mechanism called nonsense-mediated decay (NMD) can modulate transcript abundance. Previous studies have identified several examples of such a regulation in developing neurons. However, the systems-level effects of AS-NMD in this context are poorly understood. RESULTS We developed an R package, factR2, which offers a comprehensive suite of AS-NMD analysis functions. Using this tool, we conducted a longitudinal analysis of gene expression in pluripotent stem cells undergoing induced neuronal differentiation. Our analysis uncovers hundreds of AS-NMD events with significant potential to regulate gene expression. Notably, this regulation is significantly overrepresented in specific functional groups of developmentally downregulated genes. Particularly strong association with gene downregulation is detected for alternative cassette exons stimulating NMD upon their inclusion into mature mRNA. By combining bioinformatic analyses with CRISPR/Cas9 genome editing and other experimental approaches we show that NMD-stimulating cassette exons regulated by the RNA-binding protein PTBP1 dampen the expression of their genes in developing neurons. We also provided evidence that the inclusion of NMD-stimulating cassette exons into mature mRNAs is temporally coordinated with NMD-independent gene repression mechanisms. CONCLUSIONS Our study provides an accessible workflow for the discovery and prioritization of AS-NMD targets. It further argues that the AS-NMD pathway plays a widespread role in developing neurons by facilitating the downregulation of functionally related non-neuronal genes.
Collapse
Affiliation(s)
- Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Karen Yap
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London, SE1 1UL, UK.
| |
Collapse
|
4
|
Langer LM, Kurscheidt K, Basquin J, Bonneau F, Iermak I, Basquin C, Conti E. UPF1 helicase orchestrates mutually exclusive interactions with the SMG6 endonuclease and UPF2. Nucleic Acids Res 2024; 52:6036-6048. [PMID: 38709891 PMCID: PMC11162806 DOI: 10.1093/nar/gkae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/06/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved co-translational mRNA surveillance and turnover pathway across eukaryotes. NMD has a central role in degrading defective mRNAs and also regulates the stability of a significant portion of the transcriptome. The pathway is organized around UPF1, an RNA helicase that can interact with several NMD-specific factors. In human cells, degradation of the targeted mRNAs begins with a cleavage event that requires the recruitment of the SMG6 endonuclease to UPF1. Previous studies have identified functional links between SMG6 and UPF1, but the underlying molecular mechanisms have remained elusive. Here, we used mass spectrometry, structural biology and biochemical approaches to identify and characterize a conserved short linear motif in SMG6 that interacts with the cysteine/histidine-rich (CH) domain of UPF1. Unexpectedly, we found that the UPF1-SMG6 interaction is precluded when the UPF1 CH domain is engaged with another NMD factor, UPF2. Based on cryo-EM data, we propose that the formation of distinct SMG6-containing and UPF2-containing NMD complexes may be dictated by different conformational states connected to the RNA-binding status of UPF1. Our findings rationalize a key event in metazoan NMD and advance our understanding of mechanisms regulating activity and guiding substrate recognition by the SMG6 endonuclease.
Collapse
Affiliation(s)
- Lukas M Langer
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Katharina Kurscheidt
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Fabien Bonneau
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Iuliia Iermak
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Claire Basquin
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| | - Elena Conti
- Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried/Munich D-82152, Germany
| |
Collapse
|
5
|
Chapman JH, Youle AM, Grimme AL, Neuman K, Hogg J. UPF1 ATPase autoinhibition and activation modulate RNA binding kinetics and NMD efficiency. Nucleic Acids Res 2024; 52:5376-5391. [PMID: 38412299 PMCID: PMC11109973 DOI: 10.1093/nar/gkae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/31/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited 'closed' state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active 'open' state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants (i.e. poorly processive, slow, and mechanochemically uncoupled) can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower RNA binding kinetics and enhanced ATP-stimulated RNA dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2 and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.
Collapse
Affiliation(s)
- Joseph H Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alice M Youle
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Suárez-Herrera N, Garanto A, Collin RWJ. Understanding and Rescuing the Splicing Defect Caused by the Frequent ABCA4 Variant c.4253+43G>A Underlying Stargardt Disease. Nucleic Acid Ther 2024; 34:73-82. [PMID: 38466963 DOI: 10.1089/nat.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024] Open
Abstract
Pathogenic variants in ABCA4 are the underlying molecular cause of Stargardt disease (STGD1), an autosomal recessive macular dystrophy characterized by a progressive loss of central vision. Among intronic ABCA4 variants, c.4253+43G>A is frequently detected in STGD1 cases and is classified as a hypomorphic allele, generally associated with late-onset cases. This variant was previously reported to alter splicing regulatory sequences, but the splicing outcome is not fully understood yet. In this study, we attempted to better understand its effect on splicing and to rescue the aberrant splicing via antisense oligonucleotides (AONs). Wild-type and c.4253+43G>A variant-harboring maxigene vectors revealed additional skipping events, which were not previously detected upon transfection in HEK293T cells. To restore exon inclusion, we designed a set of 27 AONs targeting either splicing silencer motifs or the variant region and screened these in maxigene-transfected HEK293T cells. Candidate AONs able to promote exon inclusion were selected for further testing in patient-derived photoreceptor precursor cells. Surprisingly, no robust splicing modulation was observed in this model system. Overall, this research helped to adequately characterize the splicing alteration caused by the c.4253+43G>A variant, although future development of AON-mediated exon inclusion therapy for ABCA4 is needed.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob W J Collin
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
7
|
Suárez-Herrera N, Li CHZ, Leijsten N, Karjosukarso DW, Corradi Z, Bukkems F, Duijkers L, Cremers FPM, Hoyng CB, Garanto A, Collin RWJ. Preclinical Development of Antisense Oligonucleotides to Rescue Aberrant Splicing Caused by an Ultrarare ABCA4 Variant in a Child with Early-Onset Stargardt Disease. Cells 2024; 13:601. [PMID: 38607040 PMCID: PMC11011354 DOI: 10.3390/cells13070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/19/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024] Open
Abstract
Precision medicine is rapidly gaining recognition in the field of (ultra)rare conditions, where only a few individuals in the world are affected. Clinical trial design for a small number of patients is extremely challenging, and for this reason, the development of N-of-1 strategies is explored to accelerate customized therapy design for rare cases. A strong candidate for this approach is Stargardt disease (STGD1), an autosomal recessive macular degeneration characterized by high genetic and phenotypic heterogeneity. STGD1 is caused by pathogenic variants in ABCA4, and amongst them, several deep-intronic variants alter the pre-mRNA splicing process, generally resulting in the insertion of pseudoexons (PEs) into the final transcript. In this study, we describe a 10-year-old girl harboring the unique deep-intronic ABCA4 variant c.6817-713A>G. Clinically, she presents with typical early-onset STGD1 with a high disease symmetry between her two eyes. Molecularly, we designed antisense oligonucleotides (AONs) to block the produced PE insertion. Splicing rescue was assessed in three different in vitro models: HEK293T cells, fibroblasts, and photoreceptor precursor cells, the last two being derived from the patient. Overall, our research is intended to serve as the basis for a personalized N-of-1 AON-based treatment to stop early vision loss in this patient.
Collapse
Affiliation(s)
- Nuria Suárez-Herrera
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
| | - Nico Leijsten
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Dyah W. Karjosukarso
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Femke Bukkems
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Lonneke Duijkers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (C.H.Z.L.); (C.B.H.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
| | - Alejandro Garanto
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
- Department of Pediatrics, Amalia Children’s Hospital, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Rob W. J. Collin
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (N.S.-H.); (N.L.); (D.W.K.); (Z.C.); (F.B.); (L.D.); (F.P.M.C.); (A.G.)
- Dutch Center for RNA Therapeutics, 2311 EZ Leiden, The Netherlands
| |
Collapse
|
8
|
Chapman JH, Youle AM, Grimme AL, Neuman KC, Hogg JR. UPF1 ATPase autoinhibition and activation modulate RNA binding kinetics and NMD efficiency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.03.565554. [PMID: 38076847 PMCID: PMC10705565 DOI: 10.1101/2023.11.03.565554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The RNA helicase UPF1 interacts with mRNAs, mRNA decay machinery, and the terminating ribosome to promote nonsense-mediated mRNA decay (NMD). Structural and biochemical data have revealed that UPF1 exists in an enzymatically autoinhibited "closed" state. Upon binding the NMD protein UPF2, UPF1 undergoes an extensive conformational change into a more enzymatically active "open" state, which exhibits enhanced ATPase and helicase activity. However, mechanically deficient UPF1 mutants can support efficient NMD, bringing into question the roles of UPF1 enzymatic autoinhibition and activation in NMD. Here, we identify two additional important features of the activated open state: slower nucleic acid binding kinetics and enhanced ATP-stimulated nucleic acid dissociation kinetics. Computational modeling based on empirical measurements of UPF1, UPF2, and RNA interaction kinetics predicts that the majority of UPF1-RNA binding and dissociation events in cells occur independently of UPF2 binding. We find that UPF1 mutants with either reduced or accelerated dissociation from RNA have NMD defects, whereas UPF1 mutants that are more dependent on UPF2 for catalytic activity remain active on well-established NMD targets. These findings support a model in which the kinetics of UPF1-mRNA interactions are important determinants of cellular NMD efficiency.
Collapse
Affiliation(s)
- Joseph H. Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Alice M. Youle
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Acadia L. Grimme
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Keir C. Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - J. Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| |
Collapse
|
9
|
Wu K, Fu Y, Ren Y, Liu L, Zhang X, Ruan M. Turnip crinkle virus-encoded suppressor of RNA silencing suppresses mRNA decay by interacting with Arabidopsis XRN4. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:744-755. [PMID: 37522642 DOI: 10.1111/tpj.16402] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Plant cells employ intricate defense mechanisms, including mRNA decay pathways, to counter viral infections. Among the RNA quality control (RQC) mechanisms, nonsense-mediated decay (NMD), no-go decay (NGD), and nonstop decay (NSD) pathways play critical roles in recognizing and cleaving aberrant mRNA molecules. Turnip crinkle virus (TCV) is a plant virus that triggers mRNA decay pathways, but it has also evolved strategies to evade this antiviral defense. In this study, we investigated the activation of mRNA decay during TCV infection and its impact on TCV RNA accumulation. We found that TCV infection induced the upregulation of essential mRNA decay factors, indicating their involvement in antiviral defense and the capsid protein (CP) of TCV, a well-characterized viral suppressor of RNA silencing (VSR), also compromised the mRNA decay-based antiviral defense by targeting AtXRN4. This interference with mRNA decay was supported by the observation that TCV CP stabilized a reporter transcript with a long 3' untranslated region (UTR). Moreover, TCV CP suppressed the decay of known NMD target transcripts, further emphasizing its ability to modulate host RNA control mechanisms. Importantly, TCV CP physically interacted with AtXRN4, providing insight into the mechanism of viral interference with mRNA decay. Overall, our findings reveal an alternative strategy employed by TCV, wherein the viral coat protein suppresses the mRNA decay pathway to facilitate viral infection.
Collapse
Affiliation(s)
- Kunxin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
| | - Yan Fu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
| | - Yanli Ren
- School of Biological and Geographical Sciences, Yili Normal University, Yili, 835000, China
| | - Linyu Liu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- School of Biological and Geographical Sciences, Yili Normal University, Yili, 835000, China
| | - Xiuchun Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| | - Mengbin Ruan
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
- Key Laboratory for Biology and Genetic Resources of Tropical Crops of Hainan Province, Hainan Institute for Tropical Agriculture Resources, Haikou, 571101, China
- Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, 572025, China
| |
Collapse
|
10
|
Meydan S, Guydosh NR. Is there a localized role for translational quality control? RNA (NEW YORK, N.Y.) 2023; 29:1623-1643. [PMID: 37582617 PMCID: PMC10578494 DOI: 10.1261/rna.079683.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/26/2023] [Indexed: 08/17/2023]
Abstract
It is known that mRNAs and the machinery that translates them are not uniformly distributed throughout the cytoplasm. As a result, the expression of some genes is localized to particular parts of the cell and this makes it possible to carry out important activities, such as growth and signaling, in three-dimensional space. However, the functions of localized gene expression are not fully understood, and the underlying mechanisms that enable localized expression have not been determined in many cases. One consideration that could help in addressing these challenges is the role of quality control (QC) mechanisms that monitor translating ribosomes. On a global level, QC pathways are critical for detecting aberrant translation events, such as a ribosome that stalls while translating, and responding by activating stress pathways and resolving problematic ribosomes and mRNAs at the molecular level. However, it is unclear how these pathways, even when uniformly active throughout the cell, affect local translation. Importantly, some QC pathways have themselves been reported to be enriched in the proximity of particular organelles, but the extent of such localized activity remains largely unknown. Here, we describe the major QC pathways and review studies that have begun to explore their roles in localized translation. Given the limited data in this area, we also pose broad questions about the possibilities and limitations for how QC pathways could facilitate localized gene expression in the cell with the goal of offering ideas for future experimentation.
Collapse
Affiliation(s)
- Sezen Meydan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nicholas R Guydosh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
11
|
Petrić Howe M, Patani R. Nonsense-mediated mRNA decay in neuronal physiology and neurodegeneration. Trends Neurosci 2023; 46:879-892. [PMID: 37543480 DOI: 10.1016/j.tins.2023.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 08/07/2023]
Abstract
The processes of mRNA export from the nucleus and subsequent mRNA translation in the cytoplasm are of particular relevance in eukaryotic cells. In highly polarised cells such as neurons, finely-tuned molecular regulation of these processes serves to safeguard the spatiotemporal fidelity of gene expression. Nonsense-mediated mRNA decay (NMD) is a cytoplasmic translation-dependent quality control process that regulates gene expression in a wide range of scenarios in the nervous system, including neurodevelopment, learning, and memory formation. Moreover, NMD dysregulation has been implicated in a broad range of neurodevelopmental and neurodegenerative disorders. We discuss how NMD and related aspects of mRNA translation regulate key neuronal functions and, in particular, we focus on evidence implicating these processes in the molecular pathogenesis of neurodegeneration. Finally, we discuss the therapeutic potential and challenges of targeting mRNA translation and NMD across the spectrum of largely untreatable neurological diseases.
Collapse
Affiliation(s)
- Marija Petrić Howe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| | - Rickie Patani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London (UCL), Queen Square, WC1N 3BG London, UK.
| |
Collapse
|
12
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
13
|
Iwanami N, Richter AS, Sikora K, Boehm T. Tnpo3 controls splicing of the pre-mRNA encoding the canonical TCR α chain of iNKT cells. Nat Commun 2023; 14:3645. [PMID: 37339974 DOI: 10.1038/s41467-023-39422-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023] Open
Abstract
Unconventional T cells, such as innate natural killer T cells (iNKT) cells, are an important part of vertebrate immune defences. iNKT recognise glycolipids through a T cell receptor (TCR) that is composed of a semi-invariant TCR α chain, paired with a restricted set of TCR β chains. Here, we show that splicing of the cognate Trav11-Traj18-Trac pre-mRNA encoding the characteristic Vα14Jα18 variable region of this semi-invariant TCR depends on the presence of Tnpo3. The Tnpo3 gene encodes a nuclear transporter of the β-karyopherin family whose cargo includes various splice regulators. The block of iNKT cell development in the absence of Tnpo3 can be overcome by transgenic provision of a rearranged Trav11-Traj18-Trac cDNA, indicating that Tnpo3 deficiency does not interfere with the development of iNKT cells per se. Our study thus identifies a role for Tnpo3 in regulating the splicing of the pre-mRNA encoding the cognate TCRα chain of iNKT cells.
Collapse
Affiliation(s)
- Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505, Japan
| | - Andreas S Richter
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
- Genedata AG, Margarethenstrasse 38, 4053, Basel, Switzerland
| | - Katarzyna Sikora
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Thomas Boehm
- Bioinformatics Unit, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany.
- Faculty of Medicine, Albert Ludwigs University, Freiburg, Germany.
| |
Collapse
|
14
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
15
|
Development of novel therapeutics for all individuals with CF (the future goes on). J Cyst Fibros 2023; 22 Suppl 1:S45-S49. [PMID: 36319570 DOI: 10.1016/j.jcf.2022.10.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/06/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022]
Abstract
Despite the major advances and successes in finding and establishing new treatments that tackle the basic defect in Cystic Fibrosis (CF), there is still an unmet need to bring these potentially curative therapies to all individuals with CF. Here, we review aspects of what is still missing to treat all individuals with CF by such approaches. On the one hand, we discuss novel holistic (high-throughput) approaches to elucidate mechanistic defects caused by distinct classes of mutations to identify novel drug targets. On the other hand, we examine therapeutic approaches to correct the gene in its own environment, i.e., in the genome.
Collapse
|
16
|
Xue G, Maciej VD, Machado de Amorim A, Pak M, Jayachandran U, Chakrabarti S. Modulation of RNA-binding properties of the RNA helicase UPF1 by its activator UPF2. RNA (NEW YORK, N.Y.) 2023; 29:178-187. [PMID: 36456182 PMCID: PMC9891255 DOI: 10.1261/rna.079188.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/06/2022] [Indexed: 06/17/2023]
Abstract
The NMD helicase UPF1 is a prototype of the superfamily 1 (SF1) of RNA helicases that bind RNA with high affinity and translocate on it in an ATP-dependent manner. Previous studies showed that UPF1 has a low basal catalytic activity that is greatly enhanced upon binding of its interaction partner, UPF2. Activation of UPF1 by UPF2 entails a large conformational change that switches the helicase from an RNA-clamping mode to an RNA-unwinding mode. The ability of UPF1 to bind RNA was expected to be unaffected by this activation mechanism. Here we show, using a combination of biochemical and biophysical methods, that binding of UPF2 to UPF1 drastically reduces the affinity of UPF1 for RNA, leading to a release of the bound RNA. Although UPF2 is capable of binding RNA in vitro, our results suggest that dissociation of the UPF1-RNA complex is not a consequence of direct competition in RNA binding but rather an allosteric effect that is likely mediated by the conformational change in UPF1 that is induced upon binding its activator. We discuss these results in light of transient interactions forged during mRNP assembly, particularly in the UPF1-dependent mRNA decay pathways.
Collapse
Affiliation(s)
- Guangpu Xue
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Vincent D Maciej
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | | | - Melis Pak
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Uma Jayachandran
- Max Planck Institute of Biochemistry, Structural Cell Biology Department, D-82152 Martinsried, Germany
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
17
|
Chapman JH, Craig JM, Wang CD, Gundlach JH, Neuman K, Hogg J. UPF1 mutants with intact ATPase but deficient helicase activities promote efficient nonsense-mediated mRNA decay. Nucleic Acids Res 2022; 50:11876-11894. [PMID: 36370101 PMCID: PMC9723629 DOI: 10.1093/nar/gkac1026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/12/2022] [Accepted: 10/28/2022] [Indexed: 11/13/2022] Open
Abstract
The conserved RNA helicase UPF1 coordinates nonsense-mediated mRNA decay (NMD) by engaging with mRNAs, RNA decay machinery and the terminating ribosome. UPF1 ATPase activity is implicated in mRNA target discrimination and completion of decay, but the mechanisms through which UPF1 enzymatic activities such as helicase, translocase, RNP remodeling, and ATPase-stimulated dissociation influence NMD remain poorly defined. Using high-throughput biochemical assays to quantify UPF1 enzymatic activities, we show that UPF1 is only moderately processive (<200 nt) in physiological contexts and undergoes ATPase-stimulated dissociation from RNA. We combine an in silico screen with these assays to identify and characterize known and novel UPF1 mutants with altered helicase, ATPase, and RNA binding properties. We find that UPF1 mutants with substantially impaired processivity (E797R, G619K/A546H), faster (G619K) or slower (K547P, E797R, G619K/A546H) unwinding rates, and/or reduced mechanochemical coupling (i.e. the ability to harness ATP hydrolysis for work; K547P, R549S, G619K, G619K/A546H) can still support efficient NMD of well-characterized targets in human cells. These data are consistent with a central role for UPF1 ATPase activity in driving cycles of RNA binding and dissociation to ensure accurate NMD target selection.
Collapse
Affiliation(s)
- Joseph H Chapman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jonathan M Craig
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Clara D Wang
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jens H Gundlach
- Department of Physics, University of Washington, Seattle, WA, USA
| | - Keir C Neuman
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - J Robert Hogg
- To whom correspondence should be addressed. Tel: +1 301 827 0724; Fax: +1 301 451 5459;
| |
Collapse
|
18
|
Chousal JN, Sohni A, Vitting-Seerup K, Cho K, Kim M, Tan K, Porse B, Wilkinson MF, Cook-Andersen H. Progression of the pluripotent epiblast depends upon the NMD factor UPF2. Development 2022; 149:dev200764. [PMID: 36255229 PMCID: PMC9687065 DOI: 10.1242/dev.200764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022]
Abstract
Nonsense-mediated RNA decay (NMD) is a highly conserved RNA turnover pathway that degrades RNAs harboring in-frame stop codons in specific contexts. Loss of NMD factors leads to embryonic lethality in organisms spanning the phylogenetic scale, but the mechanism remains unknown. Here, we report that the core NMD factor, UPF2, is required for expansion of epiblast cells within the inner cell mass of mice in vivo. We identify NMD target mRNAs in mouse blastocysts - both canonical and alternatively processed mRNAs - including those encoding cell cycle arrest and apoptosis factors, raising the possibility that NMD is essential for embryonic cell proliferation and survival. In support, the inner cell mass of Upf2-null blastocysts rapidly regresses with outgrowth and is incompetent for embryonic stem cell derivation in vitro. In addition, we uncovered concordant temporal- and lineage-specific regulation of NMD factors and mRNA targets, indicative of a shift in NMD magnitude during peri-implantation development. Together, our results reveal developmental and molecular functions of the NMD pathway in the early embryo.
Collapse
Affiliation(s)
- Jennifer N. Chousal
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Abhishek Sohni
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kristoffer Vitting-Seerup
- The Bioinformatics Centre, Department of Biology and Biotech Research & Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
- Section for Bioinformatics, Health Technology, Technical University of Denmark (DTU), 2800 Kongens Lyngby, Denmark
| | - Kyucheol Cho
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Matthew Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun Tan
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Bo Porse
- The Finsen Laboratory, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, DK2200 Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Miles F. Wilkinson
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Heidi Cook-Andersen
- Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Department of Molecular Biology, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
19
|
Martin H, Rupkey J, Asthana S, Yoon J, Patel S, Mott J, Pei Z, Mao Y. Diverse Roles of the Exon Junction Complex Factors in the Cell Cycle, Cancer, and Neurodevelopmental Disorders-Potential for Therapeutic Targeting. Int J Mol Sci 2022; 23:ijms231810375. [PMID: 36142288 PMCID: PMC9499366 DOI: 10.3390/ijms231810375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) plays a crucial role in regulating gene expression at the levels of alternative splicing, translation, mRNA localization, and nonsense-mediated decay (NMD). The EJC is comprised of three core proteins: RNA-binding motif 8A (RBM8A), Mago homolog (MAGOH), eukaryotic initiation factor 4A3 (eIF4A3), and a peripheral EJC factor, metastatic lymph node 51 (MLN51), in addition to other peripheral factors whose structural integration is activity-dependent. The physiological and mechanistic roles of the EJC in contribution to molecular, cellular, and organismal level function continue to be explored for potential insights into genetic or pathological dysfunction. The EJC’s specific role in the cell cycle and its implications in cancer and neurodevelopmental disorders prompt enhanced investigation of the EJC as a potential target for these diseases. In this review, we highlight the current understanding of the EJC’s position in the cell cycle, its relation to cancer and developmental diseases, and potential avenues for therapeutic targeting.
Collapse
Affiliation(s)
- Hannah Martin
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Julian Rupkey
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shravan Asthana
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Feinberg School of Medicine, Northwestern University, 303 East Superior Street, Chicago, IL 60611, USA
| | - Joy Yoon
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Shray Patel
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Jennifer Mott
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Zifei Pei
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | - Yingwei Mao
- Department of Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence:
| |
Collapse
|
20
|
Cho H, Abshire ET, Popp MW, Pröschel C, Schwartz JL, Yeo GW, Maquat LE. AKT constitutes a signal-promoted alternative exon-junction complex that regulates nonsense-mediated mRNA decay. Mol Cell 2022; 82:2779-2796.e10. [PMID: 35675814 PMCID: PMC9357146 DOI: 10.1016/j.molcel.2022.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/21/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022]
Abstract
Despite a long appreciation for the role of nonsense-mediated mRNA decay (NMD) in destroying faulty, disease-causing mRNAs and maintaining normal, physiologic mRNA abundance, additional effectors that regulate NMD activity in mammalian cells continue to be identified. Here, we describe a haploid-cell genetic screen for NMD effectors that has unexpectedly identified 13 proteins constituting the AKT signaling pathway. We show that AKT supersedes UPF2 in exon-junction complexes (EJCs) that are devoid of RNPS1 but contain CASC3, defining an unanticipated insulin-stimulated EJC. Without altering UPF1 RNA binding or ATPase activity, AKT-mediated phosphorylation of the UPF1 CH domain at T151 augments UPF1 helicase activity, which is critical for NMD and also decreases the dependence of helicase activity on ATP. We demonstrate that upregulation of AKT signaling contributes to the hyperactivation of NMD that typifies Fragile X syndrome, as exemplified using FMR1-KO neural stem cells derived from induced pluripotent stem cells.
Collapse
Affiliation(s)
- Hana Cho
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Elizabeth T Abshire
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Maximilian W Popp
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA
| | - Christoph Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Stem Cell and Regenerative Medicine Institute, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA
| | - Joshua L Schwartz
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA; Stem Cell Program, University of California, San Diego, La Jolla, CA, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA; Center for RNA Biology, University of Rochester, Rochester, NY 14642, USA.
| |
Collapse
|
21
|
UPF1/circRPPH1/ATF3 feedback loop promotes the malignant phenotype and stemness of GSCs. Cell Death Dis 2022; 13:645. [PMID: 35871061 PMCID: PMC9308777 DOI: 10.1038/s41419-022-05102-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 01/21/2023]
Abstract
Glioblastoma multiforme (GBM) is the most lethal type of craniocerebral gliomas. Glioma stem cells (GSCs) are fundamental reasons for the malignancy and recurrence of GBM. Revealing the critical mechanism within GSCs' self-renewal ability is essential. Our study found a novel circular RNA (circRPPH1) that was up-regulated in GSCs and correlated with poor survival. The effect of circRPPH1 on the malignant phenotype and self-renewal of GSCs was detected in vitro and in vivo. Mechanistically, UPF1 can bind to circRPPH1 and maintain its stability. Therefore, more existing circRPPH1 can interact with transcription factor ATF3 to further transcribe UPF1 and Nestin expression. It formed a feedback loop to keep a stable stream for stemness biomarker Nestin to strengthen tumorigenesis of GSCs continually. Besides, ATF3 can activate the TGF-β signaling to drive GSCs for tumorigenesis. Knocking down the expression of circRPPH1 significantly inhibited the proliferation and clonogenicity of GSCs both in vitro and in vivo. The overexpression of circRPPH1 enhanced the self-renewal of GSCs. Our findings suggest that UPF1/circRPPH1/ATF3 maintains the potential self-renewal of GSCs through interacting with RNA-binding protein and activating the TGF-β signal pathway. Breaking the feedback loop against self-renewing GSCs may represent a novel therapeutic target in GBM treatment.
Collapse
|
22
|
Lu P, Chen D, Qi Z, Wang H, Chen Y, Wang Q, Jiang C, Xu JR, Liu H. Landscape and regulation of alternative splicing and alternative polyadenylation in a plant pathogenic fungus. THE NEW PHYTOLOGIST 2022; 235:674-689. [PMID: 35451076 DOI: 10.1111/nph.18164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Alternative splicing (AS) and alternative polyadenylation (APA) contribute significantly to the regulation of gene expression in higher eukaryotes. Their biological impact in filamentous fungi, however, is largely unknown. Here we combine PacBio Isoform-Sequencing and strand-specific RNA-sequencing of multiple tissues and mutant characterization to reveal the landscape and regulation of AS and APA in Fusarium graminearum. We generated a transcript annotation comprising 51 617 isoforms from 17 189 genes. In total, 4997 and 11 133 genes are alternatively spliced and polyadenylated, respectively. Majority of the AS events alter coding sequences. Unexpectedly, the AS transcripts containing premature-termination codons are not sensitive to nonsense-mediated messenger RNA decay. Unlike in yeasts and animals, distal APA sites have strong signals, but proximal APA isoforms are highly expressed in F. graminearum. The 3'-end processing factors FgRNA15, FgHRP1, and FgFIP1 play roles in promoting proximal APA site usage and intron splicing. A genome-wide increase in intron inclusion and distal APA site usage and downregulation of the spliceosomal and 3'-end processing factors were observed in older and quiescent tissues, indicating intron inclusion and 3'-untranslated region lengthening as novel mechanisms in regulating aging and dormancy in fungi. This study provides new insights into the complexity and regulation of AS and APA in filamentous fungi.
Collapse
Affiliation(s)
- Ping Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Daipeng Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Zhaomei Qi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yitong Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qinhu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin-Rong Xu
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
23
|
Karousis ED, Mühlemann O. The broader sense of nonsense. Trends Biochem Sci 2022; 47:921-935. [PMID: 35780009 DOI: 10.1016/j.tibs.2022.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022]
Abstract
The term 'nonsense-mediated mRNA decay' (NMD) was initially coined to describe the translation-dependent degradation of mRNAs harboring premature termination codons (PTCs), but it is meanwhile known that NMD also targets many canonical mRNAs with numerous biological implications. The molecular mechanisms determining on which RNAs NMD ensues are only partially understood. Considering the broad range of NMD-sensitive RNAs and the variable degrees of their degradation, we highlight here the hallmarks of mammalian NMD and point out open questions. We review the links between NMD and disease by summarizing the role of NMD in cancer, neurodegeneration, and viral infections. Finally, we describe strategies to modulate NMD activity and specificity as potential therapeutic approaches for various diseases.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
24
|
Schlautmann LP, Lackmann JW, Altmüller J, Dieterich C, Boehm V, Gehring N. Exon junction complex-associated multi-adapter RNPS1 nucleates splicing regulatory complexes to maintain transcriptome surveillance. Nucleic Acids Res 2022; 50:5899-5918. [PMID: 35640609 PMCID: PMC9178013 DOI: 10.1093/nar/gkac428] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
The exon junction complex (EJC) is an RNA-binding multi-protein complex with critical functions in post-transcriptional gene regulation. It is deposited on the mRNA during splicing and regulates diverse processes including pre-mRNA splicing and nonsense-mediated mRNA decay (NMD) via various interacting proteins. The peripheral EJC-binding protein RNPS1 was reported to serve two insufficiently characterized functions: suppressing mis-splicing of cryptic splice sites and activating NMD in the cytoplasm. The analysis of transcriptome-wide effects of EJC and RNPS1 knockdowns in different human cell lines supports the conclusion that RNPS1 can moderately influence NMD activity, but is not a globally essential NMD factor. However, numerous aberrant splicing events strongly suggest that the main function of RNPS1 is splicing regulation. Rescue analyses revealed that the RRM and C-terminal domain of RNPS1 both contribute partially to regulate RNPS1-dependent splicing events. We defined the RNPS1 core interactome using complementary immunoprecipitations and proximity labeling, which identified interactions with splicing-regulatory factors that are dependent on the C-terminus or the RRM domain of RNPS1. Thus, RNPS1 emerges as a multifunctional splicing regulator that promotes correct and efficient splicing of different vulnerable splicing events via the formation of diverse splicing-promoting complexes.
Collapse
Affiliation(s)
- Lena P Schlautmann
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Jan-Wilm Lackmann
- CECAD Research Center, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, 50931 Cologne, Germany
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner site Heidelberg/Mannheim, 69120 Heidelberg, Germany
| | - Volker Boehm
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Niels H Gehring
- Institute for Genetics, University of Cologne, 50674 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| |
Collapse
|
25
|
Malone TJ, Kaczmarek LK. The role of altered translation in intellectual disability and epilepsy. Prog Neurobiol 2022; 213:102267. [PMID: 35364140 PMCID: PMC10583652 DOI: 10.1016/j.pneurobio.2022.102267] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 11/29/2022]
Abstract
A very high proportion of cases of intellectual disability are genetic in origin and are associated with the occurrence of epileptic seizures during childhood. These two disorders together effect more than 5% of the world's population. One feature linking the two diseases is that learning and memory require the synthesis of new synaptic components and ion channels, while maintenance of overall excitability also requires synthesis of similar proteins in response to altered neuronal stimulation. Many of these disorders result from mutations in proteins that regulate mRNA processing, translation initiation, translation elongation, mRNA stability or upstream translation modulators. One theme that emerges on reviewing this field is that mutations in proteins that regulate changes in translation following neuronal stimulation are more likely to result in epilepsy with intellectual disability than general translation regulators with no known role in activity-dependent changes. This is consistent with the notion that activity-dependent translation in neurons differs from that in other cells types in that the changes in local cellular composition, morphology and connectivity that occur generally in response to stimuli are directly coupled to local synaptic activity and persist for months or years after the original stimulus.
Collapse
Affiliation(s)
- Taylor J Malone
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA
| | - Leonard K Kaczmarek
- Departments of Pharmacology, and of Cellular & Molecular Physiology, Yale University, 333 Cedar Street B-309, New Haven, CT 06520, USA.
| |
Collapse
|
26
|
Fritz SE, Ranganathan S, Wang CD, Hogg JR. An alternative UPF1 isoform drives conditional remodeling of nonsense-mediated mRNA decay. EMBO J 2022; 41:e108898. [PMID: 35403729 PMCID: PMC9108617 DOI: 10.15252/embj.2021108898] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 03/18/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
The nonsense-mediated mRNA decay (NMD) pathway monitors translation termination in order to degrade transcripts with premature stop codons and regulate thousands of human genes. Here, we show that an alternative mammalian-specific isoform of the core NMD factor UPF1, termed UPF1LL , enables condition-dependent remodeling of NMD specificity. Previous studies indicate that the extension of a conserved regulatory loop in the UPF1LL helicase core confers a decreased propensity to dissociate from RNA upon ATP hydrolysis relative to UPF1SL , the major UPF1 isoform. Using biochemical and transcriptome-wide approaches, we find that UPF1LL can circumvent the protective RNA binding proteins PTBP1 and hnRNP L to preferentially bind and down-regulate transcripts with long 3'UTRs normally shielded from NMD. Unexpectedly, UPF1LL supports induction of NMD on new populations of substrate mRNAs in response to activation of the integrated stress response and impaired translation efficiency. Thus, while canonical NMD is abolished by moderate translational repression, UPF1LL activity is enhanced, offering the possibility to rapidly rewire NMD specificity in response to cellular stress.
Collapse
Affiliation(s)
- Sarah E Fritz
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Soumya Ranganathan
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Clara D Wang
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - J Robert Hogg
- Biochemistry and Biophysics CenterNational Heart, Lung, and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
27
|
Mailliot J, Vivoli-Vega M, Schaffitzel C. No-nonsense: insights into the functional interplay of nonsense-mediated mRNA decay factors. Biochem J 2022; 479:973-993. [PMID: 35551602 PMCID: PMC9162471 DOI: 10.1042/bcj20210556] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 11/22/2022]
Abstract
Nonsense-mediated messenger RNA decay (NMD) represents one of the main surveillance pathways used by eukaryotic cells to control the quality and abundance of mRNAs and to degrade viral RNA. NMD recognises mRNAs with a premature termination codon (PTC) and targets them to decay. Markers for a mRNA with a PTC, and thus NMD, are a long a 3'-untranslated region and the presence of an exon-junction complex (EJC) downstream of the stop codon. Here, we review our structural understanding of mammalian NMD factors and their functional interplay leading to a branched network of different interconnected but specialised mRNA decay pathways. We discuss recent insights into the potential impact of EJC composition on NMD pathway choice. We highlight the coexistence and function of different isoforms of up-frameshift protein 1 (UPF1) with an emphasis of their role at the endoplasmic reticulum and during stress, and the role of the paralogs UPF3B and UPF3A, underscoring that gene regulation by mammalian NMD is tightly controlled and context-dependent being conditional on developmental stage, tissue and cell types.
Collapse
Affiliation(s)
- Justine Mailliot
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Mirella Vivoli-Vega
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
| | - Christiane Schaffitzel
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, U.K
- Bristol Synthetic Biology Centre BrisSynBio, 24 Tyndall Ave, Bristol BS8 1TQ, U.K
| |
Collapse
|
28
|
Yi Z, Arvola RM, Myers S, Dilsavor CN, Abu Alhasan R, Carter BN, Patton RD, Bundschuh R, Singh G. Mammalian UPF3A and UPF3B can activate nonsense-mediated mRNA decay independently of their exon junction complex binding. EMBO J 2022; 41:e109202. [PMID: 35451102 PMCID: PMC9108626 DOI: 10.15252/embj.2021109202] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is governed by the three conserved factors-UPF1, UPF2, and UPF3. While all three are required for NMD in yeast, UPF3B is dispensable for NMD in mammals, and its paralog UPF3A is suggested to only weakly activate or even repress NMD due to its weaker binding to the exon junction complex (EJC). Here, we characterize the UPF3A/B-dependence of NMD in human cell lines deleted of one or both UPF3 paralogs. We show that in human colorectal cancer HCT116 cells, NMD can operate in a UPF3B-dependent and -independent manner. While UPF3A is almost dispensable for NMD in wild-type cells, it strongly activates NMD in cells lacking UPF3B. Notably, NMD remains partially active in cells lacking both UPF3 paralogs. Complementation studies in these cells show that EJC-binding domain of UPF3 paralogs is dispensable for NMD. Instead, the conserved "mid" domain of UPF3 paralogs is consequential for their NMD activity. Altogether, our results demonstrate that the mammalian UPF3 proteins play a more active role in NMD than simply bridging the EJC and the UPF complex.
Collapse
Affiliation(s)
- Zhongxia Yi
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - René M Arvola
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Sean Myers
- Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Corinne N Dilsavor
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Rabab Abu Alhasan
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Bayley N Carter
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| | - Robert D Patton
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA
| | - Ralf Bundschuh
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Physics, The Ohio State University, Columbus, OH, USA.,Department of Chemistry and Biochemistry, The Ohio State University , Columbus, OH, USA.,Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Guramrit Singh
- Center for RNA Biology, The Ohio State University, Columbus, OH, USA.,Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
29
|
Gilbert A, Saveanu C. Unusual SMG suspects recruit degradation enzymes in nonsense-mediated mRNA decay. Bioessays 2022; 44:e2100296. [PMID: 35266563 DOI: 10.1002/bies.202100296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/27/2022] [Accepted: 03/02/2022] [Indexed: 11/09/2022]
Abstract
Degradation of eukaryotic RNAs that contain premature termination codons (PTC) during nonsense-mediated mRNA decay (NMD) is initiated by RNA decapping or endonucleolytic cleavage driven by conserved factors. Models for NMD mechanisms, including recognition of PTCs or the timing and role of protein phosphorylation for RNA degradation are challenged by new results. For example, the depletion of the SMG5/7 heterodimer, thought to activate RNA degradation by decapping, leads to a phenotype showing a defect of endonucleolytic activity of NMD complexes. This phenotype is not correlated to a decreased binding of the endonuclease SMG6 with the core NMD factor UPF1, suggesting that it is the result of an imbalance between active (e.g., in polysomes) and inactive (e.g., in RNA-protein condensates) states of NMD complexes. Such imbalance between multiple complexes is not restricted to NMD and should be taken into account when establishing causal links between gene function perturbation and observed phenotypes.
Collapse
Affiliation(s)
- Agathe Gilbert
- Institut Pasteur, Sorbonne Université, CNRS UMR-3525, Paris, F-75015, France
| | - Cosmin Saveanu
- Institut Pasteur, Sorbonne Université, CNRS UMR-3525, Paris, F-75015, France
| |
Collapse
|
30
|
Nikonova E, Mukherjee A, Kamble K, Barz C, Nongthomba U, Spletter ML. Rbfox1 is required for myofibril development and maintaining fiber type-specific isoform expression in Drosophila muscles. Life Sci Alliance 2022; 5:5/4/e202101342. [PMID: 34996845 PMCID: PMC8742874 DOI: 10.26508/lsa.202101342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/24/2022] Open
Abstract
Protein isoform transitions confer muscle fibers with distinct properties and are regulated by differential transcription and alternative splicing. RNA-binding Fox protein 1 (Rbfox1) can affect both transcript levels and splicing, and is known to contribute to normal muscle development and physiology in vertebrates, although the detailed mechanisms remain obscure. In this study, we report that Rbfox1 contributes to the generation of adult muscle diversity in Drosophila Rbfox1 is differentially expressed among muscle fiber types, and RNAi knockdown causes a hypercontraction phenotype that leads to behavioral and eclosion defects. Misregulation of fiber type-specific gene and splice isoform expression, notably loss of an indirect flight muscle-specific isoform of Troponin-I that is critical for regulating myosin activity, leads to structural defects. We further show that Rbfox1 directly binds the 3'-UTR of target transcripts, regulates the expression level of myogenic transcription factors myocyte enhancer factor 2 and Salm, and both modulates expression of and genetically interacts with the CELF family RNA-binding protein Bruno1 (Bru1). Rbfox1 and Bru1 co-regulate fiber type-specific alternative splicing of structural genes, indicating that regulatory interactions between FOX and CELF family RNA-binding proteins are conserved in fly muscle. Rbfox1 thus affects muscle development by regulating fiber type-specific splicing and expression dynamics of identity genes and structural proteins.
Collapse
Affiliation(s)
- Elena Nikonova
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| | - Amartya Mukherjee
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Ketaki Kamble
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Christiane Barz
- Muscle Dynamics Group, Max Planck Institute of Biochemistry, Martinsried-Planegg, Germany
| | - Upendra Nongthomba
- Department of Molecular Reproduction, Development and Genetics (MRDG), Indian Institute of Science, Bangalore, India
| | - Maria L Spletter
- Department of Physiological Chemistry, Biomedical Center, Ludwig-Maximilians-Universität München, Martinsried-Planegg, Germany
| |
Collapse
|
31
|
Single AAV-mediated CRISPR-Nme2Cas9 efficiently reduces mutant hTTR expression in a transgenic mouse model of transthyretin amyloidosis. Mol Ther 2022; 30:164-174. [PMID: 33992807 PMCID: PMC8753293 DOI: 10.1016/j.ymthe.2021.05.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/26/2021] [Accepted: 05/09/2021] [Indexed: 01/07/2023] Open
Abstract
Transthyretin (TTR) amyloidosis is a hereditary life-threatening disease characterized by deposition of amyloid fibrils. The main causes of TTR amyloidosis are mutations in the TTR gene that lead to the production of misfolded TTR protein. Reducing the production of toxic protein in the liver is a validated strategy to treat TTR amyloidosis. In this study, we established a humanized mouse model that expresses mutant human TTR (hTTR; V30M) protein in the liver to model TTR amyloidosis. Then, we compared the efficiency of reducing the expression of mutant hTTR by dual adeno-associated virus 8 (AAV8)-mediated split SpCas9 with that by single AAV8-mediated Nme2Cas9 in this model. With two gRNAs targeting different exons, dual AAV-mediated split SpCas9 system achieved efficiencies of 37% and 34% reduction of hTTR mRNA and reporter GFP expression, respectively, in the liver. Surprisingly, single AAV-mediated Nme2Cas9 treatment resulted in 65% and 71% reduction of hTTR mRNA and reporter GFP, respectively. No significant editing was identified in predicted off-target sites in the mouse and human genomes after Nme2Cas9 targeting. Thus, we provide proof of principle for using single AAV-mediated CRISPR-Nme2Cas9 to effectively reduce mutant hTTR expression in vivo, which may translate into gene therapy for TTR amyloidosis.
Collapse
|
32
|
De S, Mühlemann O. A comprehensive coverage insurance for cells: revealing links between ribosome collisions, stress responses and mRNA surveillance. RNA Biol 2021; 19:609-621. [PMID: 35491909 PMCID: PMC9067528 DOI: 10.1080/15476286.2022.2065116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/02/2022] [Indexed: 11/02/2022] Open
Abstract
Cells of metazoans respond to internal and external stressors by activating stress response pathways that aim for re-establishing cellular homoeostasis or, if this cannot be achieved, triggering programmed cell death. Problems during translation, arising from defective mRNAs, tRNAs, ribosomes or protein misfolding, can activate stress response pathways as well as mRNA surveillance and ribosome quality control programs. Recently, ribosome collisions have emerged as a central signal for translational stress and shown to elicit different stress responses. Here, we review our current knowledge about the intricate mutual connections between ribosome collisions, stress response pathways and mRNA surveillance. A central factor connecting the sensing of collided ribosomes with degradation of the nascent polypeptides, dissociation of the stalled ribosomes and degradation of the mRNA by no-go or non-stop decay is the E3-ligase ZNF598. We tested whether ZNF598 also plays a role in nonsense-mediated mRNA decay (NMD) but found that it is dispensable for this translation termination-associated mRNA surveillance pathway, which in combination with other recent data argues against stable ribosome stalling at termination codons being the NMD-triggering signal.
Collapse
Affiliation(s)
- Soumasree De
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| | - Oliver Mühlemann
- University of Bern, Department of Chemistry, Biochemistry and Pharmaceutical Sciences, Bern, Switzerland
| |
Collapse
|
33
|
Iino K, Toriumi K, Agarie R, Miyashita M, Suzuki K, Horiuchi Y, Niizato K, Oshima K, Imai A, Nagase Y, Kushima I, Koike S, Ikegame T, Jinde S, Nagata E, Washizuka S, Miyata T, Takizawa S, Hashimoto R, Kasai K, Ozaki N, Itokawa M, Arai M. AKR1A1 Variant Associated With Schizophrenia Causes Exon Skipping, Leading to Loss of Enzymatic Activity. Front Genet 2021; 12:762999. [PMID: 34938315 PMCID: PMC8685500 DOI: 10.3389/fgene.2021.762999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/10/2021] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia is a heterogeneous psychiatric disorder characterized by positive symptoms such as hallucinations and delusions, negative symptoms such as anhedonia and flat affect, and cognitive impairment. Recently, glucuronate (GlucA) levels were reported to be significantly higher in serum of patients with schizophrenia than those in healthy controls. The accumulation of GlucA is known to be related to treatment-resistant schizophrenia, since GlucA is known to promote drug excretion by forming conjugates with drugs. However, the cause of GlucA accumulation remains unclear. Aldo-keto reductase family one member A1 (AKR1A1) is an oxidoreductase that catalyzes the reduction of GlucA. Genetic loss of AKR1A1 function is known to result in the accumulation of GlucA in rodents. Here, we aimed to explore genetic defects in AKR1A1 in patients with schizophrenia, which may result in the accumulation of GlucA. We identified 28 variants of AKR1A1 in patients with schizophrenia and control subjects. In particular, we identified a silent c.753G > A (rs745484618, p. Arg251Arg) variant located at the first position of exon 8 to be associated with schizophrenia. Using a minigene assay, we found that the c.753G > A variant induced exon 8 skipping in AKR1A1, resulting in a frameshift mutation, which in turn led to truncation of the AKR1A1 protein. Using the recombinant protein, we demonstrated that the truncated AKR1A1 completely lost its activity. Furthermore, we showed that AKR1A1 mRNA expression in the whole blood cells of individuals with the c.753G > A variant tended to be lower than that in those without the variants, leading to lower AKR activity. Our findings suggest that AKR1A1 carrying the c.753G > A variant induces exon skipping, leading to a loss of gene expression and enzymatic activity. Thus, GlucA patients with schizophrenia with the c.753G > A variant may show higher GlucA levels, leading to drug-resistant schizophrenia, since drug excretion by GlucA is enhanced.
Collapse
Affiliation(s)
- Kyoka Iino
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Riko Agarie
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
- Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, Japan
| | - Kazuhiro Suzuki
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, Japan
| | - Yasue Horiuchi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiro Niizato
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Kenichi Oshima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Atsushi Imai
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Yukihiro Nagase
- Department of Psychiatry, Takatsuki Hospital, Hachioji, Tokyo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Shinsuke Koike
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Eiichiro Nagata
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Shinsuke Washizuka
- Department of Psychiatry, Graduate School of Medicine, Shinshu University, Nagano, Japan
| | - Toshio Miyata
- Division of Molecular Medicine and Therapy, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shunya Takizawa
- Department of Neurology, Tokai University School of Medicine, Isehara, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Aoba-ku, Sendai, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
- *Correspondence: Makoto Arai,
| |
Collapse
|
34
|
Bongiorno R, Colombo MP, Lecis D. Deciphering the nonsense-mediated mRNA decay pathway to identify cancer cell vulnerabilities for effective cancer therapy. J Exp Clin Cancer Res 2021; 40:376. [PMID: 34852841 PMCID: PMC8638473 DOI: 10.1186/s13046-021-02192-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/22/2021] [Indexed: 12/22/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved cellular surveillance mechanism, commonly studied for its role in mRNA quality control because of its capacity of degrading mutated mRNAs that would produce truncated proteins. However, recent studies have proven that NMD hides more complex tasks involved in a plethora of cellular activities. Indeed, it can control the stability of mutated as well as non-mutated transcripts, tuning transcriptome regulation. NMD not only displays a pivotal role in cell physiology but also in a number of genetic diseases. In cancer, the activity of this pathway is extremely complex and it is endowed with both pro-tumor and tumor suppressor functions, likely depending on the genetic context and tumor microenvironment. NMD inhibition has been tested in pre-clinical studies showing favored production of neoantigens by cancer cells, which can stimulate the triggering of an anti-tumor immune response. At the same time, NMD inhibition could result in a pro-tumor effect, increasing cancer cell adaptation to stress. Since several NMD inhibitors are already available in the clinic to treat genetic diseases, these compounds could be redirected to treat cancer patients, pending the comprehension of these variegated NMD regulation mechanisms. Ideally, an effective strategy should exploit the anti-tumor advantages of NMD inhibition and simultaneously preserve its intrinsic tumor suppressor functions. The targeting of NMD could provide a new therapeutic opportunity, increasing the immunogenicity of tumors and potentially boosting the efficacy of the immunotherapy agents now available for cancer treatment.
Collapse
Affiliation(s)
- Roberta Bongiorno
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Mario Paolo Colombo
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy
| | - Daniele Lecis
- Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
35
|
Ye J, She X, Liu Z, He Z, Gao X, Lu L, Liang R, Lin Y. Eukaryotic Initiation Factor 4A-3: A Review of Its Physiological Role and Involvement in Oncogenesis. Front Oncol 2021; 11:712045. [PMID: 34458150 PMCID: PMC8386015 DOI: 10.3389/fonc.2021.712045] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/27/2021] [Indexed: 12/30/2022] Open
Abstract
EIF4A3, a member of the DEAD-box protein family, is a nuclear matrix protein and a core component of the exon junction complex (EJC). Under physiological conditions, EIF4A3 participates in post-transcriptional gene regulation by promoting EJC control of precursor mRNA splicing, thus influencing nonsense-mediated mRNA decay. In addition, EIF4A3 maintains the expression of significant selenoproteins, including phospholipid hydroperoxide glutathione peroxidase and thioredoxin reductase 1. Several recent studies have shown that EIF4A3 promotes tumor growth in multiple human cancers such as glioblastoma, hepatocellular carcinoma, pancreatic cancer, and ovarian cancer. Molecular biology studies also showed that EIF4A3 is recruited by long non-coding RNAs to regulate the expression of certain proteins in tumors. However, its tumor-related functions and underlying mechanisms are not well understood. Here, we review the physiological role of EIF4A3 and the potential association between EIF4A3 overexpression and tumorigenesis. We also evaluate the protein's potential utility as a diagnosis biomarker, therapeutic target, and prognosis indicator, hoping to provide new ideas for future research.
Collapse
Affiliation(s)
- Jiazhou Ye
- Guangxi Medical University Cancer Hospital, Nanning, China
| | | | - Ziyu Liu
- Guangxi Medical University, Nanning, China
| | - Ziqin He
- Guangxi Medical University, Nanning, China
| | - Xing Gao
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Lu Lu
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Rong Liang
- Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Lin
- Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
36
|
Karousis ED, Gypas F, Zavolan M, Mühlemann O. Nanopore sequencing reveals endogenous NMD-targeted isoforms in human cells. Genome Biol 2021; 22:223. [PMID: 34389041 PMCID: PMC8361881 DOI: 10.1186/s13059-021-02439-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nonsense-mediated mRNA decay (NMD) is a eukaryotic, translation-dependent degradation pathway that targets mRNAs with premature termination codons and also regulates the expression of some mRNAs that encode full-length proteins. Although many genes express NMD-sensitive transcripts, identifying them based on short-read sequencing data remains a challenge. RESULTS To identify and analyze endogenous targets of NMD, we apply cDNA Nanopore sequencing and short-read sequencing to human cells with varying expression levels of NMD factors. Our approach detects full-length NMD substrates that are highly unstable and increase in levels or even only appear when NMD is inhibited. Among the many new NMD-targeted isoforms that our analysis identifies, most derive from alternative exon usage. The isoform-aware analysis reveals many genes with significant changes in splicing but no significant changes in overall expression levels upon NMD knockdown. NMD-sensitive mRNAs have more exons in the 3΄UTR and, for those mRNAs with a termination codon in the last exon, the length of the 3΄UTR per se does not correlate with NMD sensitivity. Analysis of splicing signals reveals isoforms where NMD has been co-opted in the regulation of gene expression, though the main function of NMD seems to be ridding the transcriptome of isoforms resulting from spurious splicing events. CONCLUSIONS Long-read sequencing enables the identification of many novel NMD-sensitive mRNAs and reveals both known and unexpected features concerning their biogenesis and their biological role. Our data provide a highly valuable resource of human NMD transcript targets for future genomic and transcriptomic applications.
Collapse
Affiliation(s)
- Evangelos D Karousis
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Foivos Gypas
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058, Basel, Switzerland
| | - Mihaela Zavolan
- Biozentrum, University of Basel and Swiss Institute of Bioinformatics, Klingelbergstrasse 50-70, 4056, Basel, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012, Bern, Switzerland.
| |
Collapse
|
37
|
Machado de Amorim A, Chakrabarti S. Assembly of multicomponent machines in RNA metabolism: A common theme in mRNA decay pathways. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1684. [PMID: 34351053 DOI: 10.1002/wrna.1684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 11/05/2022]
Abstract
Multicomponent protein-RNA complexes comprising a ribonuclease and partner RNA helicase facilitate the turnover of mRNA in all domains of life. While these higher-order complexes provide an effective means of physically and functionally coupling the processes of RNA remodeling and decay, most ribonucleases and RNA helicases do not exhibit sequence specificity in RNA binding. This raises the question as to how these assemblies select substrates for processing and how the activities are orchestrated at the precise moment to ensure efficient decay. The answers to these apparent puzzles lie in the auxiliary components of the assemblies that might relay decay-triggering signals. Given their function within the assemblies, these components may be viewed as "sensors." The functions and mechanisms of action of the sensor components in various degradation complexes in bacteria and eukaryotes are highlighted here to discuss their roles in RNA decay processes. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition.
Collapse
Affiliation(s)
| | - Sutapa Chakrabarti
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
38
|
SMG5-SMG7 authorize nonsense-mediated mRNA decay by enabling SMG6 endonucleolytic activity. Nat Commun 2021; 12:3965. [PMID: 34172724 PMCID: PMC8233366 DOI: 10.1038/s41467-021-24046-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 05/30/2021] [Indexed: 12/28/2022] Open
Abstract
Eukaryotic gene expression is constantly controlled by the translation-coupled nonsense-mediated mRNA decay (NMD) pathway. Aberrant translation termination leads to NMD activation, resulting in phosphorylation of the central NMD factor UPF1 and robust clearance of NMD targets via two seemingly independent and redundant mRNA degradation branches. Here, we uncover that the loss of the first SMG5-SMG7-dependent pathway also inactivates the second SMG6-dependent branch, indicating an unexpected functional connection between the final NMD steps. Transcriptome-wide analyses of SMG5-SMG7-depleted cells confirm exhaustive NMD inhibition resulting in massive transcriptomic alterations. Intriguingly, we find that the functionally underestimated SMG5 can substitute the role of SMG7 and individually activate NMD. Furthermore, the presence of either SMG5 or SMG7 is sufficient to support SMG6-mediated endonucleolysis of NMD targets. Our data support an improved model for NMD execution that features two-factor authentication involving UPF1 phosphorylation and SMG5-SMG7 recruitment to access SMG6 activity. Degradation of nonsense mediated mRNA decay (NMD) substrates is carried out by two seemingly independent pathways, SMG6-mediated endonucleolytic cleavage and/or SMG5-SMG7-induced accelerated deadenylation. Here the authors show that SMG5-SMG7 maintain NMD activity by permitting SMG6 activation.
Collapse
|
39
|
Watabe E, Togo-Ohno M, Ishigami Y, Wani S, Hirota K, Kimura-Asami M, Hasan S, Takei S, Fukamizu A, Suzuki Y, Suzuki T, Kuroyanagi H. m 6 A-mediated alternative splicing coupled with nonsense-mediated mRNA decay regulates SAM synthetase homeostasis. EMBO J 2021; 40:e106434. [PMID: 34152017 DOI: 10.15252/embj.2020106434] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/29/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022] Open
Abstract
Alternative splicing of pre-mRNAs can regulate gene expression levels by coupling with nonsense-mediated mRNA decay (NMD). In order to elucidate a repertoire of mRNAs regulated by alternative splicing coupled with NMD (AS-NMD) in an organism, we performed long-read RNA sequencing of poly(A)+ RNAs from an NMD-deficient mutant strain of Caenorhabditis elegans, and obtained full-length sequences for mRNA isoforms from 259 high-confidence AS-NMD genes. Among them are the S-adenosyl-L-methionine (SAM) synthetase (sams) genes sams-3 and sams-4. SAM synthetase activity autoregulates sams gene expression through AS-NMD in a negative feedback loop. We furthermore find that METT-10, the orthologue of human U6 snRNA methyltransferase METTL16, is required for the splicing regulation in␣vivo, and specifically methylates the invariant AG dinucleotide at the distal 3' splice site (3'SS) in␣vitro. Direct RNA sequencing coupled with machine learning confirms m6 A modification of endogenous sams mRNAs. Overall, these results indicate that homeostasis of SAM synthetase in C. elegans is maintained by alternative splicing regulation through m6 A modification at the 3'SS of the sams genes.
Collapse
Affiliation(s)
- Eichi Watabe
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Marina Togo-Ohno
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Yuma Ishigami
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Shotaro Wani
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Keiko Hirota
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Mariko Kimura-Asami
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Sharmin Hasan
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Satomi Takei
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba-shi, Ibaraki, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa-shi, Chiba, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan.,Department of Biochemistry, Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Okinawa, Japan
| |
Collapse
|
40
|
Martins-Dias P, Romão L. Nonsense suppression therapies in human genetic diseases. Cell Mol Life Sci 2021; 78:4677-4701. [PMID: 33751142 PMCID: PMC11073055 DOI: 10.1007/s00018-021-03809-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023]
Abstract
About 11% of all human disease-associated gene lesions are nonsense mutations, resulting in the introduction of an in-frame premature translation-termination codon (PTC) into the protein-coding gene sequence. When translated, PTC-containing mRNAs originate truncated and often dysfunctional proteins that might be non-functional or have gain-of-function or dominant-negative effects. Therapeutic strategies aimed at suppressing PTCs to restore deficient protein function-the so-called nonsense suppression (or PTC readthrough) therapies-have the potential to provide a therapeutic benefit for many patients and in a broad range of genetic disorders, including cancer. These therapeutic approaches comprise the use of translational readthrough-inducing compounds that make the translational machinery recode an in-frame PTC into a sense codon. However, most of the mRNAs carrying a PTC can be rapidly degraded by the surveillance mechanism of nonsense-mediated decay (NMD), thus decreasing the levels of PTC-containing mRNAs in the cell and their availability for PTC readthrough. Accordingly, the use of NMD inhibitors, or readthrough-compound potentiators, may enhance the efficiency of PTC suppression. Here, we review the mechanisms of PTC readthrough and their regulation, as well as the recent advances in the development of novel approaches for PTC suppression, and their role in personalized medicine.
Collapse
Affiliation(s)
- Patrícia Martins-Dias
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal
| | - Luísa Romão
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016, Lisbon, Portugal.
- Faculty of Sciences, BioISI-Biosystems and Integrative Sciences Institute, University of Lisboa, 1749-016, Lisbon, Portugal.
| |
Collapse
|
41
|
Gehring NH, Roignant JY. Anything but Ordinary – Emerging Splicing Mechanisms in Eukaryotic Gene Regulation. Trends Genet 2021; 37:355-372. [DOI: 10.1016/j.tig.2020.10.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
|
42
|
Giunta M, Solje E, Gardoni F, Borroni B, Benussi A. Experimental Disease-Modifying Agents for Frontotemporal Lobar Degeneration. J Exp Pharmacol 2021; 13:359-376. [PMID: 33790662 PMCID: PMC8005747 DOI: 10.2147/jep.s262352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia is a clinically, genetically and pathologically heterogeneous neurodegenerative disorder, enclosing a wide range of different pathological entities, associated with the accumulation of proteins such as tau and TPD-43. Characterized by a high hereditability, mutations in three main genes, MAPT, GRN and C9orf72, can drive the neurodegenerative process. The connection between different genes and proteinopathies through specific mechanisms has shed light on the pathophysiology of the disease, leading to the identification of potential pharmacological targets. New experimental strategies are emerging, in both preclinical and clinical settings, which focus on small molecules rather than gene therapy. In this review, we provide an insight into the aberrant mechanisms leading to FTLD-related proteinopathies and discuss recent therapies with the potential to ameliorate neurodegeneration and disease progression.
Collapse
Affiliation(s)
- Marcello Giunta
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Eino Solje
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
43
|
Schwebach CL, Kudryashova E, Kudryashov DS. Plastin 3 in X-Linked Osteoporosis: Imbalance of Ca 2+-Dependent Regulation Is Equivalent to Protein Loss. Front Cell Dev Biol 2021; 8:635783. [PMID: 33553175 PMCID: PMC7859272 DOI: 10.3389/fcell.2020.635783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
Osteogenesis imperfecta is a genetic disorder disrupting bone development and remodeling. The primary causes of osteogenesis imperfecta are pathogenic variants of collagen and collagen processing genes. However, recently variants of the actin bundling protein plastin 3 have been identified as another source of osteogenesis imperfecta. Plastin 3 is a highly conserved protein involved in several important cellular structures and processes and is controlled by intracellular Ca2+ which potently inhibits its actin-bundling activity. The precise mechanisms by which plastin 3 causes osteogenesis imperfecta remain unclear, but recent advances have contributed to our understanding of bone development and the actin cytoskeleton. Here, we review the link between plastin 3 and osteogenesis imperfecta highlighting in vitro studies and emphasizing the importance of Ca2+ regulation in the localization and functionality of plastin 3.
Collapse
Affiliation(s)
- Christopher L Schwebach
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Elena Kudryashova
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| | - Dmitri S Kudryashov
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
44
|
May JP, Simon AE. Targeting of viral RNAs by Upf1-mediated RNA decay pathways. Curr Opin Virol 2020; 47:1-8. [PMID: 33341474 DOI: 10.1016/j.coviro.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 12/25/2022]
Abstract
Viral RNAs are susceptible to co-translational RNA decay pathways mediated by the RNA helicase Upstream frameshift 1 (Upf1). Upf1 is a key component in nonsense-mediated decay (NMD), Staufen1-mediated mRNA decay (SMD), and structure-mediated RNA decay (SRD) pathways, among others. Diverse families of viruses have features that predispose them to Upf1 targeting, but have evolved means to escape decay through the action of cis-acting or trans-acting viral factors. Studies aimed at understanding how viruses are subjected to and circumvent NMD have increased our understanding of NMD target selection of host mRNAs. This review focuses on the knowledge gained from studying NMD in viral systems as well as related Upf1-dependent pathways and how these pathways restrict virus replication.
Collapse
Affiliation(s)
- Jared P May
- Department of Cell and Molecular Biology and Biochemistry, School of Biological and Chemical Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA.
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland - College Park, College Park, MD, USA.
| |
Collapse
|
45
|
Alzahrani F, Kuwahara H, Long Y, Al-Owain M, Tohary M, AlSayed M, Mahnashi M, Fathi L, Alnemer M, Al-Hamed MH, Lemire G, Boycott KM, Hashem M, Han W, Al-Maawali A, Al Mahrizi F, Al-Thihli K, Gao X, Alkuraya FS. Recessive, Deleterious Variants in SMG8 Expand the Role of Nonsense-Mediated Decay in Developmental Disorders in Humans. Am J Hum Genet 2020; 107:1178-1185. [PMID: 33242396 DOI: 10.1016/j.ajhg.2020.11.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 11/04/2020] [Indexed: 12/16/2022] Open
Abstract
We have previously described a heart-, eye-, and brain-malformation syndrome caused by homozygous loss-of-function variants in SMG9, which encodes a critical component of the nonsense-mediated decay (NMD) machinery. Here, we describe four consanguineous families with four different likely deleterious homozygous variants in SMG8, encoding a binding partner of SMG9. The observed phenotype greatly resembles that linked to SMG9 and comprises severe global developmental delay, microcephaly, facial dysmorphism, and variable congenital heart and eye malformations. RNA-seq analysis revealed a general increase in mRNA expression levels with significant overrepresentation of core NMD substrates. We also identified increased phosphorylation of UPF1, a key SMG1-dependent step in NMD, which most likely represents the loss of SMG8--mediated inhibition of SMG1 kinase activity. Our data show that SMG8 and SMG9 deficiency results in overlapping developmental disorders that most likely converge mechanistically on impaired NMD.
Collapse
|
46
|
Amaral MD. How to determine the mechanism of action of CFTR modulator compounds: A gateway to theranostics. Eur J Med Chem 2020; 210:112989. [PMID: 33190956 DOI: 10.1016/j.ejmech.2020.112989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/02/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
The greatest challenge of 21st century biology is to fully understand mechanisms of disease to drive new approaches and medical innovation. Parallel to this is the huge biomedical endeavour of treating people through personalized medicine. Until now all CFTR modulator drugs that have entered clinical trials have been genotype-dependent. An emerging alternative is personalized/precision medicine in CF, i.e., to determine whether rare CFTR mutations respond to existing (or novel) CFTR modulator drugs by pre-assessing them directly on patient's tissues ex vivo, an approach also now termed theranostics. To administer the right drug to the right person it is essential to understand how drugs work, i.e., to know their mechanism of action (MoA), so as to predict their applicability, not just in certain mutations but also possibly in other diseases that share the same defect/defective pathway. Moreover, an understanding the MoA of a drug before it is tested in clinical trials is the logical path to drug discovery and can increase its chance for success and hence also approval. In conclusion, the most powerful approach to determine the MoA of a compound is to understand the underlying biology. Novel large datasets of intervenients in most biological processes, namely those emerging from the post-genomic era tools, are available and should be used to help in this task.
Collapse
Affiliation(s)
- Margarida D Amaral
- BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Faculty of Sciences, University of Lisboa, Portugal.
| |
Collapse
|
47
|
Grabski DF, Broseus L, Kumari B, Rekosh D, Hammarskjold ML, Ritchie W. Intron retention and its impact on gene expression and protein diversity: A review and a practical guide. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1631. [PMID: 33073477 DOI: 10.1002/wrna.1631] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/16/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022]
Abstract
Intron retention (IR) occurs when a complete and unspliced intron remains in mature mRNA. An increasing body of literature has demonstrated a major role for IR in numerous biological functions, including several that impact human health and disease. Although experimental technologies used to study other forms of mRNA splicing can also be used to investigate IR, a specialized downstream computational analysis is optimal for IR discovery and analysis. Here we provide a review of IR and its biological implications, as well as a practical guide for how to detect and analyze it. Several methods, including long read third generation direct RNA sequencing, are described. We have developed an R package, FakIR, to facilitate the execution of the bioinformatic tasks recommended in this review and a tutorial on how to fit them to users aims. Additionally, we provide guidelines and experimental protocols to validate IR discovery and to evaluate the potential impact of IR on gene expression and protein output. This article is categorized under: RNA Evolution and Genomics > Computational Analyses of RNA RNA Processing > Splicing Regulation/Alternative Splicing RNA Methods > RNA Analyses in vitro and In Silico.
Collapse
Affiliation(s)
- David F Grabski
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, Virginia, USA.,Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA
| | - Lucile Broseus
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - Bandana Kumari
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, University of Virginia, Charlottesville, Virginia, USA.,Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - William Ritchie
- IGH, Centre National de la Recherche Scientifique, University of Montpellier, Montpellier, France
| |
Collapse
|
48
|
The Branched Nature of the Nonsense-Mediated mRNA Decay Pathway. Trends Genet 2020; 37:143-159. [PMID: 33008628 DOI: 10.1016/j.tig.2020.08.010] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022]
Abstract
Nonsense-mediated mRNA decay (NMD) is a conserved translation-coupled quality control mechanism in all eukaryotes that regulates the expression of a significant fraction of both the aberrant and normal transcriptomes. In vertebrates, NMD has become an essential process owing to expansion of the diversity of NMD-regulated transcripts, particularly during various developmental processes. Surprisingly, however, some core NMD factors that are essential for NMD in simpler organisms appear to be dispensable for vertebrate NMD. At the same time, numerous NMD enhancers and suppressors have been identified in multicellular organisms including vertebrates. Collectively, the available data suggest that vertebrate NMD is a complex, branched pathway wherein individual branches regulate specific mRNA subsets to fulfill distinct physiological functions.
Collapse
|
49
|
Kishor A, Fritz SE, Haque N, Ge Z, Tunc I, Yang W, Zhu J, Hogg JR. Activation and inhibition of nonsense-mediated mRNA decay control the abundance of alternative polyadenylation products. Nucleic Acids Res 2020; 48:7468-7482. [PMID: 32542372 DOI: 10.1093/nar/gkaa491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Alternative polyadenylation (APA) produces transcript 3' untranslated regions (3'UTRs) with distinct sequences, lengths, stabilities and functions. We show here that APA products include a class of cryptic nonsense-mediated mRNA decay (NMD) substrates with extended 3'UTRs that gene- or transcript-level analyses of NMD often fail to detect. Transcriptome-wide, the core NMD factor UPF1 preferentially recognizes long 3'UTR products of APA, leading to their systematic downregulation. Counteracting this mechanism, the multifunctional RNA-binding protein PTBP1 regulates the balance of short and long 3'UTR isoforms by inhibiting NMD, in addition to its previously described modulation of co-transcriptional polyadenylation (polyA) site choice. Further, we find that many transcripts with altered APA isoform abundance across multiple tumor types are controlled by NMD. Together, our findings reveal a widespread role for NMD in shaping the outcomes of APA.
Collapse
Affiliation(s)
- Aparna Kishor
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah E Fritz
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nazmul Haque
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhiyun Ge
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ilker Tunc
- Bioinformatics and Computational Biology Laboratory, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenjing Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jun Zhu
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - J Robert Hogg
- Biochemistry and Biophysics Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Zarnack K, Balasubramanian S, Gantier MP, Kunetsky V, Kracht M, Schmitz ML, Sträßer K. Dynamic mRNP Remodeling in Response to Internal and External Stimuli. Biomolecules 2020; 10:biom10091310. [PMID: 32932892 PMCID: PMC7565591 DOI: 10.3390/biom10091310] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Signal transduction and the regulation of gene expression are fundamental processes in every cell. RNA-binding proteins (RBPs) play a key role in the post-transcriptional modulation of gene expression in response to both internal and external stimuli. However, how signaling pathways regulate the assembly of RBPs with mRNAs remains largely unknown. Here, we summarize observations showing that the formation and composition of messenger ribonucleoprotein particles (mRNPs) is dynamically remodeled in space and time by specific signaling cascades and the resulting post-translational modifications. The integration of signaling events with gene expression is key to the rapid adaptation of cells to environmental changes and stress. Only a combined approach analyzing the signal transduction pathways and the changes in post-transcriptional gene expression they cause will unravel the mechanisms coordinating these important cellular processes.
Collapse
Affiliation(s)
- Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany;
| | | | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular and Translational Science, Monash University, Clayton, VIC 3800, Australia
| | - Vladislav Kunetsky
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
| | - Michael Kracht
- Rudolf Buchheim Institute of Pharmacology, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - M. Lienhard Schmitz
- Institute of Biochemistry, FB11, Justus Liebig University, 35392 Giessen, Germany;
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany;
- Correspondence:
| |
Collapse
|