1
|
Dai Y, Kou H, Gui S, Guo X, Liu H, Gong Z, Sun X, Wang H, Guo Y. Prenatal dexamethasone exposure induced pancreatic β-cell dysfunction and glucose intolerance of male offspring rats: Role of the epigenetic repression of ACE2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154095. [PMID: 35219660 DOI: 10.1016/j.scitotenv.2022.154095] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
The prevalence of diabetes in children and adolescents has been rising gradually, which is relevant to adverse environment during development, especially prepartum. We aimed to explore the effects of prenatal dexamethasone exposure (PDE) on β-cell function and glucose homeostasis in juvenile offspring rats. Pregnant Wistar rats were subcutaneously administered with dexamethasone [0.1, 0.2, 0.4mg/(kg.d)] from gestational day 9 to 20. PDE impaired glucose tolerance in the male offspring rather than the females. In male offspring, PDE impaired the development and function of β-cells, accompanied with lower H3K9ac, H3K14ac and H3K27ac levels in the promoter region of angiotensin-converting enzyme 2 (ACE2) as well as suppressed ACE2 expression. Meanwhile, PDE increased expression of glucocorticoid receptor (GR) and histone deacetylase 3 (HDAC3) in fetal pancreas. Dexamethasone also inhibited ACE2 expression and insulin production in vitro. Recombinant expression of ACE2 restored insulin production inhibited by dexamethasone. In addition, dexamethasone activated GR and HDAC3, increased protein interaction of GR with HDAC3, and promoted the binding of GR-HDAC3 complex to ACE2 promoter region. Both RU486 and TSA abolished dexamethasone-induced decline of histone acetylation and ACE2 expression. In summary, suppression of ACE2 is involved in PDE induced β-cell dysfunction and glucose intolerance in juvenile male offspring rats.
Collapse
Affiliation(s)
- Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Hao Kou
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430060, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China
| | - Shuxia Gui
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoling Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Heze Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Zheng Gong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Xiaoxiang Sun
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, Hubei Province, People's Republic of China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, Hubei Province, People's Republic of China.
| |
Collapse
|
2
|
Wang SW, Sheng H, Bai YF, Weng YY, Fan XY, Zheng F, Fu JQ, Zhang F. Inhibition of histone acetyltransferase by naringenin and hesperetin suppresses Txnip expression and protects pancreatic β cells in diabetic mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 88:153454. [PMID: 33663922 DOI: 10.1016/j.phymed.2020.153454] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/19/2020] [Accepted: 12/24/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND The damage of pancreatic β cells is a major pathogenesis of the development and progression of type 2 diabetes and there is still no effective therapy to protect pancreatic β cells clinically. In our previous study, we found that Quzhou Fructus Aurantii (QFA), which is rich in flavanones, had the protective effect of pancreatic β cells in diabetic mice. However, the underlying mechanism is still unclear. PURPOSE In the current study, we administered naringenin and hesperetin, two major active components of QFA, to protect pancreatic β cells and to investigate the underlying molecular mechanism focusing on the epigenetic modifications. METHODS We used diabetic db/db mouse and INS-1 pancreatic β cell line as in vivo and in vitro models to investigate the protective effect of naringenin and hesperetin on pancreatic β cells under high glucose environment and the related mechanism. The phenotypic changes were evaluatedby immunostaining and the measurement of biochemical indexes. The molecular mechanism was explored by biological techniques such as western blotting, qPCR, ChIP-seq and ChIP-qPCR, flow cytometry and lentivirus infection. RESULTS We found that naringenin and hesperetin had an inhibitory effect on histone acetylation. We showed that naringenin and hesperetin protected pancreatic β cells in vivo and in vitro, and this effect was independent of their direct antioxidant capacity. The further study found that the inhibition of thioredoxin-interacting protein (Txnip) expression regulated by histone acetylation was critical for the protective role of naringenin and hesperetin. Mechanistically, the histone acetylation inhibition by naringenin and hesperetin was achieved through regulating AMPK-mediated p300 inactivation. CONCLUSION These findings highlight flavanones and the phytomedicine rich in flavanones as important dietary supplements in protecting pancreatic β cells in advanced diabetes. In addition, targeting histone acetylation by phytomedicine is a potential strategy to delay the development and progression of diabetes.
Collapse
Affiliation(s)
- Si-Wei Wang
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Hao Sheng
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yong-Feng Bai
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Yuan-Yuan Weng
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Xue-Yu Fan
- Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Fang Zheng
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China
| | - Jing-Qi Fu
- School of Public Health, China Medical University, Shenyang 110122, China.
| | - Feng Zhang
- Core Facility, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Clinical Laboratory, Quzhou Hospital, Zhejiang University School of Medicine, Quzhou 324000, China.
| |
Collapse
|
3
|
Dewanjee S, Vallamkondu J, Kalra RS, Chakraborty P, Gangopadhyay M, Sahu R, Medala V, John A, Reddy PH, De Feo V, Kandimalla R. The Emerging Role of HDACs: Pathology and Therapeutic Targets in Diabetes Mellitus. Cells 2021; 10:1340. [PMID: 34071497 PMCID: PMC8228721 DOI: 10.3390/cells10061340] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/22/2022] Open
Abstract
Diabetes mellitus (DM) is one of the principal manifestations of metabolic syndrome and its prevalence with modern lifestyle is increasing incessantly. Chronic hyperglycemia can induce several vascular complications that were referred to be the major cause of morbidity and mortality in DM. Although several therapeutic targets have been identified and accessed clinically, the imminent risk of DM and its prevalence are still ascending. Substantial pieces of evidence revealed that histone deacetylase (HDAC) isoforms can regulate various molecular activities in DM via epigenetic and post-translational regulation of several transcription factors. To date, 18 HDAC isoforms have been identified in mammals that were categorized into four different classes. Classes I, II, and IV are regarded as classical HDACs, which operate through a Zn-based mechanism. In contrast, class III HDACs or Sirtuins depend on nicotinamide adenine dinucleotide (NAD+) for their molecular activity. Functionally, most of the HDAC isoforms can regulate β cell fate, insulin release, insulin expression and signaling, and glucose metabolism. Moreover, the roles of HDAC members have been implicated in the regulation of oxidative stress, inflammation, apoptosis, fibrosis, and other pathological events, which substantially contribute to diabetes-related vascular dysfunctions. Therefore, HDACs could serve as the potential therapeutic target in DM towards developing novel intervention strategies. This review sheds light on the emerging role of HDACs/isoforms in diabetic pathophysiology and emphasized the scope of their targeting in DM for constituting novel interventional strategies for metabolic disorders/complications.
Collapse
Affiliation(s)
- Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | | | - Rajkumar Singh Kalra
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Higashi 1-1-1, Tsukuba 305 8565, Japan;
| | - Pratik Chakraborty
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, West Bengal, India;
| | - Moumita Gangopadhyay
- School of Life Science and Biotechnology, ADAMAS University, Barasat, Kolkata 700126, West Bengal, India;
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Darjeeling 734013, West Bengal, India;
| | - Vijaykrishna Medala
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
| | - Albin John
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
| | - P. Hemachandra Reddy
- Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (A.J.); (P.H.R.)
- Neuroscience & Pharmacology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Vincenzo De Feo
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Ramesh Kandimalla
- Applied Biology, CSIR-Indian Institute of Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India;
- Department of Biochemistry, Kakatiya Medical College, Warangal 506007, Telangana, India
| |
Collapse
|
4
|
Liu J, Lang G, Shi J. Epigenetic Regulation of PDX-1 in Type 2 Diabetes Mellitus. Diabetes Metab Syndr Obes 2021; 14:431-442. [PMID: 33564250 PMCID: PMC7866918 DOI: 10.2147/dmso.s291932] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/16/2021] [Indexed: 12/25/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease characterized by hyperglycemia which is caused by insufficient insulin secretion or insulin resistance. Interaction of genetic, epigenetic and environmental factors plays a significant role in the development of T2DM. Several environmental factors including diet and lifestyle, as well as age have been associated with an increased risk for T2DM. It has been demonstrated that these environmental factors may affect global epigenetic status, and alter the expression of susceptible genes, thereby contributing to the pathogenesis of T2DM. In recent years, a growing body of molecular and genetic studies in diabetes have been focused on the ways to restore the numbers or function of β-cells in order to reverse a range of metabolic consequences of insulin deficiency. The pancreatic duodenal homeobox 1 (PDX-1) is a transcriptional factor that is essential for the development and function of islet cells. A number of studies have shown that there is a significant increase in the level of DNA methylation of PDX-1 resulting in reduced activity in T2DM islets. The decrease in PDX-1 activity may be a critical mediator causing dysregulation of pancreatic β cells in T2DM. This article reviews the epigenetic mechanisms of PDX-1 involved in T2DM, focusing on diabetes and DNA methylation, and discusses some potential strategies for the application of PDX-1 in the treatment of diabetes.
Collapse
Affiliation(s)
- Jiangman Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Guangping Lang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
| | - Jingshan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, 563000, People’s Republic of China
- Correspondence: Jingshan Shi Tel +86-851-286-436-66Fax +86-851-286-423-03 Email
| |
Collapse
|
5
|
Kemkem Y, Nasteska D, de Bray A, Bargi-Souza P, Peliciari-Garcia RA, Guillou A, Mollard P, Hodson DJ, Schaeffer M. Maternal hypothyroidism in mice influences glucose metabolism in adult offspring. Diabetologia 2020; 63:1822-1835. [PMID: 32472193 PMCID: PMC7406527 DOI: 10.1007/s00125-020-05172-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 12/18/2022]
Abstract
AIMS/HYPOTHESIS During pregnancy, maternal metabolic disease and hormonal imbalance may alter fetal beta cell development and/or proliferation, thus leading to an increased risk for developing type 2 diabetes in adulthood. Although thyroid hormones play an important role in fetal endocrine pancreas development, the impact of maternal hypothyroidism on glucose homeostasis in adult offspring remains poorly understood. METHODS We investigated this using a mouse model of hypothyroidism, induced by administration of an iodine-deficient diet supplemented with propylthiouracil during gestation. RESULTS Here, we show that, when fed normal chow, adult mice born to hypothyroid mothers were more glucose-tolerant due to beta cell hyperproliferation (two- to threefold increase in Ki67-positive beta cells) and increased insulin sensitivity. However, following 8 weeks of high-fat feeding, these offspring gained 20% more body weight, became profoundly hyperinsulinaemic (with a 50% increase in fasting insulin concentration), insulin-resistant and glucose-intolerant compared with controls from euthyroid mothers. Furthermore, altered glucose metabolism was maintained in a second generation of animals. CONCLUSIONS/INTERPRETATION Therefore, gestational hypothyroidism induces long-term alterations in endocrine pancreas function, which may have implications for type 2 diabetes prevention in affected individuals.
Collapse
Affiliation(s)
- Yasmine Kemkem
- Institute of Functional Genomics, CNRS, Inserm U1191, University of Montpellier, F-34094, Montpellier, France
| | - Daniela Nasteska
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- COMPARE University of Birmingham and University of Nottingham, Midlands, Edgbaston, Nottingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Anne de Bray
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- COMPARE University of Birmingham and University of Nottingham, Midlands, Edgbaston, Nottingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Paula Bargi-Souza
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo A Peliciari-Garcia
- Morphophysiology and Pathology Sector, Department of Biological Sciences, Federal University of São Paulo, Diadema, SP, Brazil
| | - Anne Guillou
- Institute of Functional Genomics, CNRS, Inserm U1191, University of Montpellier, F-34094, Montpellier, France
| | - Patrice Mollard
- Institute of Functional Genomics, CNRS, Inserm U1191, University of Montpellier, F-34094, Montpellier, France
| | - David J Hodson
- Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, UK
- COMPARE University of Birmingham and University of Nottingham, Midlands, Edgbaston, Nottingham, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
| | - Marie Schaeffer
- Institute of Functional Genomics, CNRS, Inserm U1191, University of Montpellier, F-34094, Montpellier, France.
| |
Collapse
|
6
|
Lu CJ, Fan XY, Guo YF, Cheng ZC, Dong J, Chen JZ, Li LY, Wang MW, Wu ZK, Wang F, Tong XJ, Luo LF, Tang FC, Zhu ZY, Zhang B. Single-cell analyses identify distinct and intermediate states of zebrafish pancreatic islet development. J Mol Cell Biol 2020; 11:435-447. [PMID: 30407522 PMCID: PMC6604604 DOI: 10.1093/jmcb/mjy064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 10/31/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Pancreatic endocrine islets are vital for glucose homeostasis. However, the islet developmental trajectory and its regulatory network are not well understood. To define the features of these specification and differentiation processes, we isolated individual islet cells from TgBAC(neurod1:EGFP) transgenic zebrafish and analyzed islet developmental dynamics across four different embryonic stages using a single-cell RNA-seq strategy. We identified proliferative endocrine progenitors, which could be further categorized by different cell cycle phases with the G1/S subpopulation displaying a distinct differentiation potential. We identified endocrine precursors, a heterogeneous intermediate-state population consisting of lineage-primed alpha, beta and delta cells that were characterized by the expression of lineage-specific transcription factors and relatively low expression of terminally differentiation markers. The terminally differentiated alpha, beta, and delta cells displayed stage-dependent differentiation states, which were related to their functional maturation. Our data unveiled distinct states, events and molecular features during the islet developmental transition, and provided resources to comprehensively understand the lineage hierarchy of islet development at the single-cell level.
Collapse
Affiliation(s)
- Chong-Jian Lu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Xiao-Ying Fan
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, China
| | - Yue-Feng Guo
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Zhen-Chao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Ji Dong
- Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, China
| | - Jin-Zi Chen
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Lian-Yan Li
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Mei-Wen Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Ze-Kai Wu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Fei Wang
- National Center for Protein Sciences, Peking University, Beijing, China
| | - Xiang-Jun Tong
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Ling-Fei Luo
- Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Laboratory of Molecular Developmental Biology, School of Life Sciences, Southwest University, Chongqing, China
| | - Fu-Chou Tang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China.,Beijing Advanced Innovation Center for Genomics (ICG), College of Life Sciences, Peking University, Beijing, China
| | - Zuo-Yan Zhu
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
7
|
Differentiation of human pluripotent stem cells toward pharyngeal endoderm derivatives: Current status and potential. Curr Top Dev Biol 2020; 138:175-208. [PMID: 32220297 DOI: 10.1016/bs.ctdb.2020.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The pharyngeal apparatus, a transient embryological structure, includes diverse cells from all three germ layers that ultimately contribute to a variety of adult tissues. In particular, pharyngeal endoderm produces cells of the inner ear, palatine tonsils, the thymus, parathyroid and thyroid glands, and ultimobranchial bodies. Each of these structures and organs contribute to vital human physiological processes, including central immune tolerance (thymus) and metabolic homeostasis (parathyroid and thyroid glands, and ultimobranchial bodies). Thus, improper development or damage to pharyngeal endoderm derivatives leads to complicated and severe human maladies, such as autoimmunity, immunodeficiency, hypothyroidism, and/or hypoparathyroidism. To study and treat such diseases, we can utilize human pluripotent stem cells (hPSCs), which differentiate into functionally mature cells in vitro given the proper developmental signals. Here, we discuss current efforts regarding the directed differentiation of hPSCs toward pharyngeal endoderm derivatives. We further discuss model system and therapeutic applications of pharyngeal endoderm cell types produced from hPSCs. Finally, we provide suggestions for improving hPSC differentiation approaches to pharyngeal endoderm derivatives with emphasis on current single cell-omics and 3D culture system technologies.
Collapse
|
8
|
Zhu Z, Cao F, Li X. Epigenetic Programming and Fetal Metabolic Programming. Front Endocrinol (Lausanne) 2019; 10:764. [PMID: 31849831 PMCID: PMC6901800 DOI: 10.3389/fendo.2019.00764] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/21/2019] [Indexed: 12/30/2022] Open
Abstract
Fetal metabolic programming caused by the adverse intrauterine environment can induce metabolic syndrome in adult offspring. Adverse intrauterine environment introduces fetal long-term relatively irreversible changes in organs and metabolism, and thus causes fetal metabolic programming leading metabolic syndrome in adult offspring. Fetal metabolic programming of obesity and insulin resistance plays a key role in this process. The mechanism of fetal metabolic programming is still not very clear. It is suggested that epigenetic programming, also induced by the adverse intrauterine environment, is a critical underlying mechanism of fetal metabolic programming. Fetal epigenetic programming affects gene expression changes and cellular function through epigenetic modifications without DNA nucleotide sequence changes. Epigenetic modifications can be relatively stably retained and transmitted through mitosis and generations, and thereby induce the development of metabolic syndrome in adult offspring. This manuscript provides an overview of the critical role of epigenetic programming in fetal metabolic programming.
Collapse
Affiliation(s)
- Ziqiang Zhu
- Children's Hospital of Soochow University, Suzhou, China
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Fang Cao
- Changzhou Maternity and Child Health Care Hospital affiliated to Nanjing Medical University, Changzhou, China
| | - Xiaozhong Li
- Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Begum S. Hepatic Nuclear Factor 1 Alpha (HNF-1α) In Human Physiology and Molecular Medicine. Curr Mol Pharmacol 2019; 13:50-56. [PMID: 31566143 DOI: 10.2174/1874467212666190930144349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
The transcription factors (TFs) play a crucial role in the modulation of specific gene transcription networks. One of the hepatocyte nuclear factors (HNFs) family's member, hepatocyte nuclear factor-1α (HNF-1α) has continuously become a principal TF to control the expression of genes. It is involved in the regulation of a variety of functions in various human organs including liver, pancreas, intestine, and kidney. It regulates the expression of enzymes involved in endocrine and xenobiotic activity through various metabolite transporters located in the above organs. Its expression is also required for organ-specific cell fate determination. Despite two decades of its first identification in hepatocytes, a review of its significance was not comprehended. Here, the role of HNF-1α in the above organs at the molecular level to intimate molecular mechanisms for regulating certain gene expression whose malfunctions are attributed to the disease conditions has been specifically encouraged. Moreover, the epigenetic effects of HNF-1α have been discussed here, which could help in advanced technologies for molecular pharmacological intervention and potential clinical implications for targeted therapies. HNF-1α plays an indispensable role in several physiological mechanisms in the liver, pancreas, intestine, and kidney. Loss of its operations leads to the non-functional or abnormal functional state of each organ. Specific molecular agents or epigenetic modifying drugs that reactivate HNF-1α are the current requirements for the medications of the diseases.
Collapse
Affiliation(s)
- Sumreen Begum
- Stem Cells Research Laboratory (SCRL), Sindh Institute of Urology and Transplantation (SIUT), Karachi, Pakistan
| |
Collapse
|
10
|
Human Pluripotent Stem Cell-Derived Endoderm for Modeling Development and Clinical Applications. Cell Stem Cell 2019; 22:485-499. [PMID: 29625066 DOI: 10.1016/j.stem.2018.03.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The liver, lung, pancreas, and digestive tract all originate from the endoderm germ layer, and these vital organs are subject to many life-threatening diseases affecting millions of patients. However, primary cells from endodermal organs are often difficult to grow in vitro. Human pluripotent stem cells thus hold great promise for generating endoderm cells and their derivatives as tools for the development of new therapeutics against a variety of global healthcare challenges. Here we describe recent advances in methods for generating endodermal cell types from human pluripotent stem cells and their use for disease modeling and cell-based therapy.
Collapse
|
11
|
Wade AK, Liu Y, Bethea MM, Toren E, Tse HM, Hunter CS. LIM-domain transcription complexes interact with ring-finger ubiquitin ligases and thereby impact islet β-cell function. J Biol Chem 2019; 294:11728-11740. [PMID: 31186351 DOI: 10.1074/jbc.ra118.006985] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 06/02/2019] [Indexed: 12/27/2022] Open
Abstract
Diabetes is characterized by a loss of β-cell mass, and a greater understanding of the transcriptional mechanisms governing β-cell function is required for future therapies. Previously, we reported that a complex of the Islet-1 (Isl1) transcription factor and the co-regulator single-stranded DNA-binding protein 3 (SSBP3) regulates the genes necessary for β-cell function, but few proteins are known to interact with this complex in β-cells. To identify additional components, here we performed SSBP3 reverse-cross-linked immunoprecipitation (ReCLIP)- and MS-based experiments with mouse β-cell extracts and compared the results with those from our previous Isl1 ReCLIP study. Our analysis identified the E3 ubiquitin ligases ring finger protein 20 (RNF20) and RNF40, factors that in nonpancreatic cells regulate transcription through imparting monoubiquitin marks on histone H2B (H2Bub1), a precursor to histone H3 lysine 4 trimethylation (H3K4me3). We hypothesized that RNF20 and RNF40 regulate similar genes as those regulated by Isl1 and SSBP3 and are important for β-cell function. We observed that Rnf20 and Rnf40 depletion reduces β-cell H2Bub1 marks and uncovered several target genes, including glucose transporter 2 (Glut2), MAF BZIP transcription factor A (MafA), and uncoupling protein 2 (Ucp2). Strikingly, we also observed that Isl1 and SSBP3 depletion reduces H2Bub1 and H3K4me3 marks, suggesting that they have epigenetic roles. We noted that the RNF complex is required for glucose-stimulated insulin secretion and normal mitochondrial reactive oxygen species levels. These findings indicate that RNF20 and RNF40 regulate β-cell gene expression and insulin secretion and establish a link between Isl1 complexes and global cellular epigenetics.
Collapse
Affiliation(s)
- Alexa K Wade
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Yanping Liu
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Maigen M Bethea
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Eliana Toren
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294.,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Hubert M Tse
- Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Chad S Hunter
- Department of Medicine, Division of Endocrinology Diabetes and Metabolism, University of Alabama at Birmingham, Birmingham, Alabama 35294 .,Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
12
|
Liu J, Banerjee A, Herring CA, Attalla J, Hu R, Xu Y, Shao Q, Simmons AJ, Dadi PK, Wang S, Jacobson DA, Liu B, Hodges E, Lau KS, Gu G. Neurog3-Independent Methylation Is the Earliest Detectable Mark Distinguishing Pancreatic Progenitor Identity. Dev Cell 2019; 48:49-63.e7. [PMID: 30620902 PMCID: PMC6327977 DOI: 10.1016/j.devcel.2018.11.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 08/26/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022]
Abstract
In the developing pancreas, transient Neurog3-expressing progenitors give rise to four major islet cell types: α, β, δ, and γ; when and how the Neurog3+ cells choose cell fate is unknown. Using single-cell RNA-seq, trajectory analysis, and combinatorial lineage tracing, we showed here that the Neurog3+ cells co-expressing Myt1 (i.e., Myt1+Neurog3+) were biased toward β cell fate, while those not simultaneously expressing Myt1 (Myt1-Neurog3+) favored α fate. Myt1 manipulation only marginally affected α versus β cell specification, suggesting Myt1 as a marker but not determinant for islet-cell-type specification. The Myt1+Neurog3+ cells displayed higher Dnmt1 expression and enhancer methylation at Arx, an α-fate-promoting gene. Inhibiting Dnmts in pancreatic progenitors promoted α cell specification, while Dnmt1 overexpression or Arx enhancer hypermethylation favored β cell production. Moreover, the pancreatic progenitors contained distinct Arx enhancer methylation states without transcriptionally definable sub-populations, a phenotype independent of Neurog3 activity. These data suggest that Neurog3-independent methylation on fate-determining gene enhancers specifies distinct endocrine-cell programs.
Collapse
Affiliation(s)
- Jing Liu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Amrita Banerjee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Charles A Herring
- Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Attalla
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ruiying Hu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Yanwen Xu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qiujia Shao
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Alan J Simmons
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Prasanna K Dadi
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Sui Wang
- Department of Ophthalmology, Mary M. and Sash A. Spencer Center for Vision Research, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - David A Jacobson
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Bindong Liu
- Center for AIDS Health Disparities Research, Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA
| | - Emily Hodges
- Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry and the Vanderbilt Genetic Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Ken S Lau
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN 37232, USA.
| | - Guoqiang Gu
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Program in Developmental Biology and Center for Stem Cell Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
13
|
Balaji S, Napolitano T, Silvano S, Friano ME, Garrido-Utrilla A, Atlija J, Collombat P. Epigenetic Control of Pancreatic Regeneration in Diabetes. Genes (Basel) 2018; 9:genes9090448. [PMID: 30205460 PMCID: PMC6162679 DOI: 10.3390/genes9090448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 12/17/2022] Open
Abstract
Both type 1 and type 2 diabetes are conditions that are associated with the loss of insulin-producing β-cells within the pancreas. An active research therefore aims at regenerating these β-cells with the hope that they could restore euglycemia. The approaches classically used consist in mimicking embryonic development, making use of diverse cell sources or converting pre-existing pancreatic cells. Despite impressive progresses and promising successes, it appears that we still need to gain further insight into the molecular mechanisms underlying β-cell development. This becomes even more obvious with the emergence of a relatively new field of research, epigenetics. The current review therefore focuses on the latest advances in this field in the context of β-cell (neo-)genesis research.
Collapse
Affiliation(s)
- Shruti Balaji
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | - Tiziana Napolitano
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | - Serena Silvano
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | - Marika Elsa Friano
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | | | - Josipa Atlija
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| | - Patrick Collombat
- Université Nice Sophia Antipolis, Inserm, CNRS, iBV, FR-06100 Nice, France.
| |
Collapse
|
14
|
Qin K, Zhang N, Zhang Z, Nipper M, Zhu Z, Leighton J, Xu K, Musi N, Wang P. SIRT6-mediated transcriptional suppression of Txnip is critical for pancreatic beta cell function and survival in mice. Diabetologia 2018; 61:906-918. [PMID: 29322219 PMCID: PMC6203439 DOI: 10.1007/s00125-017-4542-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
AIMS/HYPOTHESIS Better understanding of how genetic and epigenetic components control beta cell differentiation and function is key to the discovery of novel therapeutic approaches to prevent beta cell dysfunction and failure in the progression of type 2 diabetes. Our goal was to elucidate the role of histone deacetylase sirtuin 6 (SIRT6) in beta cell development and homeostasis. METHODS Sirt6 endocrine progenitor cell conditional knockout and beta cell-specific knockout mice were generated using the Cre-loxP system. Mice were assayed for islet morphology, glucose tolerance, glucose-stimulated insulin secretion and susceptibility to streptozotocin. Transcriptional regulatory functions of SIRT6 in primary islets were evaluated by RNA-Seq analysis. Reverse transcription-quantitative (RT-q)PCR and immunoblot were used to verify and investigate the gene expression changes. Chromatin occupancies of SIRT6, H3K9Ac, H3K56Ac and active RNA polymerase II were evaluated by chromatin immunoprecipitation. RESULTS Deletion of Sirt6 in pancreatic endocrine progenitor cells did not affect endocrine morphology, beta cell mass or insulin production but did result in glucose intolerance and defective glucose-stimulated insulin secretion in mice. Conditional deletion of Sirt6 in adult beta cells reproduced the insulin secretion defect. Loss of Sirt6 resulted in aberrant upregulation of thioredoxin-interacting protein (TXNIP) in beta cells. SIRT6 deficiency led to increased acetylation of histone H3 lysine residue at 9 (H3K9Ac), acetylation of histone H3 lysine residue at 56 (H3K56Ac) and active RNA polymerase II at the promoter region of Txnip. SIRT6-deficient beta cells exhibited a time-dependent increase in H3K9Ac, H3K56Ac and TXNIP levels. Finally, beta cell-specific SIRT6-deficient mice showed increased sensitivity to streptozotocin. CONCLUSIONS/INTERPRETATION Our results reveal that SIRT6 suppresses Txnip expression in beta cells via deacetylation of histone H3 and plays a critical role in maintaining beta cell function and viability. DATA AVAILABILITY Sequence data have been deposited in the National Institutes of Health (NIH) Gene Expression Omnibus (GEO) with the accession code GSE104161.
Collapse
Affiliation(s)
- Kunhua Qin
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Ning Zhang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Zhao Zhang
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Michael Nipper
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Zhenxin Zhu
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Jake Leighton
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA
| | - Kexin Xu
- Department of Molecular Medicine, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Nicolas Musi
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Centre at San Antonio, San Antonio, TX, USA
| | - Pei Wang
- Department of Cell Systems & Anatomy, University of Texas Health Science Centre at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX, 78229-3900, USA.
| |
Collapse
|
15
|
Generation of glucose-sensitive insulin-secreting beta-like cells from human embryonic stem cells by incorporating a synthetic lineage-control network. J Biotechnol 2017; 259:39-45. [DOI: 10.1016/j.jbiotec.2017.07.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 12/15/2022]
|
16
|
Bernstein D, Golson ML, Kaestner KH. Epigenetic control of β-cell function and failure. Diabetes Res Clin Pract 2017; 123:24-36. [PMID: 27918975 PMCID: PMC5250585 DOI: 10.1016/j.diabres.2016.11.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/15/2016] [Indexed: 12/21/2022]
Abstract
Type 2 diabetes is a highly heritable disease, but only ∼15% of this heritability can be explained by known genetic variant loci. In fact, body mass index is more predictive of diabetes than any of the common risk alleles identified by genome-wide association studies. This discrepancy may be explained by epigenetic inheritance, whereby changes in gene regulation can be passed along to offspring. Epigenetic changes throughout an organism's lifetime, based on environmental factors such as chemical exposures, diet, physical activity, and age, can also affect gene expression and susceptibility to diabetes. Recently, novel genome-wide assays of epigenetic marks have resulted in a greater understanding of how genetics, epigenetics, and the environment interact in the development and inheritance of diabetes.
Collapse
Affiliation(s)
- Diana Bernstein
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria L Golson
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Klaus H Kaestner
- Department of Genetics and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|