1
|
Lee AJ, Hammond J, Sheridan J, Swift S, Munkacsi AB, Villas-Boas SG. Antifungal Activity of Disalt of Epipyrone A from Epicoccum nigrum Likely via Disrupted Fatty Acid Elongation and Sphingolipid Biosynthesis. J Fungi (Basel) 2024; 10:597. [PMID: 39330357 PMCID: PMC11433475 DOI: 10.3390/jof10090597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024] Open
Abstract
Multidrug-resistant fungal pathogens and antifungal drug toxicity have challenged our current ability to fight fungal infections. Therefore, there is a strong global demand for novel antifungal molecules with the distinct mode of action and specificity to service the medical and agricultural sectors. Polyenes are a class of antifungal drugs with the broadest spectrum of activity among the current antifungal drugs. Epipyrone A, a water-soluble antifungal molecule with a unique, linear polyene structure, was isolated from the fungus Epiccocum nigrum. Since small changes in a compound structure can significantly alter its cell target and mode of action, we present here a study on the antifungal mode of action of the disalt of epipyrone A (DEA) using chemical-genetic profiling, fluorescence microscopy, and metabolomics. Our results suggest the disruption of sphingolipid/fatty acid biosynthesis to be the primary mode of action of DEA, followed by the intracellular accumulation of toxic phenolic compounds, in particular p-toluic acid (4-methylbenzoic acid). Although membrane ergosterol is known to be the main cell target for polyene antifungal drugs, we found little evidence to support that is the case for DEA. Sphingolipids, on the other hand, are known for their important roles in fungal cell physiology, and their biosynthesis has been recognized as a potential fungal-specific cell target for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Alex J Lee
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Joseph Hammond
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Jeffrey Sheridan
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Simon Swift
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Andrew B Munkacsi
- School of Biological Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Silas G Villas-Boas
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation Department, L-4362 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
2
|
Amphiphysin AoRvs167-Mediated Membrane Curvature Facilitates Trap Formation, Endocytosis, and Stress Resistance in Arthrobotrysoligospora. Pathogens 2022; 11:pathogens11090997. [PMID: 36145429 PMCID: PMC9501185 DOI: 10.3390/pathogens11090997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 08/26/2022] [Accepted: 08/28/2022] [Indexed: 11/16/2022] Open
Abstract
Bin1/Amphiphysin/Rvs (BAR) domain-containing proteins mediate fundamental cellular processes, including membrane remodeling and endocytosis. Nematode-trapping (NT) fungi can differentiate to form trapping structures through highly reorganized cell membranes and walls. In this study, we identified the NT fungus Arthrobotrys oligospora ortholog of yeast Rvs167 and documented its involvement in membrane bending and endocytosis. We further confirmed that the deletion of AoRvs167 makes the fungus more hypersensitive to osmotic salt (Nacl), higher temperatures (28 to 30 °C), and the cell wall perturbation agent Congo red. In addition, the disruption of AoRvs167 reduced the trap formation capacity. Hence, AoRvs167 may regulate fungal pathogenicity through the integrity of plasma membranes and cell walls.
Collapse
|
3
|
Santos-Pereira C, Andrés MT, Chaves SR, Fierro JF, Gerós H, Manon S, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. Int J Biol Macromol 2021; 171:343-357. [PMID: 33421469 DOI: 10.1016/j.ijbiomac.2020.12.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf) is a bioactive milk-derived protein with remarkable wide-spectrum antifungal activity. To deepen our understanding of the molecular mechanisms underlying Lf cytotoxicity, the role of plasma membrane ergosterol- and sphingolipid-rich lipid rafts and their association with the proton pump Pma1p was explored. Pma1p was previously identified as a Lf-binding protein. Results showed that bovine Lf (bLf) perturbs ergosterol-rich lipid rafts organization by inducing intracellular accumulation of ergosterol. Using yeast mutant strains lacking lipid rafts-associated proteins or enzymes involved in the synthesis of ergosterol and sphingolipids, we found that perturbations in the composition of these membrane domains increase resistance to bLf-induced yeast cell death. Also, when Pma1p-lipid rafts association is compromised in the Pma1-10 mutant and in the absence of the Pma1p-binding protein Ast1p, the bLf killing activity is impaired. Altogether, results showed that the perturbation of lipid rafts and the inhibition of both Pma1p and V-ATPase activities mediate the antifungal activity of bLf. Since it is suggested that the combination of conventional antifungals with lipid rafts-disrupting compounds is a powerful antifungal approach, our data will help to pave the way for the use of bLf alone or in combination for the treatment/eradication of clinically and agronomically relevant yeast pathogens/fungi.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - María T Andrés
- Laboratory of Oral Microbiology, University Clinic of Dentistry (CLUO) and Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - José F Fierro
- Laboratory of Oral Microbiology, University Clinic of Dentistry (CLUO) and Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS et Université de Bordeaux, CS61390, 1 Rue Camille Saint-Saëns, 33000 Bordeaux, France
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
4
|
Encinar del Dedo J, Idrissi FZ, Arnáiz-Pita Y, James M, Dueñas-Santero E, Orellana-Muñoz S, del Rey F, Sirotkin V, Geli MI, Vázquez de Aldana CR. Eng2 is a component of a dynamic protein complex required for endocytic uptake in fission yeast. Traffic 2014; 15:1122-42. [PMID: 25040903 DOI: 10.1111/tra.12198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Revised: 07/14/2014] [Accepted: 07/14/2014] [Indexed: 11/29/2022]
Abstract
Eng2 is a glucanase required for spore release, although it is also expressed during vegetative growth, suggesting that it might play other cellular functions. Its homology to the Saccharomyces cerevisiae Acf2 protein, previously shown to promote actin polymerization at endocytic sites in vitro, prompted us to investigate its role in endocytosis. Interestingly, depletion of Eng2 caused profound defects in endocytic uptake, which were not due to the absence of its glucanase activity. Analysis of the dynamics of endocytic proteins by fluorescence microscopy in the eng2Δ strain unveiled a previously undescribed phenotype, in which assembly of the Arp2/3 complex appeared uncoupled from the internalization of the endocytic coat and resulted in a fission defect. Strikingly also, we found that Eng2-GFP dynamics did not match the pattern of other endocytic proteins. Eng2-GFP localized to bright cytosolic spots that moved around the cellular poles and occasionally contacted assembling endocytic patches just before recruitment of Wsp1, the Schizosaccharomyces pombe WASP. Interestingly, Csh3-YFP, a WASP-interacting protein, interacted with Eng2 by co-immunoprecipitation and was recruited to Eng2 in bright cytosolic spots. Altogether, our work defines a novel endocytic functional module, which probably couples the endocytic coat to the actin module.
Collapse
Affiliation(s)
- Javier Encinar del Dedo
- Instituto de Biología Funcional y Genómica, CSIC/Universidad de Salamanca, c/ Zacarías González 2, 37007, Salamanca, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front Oncol 2012; 2:140. [PMID: 23087902 PMCID: PMC3467458 DOI: 10.3389/fonc.2012.00140] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023] Open
Abstract
The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
6
|
Abstract
In biological networks of molecular interactions in a cell, network motifs that are biologically relevant are also functionally coherent, or form functional modules. These functionally coherent modules combine in a hierarchical manner into larger, less cohesive subsystems, thus revealing one of the essential design principles of system-level cellular organization and function–hierarchical modularity. Arguably, hierarchical modularity has not been explicitly taken into consideration by most, if not all, functional annotation systems. As a result, the existing methods would often fail to assign a statistically significant functional coherence score to biologically relevant molecular machines. We developed a methodology for hierarchical functional annotation. Given the hierarchical taxonomy of functional concepts (e.g., Gene Ontology) and the association of individual genes or proteins with these concepts (e.g., GO terms), our method will assign a Hierarchical Modularity Score (HMS) to each node in the hierarchy of functional modules; the HMS score and its value measure functional coherence of each module in the hierarchy. While existing methods annotate each module with a set of “enriched” functional terms in a bag of genes, our complementary method provides the hierarchical functional annotation of the modules and their hierarchically organized components. A hierarchical organization of functional modules often comes as a bi-product of cluster analysis of gene expression data or protein interaction data. Otherwise, our method will automatically build such a hierarchy by directly incorporating the functional taxonomy information into the hierarchy search process and by allowing multi-functional genes to be part of more than one component in the hierarchy. In addition, its underlying HMS scoring metric ensures that functional specificity of the terms across different levels of the hierarchical taxonomy is properly treated. We have evaluated our method using Saccharomyces cerevisiae data from KEGG and MIPS databases and several other computationally derived and curated datasets. The code and additional supplemental files can be obtained from http://code.google.com/p/functional-annotation-of-hierarchical-modularity/ (Accessed 2012 March 13).
Collapse
|
7
|
Barcellos FG, Hungria M, Pizzirani-Kleiner AA. Limited vegetative compatibility as a cause of somatic recombination in Trichoderma pseudokoningii. Braz J Microbiol 2011; 42:1625-37. [PMID: 24031797 PMCID: PMC3768707 DOI: 10.1590/s1517-83822011000400050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2011] [Accepted: 05/16/2011] [Indexed: 11/21/2022] Open
Abstract
With the aim of a better characterization of the somatic recombination process in Trichoderma pseudokoningii, a progeny from crossings between T. pseudokoningii strains contrasting for auxotroph markers was characterized by RAPD markers and PFGE (electrophoretic karyotype). Cytological studies of the conidia, conidiogenesis and heterokaryotic colonies were also performed. The genotypes of the majority of the recombinant strains analyzed were similar to only one of the parental strains and the low frequency of polymorphic RAPD bands suggested that the nuclear fusions may not occur into the heterokaryon. In some heterokaryotic regions the existence of intensely staining hyphae might be related to cell death. We proposed that a mechanism of somatic recombination other than parasexuality might occur, being related to limited vegetative compatibility after postfusion events, as described for other Trichoderma species.
Collapse
|
8
|
Prigent M, Boy-Marcotte E, Chesneau L, Gibson K, Dupré-Crochet S, Tisserand H, Verbavatz JM, Cuif MH. The RabGAP proteins Gyp5p and Gyl1p recruit the BAR domain protein Rvs167p for polarized exocytosis. Traffic 2011; 12:1084-97. [PMID: 21554509 DOI: 10.1111/j.1600-0854.2011.01218.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Rab GTPase-activating proteins (GAP) Gyp5p and Gyl1p are involved in the control of polarized exocytosis at the small-bud stage in Saccharomyces cerevisiae. Both Gyp5p and Gyl1p interact with the N-Bin1/Amphiphysin/Rvs167 (BAR) domain protein Rvs167p, but the biological function of this interaction is unclear. We show here that Gyp5p and Gyl1p recruit Rvs167p to the small-bud tip, where it plays a role in polarized exocytosis. In gyp5Δgyl1Δ cells, Rvs167p is not correctly localized to the small-bud tip. Both P473L mutation in the SH3 domain of Rvs167p and deletion of the proline-rich regions of Gyp5p and Gyl1p disrupt the interaction of Rvs167p with Gyp5p and Gyl1p and impair the localization of Rvs167p to the tips of small buds. We provide evidence for the accumulation of secretory vesicles in small buds of rvs167Δ cells and for defective Bgl2p secretion in rvs167Δ cultures enriched in small-budded cells at 13°C, implicating Rvs167p in polarized exocytosis. Moreover, both the accumulation of secretory vesicles in Rvs167p P473L cells cultured at 13°C and secretion defects in cells producing Gyp5p and Gyl1p without proline-rich regions strongly suggest that the function of Rvs167p in exocytosis depends on its ability to interact with Gyp5p and Gyl1p.
Collapse
Affiliation(s)
- Magali Prigent
- Univ Paris-Sud, Institut de Génétique et Microbiologie, CNRS UMR8621, Bâtiment 400, Orsay F-91405, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Coumans JVF, Moens PDJ, Poljak A, Al-Jaaidi S, Pereg L, Raftery MJ. Plant-extract-induced changes in the proteome of the soil-borne pathogenic fungus Thielaviopsis basicola. Proteomics 2010; 10:1573-91. [PMID: 20186748 DOI: 10.1002/pmic.200900301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Thielaviopsis basicola is a hemibiotroph fungus that causes black root rot disease in diverse plants with significant impact on cotton production in Australia. To elucidate how T. basicola growth and proteome are influenced by interactions with natural sources, this fungus was cultured in the presence of root extracts from non-host (wheat, hairy vetch) and susceptible host (cotton, lupin) plants. We found that T. basicola growth was significantly favored in the presence of host extracts, while hierarchical clustering analysis of 2-DE protein profiles of T. basicola showed plant species had a larger effect on the proteome than host/non-host status. Analysis by LC-MS/MS of unique and differentially expressed spots and identification using cross-species similarity searching and de novo sequencing allowed successful identification of 41 spots. These proteins were principally involved in primary metabolism with smaller numbers implicated in other diverse functions. Identification of several "morpho" proteins suggested morphological differences that were further microscopically investigated. Identification of several highly expressed spots suggested that vitamin B(6) is important in the T. basicola response to components present in hairy vetch extract, and finally, three spots, induced in the presence of lupin extract, may correspond to malic enzyme and be involved in lipid accumulation.
Collapse
Affiliation(s)
- Joëlle V F Coumans
- Molecular and Cellular Biology, School of Science and Technology, University of New England, Armidale, NSW, Australia.
| | | | | | | | | | | |
Collapse
|
10
|
BAR domain proteins Rvs161 and Rvs167 contribute to Candida albicans endocytosis, morphogenesis, and virulence. Infect Immun 2009; 77:4150-60. [PMID: 19596778 DOI: 10.1128/iai.00683-09] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Candida albicans plasma membrane plays critical roles in growth and virulence and as a target for antifungal drugs. Three C. albicans genes that encode Bin-Amphiphysin-Rvs homology domain proteins were mutated to define their roles in plasma membrane function. The deletion of RVS161 and RVS167, but not RVS162, caused strong defects. The rvs161Delta mutant was more defective in endocytosis and morphogenesis than rvs167Delta, but both were strongly defective in polarizing actin patches. Other plasma membrane constituents were still properly localized, including a filipin-stained domain at the hyphal tips. An analysis of growth under different in vitro conditions showed that the rvs161Delta and rvs167Delta mutants grew less invasively in agar and also suggested that they have defects in cell wall synthesis and Rim101 pathway signaling. These mutants were also more resistant to the antimicrobial peptide histatin 5 but showed essentially normal responses to the drugs caspofungin and amphotericin. Surprisingly, the rvs161Delta mutant was more sensitive to fluconazole, whereas the rvs167Delta mutant was more resistant, indicating that these mutations cause overlapping but distinct effects on cells. The rvs161Delta and rvs167Delta mutants both showed greatly reduced virulence in mice. However, the mutants were capable of growing to high levels in kidneys. Histological analyses of infected kidneys revealed that these rvsDelta mutants grew in a large fungal mass that was walled off by leukocytes, rather than forming disseminated microabscesses as seen for the wild type. The diminished virulence is likely due to a combination of the morphogenesis defects that reduce invasive growth and altered cell wall construction that exposes proinflammatory components to the host immune system.
Collapse
|
11
|
Sheltzer JM, Rose MD. The class V myosin Myo2p is required for Fus2p transport and actin polarization during the yeast mating response. Mol Biol Cell 2009; 20:2909-19. [PMID: 19403698 DOI: 10.1091/mbc.e08-09-0923] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mating yeast cells remove their cell walls and fuse their plasma membranes in a spatially restricted cell contact region. Cell wall removal is dependent on Fus2p, an amphiphysin-associated Rho-GEF homolog. As mating cells polarize, Fus2p-GFP localizes to the tip of the mating projection, where cell fusion will occur, and to cytoplasmic puncta, which show rapid movement toward the tip. Movement requires polymerized actin, whereas tip localization is dependent on both actin and a membrane protein, Fus1p. Here, we show that Fus2p-GFP movement is specifically dependent on Myo2p, a type V myosin, and not on Myo4p, another type V myosin, or Myo3p and Myo5p, type I myosins. Fus2p-GFP tip localization and actin polarization in shmoos are also dependent on Myo2p. A temperature-sensitive tropomyosin mutation and Myo2p alleles that specifically disrupt vesicle binding caused rapid loss of actin patch organization, indicating that transport is required to maintain actin polarity. Mutant shmoos lost actin polarity more rapidly than mitotic cells, suggesting that the maintenance of cell polarity in shmoos is more sensitive to perturbation. The different velocities, differential sensitivity to mutation and lack of colocalization suggest that Fus2p and Sec4p, another Myo2p cargo associated with exocytotic vesicles, reside predominantly on different cellular organelles.
Collapse
Affiliation(s)
- Jason M Sheltzer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | | |
Collapse
|
12
|
Altering sphingolipid metabolism in Saccharomyces cerevisiae cells lacking the amphiphysin ortholog Rvs161 reinitiates sugar transporter endocytosis. EUKARYOTIC CELL 2009; 8:779-89. [PMID: 19286982 DOI: 10.1128/ec.00037-09] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Amphiphysins are proteins thought to be involved in synaptic vesicle endocytosis. Amphiphysins share a common BAR domain, which can sense and/or bend membranes, and this function is believed to be essential for endocytosis. Saccharomyces cerevisiae cells lacking the amphiphysin ortholog Rvs161 are inviable when starved for glucose. Altering sphingolipid levels in rvs161 cells remediates this defect, but how lipid changes suppress remains to be elucidated. Here, we show that the sugar starvation-induced death of rvs161 cells extends to other fermentable sugar carbon sources, and the loss of sphingolipid metabolism suppresses these defects. In all cases, rvs161 cells respond to the starvation signal, elicit the appropriate transcriptional response, and properly localize the requisite sugar transporter(s). However, Rvs161 is required for transporter endocytosis. rvs161 cells accumulate transporters at the plasma membrane under conditions normally resulting in their endocytosis and degradation. Transporter endocytosis requires the endocytosis (endo) domain of Rvs161. Altering sphingolipid metabolism by deleting the very-long-chain fatty acid elongase SUR4 reinitiates transporter endocytosis in rvs161 and rvs161 endo(-) cells. The sphingolipid-dependent reinitiation of endocytosis requires the ubiquitin-regulating factors Doa1, Doa4, and Rsp5. In the case of Doa1, the phospholipase A(2) family ubiquitin binding motif is dispensable. Moreover, the conserved AAA-ATPase Cdc48 and its accessory proteins Shp1 and Ufd1 are required. Finally, rvs161 cells accumulate monoubiquitin, and this defect is remediated by the loss of SUR4. These results show that defects in sphingolipid metabolism result in the reinitiation of ubiquitin-dependent sugar transporter endocytosis and suggest that this event is necessary for suppressing the nutrient starvation-induced death of rvs161 cells.
Collapse
|
13
|
McCourt PC, Morgan JM, Nickels JT. Stress-induced ceramide-activated protein phosphatase can compensate for loss of amphiphysin-like activity in Saccharomyces cerevisiae and functions to reinitiate endocytosis. J Biol Chem 2009; 284:11930-41. [PMID: 19254955 DOI: 10.1074/jbc.m900857200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Saccharomyces cerevisiae cells lacking the amphiphysin-like orthologs, Rvs161 or Rvs167, are unable to thrive under many stress conditions. Here we show cells lacking Rvs161 require Cdc55, the B subunit of the yeast ceramide-activated protein phosphatase, for viability under heat stress. By using specific rvs mutant alleles, we linked this lethal genetic interaction to loss of Rvs161 endocytic domain function. Recessive mutations in the sphingolipid pathway, such as deletion of the very long-chain fatty acid elongase, Sur4, suppress the osmotic growth defect of rvs161 cells. We demonstrate that Cdc55 is required for sur4-dependent suppressor activity and that protein phosphatase activation, through overexpression of CDC55 alone, can also remediate this defect. Loss of SUR4 in rvs161 cells reinitiates Ste3 a-factor receptor endocytosis and requires Cdc55 function to do so. Moreover, overexpression of CDC55 reinitiates Ste3 endocytic-dependent degradation and restores fluid phase endocytosis in rvs161 cells. In contrast, loss of SUR4 or CDC55 overexpression does not remediate the actin polarization defects of osmotic stressed rvs161 cells. Importantly, remediation of rvs161 defects by protein phosphatase activation requires the ceramide-activated protein phosphatase catalytic subunit, Sit4, and the protein phosphatase 2A catalytic subunits, Pph21/Pph22. Finally, genetic analyses reveal a synthetic lethal interaction between loss of CDC55 and gene deletions lethal with rvs161, all of which function in endocytosis.
Collapse
Affiliation(s)
- Paula C McCourt
- Pharmacogenomics Division, Medical Diagnostics Laboratories, LLC, Hamilton, New Jersey 08690, USA
| | | | | |
Collapse
|
14
|
A genomewide suppressor and enhancer analysis of cdc13-1 reveals varied cellular processes influencing telomere capping in Saccharomyces cerevisiae. Genetics 2008; 180:2251-66. [PMID: 18845848 DOI: 10.1534/genetics.108.092577] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
In Saccharomyces cerevisiae, Cdc13 binds telomeric DNA to recruit telomerase and to "cap" chromosome ends. In temperature-sensitive cdc13-1 mutants telomeric DNA is degraded and cell-cycle progression is inhibited. To identify novel proteins and pathways that cap telomeres, or that respond to uncapped telomeres, we combined cdc13-1 with the yeast gene deletion collection and used high-throughput spot-test assays to measure growth. We identified 369 gene deletions, in eight different phenotypic classes, that reproducibly demonstrated subtle genetic interactions with the cdc13-1 mutation. As expected, we identified DNA damage checkpoint, nonsense-mediated decay and telomerase components in our screen. However, we also identified genes affecting casein kinase II activity, cell polarity, mRNA degradation, mitochondrial function, phosphate transport, iron transport, protein degradation, and other functions. We also identified a number of genes of previously unknown function that we term RTC, for restriction of telomere capping, or MTC, for maintenance of telomere capping. It seems likely that many of the newly identified pathways/processes that affect growth of budding yeast cdc13-1 mutants will play evolutionarily conserved roles at telomeres. The high-throughput spot-testing approach that we describe is generally applicable and could aid in understanding other aspects of eukaryotic cell biology.
Collapse
|
15
|
Zabrocki P, Bastiaens I, Delay C, Bammens T, Ghillebert R, Pellens K, De Virgilio C, Van Leuven F, Winderickx J. Phosphorylation, lipid raft interaction and traffic of alpha-synuclein in a yeast model for Parkinson. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1767-80. [PMID: 18634833 DOI: 10.1016/j.bbamcr.2008.06.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2007] [Revised: 05/08/2008] [Accepted: 06/02/2008] [Indexed: 01/04/2023]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by the formation of Lewy bodies containing aggregated alpha-synuclein. We used a yeast model to screen for deletion mutants with mislocalization and enhanced inclusion formation of alpha-synuclein. Many of the mutants were affected in functions related to vesicular traffic but especially mutants in endocytosis and vacuolar degradation combined inclusion formation with enhanced alpha-synuclein-mediated toxicity. The screening also allowed for identification of casein kinases responsible for alpha-synuclein phosphorylation at the plasma membrane as well as transacetylases that modulate the alpha-synuclein membrane interaction. In addition, alpha-synuclein was found to associate with lipid rafts, a phenomenon dependent on the ergosterol content. Together, our data suggest that toxicity of alpha-synuclein in yeast is at least in part associated with endocytosis of the protein, vesicular recycling back to the plasma membrane and vacuolar fusion defects, each contributing to the obstruction of different vesicular trafficking routes.
Collapse
Affiliation(s)
- Piotr Zabrocki
- Laboratory of Functional Biology, Kasteelpark Arenberg 31, 3001 Heverlee, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Coll PM, Rincon SA, Izquierdo RA, Perez P. Hob3p, the fission yeast ortholog of human BIN3, localizes Cdc42p to the division site and regulates cytokinesis. EMBO J 2007; 26:1865-77. [PMID: 17363901 PMCID: PMC1847667 DOI: 10.1038/sj.emboj.7601641] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Accepted: 02/14/2007] [Indexed: 12/20/2022] Open
Abstract
Cdc42 GTPase is required for polarization in eukaryotic cells, but its spatial regulation is poorly understood. In Schizosaccharomyces pombe, Cdc42p is activated by Scd1p and Gef1p, two guanine-nucleotide exchange factors. Two-hybrid screening identified Hob3p as a Gef1p binding partner. Hob3p is a BAR domain-containing protein ortholog of human Bin3. Hob3p also interacts directly with Cdc42p independently of Gef1p. Hob3p, Cdc42p and Gef1p form a complex, and Hob3p facilitates Gef1p-Cdc42p interaction and activation. Hob3p forms a ring in the division area, similar to that of Gef1p. This localization requires actin polymerization and Cdc15p but is independent of the septation initiation network. Hob3p is required for the concentration of Cdc42p to the division area. The actomyosin ring contraction is slower in hob3Delta than in wild-type cells, and this contributes to its cytokinesis defect. Moreover, this report extends previous evidence that human Bin3 suppresses the cytokinesis phenotype of hob3Delta cells, showing that Bin3 can partially recover the GTP-Cdc42p level and its localization. These results suggest that Hob3p is required to recruit and activate Cdc42p at the cell division site and that this function might be conserved in other eukaryotes.
Collapse
Affiliation(s)
- Pedro M Coll
- Consejo Superior de Investigaciones Científicas (CSIC)/Departamento de Microbiología y Genética, Instituto de Microbiología Bioquímica, Universidad de Salamanca, Edificio Departamental, Salamanca 37007, Spain
| | | | | | | |
Collapse
|
17
|
Taxis C, Maeder C, Reber S, Rathfelder N, Miura K, Greger K, Stelzer EHK, Knop M. Dynamic organization of the actin cytoskeleton during meiosis and spore formation in budding yeast. Traffic 2007; 7:1628-42. [PMID: 17118118 DOI: 10.1111/j.1600-0854.2006.00496.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During sporulation in Saccharomyces cerevisiae, the four daughter cells (spores) are formed inside the boundaries of the mother cell. Here, we investigated the dynamics of spore assembly and the actin cytoskeleton during this process, as well as the requirements for filamentous actin during the different steps of spore formation. We found no evidence for a polarized actin cytoskeleton during sporulation. Instead, a highly dynamic network of non-polarized actin cables is present underneath the plasma membrane of the mother cell. We found that a fraction of prospore membrane (PSM) precursors are transported along the actin cables. The velocity of PSM precursors is diminished if Myo2p or Tpm1/2p function is impaired. Filamentous actin is not essential for meiotic progression, for shaping of the PSMs or for post-meiotic cytokinesis. However, actin is essential for spore wall formation. This requires the function of the Arp2/3p complex and involves large carbohydrate-rich compartments, which may be chitosome analogous structures.
Collapse
Affiliation(s)
- Christof Taxis
- Cell Biology and Biophysics Unit, EMBL, Meyerhofstr. 1, Heidelberg 69117, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Takahashi T, Furuchi T, Naganuma A. Endocytic Ark/Prk kinases play a critical role in adriamycin resistance in both yeast and mammalian cells. Cancer Res 2007; 66:11932-7. [PMID: 17178891 DOI: 10.1158/0008-5472.can-06-3220] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
To elucidate the mechanism of acquired resistance to Adriamycin, we searched for genes that, when overexpressed, render Saccharomyces cerevisiae resistant to Adriamycin. We identified AKL1, a gene of which the function is unknown but is considered, nonetheless, to be a member of the Ark/Prk kinase family, which is involved in the regulation of endocytosis, on the basis of its deduced amino acid sequence. Among tested members of the Ark/Prk kinase family (Ark1, Prk1, and Akl1), overexpressed Prk1 also conferred Adriamycin resistance on yeast cells. Prk1 is known to dissociate the Sla1/Pan1/End3 complex, which is involved in endocytosis, by phosphorylating Sla1 and Pan1 in the complex. We showed that Akl1 promotes phosphorylation of Pan1 in this complex and reduces the endocytic ability of the cell, as does Prk1. Sla1- and End3-defective yeast cells were also resistant to Adriamycin and overexpression of Akl1 in these defective cells did not increase the degree of Adriamycin resistance, suggesting that Akl1 might reduce Adriamycin toxicity by reducing the endocytic ability of cells via a mechanism that involves the Sla1/Pan1/End3 complex and the phosphorylation of Pan1. We also found that HEK293 cells that overexpressed AAK1, a member of the human Ark/Prk family, were Adriamycin resistant. Our findings suggest that endocytosis might be involved in the mechanism of Adriamycin toxicity in yeast and human cells.
Collapse
Affiliation(s)
- Tsutomu Takahashi
- Laboratory of Molecular and Biochemical Toxicology, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | | | | |
Collapse
|
19
|
Ren G, Vajjhala P, Lee JS, Winsor B, Munn AL. The BAR domain proteins: molding membranes in fission, fusion, and phagy. Microbiol Mol Biol Rev 2006; 70:37-120. [PMID: 16524918 PMCID: PMC1393252 DOI: 10.1128/mmbr.70.1.37-120.2006] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The Bin1/amphiphysin/Rvs167 (BAR) domain proteins are a ubiquitous protein family. Genes encoding members of this family have not yet been found in the genomes of prokaryotes, but within eukaryotes, BAR domain proteins are found universally from unicellular eukaryotes such as yeast through to plants, insects, and vertebrates. BAR domain proteins share an N-terminal BAR domain with a high propensity to adopt alpha-helical structure and engage in coiled-coil interactions with other proteins. BAR domain proteins are implicated in processes as fundamental and diverse as fission of synaptic vesicles, cell polarity, endocytosis, regulation of the actin cytoskeleton, transcriptional repression, cell-cell fusion, signal transduction, apoptosis, secretory vesicle fusion, excitation-contraction coupling, learning and memory, tissue differentiation, ion flux across membranes, and tumor suppression. What has been lacking is a molecular understanding of the role of the BAR domain protein in each process. The three-dimensional structure of the BAR domain has now been determined and valuable insight has been gained in understanding the interactions of BAR domains with membranes. The cellular roles of BAR domain proteins, characterized over the past decade in cells as distinct as yeasts, neurons, and myocytes, can now be understood in terms of a fundamental molecular function of all BAR domain proteins: to sense membrane curvature, to bind GTPases, and to mold a diversity of cellular membranes.
Collapse
Affiliation(s)
- Gang Ren
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland 4072, Australia
| | | | | | | | | |
Collapse
|
20
|
Friesen H, Humphries C, Ho Y, Schub O, Colwill K, Andrews B. Characterization of the yeast amphiphysins Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo. Mol Biol Cell 2006; 17:1306-21. [PMID: 16394103 PMCID: PMC1382319 DOI: 10.1091/mbc.e05-06-0476] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 12/13/2005] [Accepted: 12/27/2005] [Indexed: 11/11/2022] Open
Abstract
We have used comprehensive synthetic lethal screens and biochemical assays to examine the biological role of the yeast amphiphysin homologues Rvs161p and Rvs167p, two proteins that play a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. We found that unlike some forms of amphiphysin, Rvs161p-Rvs167p acts as an obligate heterodimer during vegetative growth and neither Rvs161p nor Rvs167p forms a homodimer in vivo. RVS161 and RVS167 have an identical set of 49 synthetic lethal interactions, revealing functions for the Rvs proteins in cell polarity, cell wall synthesis, and vesicle trafficking as well as a shared role in mating. Consistent with these roles, we show that the Rvs167p-Rvs161p heterodimer, like its amphiphysin homologues, can bind to phospholipid membranes in vitro, suggesting a role in vesicle formation and/or fusion. Our genetic screens also reveal that the interaction between Abp1p and the Rvs167p Src homology 3 (SH3) domain may be important under certain conditions, providing the first genetic evidence for a role for the SH3 domain of Rvs167p. Our studies implicate heterodimerization of amphiphysin family proteins in various functions related to cell polarity, cell integrity, and vesicle trafficking during vegetative growth and the mating response.
Collapse
Affiliation(s)
- Helena Friesen
- Department of Medical Genetics and Microbiology, Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | | | | | | | | | | |
Collapse
|
21
|
Brinkworth RI, Munn AL, Kobe B. Protein kinases associated with the yeast phosphoproteome. BMC Bioinformatics 2006; 7:47. [PMID: 16445868 PMCID: PMC1373605 DOI: 10.1186/1471-2105-7-47] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 01/31/2006] [Indexed: 02/08/2023] Open
Abstract
Background Protein phosphorylation is an extremely important mechanism of cellular regulation. A large-scale study of phosphoproteins in a whole-cell lysate of Saccharomyces cerevisiae has previously identified 383 phosphorylation sites in 216 peptide sequences. However, the protein kinases responsible for the phosphorylation of the identified proteins have not previously been assigned. Results We used Predikin in combination with other bioinformatic tools, to predict which of 116 unique protein kinases in yeast phosphorylates each experimentally determined site in the phosphoproteome. The prediction was based on the match between the phosphorylated 7-residue sequence and the predicted substrate specificity of each kinase, with the highest weight applied to the residues or positions that contribute most to the substrate specificity. We estimated the reliability of the predictions by performing a parallel prediction on phosphopeptides for which the kinase has been experimentally determined. Conclusion The results reveal that the functions of the protein kinases and their predicted phosphoprotein substrates are often correlated, for example in endocytosis, cytokinesis, transcription, replication, carbohydrate metabolism and stress response. The predictions link phosphoproteins of unknown function with protein kinases with known functions and vice versa, suggesting functions for the uncharacterized proteins. The study indicates that the phosphoproteins and the associated protein kinases represented in our dataset have housekeeping cellular roles; certain kinases are not represented because they may only be activated during specific cellular responses. Our results demonstrate the utility of our previously reported protein kinase substrate prediction approach (Predikin) as a tool for establishing links between kinases and phosphoproteins that can subsequently be tested experimentally.
Collapse
Affiliation(s)
- Ross I Brinkworth
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane 4072, Australia
| | - Alan L Munn
- Institute for Molecular Bioscience and Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane 4072, Australia
- School of Biomedical Sciences, University of Queensland, Brisbane 4072, Australia
| | - Boštjan Kobe
- School of Molecular and Microbial Sciences, University of Queensland, Brisbane 4072, Australia
- Institute for Molecular Bioscience and Special Research Centre for Functional and Applied Genomics, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
22
|
Proszynski TJ, Klemm RW, Gravert M, Hsu PP, Gloor Y, Wagner J, Kozak K, Grabner H, Walzer K, Bagnat M, Simons K, Walch-Solimena C. A genome-wide visual screen reveals a role for sphingolipids and ergosterol in cell surface delivery in yeast. Proc Natl Acad Sci U S A 2005; 102:17981-6. [PMID: 16330752 PMCID: PMC1312417 DOI: 10.1073/pnas.0509107102] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Recently synthesized proteins are sorted at the trans-Golgi network into specialized routes for exocytosis. Surprisingly little is known about the underlying molecular machinery. Here, we present a visual screen to search for proteins involved in cargo sorting and vesicle formation. We expressed a GFP-tagged plasma membrane protein in the yeast deletion library and identified mutants with altered marker localization. This screen revealed a requirement of several enzymes regulating the synthesis of sphingolipids and ergosterol in the correct and efficient delivery of the marker protein to the cell surface. Additionally, we identified mutants regulating the actin cytoskeleton (Rvs161p and Vrp1p), known membrane traffic regulators (Kes1p and Chs5p), and several unknown genes. This visual screening method can now be used for different cargo proteins to search in a genome-wide fashion for machinery involved in post-Golgi sorting.
Collapse
Affiliation(s)
- Tomasz J Proszynski
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Dephoure N, Howson RW, Blethrow JD, Shokat KM, O'Shea EK. Combining chemical genetics and proteomics to identify protein kinase substrates. Proc Natl Acad Sci U S A 2005; 102:17940-5. [PMID: 16330754 PMCID: PMC1306798 DOI: 10.1073/pnas.0509080102] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phosphorylation is a ubiquitous protein modification important for regulating nearly every aspect of cellular biology. Protein kinases are highly conserved and constitute one of the largest gene families. Identifying the substrates of a kinase is essential for understanding its cellular role, but doing so remains a difficult task. We have developed a high-throughput method to identify substrates of yeast protein kinases that employs a collection of yeast strains each expressing a single epitope-tagged protein and a chemical genetic strategy that permits kinase reactions to be performed in native, whole-cell extracts. Using this method, we screened 4,250 strains expressing epitope-tagged proteins and identified 24 candidate substrates of the Pho85-Pcl1 cyclin-dependent kinase, including the known substrate Rvs167. The power of this method to identify true kinase substrates is strongly supported by functional overlap and colocalization of candidate substrates and the kinase, as well as by the specificity of Pho85-Pcl1 for some of the substrates compared with another Pho85-cyclin kinase complex. This method is readily adaptable to other yeast kinases.
Collapse
Affiliation(s)
- Noah Dephoure
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | | | | | | | |
Collapse
|
24
|
Kurischko C, Weiss G, Ottey M, Luca FC. A role for the Saccharomyces cerevisiae regulation of Ace2 and polarized morphogenesis signaling network in cell integrity. Genetics 2005; 171:443-55. [PMID: 15972461 PMCID: PMC1456762 DOI: 10.1534/genetics.105.042101] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 06/14/2005] [Indexed: 01/11/2023] Open
Abstract
Saccharomyces cerevisiae RAM is a conserved signaling network that regulates maintenance of polarized growth and daughter-cell-specific transcription, the latter of which is critical for septum degradation. Consequently, cells defective in RAM function (designated ramDelta) are round in morphology, form feeble mating projections, and fail to separate following cytokinesis. It was recently demonstrated that RAM genes are essential in strains containing functional SSD1 (SSD1-v), which encodes a protein of unknown function that binds the RAM Cbk1p kinase. Here we investigated the essential function of RAM in SSD1-v strains and identified two functional groups of dosage suppressors for ramDelta lethality. We establish that all ramDelta mutants exhibit cell integrity defects and cell lysis. All dosage suppressors rescue the lysis but not the cell polarity or cell separation defects of ramDelta cells. One class of dosage suppressors is composed of genes encoding cell wall proteins, indicating that alterations in cell wall structure can rescue the cell lysis in ramDelta cells. Another class of ramDelta dosage suppressors is composed of ZRG8 and SRL1, which encode two unrelated proteins of unknown function. We establish that ZRG8 and SRL1 share similar genetic interactions and phenotypes. Significantly, Zrg8p coprecipitates with Ssd1p, localizes similarly to RAM proteins, and is dependent on RAM for localization. Collectively, these data indicate that RAM and Ssd1p function cooperatively to control cell integrity and suggest that Zrg8p and Srl1p function as nonessential inhibitors of Ssd1p.
Collapse
Affiliation(s)
- Cornelia Kurischko
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | | | |
Collapse
|
25
|
Talarek N, Balguerie A, Aigle M, Durrens P. A novel link between a rab GTPase and Rvs proteins: the yeast amphiphysin homologues. Cell Biochem Funct 2005; 23:253-66. [PMID: 15473003 DOI: 10.1002/cbf.1146] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The BAR proteins are a well-conserved family of proteins including Rvsp in yeast, amphiphysins and Bin proteins in mammals. In yeast, as in mammals, BAR proteins are known to be implicated in vesicular traffic. The Gyp5p (Ypl249p) and Ymr192p proteins interact in two-hybrid tests with both Rvs161p and Rvs167p. Gyp5p is a Ypt/Rab-specific GAP and Ymr192p is highly similar to Gyp5p. To specify the interaction between Rvsp and Gyp5p, we used two-hybrid tests to determine the domains necessary for these interactions. The specific SH3 domain of Rvs167p interacted with the N-terminal domain of Gyp5p. Moreover, Gyp5p could form a homodimer. Fus2 protein is a specific partner of Rvs161p in two-hybrid tests. To characterize the functional relationships between these five proteins, we have studied cellular phenotypes in single, double and triple mutant strains for which rvs mutants present defects, such as polarity, cell fusion and meiosis. Phenotypic analysis showed that Gyp5p, Ymr192p and Fus2p were involved in bipolar budding pattern and in meiosis. Specific epistasis or suppressive phenomena were found between the five mutations. Finally, The Gyp5p-GFP fusion protein was localized at the bud tip during apical growth and at the mother-bud neck during cytokinesis. Moreover, Rvs167p and Rvs161p were shown to be essential for the correct localization of Gyp5p. Altogether, these data support the hypothesis that both Rvsp proteins act in vesicular traffic through physical and functional interactions with Ypt/Rab regulators.
Collapse
|
26
|
Huang TY, Renaud-Young M, Young D. Nak1 interacts with Hob1 and Wsp1 to regulate cell growth and polarity in Schizosaccharomyces pombe. J Cell Sci 2005; 118:199-210. [PMID: 15615784 DOI: 10.1242/jcs.01608] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that Nak1, a group-II germinal center (GC) kinase, is essential for polarized growth in Schizosaccharomyces pombe. Here, we provide evidence that Nak1 regulates cell growth and polarity, in part, through its interactions with Hob1 (an Rvs167/amphiphysin homolog) and Wsp1 (Wiskott-Aldrich-syndrome-protein homolog). We found that Nak1, Hob1 and Wsp1 interact physically, and that both Hob1/green-fluorescent-protein (Hob1-GFP) and Wsp1-GFP fusion proteins localized to F-actin patches at growing cell ends and medial division sites. Hob1-GFP was dissociated from patches in cells lacking Wsp1. Also, Hob1 overexpression dissociated Wsp1-GFP from foci, inhibited Wsp1-directed F-actin formation in vitro and partially restored polarity defects associated with Wsp1 overexpression or nak1 repression. Furthermore, loss of both Wsp1 and Hob1 resulted in rounded cells, slow growth and multiple septae. Together, these observations suggest that Hob1 and Wsp1 cooperate to mediate cell polarity, growth and division. Repression of nak1 resulted in a random redistribution of Hob1-GFP and Wsp1-GFP foci, and inhibition of Wsp1-directed F-actin formation in vitro. Furthermore, hob1delta and wsp1delta mutants exhibited synthetic growth defects in combination with nak1 repression, suggesting that Nak1 has redundant functions with Hob1 and Wsp1. Collectively, our results suggest that Nak1 both regulates and cooperates with Hob1 and Wsp1 to promote F-actin formation and polarized cell growth.
Collapse
Affiliation(s)
- Timothy Y Huang
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
27
|
Sagot I, Schaeffer J, Daignan-Fornier B. Guanylic nucleotide starvation affects Saccharomyces cerevisiae mother-daughter separation and may be a signal for entry into quiescence. BMC Cell Biol 2005; 6:24. [PMID: 15869715 PMCID: PMC1274246 DOI: 10.1186/1471-2121-6-24] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2005] [Accepted: 05/04/2005] [Indexed: 11/10/2022] Open
Abstract
Background Guanylic nucleotides are both macromolecules constituents and crucial regulators for a variety of cellular processes. Therefore, their intracellular concentration must be strictly controlled. Consistently both yeast and mammalian cells tightly correlate the transcription of genes encoding enzymes critical for guanylic nucleotides biosynthesis with the proliferation state of the cell population. Results To gain insight into the molecular relationships connecting intracellular guanylic nucleotide levels and cellular proliferation, we have studied the consequences of guanylic nucleotide limitation on Saccharomyces cerevisiae cell cycle progression. We first utilized mycophenolic acid, an immunosuppressive drug that specifically inhibits inosine monophosphate dehydrogenase, the enzyme catalyzing the first committed step in de novo GMP biosynthesis. To approach this system physiologically, we next developed yeast mutants for which the intracellular guanylic nucleotide pools can be modulated through changes of growth conditions. In both the pharmacological and genetic approaches, we found that guanylic nucleotide limitation generated a mother-daughter separation defect, characterized by cells with two unseparated daughters. We then showed that this separation defect resulted from cell wall perturbations but not from impaired cytokinesis. Importantly, cells with similar separation defects were found in a wild type untreated yeast population entering quiescence upon nutrient limitation. Conclusion Our results demonstrate that guanylic nucleotide limitation slows budding yeast cell cycle progression, with a severe pause in telophase. At the cellular level, guanylic nucleotide limitation causes the emergence of cells with two unseparated daughters. By fluorescence and electron microscopy, we demonstrate that this phenotype arises from defects in cell wall partition between mother and daughter cells. Because cells with two unseparated daughters are also observed in a wild type population entering quiescence, our results reinforce the hypothesis that guanylic nucleotide intracellular pools contribute to a signal regulating both cell proliferation and entry into quiescence.
Collapse
Affiliation(s)
- Isabelle Sagot
- Institut de Biochimie et Génétique Cellulaires, UMR CNRS 5095 – Université Victor Segalen / Bordeaux II 1, rue Camille Saint Saëns – F-33077 Bordeaux Cedex – France
| | - Jacques Schaeffer
- Institut de Biochimie et Génétique Cellulaires, UMR CNRS 5095 – Université Victor Segalen / Bordeaux II 1, rue Camille Saint Saëns – F-33077 Bordeaux Cedex – France
| | - Bertrand Daignan-Fornier
- Institut de Biochimie et Génétique Cellulaires, UMR CNRS 5095 – Université Victor Segalen / Bordeaux II 1, rue Camille Saint Saëns – F-33077 Bordeaux Cedex – France
| |
Collapse
|
28
|
Friesen H, Colwill K, Robertson K, Schub O, Andrews B. Interaction of the Saccharomyces cerevisiae cortical actin patch protein Rvs167p with proteins involved in ER to Golgi vesicle trafficking. Genetics 2005; 170:555-68. [PMID: 15802519 PMCID: PMC1450407 DOI: 10.1534/genetics.104.040063] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We have used affinity chromatography to identify two proteins that bind to the SH3 domain of the actin cytoskeleton protein Rvs167p: Gyp5p and Gyl1p. Gyp5p has been shown to be a GTPase activating protein (GAP) for Ypt1p, a Rab GTPase involved in ER to Golgi trafficking; Gyl1p is a protein that resembles Gyp5p and has recently been shown to colocalize with and belong to the same protein complex as Gyp5p. We show that Gyl1p and Gyp5p interact directly with each other, likely through their carboxy-terminal coiled-coil regions. In assays of GAP activity, Gyp5p had GAP activity toward Ypt1p and we found that this activity was stimulated by the addition of Gyl1p. Gyl1p had no GAP activity toward Ypt1p. Genetic experiments suggest a role for Gyp5p and Gyl1p in ER to Golgi trafficking, consistent with their biochemical role. Since Rvs167p has a previously characterized role in endocytosis and we have shown here that it interacts with proteins involved in Golgi vesicle trafficking, we suggest that Rvs167p may have a general role in vesicle trafficking.
Collapse
Affiliation(s)
- Helena Friesen
- Department of Molecular and Medical Genetics, University of Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
29
|
Ceulemans H, Bollen M. Functional diversity of protein phosphatase-1, a cellular economizer and reset button. Physiol Rev 2004; 84:1-39. [PMID: 14715909 DOI: 10.1152/physrev.00013.2003] [Citation(s) in RCA: 490] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The protein serine/threonine phosphatase protein phosphatase-1 (PP1) is a ubiquitous eukaryotic enzyme that regulates a variety of cellular processes through the dephosphorylation of dozens of substrates. This multifunctionality of PP1 relies on its association with a host of function-specific targetting and substrate-specifying proteins. In this review we discuss how PP1 affects the biochemistry and physiology of eukaryotic cells. The picture of PP1 that emerges from this analysis is that of a "green" enzyme that promotes the rational use of energy, the recycling of protein factors, and a reversal of the cell to a basal and/or energy-conserving state. Thus PP1 promotes a shift to the more energy-efficient fuels when nutrients are abundant and stimulates the storage of energy in the form of glycogen. PP1 also enables the relaxation of actomyosin fibers, the return to basal patterns of protein synthesis, and the recycling of transcription and splicing factors. In addition, PP1 plays a key role in the recovery from stress but promotes apoptosis when cells are damaged beyond repair. Furthermore, PP1 downregulates ion pumps and transporters in various tissues and ion channels that are involved in the excitation of neurons. Finally, PP1 promotes the exit from mitosis and maintains cells in the G1 or G2 phases of the cell cycle.
Collapse
Affiliation(s)
- Hugo Ceulemans
- Afdeling Biochemie, Faculteit Geneeskunde, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
30
|
Friesen H, Murphy K, Breitkreutz A, Tyers M, Andrews B. Regulation of the yeast amphiphysin homologue Rvs167p by phosphorylation. Mol Biol Cell 2003; 14:3027-40. [PMID: 12857883 PMCID: PMC165695 DOI: 10.1091/mbc.e02-09-0613] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The yeast amphiphysin homologue Rvs167p plays a role in regulation of the actin cytoskeleton, endocytosis, and sporulation. Rvs167p is a phosphoprotein in vegetatively growing cells and shows increased phosphorylation upon treatment with mating pheromone. Previous work has shown that Rvs167p can be phosphorylated in vitro by the cyclin-dependent kinase Pho85p complexed with its cyclin Pcl2p. Using chymotryptic phosphopeptide mapping, we have identified the sites on which Rvs167p is phosphorylated in vitro by Pcl2p-Pho85p. We have shown that these same sites are phosphorylated in vivo during vegetative growth and that phosphorylation at two of these sites is Pcl-Pho85p dependent. In cells treated with mating pheromone, the MAP kinase Fus3p is needed for full phosphorylation of Rvs167p. Functional genomics and genetics experiments revealed that mutation of other actin cytoskeleton genes compromises growth of a strain in which phosphorylation of Rvs167p is blocked by mutation. Phosphorylation of Rvs167p inhibits its interaction in vitro with Las17p, an activator of the Arp2/3 complex, as well as with a novel protein, Ymr192p. Our results suggest that phosphorylation of Rvs167p by a cyclin-dependent kinase and by a MAP kinase is an important mechanism for regulating protein complexes involved in actin cytoskeleton function.
Collapse
Affiliation(s)
- Helena Friesen
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Canada, M5S 1A8
| | | | | | | | | |
Collapse
|
31
|
Balguerie A, Bagnat M, Bonneu M, Aigle M, Breton AM. Rvs161p and sphingolipids are required for actin repolarization following salt stress. EUKARYOTIC CELL 2002; 1:1021-31. [PMID: 12477802 PMCID: PMC138763 DOI: 10.1128/ec.1.6.1021-1031.2002] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Saccharomyces cerevisiae, the actin cytoskeleton is depolarized by NaCl stress. In this study, the response was maximal after 30 min, and then actin patches repolarized. Rvs161p was required for actin repolarization because the rvs161delta mutant did not repolarize actin patches after growth in a salt medium. Mutations suppressing the rvs161delta-related salt sensitivity all occurred in genes required for sphingolipid biosynthesis: FEN1, SUR4, SUR2, SUR1, and IPT1. These suppressors also suppressed act1-1-related salt sensitivity and the defect in actin repolarization of the rvs161delta mutant, providing a link between sphingolipids and actin polarization. Indeed, deletion of the suppressor genes suppressed the rvs161delta defect in actin repolarization in two ways: either actin was not depolarized at the wild-type level in a set of suppressor mutants, or actin was repolarized in the absence of Rvs161p in the other suppressor mutants. Rvs161p was localized as cortical patches that concentrated at polarization sites, i.e., bud emergence and septa, and was found to be associated with lipid rafts. An important link between sphingolipids and actin polarization is that Rvs161p was required for actin repolarization and was found to be located in lipid rafts.
Collapse
Affiliation(s)
- Axelle Balguerie
- Institut de Biochimie et Génétique Cellulaires, CNRS UMR 5095, F-33077 Bordeaux Cedex, France
| | | | | | | | | |
Collapse
|
32
|
Li H, Pagé N, Bussey H. Actin patch assembly proteins Las17p and Sla1p restrict cell wall growth to daughter cells and interact with cis-Golgi protein Kre6p. Yeast 2002; 19:1097-112. [PMID: 12237851 DOI: 10.1002/yea.904] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytoplasmic tail of Kre6p, a Golgi membrane protein involved in cell wall synthesis, interacts with the actin patch assembly components Las17p and Sla1p in a two-hybrid assay, and Kre6p co-immunoprecipitates with Las17p. Kre6p showed extensive co-localization with Och1p-containing cis-Golgi vesicles. The correct localization of Kre6p requires its cytoplasmic tail, Las17p, Sla1p and Vrp1p, suggesting that the cytoplasmic tail of Kre6p acts as a receptor, linking this cis-Golgi protein to Las17p and Sla1p. The actin patch assembly mutants las17 delta, sla1delta and vrp1 delta showed elevated levels of cell wall beta-1,6-glucan, and mutant cells were capable of only a limited number of cell divisions compared to wild-type. EM image analysis and beta-1,6-glucan localization indicated abnormal wall proliferation in the mother cells of these mutants. The pattern of cell wall hypertrophy indicates a failure to restrict cell wall growth to the bud.
Collapse
Affiliation(s)
- Huijuan Li
- Department of Biology, McGill University, Montreal H3A 1B1, Canada
| | | | | |
Collapse
|
33
|
Henry KR, D'Hondt K, Chang J, Newpher T, Huang K, Hudson RT, Riezman H, Lemmon SK. Scd5p and clathrin function are important for cortical actin organization, endocytosis, and localization of sla2p in yeast. Mol Biol Cell 2002; 13:2607-25. [PMID: 12181333 PMCID: PMC117929 DOI: 10.1091/mbc.e02-01-0012] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
SCD5 was identified as a multicopy suppressor of clathrin HC-deficient yeast. SCD5 is essential, but an scd5-Delta338 mutant, expressing Scd5p with a C-terminal truncation of 338 amino acids, is temperature sensitive for growth. Further studies here demonstrate that scd5-Delta338 affects receptor-mediated and fluid-phase endocytosis and normal actin organization. The scd5-Delta338 mutant contains larger and depolarized cortical actin patches and a prevalence of G-actin bars. scd5-Delta338 also displays synthetic negative genetic interactions with mutations in several other proteins important for cortical actin organization and endocytosis. Moreover, Scd5p colocalizes with cortical actin. Analysis has revealed that clathrin-deficient yeast also have a major defect in cortical actin organization and accumulate G-actin. Overexpression of SCD5 partially suppresses the actin defect of clathrin mutants, whereas combining scd5-Delta338 with a clathrin mutation exacerbates the actin and endocytic phenotypes. Both Scd5p and yeast clathrin physically associate with Sla2p, a homologue of the mammalian huntingtin interacting protein HIP1 and the related HIP1R. Furthermore, Sla2p localization at the cell cortex is dependent on Scd5p and clathrin function. Therefore, Scd5p and clathrin are important for actin organization and endocytosis, and Sla2p may provide a critical link between clathrin and the actin cytoskeleton in yeast, similar to HIP1(R) in animal cells.
Collapse
Affiliation(s)
- Kenneth R Henry
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland Ohio 44106, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Zhang B, Zelhof AC. Amphiphysins: raising the BAR for synaptic vesicle recycling and membrane dynamics. Bin-Amphiphysin-Rvsp. Traffic 2002; 3:452-60. [PMID: 12047553 DOI: 10.1034/j.1600-0854.2002.30702.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Amphiphysins, members of the BAR (Bin-Amphiphysin-Rvsp) protein super family, have been postulated to play a key role in clathrin-mediated endocytosis of synaptic vesicles (SVs). This review focuses on recent genetic studies of the role of amphiphysins in SV recycling and membrane morphogenesis. In the mouse, brain-specific amphiphysin I and II regulate, but are not essential for, SV recycling. The role of this regulation appears important, as mice deficient in these proteins have seizures and are deficient in learning and memory. In the fruit fly Drosophila melanogaster, amphiphysin is found in muscles and is enriched at postsynaptic membranes of neuromuscular junctions (NMJs); however, it does not play a role in SV recycling. Rather, amphiphysin in fly muscles appears to regulate the organization and structure of the muscle T-tubule system and possibly the subsynaptic reticulum. Amphiphysin is also involved in membrane organization in both neurons and non-neuronal cells in Drosophila. These studies reveal pleiotropic functions for amphiphysins in clathrin-mediated endocytosis and the regulation of membrane dynamics, perhaps through the actin cytoskeleton.
Collapse
Affiliation(s)
- Bing Zhang
- Section of Neurobiology, University of Texas, Austin, TX 78712, USA.
| | | |
Collapse
|
35
|
Current awareness on yeast. Yeast 2001. [PMID: 11746606 DOI: 10.1002/yea.691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|