1
|
Horn G, Frielingsdorf F, Demel T, Rothmiller S, Worek F, Amend N. Concentration-dependent effects of the nerve agents cyclosarin and VX on cytochrome P450 in a HepaRG cell-based liver model. J Appl Toxicol 2024. [PMID: 39228234 DOI: 10.1002/jat.4694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/05/2024]
Abstract
The exposure to highly toxic organophosphorus (OP) compounds, including pesticides and nerve agents, is an ongoing medical challenge. OP can induce the uncontrolled overstimulation of the cholinergic system through inhibition of the enzyme acetylcholinesterase (AChE). The cytochrome P450 (CYP) enzymes in the liver play a predominant role in the metabolism of xenobiotics and are involved in the oxidative biotransformation of most clinical drugs. Previous research concerning the interactions between OP and CYP has usually focused on organothiophosphate pesticides that require CYP-mediated bioactivation to their active oxon metabolites to act as inhibitors of AChE. Since there has been little data available concerning the effect of nerve agents on CYP, we performed a study with cyclosarin (GF) and O-ethyl-S-[2-(diisopropylamino)-ethyl]-methylphosphonothioate (VX) by using a well-established, metabolically competent in vitro liver model (HepaRG cells). The inhibitory effect of the nerve agents GF and VX on the CYP3A4 enzyme was investigated showing a low CYP3A4 inhibitory potency. Changes on the transcription level of CYP and associated oxygenases were evaluated by quantitative reverse transcription polymerase chain reaction (qRT-PCR) using the two nerve agent concentrations 250 nM and 250 μM. In conclusion, the results demonstrated various effects on oxygenase-associated genes in dependence of the concentration and the structure of the nerve agent. Such information might be of relevance for potential interactions between nerve agents, antidotes or other clinically administered drugs, which are metabolized by the affected CYP, for example, for the therapy with benzodiazepines, that are used for the symptomatic treatment of OP poisoning and that require CYP-mediated biotransformation.
Collapse
Affiliation(s)
- Gabriele Horn
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | | | - Tobias Demel
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Simone Rothmiller
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Franz Worek
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| | - Niko Amend
- Bundeswehr Institute of Pharmacology and Toxicology, Munich, Germany
| |
Collapse
|
2
|
Itoh H, Yamashita N, Kamijo S, Masuda K, Kato H, Yamaori S. Effects of acidic non-steroidal anti-inflammatory drugs on human cytochrome P450 4A11 activity: Roles of carboxylic acid and a sulfur atom in potent inhibition by sulindac sulfide. Chem Biol Interact 2023; 382:110644. [PMID: 37499995 DOI: 10.1016/j.cbi.2023.110644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Cytochrome P450 4A11 (CYP4A11) has many endogenous and exogenous compounds containing a carboxyl group in their structure as substrates. If drugs with this characteristic potently attenuate the catalytic function of CYP4A11, drug-drug interactions may occur. Acidic non-steroidal anti-inflammatory drugs (NSAIDs) possess a carboxylic acid in their structure. However, it remains unclear whether these drugs inhibit CYP4A11 activity. The present study examined the inhibitory effects of acidic NSAIDs on CYP4A11 activity using human liver microsomes (HLMs) and recombinant CYP4A11. Sulindac sulfide, ibuprofen, and flurbiprofen effectively decreased the luciferin-4A O-demethylase activity of HLMs and recombinant CYP4A11 (inhibition rates of 30-96% at an inhibitor concentration of 100 μM), while salicylic acid, aspirin, diclofenac, mefenamic acid, indomethacin, etodolac, ketoprofen, loxoprofen, S-naproxen, pranoprofen, zaltoprofen, and oxaprozin exhibited weaker inhibitory activity (inhibition rates up to 23%). Among the drugs tested, sulindac sulfide was the most potent inhibitor of CYP4A11 activity. A kinetic analysis of the inhibition of CYP4A11 by sulindac sulfide revealed mixed-type inhibition for HLMs (Ki = 3.38 μM) and recombinant CYP4A11 (Ki = 4.19 μM). Sulindac sulfide is a pharmacologically active metabolite of sulindac (sulfoxide form), which is also oxidized to sulindac sulfone. To elucidate the role of a sulfur atom of sulindac sulfide in the inhibition of CYP4A11, the inhibitory effects of sulindac sulfide and its oxidized forms on CYP4A11 activity were examined. The potency of inhibition against HLMs was greater in the order of sulindac sulfide, sulindac, and sulindac sulfone; IC50 values were 6.16, 52.7, and 71.6 μM, respectively. The present results indicate that sulindac sulfide is a potent inhibitor of CYP4A11. These results and the molecular modeling of CYP4A11 with sulindac sulfide and its oxidized forms suggest that a sulfur atom of sulindac sulfide as well as its carboxylic acid play important roles in the inhibition of CYP4A11.
Collapse
Affiliation(s)
- Hisataka Itoh
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Naho Yamashita
- School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shinobu Kamijo
- Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Kazufumi Masuda
- Department of Physical Chemistry, Graduate School of Clinical Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Hisato Kato
- Department of Physical Chemistry, Graduate School of Clinical Pharmacy, Shujitsu University, 1-6-1 Nishigawara, Naka-ku, Okayama, 703-8516, Japan
| | - Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan; Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| |
Collapse
|
3
|
Ranea-Robles P, Houten SM. The biochemistry and physiology of long-chain dicarboxylic acid metabolism. Biochem J 2023; 480:607-627. [PMID: 37140888 PMCID: PMC10214252 DOI: 10.1042/bcj20230041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/05/2023]
Abstract
Mitochondrial β-oxidation is the most prominent pathway for fatty acid oxidation but alternative oxidative metabolism exists. Fatty acid ω-oxidation is one of these pathways and forms dicarboxylic acids as products. These dicarboxylic acids are metabolized through peroxisomal β-oxidation representing an alternative pathway, which could potentially limit the toxic effects of fatty acid accumulation. Although dicarboxylic acid metabolism is highly active in liver and kidney, its role in physiology has not been explored in depth. In this review, we summarize the biochemical mechanism of the formation and degradation of dicarboxylic acids through ω- and β-oxidation, respectively. We will discuss the role of dicarboxylic acids in different (patho)physiological states with a particular focus on the role of the intermediates and products generated through peroxisomal β-oxidation. This review is expected to increase the understanding of dicarboxylic acid metabolism and spark future research.
Collapse
Affiliation(s)
- Pablo Ranea-Robles
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, U.S.A
| |
Collapse
|
4
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Vleminckx C, Wallace H, Barregård L, Ceccatelli S, Cravedi J, Halldorsson TI, Haug LS, Johansson N, Knutsen HK, Rose M, Roudot A, Van Loveren H, Vollmer G, Mackay K, Riolo F, Schwerdtle T. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J 2020; 18:e06223. [PMID: 32994824 PMCID: PMC7507523 DOI: 10.2903/j.efsa.2020.6223] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The European Commission asked EFSA for a scientific evaluation on the risks to human health related to the presence of perfluoroalkyl substances (PFASs) in food. Based on several similar effects in animals, toxicokinetics and observed concentrations in human blood, the CONTAM Panel decided to perform the assessment for the sum of four PFASs: PFOA, PFNA, PFHxS and PFOS. These made up half of the lower bound (LB) exposure to those PFASs with available occurrence data, the remaining contribution being primarily from PFASs with short half-lives. Equal potencies were assumed for the four PFASs included in the assessment. The mean LB exposure in adolescents and adult age groups ranged from 3 to 22, the 95th percentile from 9 to 70 ng/kg body weight (bw) per week. Toddlers and 'other children' showed a twofold higher exposure. Upper bound exposure was 4- to 49-fold higher than LB levels, but the latter were considered more reliable. 'Fish meat', 'Fruit and fruit products' and 'Eggs and egg products' contributed most to the exposure. Based on available studies in animals and humans, effects on the immune system were considered the most critical for the risk assessment. From a human study, a lowest BMDL 10 of 17.5 ng/mL for the sum of the four PFASs in serum was identified for 1-year-old children. Using PBPK modelling, this serum level of 17.5 ng/mL in children was estimated to correspond to long-term maternal exposure of 0.63 ng/kg bw per day. Since accumulation over time is important, a tolerable weekly intake (TWI) of 4.4 ng/kg bw per week was established. This TWI also protects against other potential adverse effects observed in humans. Based on the estimated LB exposure, but also reported serum levels, the CONTAM Panel concluded that parts of the European population exceed this TWI, which is of concern.
Collapse
|
5
|
Hajeyah AA, Griffiths WJ, Wang Y, Finch AJ, O’Donnell VB. The Biosynthesis of Enzymatically Oxidized Lipids. Front Endocrinol (Lausanne) 2020; 11:591819. [PMID: 33329396 PMCID: PMC7711093 DOI: 10.3389/fendo.2020.591819] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022] Open
Abstract
Enzymatically oxidized lipids are a specific group of biomolecules that function as key signaling mediators and hormones, regulating various cellular and physiological processes from metabolism and cell death to inflammation and the immune response. They are broadly categorized as either polyunsaturated fatty acid (PUFA) containing (free acid oxygenated PUFA "oxylipins", endocannabinoids, oxidized phospholipids) or cholesterol derivatives (oxysterols, steroid hormones, and bile acids). Their biosynthesis is accomplished by families of enzymes that include lipoxygenases (LOX), cyclooxygenases (COX), cytochrome P450s (CYP), and aldo-keto reductases (AKR). In contrast, non-enzymatically oxidized lipids are produced by uncontrolled oxidation and are broadly considered to be harmful. Here, we provide an overview of the biochemistry and enzymology of LOXs, COXs, CYPs, and AKRs in humans. Next, we present biosynthetic pathways for oxylipins, oxidized phospholipids, oxysterols, bile acids and steroid hormones. Last, we address gaps in knowledge and suggest directions for future work.
Collapse
Affiliation(s)
- Ali A. Hajeyah
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
- *Correspondence: Ali A. Hajeyah,
| | - William J. Griffiths
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Yuqin Wang
- Institute of Life Science, Swansea University Medical School, Swansea, United Kingdom
| | - Andrew J. Finch
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Valerie B. O’Donnell
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
6
|
Bougarne N, Weyers B, Desmet SJ, Deckers J, Ray DW, Staels B, De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr Rev 2018; 39:760-802. [PMID: 30020428 DOI: 10.1210/er.2018-00064] [Citation(s) in RCA: 471] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator-activated receptor α (PPARα) is a nuclear receptor of clinical interest as a drug target in various metabolic disorders. PPARα also exhibits marked anti-inflammatory capacities. The first-generation PPARα agonists, the fibrates, have however been hampered by drug-drug interaction issues, statin drop-in, and ill-designed cardiovascular intervention trials. Notwithstanding, understanding the molecular mechanisms by which PPARα works will enable control of its activities as a drug target for metabolic diseases with an underlying inflammatory component. Given its role in reshaping the immune system, the full potential of this nuclear receptor subtype as a versatile drug target with high plasticity becomes increasingly clear, and a novel generation of agonists may pave the way for novel fields of applications.
Collapse
Affiliation(s)
- Nadia Bougarne
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Basiel Weyers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Sofie J Desmet
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| | - Julie Deckers
- Department of Internal Medicine, Ghent University, Ghent, Belgium
- Laboratory of Immunoregulation, VIB Center for Inflammation Research, Ghent (Zwijnaarde), Belgium
| | - David W Ray
- Division of Metabolism and Endocrinology, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, United Kingdom
| | - Bart Staels
- Université de Lille, U1011-European Genomic Institute for Diabetes, Lille, France
- INSERM, U1011, Lille, France
- Centre Hospitalier Universitaire de Lille, Lille, France
- Institut Pasteur de Lille, Lille, France
| | - Karolien De Bosscher
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Receptor Research Laboratories, Nuclear Receptor Laboratory, VIB Center for Medical Biotechnology, Ghent, Belgium
| |
Collapse
|
7
|
Qiao X, Li Y, Mai J, Ji X, Li Q. Effect of Dibutyltin Dilaurate on Triglyceride Metabolism through the Inhibition of the mTOR Pathway in Human HL7702 Liver Cells. Molecules 2018; 23:E1654. [PMID: 29986449 PMCID: PMC6099942 DOI: 10.3390/molecules23071654] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Dibutyltin dilaurate (DBTD) has multiple applications in daily life. However, DBTD is easily deposited in the liver and affects liver functions. This study was designed to explore the effects of DBTD on triglyceride metabolism in human normal hepatocyte HL7702 cells. Our results showed that the intracellular fat contents were dose-dependently decreased by DBTD. The expression of lipolysis genes and proteins were elevated while the lipogenesis genes and proteins were diminished by DBTD. The phosphorylation levels of ribosomal S6 kinase 1 were reduced by both rapamycin and DBTD, indicating that the mTOR pathway was suppressed possibly. The decreased sterol regulatory element-binding protein 1C (SREBP1C) transcription levels, as well as the increased peroxisome proliferator-activated receptor alpha (PPARα) transcription levels, caused by rapamycin and DBTD corresponded to the inactive mTOR pathway. In conclusion, it was possible that DBTD reduced the intracellular triglyceride through depressing the mTOR pathway and affecting its downstream transcription factors.
Collapse
Affiliation(s)
- Xiaozhi Qiao
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Yunlan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China.
| | - Jiaqi Mai
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Xiaoqing Ji
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
| | - Qingshan Li
- School of Pharmaceutical Science, Shanxi Medical University, Taiyuan 030001, China.
- Department of Traditional Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong 030619, China.
| |
Collapse
|
8
|
Albertolle ME, Kim D, Nagy LD, Yun CH, Pozzi A, Savas Ü, Johnson EF, Guengerich FP. Heme-thiolate sulfenylation of human cytochrome P450 4A11 functions as a redox switch for catalytic inhibition. J Biol Chem 2017; 292:11230-11242. [PMID: 28533430 DOI: 10.1074/jbc.m117.792200] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/16/2017] [Indexed: 11/06/2022] Open
Abstract
Cytochrome P450 (P450, CYP) 4A11 is a human fatty acid ω-hydroxylase that catalyzes the oxidation of arachidonic acid to the eicosanoid 20-hydroxyeicosatetraenoic acid (20-HETE), which plays important roles in regulating blood pressure regulation. Variants of P450 4A11 have been associated with high blood pressure and resistance to anti-hypertensive drugs, and 20-HETE has both pro- and antihypertensive properties relating to increased vasoconstriction and natriuresis, respectively. These physiological activities are likely influenced by the redox environment, but the mechanisms are unclear. Here, we found that reducing agents (e.g. dithiothreitol and tris(2-carboxyethyl)phosphine) strongly enhanced the catalytic activity of P450 4A11, but not of 10 other human P450s tested. Conversely, added H2O2 attenuated P450 4A11 catalytic activity. Catalytic roles of five of the potentially eight implicated Cys residues of P450 4A11 were eliminated by site-directed mutagenesis. Using an isotope-coded dimedone/iododimedone-labeling strategy and mass spectrometry of peptides, we demonstrated that the heme-thiolate cysteine (Cys-457) is selectively sulfenylated in an H2O2 concentration-dependent manner. This sulfenylation could be reversed by reducing agents, including dithiothreitol and dithionite. Of note, we observed heme ligand cysteine sulfenylation of P450 4A11 ex vivo in kidneys and livers derived from CYP4A11 transgenic mice. We also detected sulfenylation of murine P450 4a12 and 4b1 heme peptides in kidneys. To our knowledge, reversible oxidation of the heme thiolate has not previously been observed in P450s and may have relevance for 20-HETE-mediated functions.
Collapse
Affiliation(s)
- Matthew E Albertolle
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Donghak Kim
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146.,the Department of Biological Sciences, Konkuk University, Seoul 05025, Korea
| | - Leslie D Nagy
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Chul-Ho Yun
- the School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Ambra Pozzi
- the Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232-6602.,the Veterans Affairs Medical Center, Nashville, Tennessee 37232, and
| | - Üzen Savas
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Eric F Johnson
- the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - F Peter Guengerich
- From the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146,
| |
Collapse
|
9
|
Uno Y, Uehara S, Yamazaki H. Utility of non-human primates in drug development: Comparison of non-human primate and human drug-metabolizing cytochrome P450 enzymes. Biochem Pharmacol 2016; 121:1-7. [DOI: 10.1016/j.bcp.2016.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/14/2016] [Indexed: 01/15/2023]
|
10
|
Komatsu M, Kimura T, Yazaki M, Tanaka N, Yang Y, Nakajima T, Horiuchi A, Fang ZZ, Joshita S, Matsumoto A, Umemura T, Tanaka E, Gonzalez FJ, Ikeda SI, Aoyama T. Steatogenesis in adult-onset type II citrullinemia is associated with down-regulation of PPARα. Biochim Biophys Acta Mol Basis Dis 2014; 1852:473-81. [PMID: 25533124 DOI: 10.1016/j.bbadis.2014.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 12/09/2014] [Accepted: 12/15/2014] [Indexed: 12/13/2022]
Abstract
SLC25A13 (citrin or aspartate-glutamate carrier 2) is located in the mitochondrial membrane in the liver and its genetic deficiency causes adult-onset type II citrullinemia (CTLN2). CTLN2 is one of the urea cycle disorders characterized by sudden-onset hyperammonemia due to reduced argininosuccinate synthase activity. This disorder is frequently accompanied with hepatosteatosis in the absence of obesity and ethanol consumption. However, the precise mechanism of steatogenesis remains unclear. The expression of genes associated with fatty acid (FA) and triglyceride (TG) metabolism was examined using liver samples obtained from 16 CTLN2 patients and compared with 7 healthy individuals. Although expression of hepatic genes associated with lipogenesis and TG hydrolysis was not changed, the mRNAs encoding enzymes/proteins involved in FA oxidation (carnitine palmitoyl-CoA transferase 1α, medium- and very-long-chain acyl-CoA dehydrogenases, and acyl-CoA oxidase 1), very-low-density lipoprotein secretion (microsomal TG transfer protein), and FA transport (CD36 and FA-binding protein 1), were markedly suppressed in CTLN2 patients. Serum concentrations of ketone bodies were also decreased in these patients, suggesting reduced mitochondrial β-oxidation activity. Consistent with these findings, the expression of peroxisome proliferator-activated receptor α (PPARα), a master regulator of hepatic lipid metabolism, was significantly down-regulated. Hepatic PPARα expression was inversely correlated with severity of steatosis and circulating ammonia and citrulline levels. Additionally, phosphorylation of c-Jun-N-terminal kinase was enhanced in CTLN2 livers, which was likely associated with lower hepatic PPARα. Collectively, down-regulation of PPARα is associated with steatogenesis in CTLN2 patients. These findings provide a novel link between urea cycle disorder, lipid metabolism, and PPARα.
Collapse
Affiliation(s)
- Michiharu Komatsu
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Takefumi Kimura
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Masahide Yazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan; Department of Biological Sciences for Intractable Neurological Diseases, Institute for Biomedical Sciences, Shinshu University, Japan
| | - Naoki Tanaka
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan; Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan.
| | - Yang Yang
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Takero Nakajima
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| | - Akira Horiuchi
- Digestive Disease Center, Showa Inan General Hospital, Japan
| | - Zhong-Ze Fang
- Department of Toxicology, School of Public Health, Tianjin Medical University, China
| | - Satoru Joshita
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Akihiro Matsumoto
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Takeji Umemura
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Eiji Tanaka
- Department of Medicine (Gastroenterology), Shinshu University School of Medicine, Japan
| | - Frank J Gonzalez
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, USA
| | - Shu-Ichi Ikeda
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Japan
| | - Toshifumi Aoyama
- Department of Metabolic Regulation, Shinshu University Graduate School of Medicine, Japan
| |
Collapse
|
11
|
Kim D, Cha GS, Nagy LD, Yun CH, Guengerich FP. Kinetic analysis of lauric acid hydroxylation by human cytochrome P450 4A11. Biochemistry 2014; 53:6161-72. [PMID: 25203493 PMCID: PMC4188250 DOI: 10.1021/bi500710e] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Cytochrome P450 (P450) 4A11 is the
only functionally active subfamily
4A P450 in humans. P450 4A11 catalyzes mainly ω-hydroxylation
of fatty acids in liver and kidney; this process is not a major degradative
pathway, but at least one product, 20-hydroxyeicosatetraenoic acid,
has important signaling properties. We studied catalysis by P450 4A11
and the issue of rate-limiting steps using lauric acid ω-hydroxylation,
a prototypic substrate for this enzyme. Some individual reaction steps
were studied using pre-steady-state kinetic approaches. Substrate
and product binding and release were much faster than overall rates
of catalysis. Reduction of ferric P450 4A11 (to ferrous) was rapid
and not rate-limiting. Deuterium kinetic isotope effect (KIE) experiments
yielded low but reproducible values (1.2–2) for 12-hydroxylation
with 12-2H-substituted lauric acid. However, considerable
“metabolic switching” to 11-hydroxylation was observed
with [12-2H3]lauric acid. Analysis of switching
results [Jones, J. P., et al. (1986) J. Am. Chem. Soc.108, 7074–7078] and the use of tritium KIE
analysis with [12-3H]lauric acid [Northrop, D. B. (1987) Methods Enzymol.87, 607–625] both
indicated a high intrinsic KIE (>10). Cytochrome b5 (b5) stimulated steady-state
lauric acid ω-hydroxylation ∼2-fold; the apoprotein was
ineffective, indicating that electron transfer is involved in the b5 enhancement. The rate of b5 reoxidation was increased in the presence of ferrous
P450 mixed with O2. Collectively, the results indicate
that both the transfer of an electron to the ferrous·O2 complex and C–H bond-breaking limit the rate of P450 4A11
ω-oxidation.
Collapse
Affiliation(s)
- Donghak Kim
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine , Nashville, Tennessee 37232-0146, United States
| | | | | | | | | |
Collapse
|
12
|
Phylogenetic and functional analyses of the cytochrome P450 family 4. Mol Phylogenet Evol 2012; 62:458-71. [DOI: 10.1016/j.ympev.2011.10.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/11/2011] [Accepted: 10/22/2011] [Indexed: 01/08/2023]
|
13
|
Lino Cardenas CL, Renault N, Farce A, Cauffiez C, Allorge D, Lo-Guidice JM, Lhermitte M, Chavatte P, Broly F, Chevalier D. Genetic polymorphism of CYP4A11 and CYP4A22 genes and in silico insights from comparative 3D modelling in a French population. Gene 2011; 487:10-20. [DOI: 10.1016/j.gene.2011.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Revised: 06/29/2011] [Accepted: 07/09/2011] [Indexed: 01/12/2023]
|
14
|
Wanders RJA, Komen J, Kemp S. Fatty acid omega-oxidation as a rescue pathway for fatty acid oxidation disorders in humans. FEBS J 2010; 278:182-94. [PMID: 21156023 DOI: 10.1111/j.1742-4658.2010.07947.x] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Fatty acids (FAs) can be degraded via different mechanisms including α-, β- and ω-oxidation. In humans, a range of different genetic diseases has been identified in which either mitochondrial FA β-oxidation, peroxisomal FA β-oxidation or FA α-oxidation is impaired. Treatment options for most of these disorders are limited. This has prompted us to study FA ω-oxidation as a rescue pathway for these disorders, based on the notion that if the ω-oxidation of specific FAs could be upregulated one could reduce the accumulation of these FAs and the subsequent detrimental effects in the different groups of disorders. In this minireview, we describe our current state of knowledge in this area with special emphasis on Refsum disease and X-linked adrenoleukodystrophy.
Collapse
Affiliation(s)
- Ronald J A Wanders
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
15
|
Bjork JA, Wallace KB. Structure-activity relationships and human relevance for perfluoroalkyl acid-induced transcriptional activation of peroxisome proliferation in liver cell cultures. Toxicol Sci 2009; 111:89-99. [PMID: 19407336 DOI: 10.1093/toxsci/kfp093] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Perfluoroalkyl acids (PFAAs) are widely distributed and environmentally persistent agents whose potential toxicity is not yet fully characterized. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid elicit a number of potential toxicities in rodents, the most prevalent of which are governed by activation of the peroxisome proliferator-activated receptor alpha (PPARalpha). The purpose of this investigation was twofold: (1) To conduct a structure-activity relationship study of the transcriptional activation of peroxisome proliferation in primary rat liver cell cultures for PFAA-related carboxylic and sulfonic acids of varying carbon chain length and (2) to explore whether this activity can be translated to human liver cells in culture. Exposure to PFOA caused a dose-dependent stimulation of the expression of acyl-CoA oxidase (Acox), Cte/Acot1, and Cyp4a1/11 transcripts that are indicative of peroxisome proliferation in primary rat hepatocytes. PFOA concentrations of 30 microM and above caused cell injury characterized by the expression of Ddit3. Perfluorobutanoic acid (PFBA), on the other hand, stimulated Acox, Cte/Acot1, and Cyp4a1/11 gene expression in primary rat hepatocytes only at concentrations of 100 microM and above. Neither PFOA nor PFBA at concentrations up to 200 microM stimulated PPARalpha-related gene expression in either primary or HepG2 human liver cells. These data demonstrate that (1) PFFAs cause a concentration- and chain length-dependent increase in expression of gene targets related to cell injury and PPARalpha activation in primary rat hepatocytes, (2) the sulfonates are less potent than the corresponding carboxylates in stimulating PPARalpha-related gene expression in rat hepatocytes, and (3) stimulation of PPARalpha-mediated gene transcription is a mechanism that is not shared by human liver cells, adding further substantiation that PPARalpha-dependent liver toxicity in rodents does not extrapolate to assessing human health concerns.
Collapse
Affiliation(s)
- James A Bjork
- Department of Biochemistry and Molecular Biology, University of Minnesota Medical School, Duluth, Minnesota 55812, USA
| | | |
Collapse
|
16
|
Affiliation(s)
- Elizabeth M. J. Gillam
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|
17
|
Dhar M, Sepkovic DW, Hirani V, Magnusson RP, Lasker JM. Omega oxidation of 3-hydroxy fatty acids by the human CYP4F gene subfamily enzyme CYP4F11. J Lipid Res 2007; 49:612-24. [PMID: 18065749 DOI: 10.1194/jlr.m700450-jlr200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Long-chain 3-hydroxydicarboxylic acids (3-OHDCAs) are thought to arise via beta-oxidation of the corresponding dicarboxylic acids (DCAs), although long-chain DCAs are neither readily transported into nor beta-oxidized in mitochondria. We thus examined whether omega-hydroxylation of 3-hydroxy fatty acids (3-OHFAs), formed via incomplete mitochondrial oxidation, is a more likely pathway for 3-OHDCA production. NADPH-fortified human liver microsomes converted 3-hydroxystearate and 3-hydroxypalmitate to their omega-hydroxylated metabolites, 3,18-dihydroxystearate and 3,16-dihydroxypalmitate, respectively, as identified by GC-MS. Rates of 3,18-dihydroxystearate and 3,16-dihydroxypalmitate formation were 1.23 +/- 0.5 and 1.46 +/- 0.30 nmol product formed/min/mg protein, respectively (mean +/- SD; n = 13). Polyspecific CYP4F antibodies markedly inhibited microsomal omega-hydroxylation of 3-hydroxystearate (68%) and 3-hydroxypalmitate (99%), whereas CYP4A11 and CYP2E1 antibodies had little effect. Upon reconstitution, CYP4F11 and, to a lesser extent, CYP4F2 catalyzed omega-hydroxylation of 3-hydroxystearate, whereas CYP4F3b, CYP4F12, and CYP4A11 exhibited negligible activity. CYP4F11 was the lone CYP4F/A enzyme that effectively oxidized 3-hydroxypalmitate. Kinetic parameters of microsomal 3-hydroxystearate metabolism were K(m) = 55 microM and V(max) = 8.33 min(-1), whereas those for 3-hydroxypalmitate were K(m) = 56.4 microM and V(max) = 14.2 min(-1). CYP4F11 kinetic values resembled those of native microsomes, with K(m) = 53.5 microM and V(max) = 13.9 min(-1) for 3-hydroxystearate and K(m) = 105.8 microM and V(max) = 70.6 min(-1) for 3-hydroxypalmitate. Our data show that 3-hydroxystearate and 3-hydroxypalmitate are converted to omega-hydroxylated 3-OHDCA precursors in human liver and that CYP4F11 is the predominant catalyst of this reaction. CYP4F11-promoted omega-hydroxylation of 3-OHFAs may modulate the disposition of these compounds in pathological states in which enhanced fatty acid mobilization or impairment of mitochondrial fatty acid beta-oxidation increases circulating 3-OHFA levels.
Collapse
Affiliation(s)
- Madhurima Dhar
- Jurist Institute for Research, Hackensack University Medical Center, Hackensack, NJ 07601, USA
| | | | | | | | | |
Collapse
|
18
|
Hsu MH, Savas U, Griffin KJ, Johnson EF. Human cytochrome p450 family 4 enzymes: function, genetic variation and regulation. Drug Metab Rev 2007; 39:515-38. [PMID: 17786636 DOI: 10.1080/03602530701468573] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The microsomal cytochrome P450 (CYP) family 4 monooxygenases are the major fatty acid omega-hydroxylases. These enzymes remove excess free fatty acids to prevent lipotoxicity, catabolize leukotrienes and prostanoids, and also produce bioactive metabolites from arachidonic acid omega-hydroxylation. In addition to endogenous substrates, recent evidence indicates that CYP4 monooxygenases can also metabolize xenobiotics, including therapeutic drugs. This review focuses on human CYP4 enzymes and updates current knowledge concerning catalytic activity profiles, genetic variation and regulation of expression. Comparative differences between the human and rodent CYP4 enzymes regarding catalytic function and conditional expression are also discussed.
Collapse
Affiliation(s)
- Mei-Hui Hsu
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|
19
|
Xu Y, Wang Q, Cook TJ, Knipp GT. Effect of Placental Fatty Acid Metabolism and Regulation by Peroxisome Proliferator Activated Receptor on Pregnancy and Fetal Outcomes. J Pharm Sci 2007; 96:2582-606. [PMID: 17549724 DOI: 10.1002/jps.20973] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Fatty acids, particularly the omega-3 and omega-6 essential fatty acids (EFAs), are considered critical nutritional sources for the developing fetus. The placenta governs the fetal supply of fatty acids via two processes: transport and metabolism. Placental fatty acid metabolism can play a critical role in guiding pregnancy and fetal outcome. EFAs can be metabolized to important cell signaling molecules in placenta by several major isoform families including: the Cytochrome P450 subfamily 4A (CYP4A); Cyclooxygenases (COXs); and Lipoxygenases (LOXs). Peroxisome proliferator-activated nuclear receptors (PPARs) have been demonstrated to regulate a number of placental fatty acid/lipid homeostasis-related proteins (e.g., metabolizing enzymes and transporters). The present review summarizes research on the molecular and functional relevance of fatty acid metabolizing enzymes and the role of PPARs in regulating their expression in the mammalian placenta. Elucidating the pathways of placental fatty acid metabolism and the regulatory processes governing these pathways is critical for advancing our understanding of the role of placenta in supplying EFAs to the developing fetus and the potential implications on pregnancy and fetal outcome. A more complete understanding of placental fatty acid disposition may also provide a basis for nutritional/pharmacological interventions to ameliorate the risk of adverse pregnancy and/or fetal outcomes.
Collapse
Affiliation(s)
- Yan Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
20
|
Hiratsuka M, Nozawa H, Katsumoto Y, Moteki T, Sasaki T, Konno Y, Mizugaki M. Genetic polymorphisms and haplotype structures of the CYP4A22 gene in a Japanese population. Mutat Res 2006; 599:98-104. [PMID: 16806293 DOI: 10.1016/j.mrfmmm.2006.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 02/07/2006] [Accepted: 02/07/2006] [Indexed: 11/23/2022]
Abstract
The CYP4A fatty acid monooxygenases oxidize endogenous arachidonic acid to 20-hydroxyeicosatetraenoic acid that acts as a regulator of blood pressure. Among the isoforms of the CYP4A subfamily, the human CYP4A22 was recently identified. In this study, we report the comprehensive investigation of polymorphisms in the CYP4A22 gene. To investigate genetic variation in CYP4A22 in 191 Japanese subjects, we used denaturing HPLC (DHPLC) and direct sequencing. Our investigation has enabled the identification of 13 sequence variations in the CYP4A22 coding region, thereby demonstrating for the first time that this gene is subject to polymorphism. Two of these sequence variations correspond to silent mutations located in exons 8 (His323His) and 9 (Gly390Gly). Nine of these sequence variations correspond to missense mutations located in exons 1 (Arg11Cys), 3 (Arg126Trp), 4 (Gly130Ser and Asn152Tyr), 5 (Val185Phe), 6 (Cys231Arg), 7 (Lys276Thr), 10 (Leu428Pro), and 12 (Leu509Phe). One of these sequence variations corresponds to nonsense mutations located in exon 9 (Gln368stop). The 13th mutation corresponds to a nucleotide deletion (G7067del) that causes a frameshift and consequently results in a stop codon 80 nucleotides downstream. In addition to the wild-type CYP4A22*1 allele, 20 variants, namely CYP4A22*2-15, were characterized by haplotype analysis. Based on these data, we concluded that allelic variants of the human CYP4A22 gene exist and speculated that some of these variants may be functionally relevant.
Collapse
Affiliation(s)
- Masahiro Hiratsuka
- Department of Clinical Pharmaceutics, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Sendai 981-8558, Japan
| | | | | | | | | | | | | |
Collapse
|
21
|
Rifkind AB. CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab Rev 2006; 38:291-335. [PMID: 16684662 DOI: 10.1080/03602530600570107] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxicologic and physiologic roles of CYP1A enzyme induction, the major biochemical effect of aryl hydrocarbon receptor activation by TCDD and other receptor ligands, are unknown. Evidence is presented that CYP1A exerts biologic effects via metabolism of endogenous substrates (i.e., arachidonic acid, other eicosanoids, estrogens, bilirubin, and melatonin), production of reactive oxygen, and effects on K(+) and Ca(2+) channels. These interrelated pathways may connect CYP1A induction to TCDD toxicities, including cardiotoxicity, vascular dysfunction, and wasting. They may also underlie homeostatic roles for CYP1A, especially when transiently induced by common chemical exposures and environmental conditions (i.e., tryptophan photoproducts, dietary indoles, and changes in oxygen tension).
Collapse
Affiliation(s)
- Arleen B Rifkind
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
22
|
Graham RA, Goodwin B, Merrihew RV, Krol WL, Lecluyse EL. Cloning, Tissue Expression, and Regulation of Beagle Dog CYP4A Genes. Toxicol Sci 2006; 92:356-67. [PMID: 16675513 DOI: 10.1093/toxsci/kfl009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In addition to its function as a fatty acid hydroxylase, the peroxisome proliferator-activated receptor alpha (PPARalpha) target gene, CYP4A, has been shown to be important in the conversion of arachidonic acid to the potent vasoconstrictor 20-hydroxyeicosatetraenoic acid, suggesting a role for this enzyme in mediating vascular tone. In the present study, the cDNA sequence of beagle dog CYP4A37, CYP4A38, and CYP4A39 from the liver was determined. Open reading frame analysis predicted that CYP4A37, CYP4A38, and CYP4A39 each comprised 510 amino acids with approximately 90% sequence identity to one another, and approximately 71 and 78% sequence identity to rat CYP4A1 and human CYP4A11, respectively. PCR analysis revealed that the three dog CYP4A isoforms are expressed in kidney > liver >> lung >> intestine > skeletal muscle > heart. Treatment of primary dog hepatocytes with the PPARalpha agonists GW7647X and clofibric acid resulted in an increase in CYP4A37, CYP4A38, and CYP4A39 mRNA expression (up to fourfold), whereas HMG-CoA synthase mRNA expression was increased to a greater extent (up to 10-fold). These results suggest that dog CYP4A37, CYP4A38, and CYP4A39 are expressed in a tissue-dependent manner and that beagle dog CYP4A is not highly inducible by PPARalpha agonists, similar to the human CYP4A11 gene.
Collapse
Affiliation(s)
- Richard A Graham
- Division of Molecular Pharmaceutics, School of Pharmacy, The University of North Carolina at Chapel Hill, 27599, USA.
| | | | | | | | | |
Collapse
|
23
|
Sanders RJ, Ofman R, Valianpour F, Kemp S, Wanders RJA. Evidence for two enzymatic pathways for ω-oxidation of docosanoic acid in rat liver microsomes. J Lipid Res 2005; 46:1001-8. [PMID: 15716582 DOI: 10.1194/jlr.m400510-jlr200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We studied the omega-oxidation of docosanoic acid (C22:0) in rat liver microsomes. C22:0 and 22-hydroxy-docosanoic acid (omega-hydroxy-C22:0) were used as substrates, and the reaction products were analyzed by electrospray ionization mass spectrometry. In the presence of NADPH, omega-oxidation of C22:0 produced not only the hydroxylated product, omega-hydroxy-C22:0, but also the dicarboxylic acid of C22:0, docosanedioic acid (C22:0-DCA). When rat liver microsomes were incubated with omega-hydroxy-C22:0 in the presence of either NAD+ or NADPH, C22:0-DCA was formed readily. Formation of C22:0-DCA from either C22:0 or omega-hydroxy-C22:0 with NADPH as cofactor was inhibited strongly by miconazole and disulfiram, whereas no inhibition was found with NAD+ as cofactor. Furthermore, omega-oxidation of C22:0 was reduced significantly when molecular oxygen was depleted. The high sensitivity toward the more specific cytochrome P450 inhibitors ketoconazole and 17-octadecynoic acid suggests that hydroxylation of C22:0 and omega-hydroxy-C22:0 may be catalyzed by one or more cytochrome P450 hydroxylases belonging to the CYP4A and/or CYP4F subfamily. This study demonstrates that C22:0 is a substrate for the omega-oxidation system in rat liver microsomes and that the product of the first hydroxylation step, omega-hydroxy-C22:0, may undergo further oxidation via two distinct pathways driven by NAD+ or NADPH.
Collapse
Affiliation(s)
- Robert-Jan Sanders
- Academic Medical Center, University of Amsterdam, Laboratory Genetic Metabolic Diseases, Department of Pediatrics/Emma Children's Hospital, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
24
|
Kroetz DL, Xu F. Regulation and inhibition of arachidonic acid omega-hydroxylases and 20-HETE formation. Annu Rev Pharmacol Toxicol 2005; 45:413-38. [PMID: 15822183 DOI: 10.1146/annurev.pharmtox.45.120403.100045] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cytochrome P450-catalyzed metabolism of arachidonic acid is an important pathway for the formation of paracrine and autocrine mediators of numerous biological effects. The omega-hydroxylation of arachidonic acid generates significant levels of 20-hydroxyeicosatetraenoic acid (20-HETE) in numerous tissues, particularly the vasculature and kidney tubules. Members of the cytochrome P450 4A and 4F families are the major omega-hydroxylases, and the substrate selectivity and regulation of these enzymes has been the subject of numerous studies. Altered expression and function of arachidonic acid omega-hydroxylases in models of hypertension, diabetes, inflammation, and pregnancy suggest that 20-HETE may be involved in the pathogenesis of these diseases. Our understanding of the biological significance of 20-HETE has been greatly aided by the development and characterization of selective and potent inhibitors of the arachidonic acid omega-hydroxylases. This review discusses the substrate selectivity and expression of arachidonic acid omega-hydroxylases, regulation of these enzymes during disease, and the application of enzyme inhibitors to study 20-HETE function.
Collapse
Affiliation(s)
- Deanna L Kroetz
- Department of Biopharmaceutical Sciences, University of California, San Francisco, California 94143-2911, USA.
| | | |
Collapse
|
25
|
Xu Y, Knipp GT, Cook TJ. Expression of CYP4A isoforms in developing rat placental tissue and rat trophoblastic cell models. Placenta 2005; 26:218-25. [PMID: 15708123 DOI: 10.1016/j.placenta.2004.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2004] [Indexed: 12/31/2022]
Abstract
Maintaining fatty acid homeostasis during pregnancy is critical for normal fetal development. As an organ that controls nutrient supply from the mother to the fetus, the placenta plays a significant role in guiding fatty acid transfer to the developing fetus. The cytochrome P450 4A (CYP4A) subfamily of metabolizing enzymes is a group of structurally and functionally conserved proteins that are specialized in the omega/omega-1 hydroxylation of saturated and unsaturated fatty acids and their derivatives. To understand the function of the CYP4A system in the placenta and its significance in maintaining fetal fatty acid homeostasis, information about the placental expression of individual CYP4A isoforms is required. In the present study, we have elucidated the temporal and spatial patterns of expression of the four known rat CYP4A isoforms (CYP4A1, CYP4A2, CYP4A3, and CYP4A8) in the junctional and labyrinthine zones of the developing rat chorioallantoic placenta as well as two rat trophoblastic cell lines, HRP-1 and Rcho-1, using semi-quantitative RT-PCR and immunohistochemical analyses. The mRNA from the four rat CYP4A isoforms was detected in the developing rat placenta with CYP4A1 exhibiting the strongest expression (4A1 > 4A2 >> 4A3 approximately equal to 4A8). CYP4A1 was also detected by immunohistochemical staining in the developing rat placenta. We also observed CYP4A1 in both HRP-1 and Rcho-1 cells by RT-PCR, suggesting the utility of these cells as in vitro tools to study the effects of xenobiotics on placental fatty acid metabolism. Establishing the expression of CYP4A isoforms in these tissues and cell models provides a framework for further investigation of their functional and physiological significance in guiding proper fetal development.
Collapse
Affiliation(s)
- Y Xu
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
26
|
Lundell K. The porcine taurochenodeoxycholic acid 6alpha-hydroxylase (CYP4A21) gene: evolution by gene duplication and gene conversion. Biochem J 2004; 378:1053-8. [PMID: 14641109 PMCID: PMC1224006 DOI: 10.1042/bj20031657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2003] [Accepted: 11/25/2003] [Indexed: 11/17/2022]
Abstract
Porcine taurochenodeoxycholic acid 6alpha-hydroxylase, cytochrome P450 4A21 (CYP4A21), differs from other members of the CYP4A subfamily in terms of structural features and catalytic activity. CYP4A21 participates in the formation of hyocholic acid, a species-specific primary bile acid in the pig. The CYP4A21 gene was investigated and found to be approx. 13 kb in size and split into 12 exons. The intron-exon organization of the CYP4A21 gene corresponds to that of CYP4A fatty acid hydroxylase genes in other species. Comparison with a genomic segment of a pig CYP4A fatty acid hydroxylase gene ( CYP4A24 ) revealed a sequence identity with CYP4A21 that extends beyond the exons, indicating a common origin by gene duplication. A pronounced sequence identity was found also within the proximal 5'-flanking regions, whereas the patterns of mRNA expression of CYP4A21 and CYP4A fatty acid hydroxylases in pig liver differ. Sequence comparison aiming to elucidate the origin of the unique features of CYP4A21 revealed a region of decreased sequence identity from exon 6 to exon 8, strongly suggesting that gene conversion could have contributed to the evolution of CYP4A21.
Collapse
Affiliation(s)
- Kerstin Lundell
- Division of Biochemistry, Department of Pharmaceutical Biosciences, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden.
| |
Collapse
|
27
|
Affiliation(s)
- David R Nelson
- Department of Molecular Sciences, University of Tennessee, Memphis, Tennessee 38163, USA
| |
Collapse
|
28
|
Savas U, Hsu MH, Johnson EF. Differential regulation of human CYP4A genes by peroxisome proliferators and dexamethasone. Arch Biochem Biophys 2003; 409:212-20. [PMID: 12464261 DOI: 10.1016/s0003-9861(02)00499-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
HepG2 cells that stably overexpress PPARalpha were used to examine the regulation of the two known human CYP4A genes by Wy14643. Specific PCR amplification across intron 5 and restriction endonuclease analysis indicated that HepG2 cells possess genes corresponding to both the CYP4A11 cDNA and a more recently characterized gene, CYP4A22, that exhibits 95% identity to CYP4A11 in the coding region. These are unlikely to represent alleles because both genes were present in DNA samples from 100 of 100 individuals. Quantitative real-time PCR determined that CYP4A22 mRNA is expressed at significantly lower levels than CYP4A11 mRNA in human liver samples. The PPARalpha agonist Wy14643 induced CYP4A11 mRNA in confluent cultures of HepG2 cells stably expressing the murine PPARalpha-E282G mutant. This mutant exhibits a significantly decreased ligand-independent trans-activation and can be activated by Wy14643 to a level similar to that of wild-type PPARalpha. Dexamethasone induced CYP4A11 mRNA in both control and PPARalpha- E282G-expressing HepG2 cells, indicating that the induction of CYP4A11 by dexamethasone is independent of elevated PPARalpha expression. Wy14643 or dexamethasone induction of CYP4A22 mRNA was not evident in either control or PPARalpha -E282G-expressing HepG2 cells. The results indicate that CYP4A11 expression can be induced by glucocorticoids and peroxisome proliferators.
Collapse
Affiliation(s)
- Uzen Savas
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, USA
| | | | | |
Collapse
|
29
|
Bellamine A, Wang Y, Waterman MR, Gainer JV, Dawson EP, Brown NJ, Capdevila JH. Characterization of the CYP4A11 gene, a second CYP4A gene in humans. Arch Biochem Biophys 2003; 409:221-7. [PMID: 12464262 DOI: 10.1016/s0003-9861(02)00545-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Comparison between the cDNA sequence of CYP4A11 and that deduced from a published genomic clone suggested the presence of an additional CYP4A gene in humans, CYP4A22. PCR amplification of genomic DNA yielded overlapping clones covering 13kb of genomic DNA and extending from 1003bp upstream from CYP4A11 translation initiation to 135bp upstream of the mRNA polyadenylation signal. Sequence and Southern blot analysis showed the presence in humans of two highly homologous CYP4A genes, CYP4A11 and CYP4A22. These two genes share 96% sequence identity and have similar intron/exon sizes and distribution. Short nucleotide insertions (< or =10bp) in introns 1, 3, 9, and 11, and deletions (< or =18bp) in introns 4, 6, and 11 differentiate the two genes. RT-PCR amplification of human kidney RNA followed by restriction fragment analysis showed that CYP4A11 is the predominant isoform expressed in kidney.
Collapse
Affiliation(s)
- Aouatef Bellamine
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Capdevila JH, Falck JR. Biochemical and molecular properties of the cytochrome P450 arachidonic acid monooxygenases. Prostaglandins Other Lipid Mediat 2002; 68-69:325-44. [PMID: 12432927 DOI: 10.1016/s0090-6980(02)00038-2] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cytochrome P450 (P450) arachidonic acid (AA) monooxygenase metabolizes the fatty acid to a series of epoxy- and hydroxy-acid derivatives. Catalytic turnover requires NADPH, and requires the redox-coupled activation and cleavage of diatomic oxygen, and the delivery of an active form of atomic oxygen to ground state carbon atoms. Past and present advances in P450 biochemistry and molecular biology are beginning to provide a description of the P450 isoform specificity of AA bioactivation, and the mechanisms of action and physiological relevance of the P450 metabolites. The demonstration of the endogenous biosynthesis of many of these metabolites has established the P450 pathway as an important route for AA bioactivation, and has begun to uncovered new and important functional roles for this enzyme system in cell and organ physiology.
Collapse
Affiliation(s)
- Jorge H Capdevila
- Department of Medicine, Vanderbilt University Medical School, Nashville, TN 37232, USA.
| | | |
Collapse
|
31
|
Abstract
This chapter is an update of the data on substrates, reactions, inducers, and inhibitors of human CYP enzymes published previously by Rendic and DiCarlo (1), now covering selection of the literature through 2001 in the reference section. The data are presented in a tabular form (Table 1) to provide a framework for predicting and interpreting the new P450 metabolic data. The data are formatted in an Excel format as most suitable for off-line searching and management of the Web-database. The data are presented as stated by the author(s) and in the case when several references are cited the data are presented according to the latest published information. The searchable database is available either as an Excel file (for information contact the author), or as a Web-searchable database (Human P450 Metabolism Database, www.gentest.com) enabling the readers easy and quick approach to the latest updates on human CYP metabolic reactions.
Collapse
Affiliation(s)
- Slobodan Rendic
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Croatia.
| |
Collapse
|
32
|
Affiliation(s)
- David R Nelson
- Department of Biochemistry, Tennessee Health Science Center, University of Tennessee, Memphis 38163, USA.
| |
Collapse
|
33
|
Gonzalez MC, Marteau C, Franchi J, Migliore-Samour D. Cytochrome P450 4A11 expression in human keratinocytes: effects of ultraviolet irradiation. Br J Dermatol 2001; 145:749-57. [PMID: 11736898 DOI: 10.1046/j.1365-2133.2001.04490.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The skin is the major interface between the body and its environment. Directly and continuously exposed to a large variety of foreign agents and stimuli such as ultraviolet radiation (UVR), cutaneous cells are active sites of intense metabolism. The cytochromes P450 (P450) are a group of enzymes that play an important part in the protective role of the skin; they are a family of microsomal membrane-bound mono-oxygenases. These haem-containing proteins catalyse the insertion of an atom of molecular oxygen into the substrate. Although generally present at low levels, a certain number of these enzymes have now been characterized in mammalian skin as constitutive or inducible isoforms. OBJECTIVES To test the effects of UVR, a source of oxidative stress, on the expression of mRNA coding for several P450 isoforms (CYP), with particular reference to the CYP2E1 and CYP4A11 isoforms, which might play a role in lipid metabolism in human keratinocytes. METHODS Human keratinocytes were cultured, irradiated and mRNA expression was analysed by gel electrophoresis after reverse transcriptase polymerase chain reactions. CYP proteins were determined from keratinocyte microsomal fractions by sodium dodecyl sulphate-polyacrylamide gel electrophoresis and immunoperoxidase staining. Thin layer chromatography was used to detect (omega-1)- and (omega)-hydroxylation of lauric acid in the microsomal fractions. RESULTS mRNAs for CYP2E1, CYP1A1 and CYP3A5 were expressed in all the keratinocyte preparations tested; however, neither CYP3A4 nor CYP3A7 were detected, either in the presence or absence of UVR treatment. CYP19Aro, CYP2C19 and CYP26 were not expressed constitutively, although some induction of CYP19Aro was seen after combined UVB and UVA irradiation. CYP4A11 mRNA was not detected in any keratinocyte preparations either under control conditions or after UVB treatment. Nevertheless, in non-irradiated keratinocyte microsomes, two protein bands were immunoreactive with anti-CYP4A11 enzyme antibodies, one of which corresponds to CYP4A11 protein. UVA treatment of cultured keratinocytes induced CYP4A11 mRNA expression after 24 h, as well as an increase in immunoreactivity of the two protein bands. Although (omega-1)- and (omega)-hydroxylation of fatty acids is attributed to CYP2E1 and CYP4A11, respectively, in the liver or kidney, no omega-hydroxylation of lauric acid was observed in microsomal preparations from cultured keratinocytes. CONCLUSIONS However, CYP4A11 may participate in the defence mechanism against UVA-induced oxidative damage.
Collapse
Affiliation(s)
- M C Gonzalez
- FRE 2134 CNRS, GNC, Institut de Transgénose, 3b rue de la Férollerie, 45071, Orléans cedex 2, France
| | | | | | | |
Collapse
|
34
|
Hsu MH, Savas U, Griffin KJ, Johnson EF. Identification of peroxisome proliferator-responsive human genes by elevated expression of the peroxisome proliferator-activated receptor alpha in HepG2 cells. J Biol Chem 2001; 276:27950-8. [PMID: 11371553 DOI: 10.1074/jbc.m100258200] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In mice and other sensitive species, PPARalpha mediates the induction of mitochondrial, microsomal, and peroxisomal fatty acid oxidation, peroxisome proliferation, liver enlargement, and tumors by peroxisome proliferators. In order to identify PPARalpha-responsive human genes, HepG2 cells were engineered to express PPARalpha at concentrations similar to mouse liver. This resulted in the dramatic induction of mRNAs encoding the mitochondrial HMG-CoA synthase and increases in fatty acyl-CoA synthetase (3-8-fold) and carnitine palmitoyl-CoA transferase IA (2-4-fold) mRNAs that were dependent on PPARalpha expression and enhanced by exposure to the PPARalpha agonist Wy14643. A PPAR response element was identified in the proximal promoter of the human HMG-CoA synthase gene that is functional in its native context. These data suggest that humans retain a capacity for PPARalpha regulation of mitochondrial fatty acid oxidation and ketogenesis. Human liver is refractory to peroxisome proliferation, and increased expression of mRNAs for the peroxisomal fatty acyl-CoA oxidase, bifunctional enzyme, or thiolase, which accompanies peroxisome proliferation in responsive species, was not evident following Wy14643 treatment of cells expressing elevated levels of PPARalpha. Additionally, no significant differences were seen for the expression of apolipoprotein AI, AII, or CIII; medium chain acyl-CoA dehydrogenase; or stearoyl-CoA desaturase mRNAs.
Collapse
Affiliation(s)
- M H Hsu
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | |
Collapse
|