1
|
Kansu G, Ozturk N, Karagac MS, Yesilkent EN, Ceylan H. The interplay between doxorubicin chemotherapy, antioxidant system, and cardiotoxicity: Unrevealing of the protective potential of tannic acid. Biotechnol Appl Biochem 2024. [PMID: 39099314 DOI: 10.1002/bab.2648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Cardiotoxicity is the leading side effect of anthracycline-based chemotherapy. Therefore, it has gained importance to reveal chemotherapy-supporting strategies and reliable agents with their mechanisms of action. Tannic acid (TA), a naturally occurring plant polyphenol, has diverse physiological effects, including anti-inflammatory, anticarcinogenic, antioxidant, and radical scavenging properties. Therefore, this study was designed to investigate whether TA exerts a protective effect on mechanisms contributing to anthracycline-induced cardiotoxicity in rat heart tissues exposed to doxorubicin (DOX). Rats were randomly divided into control and experimental groups and treated with (18 mg/kg) DOX, TA (50 mg/kg), and DOX + TA during the 2 weeks. Cardiac gene markers and mitochondrial DNA (mtDNA) content were evaluated in the heart tissues of all animals. In addition to major metabolites, mRNA expression changes and biological activity responses of components of antioxidant metabolism were examined in the heart tissues of all animals. The expression of cardiac gene markers increased by DOX exposure was significantly reduced by TA treatment, whereas mtDNA content, which was decreased by DOX exposure, was significantly increased. TA also improved antioxidant metabolism members' gene expression and enzymatic activity, including glutathione peroxidase, glutathione s-transferase, superoxide dismutase, catalase, and thioredoxin reductase. This study provides a detailed overview of the current understanding of DOX-induced cardiotoxicity and preventive or curative measures involving TA.
Collapse
Affiliation(s)
- Guldemet Kansu
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Neslihan Ozturk
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Medine Sibel Karagac
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Esra Nur Yesilkent
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| | - Hamid Ceylan
- Department of Molecular Biology and Genetics, Faculty of Science, Atatürk University, Erzurum, Türkiye
| |
Collapse
|
2
|
Effects of Antioxidant Gene Overexpression on Stress Resistance and Malignization In Vitro and In Vivo: A Review. Antioxidants (Basel) 2022; 11:antiox11122316. [PMID: 36552527 PMCID: PMC9774954 DOI: 10.3390/antiox11122316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Reactive oxygen species (ROS) are normal products of a number of biochemical reactions and are important signaling molecules. However, at the same time, they are toxic to cells and have to be strictly regulated by their antioxidant systems. The etiology and pathogenesis of many diseases are associated with increased ROS levels, and many external stress factors directly or indirectly cause oxidative stress in cells. Within this context, the overexpression of genes encoding the proteins in antioxidant systems seems to have become a viable approach to decrease the oxidative stress caused by pathological conditions and to increase cellular stress resistance. However, such manipulations unavoidably lead to side effects, the most dangerous of which is an increased probability of healthy tissue malignization or increased tumor aggression. The aims of the present review were to collect and systematize the results of studies devoted to the effects resulting from the overexpression of antioxidant system genes on stress resistance and carcinogenesis in vitro and in vivo. In most cases, the overexpression of these genes was shown to increase cell and organism resistances to factors that induce oxidative and genotoxic stress but to also have different effects on cancer initiation and promotion. The last fact greatly limits perspectives of such manipulations in practice. The overexpression of GPX3 and SOD3 encoding secreted proteins seems to be the "safest" among the genes that can increase cell resistance to oxidative stress. High efficiency and safety potential can also be found for SOD2 overexpression in combinations with GPX1 or CAT and for similar combinations that lead to no significant changes in H2O2 levels. Accumulation, systematization, and the integral analysis of data on antioxidant gene overexpression effects can help to develop approaches for practical uses in biomedical and agricultural areas. Additionally, a number of factors such as genetic and functional context, cell and tissue type, differences in the function of transcripts of one and the same gene, regulatory interactions, and additional functions should be taken into account.
Collapse
|
3
|
Mondal S, Singh SP. New insights on thioredoxins (Trxs) and glutaredoxins (Grxs) by in silico amino acid sequence, phylogenetic and comparative structural analyses in organisms of three domains of life. Heliyon 2022; 8:e10776. [PMID: 36203893 PMCID: PMC9529593 DOI: 10.1016/j.heliyon.2022.e10776] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 09/22/2022] [Indexed: 11/04/2022] Open
Abstract
Thioredoxins (Trxs) and Glutaredoxins (Grxs) regulate several cellular processes by controlling the redox state of their target proteins. Trxs and Grxs belong to thioredoxin superfamily and possess characteristic Trx/Grx fold. Several phylogenetic, biochemical and structural studies have contributed to our overall understanding of Trxs and Grxs. However, comparative study of closely related Trxs and Grxs in organisms of all domains of life was missing. Here, we conducted in silico comparative structural analysis combined with amino acid sequence and phylogenetic analyses of 65 Trxs and 88 Grxs from 12 organisms of three domains of life to get insights into evolutionary and structural relationship of two proteins. Outcomes suggested that despite diversity in their amino acids composition in distantly related organisms, both Trxs and Grxs strictly conserved functionally and structurally important residues. Also, position of these residues was highly conserved in all studied Trxs and Grxs. Notably, if any substitution occurred during evolution, preference was given to amino acids having similar chemical properties. Trxs and Grxs were found more different in eukaryotes than prokaryotes due to altered helical conformation. The surface of Trxs was negatively charged, while Grxs surface was positively charged, however, the active site was constituted by uncharged amino acids in both proteins. Also, phylogenetic analysis of Trxs and Grxs in three domains of life supported endosymbiotic origins of chloroplast and mitochondria, and suggested their usefulness in molecular systematics. We also report previously unknown catalytic motifs of two proteins, and discuss in detail about effect of abovementioned parameters on overall structural and functional diversity of Trxs and Grxs.
Collapse
|
4
|
Chen X, Ren X, Gao X. Peptide or
Protein‐Protected
Metal Nanoclusters for Therapeutic Application. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaolei Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
5
|
Xu H, Fan SQ, Wang G, Miao XM, Li Y. Transcriptome analysis reveals the importance of exogenous nutrition in regulating antioxidant defenses during the mouth-opening stage in oviparous fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1087-1103. [PMID: 34036482 DOI: 10.1007/s10695-021-00954-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/21/2021] [Indexed: 05/22/2023]
Abstract
Antioxidant system is crucial for protecting against environmental oxidative stress in fish life cycle. Although the effects of starvation on the antioxidant defenses in several adult fish have been defined, no relevant researches have been reported in the larval stage, particularly during the transition from endogenous to exogenous feeding. To clarify the molecular response of antioxidant system that occurs during the mouth-opening stage under starvation stress and explore its association with energy metabolism, we employed RNA-seq to analyze the gene expression profiles in zebrafish larvae that received a delayed first feeding for 3 days. Our data showed that delayed feeding resulted in downregulation of 7078 genes and upregulation of 497 genes. These differentially expressed genes are mainly involved in growth regulation (i.e., DNA replication and cell cycle), energy metabolism (i.e., glycolysis/gluconeogenesis and fatty acid metabolism), and antioxidant defenses. We demonstrated that the starved larvae are in an extremely malnourished state in the absence of exogenous nutrition, and the consequence is that numerous antioxidant genes are downregulated. Meanwhile, the antioxidant defenses also respond negatively to oxidative stress. After nutritional supply, the expression of these inhibited antioxidant genes was restored. These results suggest that the establishment of antioxidant defenses during the mouth-opening stage depends highly on exogenous nutrition. Our findings would contribute to comprehending the nutritional stress and metabolic switches during the mouth-opening stage and are essential for reducing high mortality in commercial fish farming.
Collapse
Affiliation(s)
- Hao Xu
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China
| | - Shi-Qi Fan
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Guo Wang
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Xiao-Min Miao
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China
| | - Yun Li
- Institute of Three Gorges Ecological Fisheries of Chongqing, College of Fisheries, Southwest University, Chongqing, 400715, China.
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Smith SL, Pitt AR, Spickett CM. Approaches to Investigating the Protein Interactome of PTEN. J Proteome Res 2020; 20:60-77. [PMID: 33074689 DOI: 10.1021/acs.jproteome.0c00570] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The tumor suppressor phosphatase and tensin homologue (PTEN) is a redox-sensitive dual specificity phosphatase with an essential role in the negative regulation of the PI3K-AKT signaling pathway, affecting metabolic and cell survival processes. PTEN is commonly mutated in cancer, and dysregulation in the metabolism of PIP3 is implicated in other diseases such as diabetes. PTEN interactors are responsible for some functional roles of PTEN beyond the negative regulation of the PI3K pathway and are thus of great importance in cell biology. Both high-data content proteomics-based approaches and low-data content PPI approaches have been used to investigate the interactome of PTEN and elucidate further functions of PTEN. While low-data content approaches rely on co-immunoprecipitation and Western blotting, and as such require previously generated hypotheses, high-data content approaches such as affinity pull-down proteomic assays or the yeast 2-hybrid system are hypothesis generating. This review provides an overview of the PTEN interactome, including redox effects, and critically appraises the methods and results of high-data content investigations into the global interactome of PTEN. The biological significance of findings from recent studies is discussed and illustrates the breadth of cellular functions of PTEN that can be discovered by these approaches.
Collapse
Affiliation(s)
- Sarah L Smith
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K.,Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, U.K
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, B4 7ET, Birmingham, U.K
| |
Collapse
|
7
|
Thioredoxin Decreases Anthracycline Cardiotoxicity, But Sensitizes Cancer Cell Apoptosis. Cardiovasc Toxicol 2020; 21:142-151. [PMID: 32880787 DOI: 10.1007/s12012-020-09605-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Cardiotoxicity is a major limitation for anthracycline chemotherapy although anthracyclines are potent antitumor agents. The precise mechanism underlying clinical heart failure due to anthracycline treatment is not fully understood, but is believed to be due, in part, to lipid peroxidation and the generation of free radicals by anthracycline-iron complexes. Thioredoxin (Trx) is a small redox-active antioxidant protein with potent disulfide reductase properties. Here, we present evidence that cancer cells overexpressing Trx undergo enhanced apoptosis in response to daunomycin. In contrast, cells overexpressing redox-inactive mutant Trx were not effectively killed. However, rat embryonic cardiomyocytes (H9c2 cells) overexpressing Trx were protected against daunomycin-mediated apoptosis, but H9c2 cells with decreased levels of active Trx showed enhanced apoptosis in response to daunomycin. We further demonstrate that increased level of Trx is specifically effective in anthracycline toxicity, but not with other topoisomerase II inhibitors such as etoposide. Collectively these data demonstrate that whereas high levels of Trx protect cardiomyocytes against anthracycline toxicity, it potentiates toxicity of anthracyclines in cancer cells.
Collapse
|
8
|
Hanschmann EM, Petry SF, Eitner S, Maresch CC, Lingwal N, Lillig CH, Linn T. Paracrine regulation and improvement of β-cell function by thioredoxin. Redox Biol 2020; 34:101570. [PMID: 32473461 PMCID: PMC7260591 DOI: 10.1016/j.redox.2020.101570] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
The failure of insulin-producing β-cells is the underlying cause of hyperglycemia in diabetes mellitus. β-cell decay has been linked to hypoxia, chronic inflammation, and oxidative stress. Thioredoxin (Trx) proteins are major actors in redox signaling and essential for signal transduction and the cellular stress response. We have analyzed the cytosolic, mitochondrial, and extracellular Trx system proteins in hypoxic and cytokine-induced stress using β-cell culture, isolated pancreatic islets, and pancreatic islet transplantation modelling low oxygen supply. Protein levels of cytosolic Trx1 and Trx reductase (TrxR) 1 significantly decreased, while mitochondrial Trx2 and TrxR2 increased upon hypoxia and reoxygenation. Interestingly, Trx1 was secreted by β-cells during hypoxia. Moreover, murine and human pancreatic islet grafts released Trx1 upon glucose stimulation. Survival of transplanted islets was substantially impaired by the TrxR inhibitor auranofin. Since a release was prominent upon hypoxia, putative paracrine effects of Trx1 on β-cells were examined. In fact, exogenously added recombinant hTrx1 mitigated apoptosis and preserved glucose sensitivity in pancreatic islets subjected to hypoxia and inflammatory stimuli, dependent on its redox activity. Human subjects were studied, demonstrating a transient increase in extracellular Trx1 in serum after glucose challenge. This increase correlated with better pancreatic islet function. Moreover, hTrx1 inhibited the migration of primary murine macrophages. In conclusion, our study offers evidence for paracrine functions of extracellular Trx1 that improve the survival and function of pancreatic β-cells.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany; Department of Neurology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | | | - Susanne Eitner
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany
| | | | - Neelam Lingwal
- Clinical Research Unit, Center of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, Germany.
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
9
|
Ruggeberg KG, O'Sullivan P, Kovacs TJ, Dawson K, Capponi VJ, Chan PP, Golobish TD, Gruda MC. Hemoadsorption Improves Survival of Rats Exposed to an Acutely Lethal Dose of Aflatoxin B 1. Sci Rep 2020; 10:799. [PMID: 31964964 PMCID: PMC6972926 DOI: 10.1038/s41598-020-57727-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 01/07/2020] [Indexed: 11/09/2022] Open
Abstract
Mycotoxins, such as aflatoxin B1 (AFB1), pose a serious threat as biological weapons due to their high toxicity, environmental stability, easy accessibility and lack of effective therapeutics. This study investigated if blood purification therapy with CytoSorb (CS) porous polymer beads could improve survival after a lethal aflatoxin dose (LD90). The effective treatment window and potential therapeutic mechanisms were also investigated. Sprague Dawley rats received a lethal dose of AFB1 (0.5-1.0 mg/kg) intravenously and hemoperfusion with a CS or Control device was initiated immediately, or after 30, 90, or 240-minute delays and conducted for 4 hours. The CS device removes AFB1 from circulation and significantly improves survival when initiated within 90 minutes of toxin administration. Treated subjects exhibited improved liver morphology and health scores. Changes in the levels of cytokines, leukocytes and platelets indicate a moderately-severe inflammatory response to acute toxin exposure. Quantitative proteomic analysis showed significant changes in the level of a broad spectrum of plasma proteins including serine protease/endopeptidase inhibitors, coagulation factors, complement proteins, carbonic anhydrases, and redox enzymes that ostensibly contribute to the therapeutic effect. Together, these results suggest that hemoadsorption with CS could be a viable countermeasure against acute mycotoxin exposure.
Collapse
Affiliation(s)
| | | | | | - Kathryn Dawson
- CytoSorbents Medical, Monmouth Junction, NJ, United States
| | | | - Phillip P Chan
- CytoSorbents Medical, Monmouth Junction, NJ, United States
| | | | | |
Collapse
|
10
|
Bitew MA, Hofmann J, De Souza DP, Wawegama NK, Newton HJ, Sansom FM. SdrA, an NADP(H)-regenerating enzyme, is crucial for Coxiella burnetii to resist oxidative stress and replicate intracellularly. Cell Microbiol 2020; 22:e13154. [PMID: 31872956 DOI: 10.1111/cmi.13154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/24/2019] [Accepted: 12/10/2019] [Indexed: 11/27/2022]
Abstract
Coxiella burnetii, the causative agent of the zoonotic disease Q fever, is a Gram-negative bacterium that replicates inside macrophages within a highly oxidative vacuole. Screening of a transposon mutant library suggested that sdrA, which encodes a putative short-chain dehydrogenase, is required for intracellular replication. Short-chain dehydrogenases are NADP(H)-dependent oxidoreductases, and SdrA contains a predicted NADP+ binding site, suggesting it may facilitate NADP(H) regeneration by C. burnetii, a key process for surviving oxidative stress. Purified recombinant 6×His-SdrA was able to convert NADP+ to NADP(H) in vitro. Mutation to alanine of a conserved glycine residue at position 12 within the predicted NADP binding site abolished significant enzymatic activity. Complementation of the sdrA mutant (sdrA::Tn) with plasmid-expressed SdrA restored intracellular replication to wild-type levels, but expressing enzymatically inactive G12A_SdrA did not. The sdrA::Tn mutant was more susceptible in vitro to oxidative stress, and treating infected host cells with L-ascorbate, an anti-oxidant, partially rescued the intracellular growth defect of sdrA::Tn. Finally, stable isotope labelling studies demonstrated a shift in flux through metabolic pathways in sdrA::Tn consistent with the presence of increased oxidative stress, and host cells infected with sdrA::Tn had elevated levels of reactive oxygen species compared with C. burnetii NMII.
Collapse
Affiliation(s)
- Mebratu A Bitew
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Australia
| | - Janine Hofmann
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Institute of Molecular Science and Biotechnology, The University of Melbourne, Parkville, Australia
| | - Nadeeka K Wawegama
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Fiona M Sansom
- Asia-Pacific Centre for Animal Health, Melbourne Veterinary School, The University of Melbourne, Parkville, Australia
| |
Collapse
|
11
|
Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Kim YS, Kim JJ, Park SI, Diamond S, Boyd JS, Taton A, Kim IS, Golden JW, Yoon HS. Expression of OsTPX Gene Improves Cellular Redox Homeostasis and Photosynthesis Efficiency in Synechococcus elongatus PCC 7942. FRONTIERS IN PLANT SCIENCE 2018; 9:1848. [PMID: 30619416 PMCID: PMC6297720 DOI: 10.3389/fpls.2018.01848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Cyanobacterial 2-Cys peroxiredoxin (thioredoxin peroxidase, TPX) comprises a family of thiol antioxidant enzymes critically involved in cell survival under oxidative stress. In our previous study, a putative TPX was identified using a proteomics analysis of rice (Oryza sativa L. japonica, OsTPX) seedlings exposed to oxidative stress. This OsTPX gene is structurally similar to the Synechococcus elongatus TPX gene in the highly conserved redox-active disulfide bridge (Cys114, Cys236) and other highly conserved regions. In the present study, the OsTPX gene was cloned into rice plants and S. elongatus PCC 7942 strain to study hydrogen peroxide (H2O2) stress responses. The OsTPX gene expression was confirmed using semi-quantitative RT-PCR and western blot analysis. The OsTPX gene expression increased growth under oxidative stress by decreasing reactive oxygen species and malondialdehyde level. Additionally, the OsTPX gene expression in S. elongatus PCC 7942 (OT) strain exhibited a reduced loss of chlorophyll and enhanced photosynthesis efficiency under H2O2 stress, thereby increasing biomass yields twofold compared with that of the control wild type (WT) strain. Furthermore, redox balance, ion homeostasis, molecular chaperone, and photosynthetic systems showed upregulation of some genes in the OT strain than in the WT strain by RNA-Seq analysis. Thus, OsTPX gene expression enhances oxidative stress tolerance by increasing cell defense regulatory networks through the cellular redox homeostasis in the rice plants and S. elongatus PCC 7942.
Collapse
Affiliation(s)
- Young-Saeng Kim
- Research Institute of Ulleung-do and Dok-do, Kyungpook National University, Daegu, South Korea
| | - Jin-Ju Kim
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Seong-Im Park
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Spencer Diamond
- Division of Biological Sciences, San Diego, La Jolla, CA, United States
| | - Joseph S. Boyd
- Division of Biological Sciences, San Diego, La Jolla, CA, United States
| | - Arnaud Taton
- Division of Biological Sciences, San Diego, La Jolla, CA, United States
| | - Il-Sup Kim
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, South Korea
| | - James W. Golden
- Division of Biological Sciences, San Diego, La Jolla, CA, United States
| | - Ho-Sung Yoon
- Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
- Advanced Bio-Resource Research Center, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
13
|
Zhu Y, Dean AE, Horikoshi N, Heer C, Spitz DR, Gius D. Emerging evidence for targeting mitochondrial metabolic dysfunction in cancer therapy. J Clin Invest 2018; 128:3682-3691. [PMID: 30168803 DOI: 10.1172/jci120844] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mammalian cells use a complex network of redox-dependent processes necessary to maintain cellular integrity during oxidative metabolism, as well as to protect against and/or adapt to stress. The disruption of these redox-dependent processes, including those in the mitochondria, creates a cellular environment permissive for progression to a malignant phenotype and the development of resistance to commonly used anticancer agents. An extension of this paradigm is that when these mitochondrial functions are altered by the events leading to transformation and ensuing downstream metabolic processes, they can be used as molecular biomarkers or targets in the development of new therapeutic interventions to selectively kill and/or sensitize cancer versus normal cells. In this Review we propose that mitochondrial oxidative metabolism is altered in tumor cells, and the central theme of this dysregulation is electron transport chain activity, folate metabolism, NADH/NADPH metabolism, thiol-mediated detoxification pathways, and redox-active metal ion metabolism. It is proposed that specific subgroups of human malignancies display distinct mitochondrial transformative and/or tumor signatures that may benefit from agents that target these pathways.
Collapse
Affiliation(s)
- Yueming Zhu
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Angela Elizabeth Dean
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Nobuo Horikoshi
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Collin Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa, USA
| | - David Gius
- Department of Radiation Oncology, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
14
|
Grosche J, Meißner J, Eble JA. More than a syllable in fib-ROS-is: The role of ROS on the fibrotic extracellular matrix and on cellular contacts. Mol Aspects Med 2018; 63:30-46. [PMID: 29596842 DOI: 10.1016/j.mam.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/16/2018] [Accepted: 03/21/2018] [Indexed: 01/01/2023]
Abstract
Fibrosis is characterized by excess deposition of extracellular matrix (ECM). However, the ECM changes during fibrosis not only quantitatively but also qualitatively. Thus, the composition is altered as the expression of various ECM proteins changes. Moreover, also posttranslational modifications, secretion, deposition and crosslinkage as well as the proteolytic degradation of ECM components run differently during fibrosis. As several of these processes involve redox reactions and some of them are even redox-regulated, reactive oxygen species (ROS) influence fibrotic diseases. Redox regulation of the ECM has not been studied intensively, although evidences exist that the alteration of the ECM, including the redox-relevant processes of its formation and degradation, may be of key importance not only as a cause but also as a consequence of fibrotic diseases. Myofibroblasts, which have differentiated from fibroblasts during fibrosis, produce most of the ECM components and in return obtain important environmental cues of the ECM, including their redox-dependent fibrotic alterations. Thus, myofibroblast differentiation and fibrotic changes of the ECM are interdependent processes and linked with each other via cell-matrix contacts, which are mediated by integrins and other cell adhesion molecules. These cell-matrix contacts are also regulated by redox processes and by ROS. However, most of the redox-catalyzing enzymes are localized within cells. Little is known about redox-regulating enzymes, especially the ones that control the formation and cleavage of redox-sensitive disulfide bridges within the extracellular space. They are also important players in the redox-regulative crosstalk between ECM and cells during fibrosis.
Collapse
Affiliation(s)
- Julius Grosche
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Juliane Meißner
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany
| | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstr. 15, 48149 Münster, Germany.
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Although the roles of oxidant stress and redox perturbations in hypertension have been the subject of several reviews, role of thioredoxin (Trx), a major cellular redox protein in age-related hypertension remains inadequately reviewed. The purpose of this review is to bring readers up-to-date with current understanding of the role of thioredoxin in age-related hypertension. RECENT FINDINGS Age-related hypertension is a major underlying cause of several cardiovascular disorders, and therefore, intensive management of blood pressure is indicated in most patients with cardiovascular complications. Recent studies have shown that age-related hypertension was reversed and remained lowered for a prolonged period in mice with higher levels of human Trx (Trx-Tg). Additionally, injection of human recombinant Trx (rhTrx) decreased hypertension in aged wild-type mice that lasted for several days. Both Trx-Tg and aged wild-type mice injected with rhTrx were normotensive, showed increased NO production, decreased arterial stiffness, and increased vascular relaxation. These studies suggest that rhTrx could potentially be a therapeutic molecule to reverse age-related hypertension in humans. The reversal of age-related hypertension by restoring proteins that have undergone age-related modification is conceptually novel in the treatment of hypertension. Trx reverses age-related hypertension via maintaining vascular redox homeostasis, regenerating critical vasoregulatory proteins oxidized due to advancing age, and restoring native function of proteins that have undergone age-related modifications with loss-of function. Recent studies demonstrate that Trx is a promising molecule that may ameliorate or reverse age-related hypertension in older adults.
Collapse
Affiliation(s)
- Kumuda C Das
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA.
| | - Venkatesh Kundumani-Sridharan
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| | - Jaganathan Subramani
- Department of Translational and Vascular Biology, University of Texas Health Sciences Center at Tyler, 11937 US Hwy 271, Tyler, TX, 75708, USA
| |
Collapse
|
16
|
Li H, Xu C, Li Q, Gao X, Sugano E, Tomita H, Yang L, Shi S. Thioredoxin 2 Offers Protection against Mitochondrial Oxidative Stress in H9c2 Cells and against Myocardial Hypertrophy Induced by Hyperglycemia. Int J Mol Sci 2017; 18:ijms18091958. [PMID: 28914755 PMCID: PMC5618607 DOI: 10.3390/ijms18091958] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 08/31/2017] [Accepted: 09/08/2017] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial oxidative stress is thought to be a key contributor towards the development of diabetic cardiomyopathy. Thioredoxin 2 (Trx2) is a mitochondrial antioxidant that, along with Trx reductase 2 (TrxR2) and peroxiredoxin 3 (Prx3), scavenges H2O2 and offers protection against oxidative stress. Our previous study showed that TrxR inhibitors resulted in Trx2 oxidation and increased ROS emission from mitochondria. In the present study, we observed that TrxR inhibition also impaired the contractile function of isolated heart. Our studies showed a decrease in the expression of Trx2 in the high glucose-treated H9c2 cardiac cells and myocardium of streptozotocin (STZ)-induced diabetic rats. Overexpression of Trx2 could significantly diminish high glucose-induced mitochondrial oxidative damage and improved ATP production in cultured H9c2 cells. Notably, Trx2 overexpression could suppress high glucose-induced atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) gene expression. Our studies suggest that high glucose-induced mitochondrial oxidative damage can be prevented by elevating Trx2 levels, thereby providing extensive protection to the diabetic heart.
Collapse
Affiliation(s)
- Hong Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Quanfeng Li
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Xiuxiang Gao
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Erkio Sugano
- Department of Chemistry and Bioengineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.
| | - Hiroshi Tomita
- Department of Chemistry and Bioengineering, Iwate University, 4-3-5 Ueda, Morioka 020-8551, Japan.
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| | - Sa Shi
- Department of Pathophysiology, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
17
|
Hydrogen peroxide dynamics in subcellular compartments of malaria parasites using genetically encoded redox probes. Sci Rep 2017; 7:10449. [PMID: 28874682 PMCID: PMC5585161 DOI: 10.1038/s41598-017-10093-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/03/2017] [Indexed: 11/23/2022] Open
Abstract
Redox balance is essential for the survival, growth and multiplication of malaria parasites and oxidative stress is involved in the mechanism of action of many antimalarial drugs. Hydrogen peroxide (H2O2) plays an important role in redox signalling and pathogen-host cell interactions. For monitoring intra- and subcellular redox events, highly sensitive and specific probes are required. Here, we stably expressed the ratiometric H2O2 redox sensor roGFP2-Orp1 in the cytosol and the mitochondria of Plasmodium falciparum (P. falciparum) NF54-attB blood-stage parasites and evaluated its sensitivity towards oxidative stress, selected antimalarial drugs, and novel lead compounds. In both compartments, the sensor showed reproducible sensitivity towards H2O2 in the low micromolar range and towards antimalarial compounds at pharmacologically relevant concentrations. Upon short-term exposure (4 h), artemisinin derivatives, quinine and mefloquine impacted H2O2 levels in mitochondria, whereas chloroquine and a glucose-6-phosphate dehydrogenase (G6PD) inhibitor affected the cytosol; 24 h exposure to arylmethylamino steroids and G6PD inhibitors revealed oxidation of mitochondria and cytosol, respectively. Genomic integration of an H2O2 sensor expressed in subcellular compartments of P. falciparum provides the basis for studying complex parasite-host cell interactions or drug effects with spatio-temporal resolution while preserving cell integrity, and sets the stage for high-throughput approaches to identify antimalarial agents perturbing redox equilibrium.
Collapse
|
18
|
Mohring F, Rahbari M, Zechmann B, Rahlfs S, Przyborski JM, Meyer AJ, Becker K. Determination of glutathione redox potential and pH value in subcellular compartments of malaria parasites. Free Radic Biol Med 2017; 104:104-117. [PMID: 28062360 DOI: 10.1016/j.freeradbiomed.2017.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 12/16/2016] [Accepted: 01/02/2017] [Indexed: 12/26/2022]
Abstract
The malaria parasite Plasmodium falciparum is exposed to multiple sources of oxidative challenge during its complex life cycle in the Anopheles vector and its human host. In order to further elucidate redox-based parasite host cell interactions and mechanisms of drug action, we targeted the genetically encoded glutathione redox sensor roGFP2 coupled to human glutaredoxin 1 (roGFP2-hGrx1) as well as the ratiometric pH sensor pHluorin to the apicoplast and the mitochondrion of P. falciparum. Using live cell imaging, this allowed for the first time the determination of the pH values of the apicoplast (7.12±0.40) and mitochondrion (7.37±0.09) in the intraerythrocytic asexual stages of the parasite. Based on the roGFP2-hGrx1 signals, glutathione-dependent redox potentials of -267mV and -328mV, respectively, were obtained. Employing these novel tools, initial studies on the effects of redox-active agents and clinically employed antimalarial drugs were carried out on both organelles.
Collapse
Affiliation(s)
- Franziska Mohring
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Mahsa Rahbari
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Bernd Zechmann
- Center for Microscopy and Imaging, Baylor University, 101 Bagby Ave., Waco, TX 76706, USA
| | - Stefan Rahlfs
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Jude M Przyborski
- Parasitology, Philipps University Marburg, Karl-von-Frisch Strasse 8, 35043 Marburg, Germany
| | - Andreas J Meyer
- INRES-Chemical Signalling, University of Bonn, Friedrich-Ebert-Allee 144, 53113 Bonn, Germany
| | - Katja Becker
- Biochemistry and Molecular Biology, Interdisciplinary Research Center, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| |
Collapse
|
19
|
Chen L, Wilson R, Bennett E, Zosky GR. Identification of vitamin D sensitive pathways during lung development. Respir Res 2016; 17:47. [PMID: 27121020 PMCID: PMC4847230 DOI: 10.1186/s12931-016-0362-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/19/2016] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND We have previously shown that vitamin D deficiency has a detrimental impact on lung development. In this study, we aimed to identify the mechanisms linking vitamin D with lung development using a mouse model of dietary manipulation. METHODS Female offspring were euthanized at different time-points; embryonic day (E)14.5, E17.5 or postnatal day (P)7. Lung tissue was collected for mass spectrometry-based proteomic analysis. Label-free quantitation was used to identify the differentially expressed proteins and ELISA confirmed the expression of selected proteins. Lungs from separate groups of mice were fixed and processed for stereological assessment of lung structure. RESULTS No differences in protein expression between vitamin D deficient and replete mice were detected at E14.5 and E17.5, whereas 66 proteins were differentially expressed in P7 lungs. The expression of pulmonary surfactant-associated protein B (SP-B) and peroxiredoxin 5 (PRDX5) were reduced in P7 lungs of vitamin D deficient mice, while the production of collagen type Ι alpha 1 (COL1A1) was higher in lungs of vitamin D deficient mice. There were no differences in lung volume, parenchymal volume, volume of airspaces or surface area of airspaces between vitamin D deficient and vitamin D replete mice across three time-points. CONCLUSIONS The difference in protein expression during the early postnatal time-point suggests that vitamin D deficiency may induce alterations of lung structure and function in later life during alveolarization stage through impaired pulmonary surfactant production and anti-oxidative stress ability as well as enhanced collagen synthesis. These data provided a plausible mechanism linking maternal vitamin D deficiency with altered postnatal lung function.
Collapse
Affiliation(s)
- Ling Chen
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia.
| | - Richard Wilson
- Central Science Laboratory, University of Tasmania, Hobart, Tasmania, Australia
| | - Ellen Bennett
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| | - Graeme R Zosky
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
20
|
Verrastro I, Tveen-Jensen K, Woscholski R, Spickett CM, Pitt AR. Reversible oxidation of phosphatase and tensin homolog (PTEN) alters its interactions with signaling and regulatory proteins. Free Radic Biol Med 2016; 90:24-34. [PMID: 26561776 DOI: 10.1016/j.freeradbiomed.2015.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 11/04/2015] [Accepted: 11/05/2015] [Indexed: 12/27/2022]
Abstract
Phosphatase and tensin homolog (PTEN) is involved in a number of different cellular processes including metabolism, apoptosis, cell proliferation and survival. It is a redox-sensitive dual-specificity protein phosphatase that acts as a tumor suppressor by negatively regulating the PI3K/Akt pathway. While direct evidence of redox regulation of PTEN downstream signaling has been reported, the effect of PTEN redox status on its protein-protein interactions is poorly understood. PTEN-GST in its reduced and a DTT-reversible H2O2-oxidized form was immobilized on a glutathione-sepharose support and incubated with cell lysate to capture interacting proteins. Captured proteins were analyzed by LC-MSMS and comparatively quantified using label-free methods. 97 Potential protein interactors were identified, including a significant number that are novel. The abundance of fourteen interactors was found to vary significantly with the redox status of PTEN. Altered binding to PTEN was confirmed by affinity pull-down and Western blotting for Prdx1, Trx, and Anxa2, while DDB1 was validated as a novel interactor with unaltered binding. These results suggest that the redox status of PTEN causes a functional variation in the PTEN interactome. The resin capture method developed had distinct advantages in that the redox status of PTEN could be directly controlled and measured.
Collapse
Affiliation(s)
- Ivan Verrastro
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Karina Tveen-Jensen
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Rudiger Woscholski
- Department of Chemistry and Institute of Chemical Biology, Imperial College London, UK
| | - Corinne M Spickett
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK
| | - Andrew R Pitt
- School of Life and Health Sciences, Aston Triangle, Aston University, Birmingham B4 7ET, UK.
| |
Collapse
|
21
|
Abstract
Vascular thiol redox state has been shown to modulate vasodilator functions in large conductance Ca2+ -activated K+ channels and other related channels. However, the role of vascular redox in small resistance arteries is unknown. To determine how in vivo modulation of thiol redox state affects small resistance arteries relaxation, we generated a transgenic mouse strain that overexpresses thioredoxin, a small redox protein (Trx-Tg), and another strain that is thioredoxin-deficient (dnTrx-Tg). The redox state of the mesenteric arteries (MAs) in Trx-Tg mice is found to be predominantly in reduced state; in contrast, MAs from dnTrx-Tg mice remain in oxidized state. Thus, we created an in vivo redox system of mice and isolated the second-order branches of the main superior MAs from wild-type, Trx-Tg, or dnTrx-Tg mice to assess endothelium-dependent relaxing responses in a wire myograph. In MAs isolated from Trx-Tg mice, we observed an enhanced intermediate-conductance Ca2+ -activated potassium channel contribution resulting in a larger endothelium-dependent hyperpolarizing (EDH) relaxation in response to indirect (acetylcholine) and direct (NS309) opening of endothelial calcium-activated potassium channels. MAs derived from dnTrx-Tg mice showed both blunted nitric oxide-mediated and EDH-mediated relaxation compared with Trx-Tg mice. In a control study, diamide decreased EDH relaxations in MAs of wild-type mice, whereas dithiothreitol improved EDH relaxations and was able to restore the diamide-induced impairment in EDH response. Furthermore, the basal or angiotensin II-mediated systolic blood pressure remained significantly lower in Trx-Tg mice compared with wild-type or dnTrx-Tg mice, thus directly establishing redox-mediated EDH in blood pressure control.
Collapse
Affiliation(s)
- Rob H P Hilgers
- From the Department of Anesthesiology and Center for Excellence in Cardiovascular Research, Texas Tech University Health Sciences Center, Lubbock
| | - Kumuda C Das
- From the Department of Anesthesiology and Center for Excellence in Cardiovascular Research, Texas Tech University Health Sciences Center, Lubbock.
| |
Collapse
|
22
|
|
23
|
Branco V, Godinho-Santos A, Gonçalves J, Lu J, Holmgren A, Carvalho C. Mitochondrial thioredoxin reductase inhibition, selenium status, and Nrf-2 activation are determinant factors modulating the toxicity of mercury compounds. Free Radic Biol Med 2014; 73:95-105. [PMID: 24816296 DOI: 10.1016/j.freeradbiomed.2014.04.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 04/21/2014] [Accepted: 04/27/2014] [Indexed: 01/21/2023]
Abstract
The thioredoxin system has essential functions in the maintenance of cellular redox homeostasis in the cytosol, nucleus, and mitochondria. Thioredoxin (Trx) and thioredoxin reductase (TrxR) are targets for mercury compounds in vitro and in vivo. This study aimed at understanding mechanistically how the mitochondrial and cytosolic thioredoxin systems were affected by mercurials, including the regulation of TrxR transcription. The effects of coexposure to selenite and mercurials on the thioredoxin system were also addressed. Results in HepG2 cells showed that TrxR1 expression was enhanced by Hg(2+), whereas exposure to MeHg decreased expression. Selenite exposure also increased the expression of TrxR1 and resulted in higher specific activity. Coexposure to 2 µM selenite and up to 5 µM Hg(2+) increased even further TrxR1 expression. This synergistic effect was not verified for MeHg, because TrxR1 expression and activity were reduced. Analysis of Nrf-2 translocation to the nucleus and TrxR mRNA suggests that induction of TrxR1 transcription was slower upon exposure to MeHg in comparison to Hg(2+). Subcellular fractions showed that MeHg affected the activity of the thioredoxin system equally in the mitochondria and cytosol, whereas Hg(2+) inhibited primarily the activity of TrxR2. The expression of TrxR2 was not upregulated by any treatment. These results show important differences between the mechanisms of toxicity of Hg(2+) and MeHg and stress the narrow range of selenite concentrations capable of antagonizing mercury toxicity. The results also highlight the relevance of the mitochondrial thioredoxin system (TrxR2 and Trx2) in the development of mercury toxicity.
Collapse
Affiliation(s)
- Vasco Branco
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Ana Godinho-Santos
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - João Gonçalves
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Jun Lu
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Arne Holmgren
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | - Cristina Carvalho
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal.
| |
Collapse
|
24
|
Hanschmann EM, Godoy JR, Berndt C, Hudemann C, Lillig CH. Thioredoxins, glutaredoxins, and peroxiredoxins--molecular mechanisms and health significance: from cofactors to antioxidants to redox signaling. Antioxid Redox Signal 2013; 19:1539-605. [PMID: 23397885 PMCID: PMC3797455 DOI: 10.1089/ars.2012.4599] [Citation(s) in RCA: 496] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 02/01/2013] [Accepted: 02/07/2013] [Indexed: 12/19/2022]
Abstract
Thioredoxins (Trxs), glutaredoxins (Grxs), and peroxiredoxins (Prxs) have been characterized as electron donors, guards of the intracellular redox state, and "antioxidants". Today, these redox catalysts are increasingly recognized for their specific role in redox signaling. The number of publications published on the functions of these proteins continues to increase exponentially. The field is experiencing an exciting transformation, from looking at a general redox homeostasis and the pathological oxidative stress model to realizing redox changes as a part of localized, rapid, specific, and reversible redox-regulated signaling events. This review summarizes the almost 50 years of research on these proteins, focusing primarily on data from vertebrates and mammals. The role of Trx fold proteins in redox signaling is discussed by looking at reaction mechanisms, reversible oxidative post-translational modifications of proteins, and characterized interaction partners. On the basis of this analysis, the specific regulatory functions are exemplified for the cellular processes of apoptosis, proliferation, and iron metabolism. The importance of Trxs, Grxs, and Prxs for human health is addressed in the second part of this review, that is, their potential impact and functions in different cell types, tissues, and various pathological conditions.
Collapse
Affiliation(s)
- Eva-Maria Hanschmann
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| | - José Rodrigo Godoy
- Institute of Physiology, Pathophysiology and Biophysics, Department of Biomedical Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Carsten Berndt
- Department of Neurology, Medical Faculty, Heinrich-Heine University, Duesseldorf, Germany
| | - Christoph Hudemann
- Institute of Laboratory Medicine, Molecular Diagnostics, Philipps University, Marburg, Germany
| | - Christopher Horst Lillig
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, Ernst-Moritz Arndt University, Greifswald, Germany
| |
Collapse
|
25
|
Zhang R, Zheng W, Wu X, Jise Q, Ren Y, Nong X, Gu X, Wang S, Peng X, Lai S, Yang G. Characterisation and analysis of thioredoxin peroxidase as a potential antigen for the serodiagnosis of sarcoptic mange in rabbits by dot-ELISA. BMC Infect Dis 2013; 13:336. [PMID: 23875925 PMCID: PMC3733899 DOI: 10.1186/1471-2334-13-336] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/17/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Scabies caused by Sarcoptes scabiei is a widespread but a neglected tropical zoonosis. In this study, we characterised a S. scabiei thioredoxin peroxidase (SsTPx) and evaluated a recombinant SsTPx as a diagnostic antigen in rabbits. METHODS The open reading frame of the gene encoding SsTPx-2 was amplified and the recombinant protein was expressed in Escherichia coli cells and purified. SsTPx was localized in mite tissue by immunolocalisation using the purified recombinant protein. Serodiagnosis assays were carried out in 203 New Zealand White rabbit serum samples by dot-ELISA. RESULT The open reading frame (489 bp) of the gene encodes an 18.11 kDa protein, which showed highly homology to that of Psoroptes cuniculi (98.77% identity) and belongs to the 2-Cys family of peroxiredoxins. SsTPx was mainly distributed in muscle tissues of mites, integument of the epidermis and the anterior end of S. scabiei. Although SsTPx cross-reactivity with psoroptic mites was observed, the SsTPx dot-ELISA showed excellent diagnostic ability, with 95.3% sensitivity and 93.8% specificity in mange-infected and uninfected groups. CONCLUSIONS This study showed that the purified SsTPx is a highly sensitive antigen for the diagnosis of mange infection by dot-ELISA. This technique is a rapid and convenient method that can be used worldwide for the clinical diagnosis of sarcoptic mange in rabbits, and is especially useful in developing regions.
Collapse
Affiliation(s)
- Runhui Zhang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China
| | - Wanpeng Zheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China
| | - Xuhang Wu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China
| | - Quwu Jise
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China
| | - Yongjun Ren
- Sichuan Academy of Animal Husbandry Sciences, Chengdu 610066, China
| | - Xiang Nong
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China
| | - Shuxian Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China
| | - Xuerong Peng
- Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Songjia Lai
- College of Animal Science and Technology, Sichuan Agricultural University, Ya’an 625014, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
26
|
Tehan L, Taparra K, Phelan S. Peroxiredoxin overexpression in MCF-7 breast cancer cells and regulation by cell proliferation and oxidative stress. Cancer Invest 2013; 31:374-84. [PMID: 23758190 DOI: 10.3109/07357907.2013.802798] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxiredoxins are thiol-specific antioxidant proteins that protect cells from ROS-induced cell death and are elevated in several cancers. We found that five of the six mammalian peroxiredoxins are overexpressed in MCF-7 breast cancer cells at the mRNA and protein levels, compared to noncancerous MCF-10A cells. Inhibition of MCF-7 proliferation reduced the levels of several peroxiredoxins. In contrast, all six proteins were strongly and transiently induced in MCF-7 cells by H₂O₂. These data suggest that coordinate overexpression of peroxiredoxins may be an important cancer cell adaptation, and that these proteins can be regulated by cell proliferation and oxidative stress.
Collapse
Affiliation(s)
- Lauren Tehan
- Department of Biology, Fairfield University, Fairfield, Connecticut, USA
| | | | | |
Collapse
|
27
|
Diab HI, Kane PM. Loss of vacuolar H+-ATPase (V-ATPase) activity in yeast generates an iron deprivation signal that is moderated by induction of the peroxiredoxin TSA2. J Biol Chem 2013; 288:11366-77. [PMID: 23457300 DOI: 10.1074/jbc.m112.419259] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vacuolar H(+)-ATPases (V-ATPases) acidify intracellular organelles and help to regulate overall cellular pH. Yeast vma mutants lack V-ATPase activity and allow exploration of connections between cellular pH, iron, and redox homeostasis common to all eukaryotes. A previous microarray study in a vma mutant demonstrated up-regulation of multiple iron uptake genes under control of Aft1p (the iron regulon) and only one antioxidant gene, the peroxiredoxin TSA2 (Milgrom, E., Diab, H., Middleton, F., and Kane, P. M. (2007) Loss of vacuolar proton-translocating ATPase activity in yeast results in chronic oxidative stress. J. Biol. Chem. 282, 7125-7136). Fluorescent biosensors placing GFP under transcriptional control of either an Aft1-dependent promoter (P(FIT2)-GFP) or the TSA2 promoter (P(TSA2)-GFP) were constructed to monitor transcriptional signaling. Both biosensors were up-regulated in the vma2Δ mutant, and acute V-ATPase inhibition with concanamycin A induced coordinate up-regulation from both promoters. PTSA2-GFP induction was Yap1p-dependent, indicating an oxidative stress signal. Total cell iron measurements indicate that the vma2Δ mutant is iron-replete, despite up-regulation of the iron regulon. Acetic acid up-regulated P(FIT2)-GFP expression in wild-type cells, suggesting that loss of pH control contributes to an iron deficiency signal in the mutant. Iron supplementation significantly decreased P(FIT2)-GFP expression and, surprisingly, restored P(TSA2)-GFP to wild-type levels. A tsa2Δ mutation induced both nuclear localization of Aft1p and P(FIT2)-GFP expression. The data suggest a novel function for Tsa2p as a negative regulator of Aft1p-driven transcription, which is induced in V-ATPase mutants to limit transcription of the iron regulon. This represents a new mechanism bridging the antioxidant and iron-regulatory pathways that is intimately linked to pH homeostasis.
Collapse
Affiliation(s)
- Heba I Diab
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
28
|
Genetic evidence of an evolutionarily conserved role for Nrf2 in the protection against oxidative stress. Mol Cell Biol 2012; 32:4455-61. [PMID: 22949501 DOI: 10.1128/mcb.00481-12] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transcription factor Nrf2 is considered a master regulator of antioxidant defense in mammals. However, it is unclear whether this concept is applicable to nonmammalian vertebrates, because no animal model other than Nrf2 knockout mice has been generated to examine the effects of Nrf2 deficiency. Here, we characterized a recessive loss-of-function mutant of Nrf2 (nrf2(fh318)) in a lower vertebrate, the zebrafish (Danio rerio). In keeping with the findings in the mouse model, nrf2(fh318) mutants exhibited reduced induction of the Nrf2 target genes in response to oxidative stress and electrophiles but were viable and fertile, and their embryos developed normally. The nrf2(fh318) larvae displayed enhanced sensitivity to oxidative stress and electrophiles, especially peroxides, and pretreatment with an Nrf2-activating compound, sulforaphane, decreased peroxide-induced lethality in the wild type but not nrf2(fh318) mutants, indicating that resistance to oxidative stress is highly dependent on Nrf2 functions. These results reveal an evolutionarily conserved role of vertebrate Nrf2 in protection against oxidative stress. Interestingly, there were no significant differences between wild-type and nrf2(fh318) larvae with regard to their sensitivity to superoxide and singlet oxygen generators, suggesting that the importance of Nrf2 in oxidative stress protection varies based on the type of reactive oxygen species (ROS).
Collapse
|
29
|
Transcript and protein analysis reveals better survival skills of monocyte-derived dendritic cells compared to monocytes during oxidative stress. PLoS One 2012; 7:e43357. [PMID: 22916248 PMCID: PMC3419731 DOI: 10.1371/journal.pone.0043357] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
Background Dendritic cells (DCs), professional antigen-presenting cells with the unique ability to initiate primary T-cell responses, are present in atherosclerotic lesions where they are exposed to oxidative stress that generates cytotoxic reactive oxygen species (ROS). A large body of evidence indicates that cell death is a major modulating factor of atherogenesis. We examined antioxidant defence systems of human monocyte-derived (mo)DCs and monocytes in response to oxidative stress. Methods Oxidative stress was induced by addition of tertiary-butylhydroperoxide (tert-BHP, 30 min). Cellular responses were evaluated using flow cytometry and confocal live cell imaging (both using 5-(and-6)-chloromethyl-2,7-dichlorodihydrofluorescein diacetate, CM-H2DCFDA). Viability was assessed by the neutral red assay. Total RNA was extracted for a PCR profiler array. Five genes were selected for confirmation by Taqman gene expression assays, and by immunoblotting or immunohistochemistry for protein levels. Results Tert-BHP increased CM-H2DCFDA fluorescence and caused cell death. Interestingly, all processes occurred more slowly in moDCs than in monocytes. The mRNA profiler array showed more than 2-fold differential expression of 32 oxidative stress–related genes in unstimulated moDCs, including peroxiredoxin-2 (PRDX2), an enzyme reducing hydrogen peroxide and lipid peroxides. PRDX2 upregulation was confirmed by Taqman assays, immunoblotting and immunohistochemistry. Silencing PRDX2 in moDCs by means of siRNA significantly increased CM-DCF fluorescence and cell death upon tert-BHP-stimulation. Conclusions Our results indicate that moDCs exhibit higher intracellular antioxidant capacities, making them better equipped to resist oxidative stress than monocytes. Upregulation of PRDX2 is involved in the neutralization of ROS in moDCs. Taken together, this points to better survival skills of DCs in oxidative stress environments, such as atherosclerotic plaques.
Collapse
|
30
|
Noblanc A, Peltier M, Damon-Soubeyrand C, Kerchkove N, Chabory E, Vernet P, Saez F, Cadet R, Janny L, Pons-Rejraji H, Conrad M, Drevet JR, Kocer A. Epididymis response partly compensates for spermatozoa oxidative defects in snGPx4 and GPx5 double mutant mice. PLoS One 2012; 7:e38565. [PMID: 22719900 PMCID: PMC3375294 DOI: 10.1371/journal.pone.0038565] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 05/07/2012] [Indexed: 01/12/2023] Open
Abstract
We report here that spermatozoa of mice lacking both the sperm nucleaus glutathione peroxidase 4 (snGPx4) and the epididymal glutathione peroxidase 5 (GPx5) activities display sperm nucleus structural abnormalities including delayed and defective nuclear compaction, nuclear instability and DNA damage. We show that to counteract the GPx activity losses, the epididymis of the double KO animals mounted an antioxydant response resulting in a strong increase in the global H2O2-scavenger activity especially in the cauda epididymis. Quantitative RT-PCR data show that together with the up-regulation of epididymal scavengers (of the thioredoxin/peroxiredoxin system as well as glutathione-S-transferases) the epididymis of double mutant animals increased the expression of several disulfide isomerases in an attempt to recover normal disulfide-bridging activity. Despite these compensatory mechanisms cauda-stored spermatozoa of double mutant animals show high levels of DNA oxidation, increased fragmentation and greater susceptibility to nuclear decondensation. Nevertheless, the enzymatic epididymal salvage response is sufficient to maintain full fertility of double KO males whatever their age, crossed with young WT female mice.
Collapse
Affiliation(s)
- Anaïs Noblanc
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | | | - Christelle Damon-Soubeyrand
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Nicolas Kerchkove
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Eléonore Chabory
- Laboratoire d'Assistance Médicale à la Procréation, Département gynécologie-obstétrique, Hôpital Porte Madeleine, Orléans, France
| | - Patrick Vernet
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Fabrice Saez
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Rémi Cadet
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| | - Laurent Janny
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
- CHU Estaing, Assistance Médicale à la Procréation, Clermont-Ferrand, France
| | - Hanae Pons-Rejraji
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
- CHU Estaing, Assistance Médicale à la Procréation, Clermont-Ferrand, France
| | - Marcus Conrad
- German Center for Neurodegenerative Diseases, Munich, Germany and Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Neuherberg, Germany
| | - Joël R. Drevet
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
- * E-mail:
| | - Ayhan Kocer
- Genetics Reproduction & Development laboratory, CNRS UMR 6293 - INSERM U1103 - Clermont Université, Aubière, France
| |
Collapse
|
31
|
Yonglitthipagon P, Pairojkul C, Chamgramol Y, Loukas A, Mulvenna J, Bethony J, Bhudhisawasdi V, Sripa B. Prognostic significance of peroxiredoxin 1 and ezrin-radixin-moesin-binding phosphoprotein 50 in cholangiocarcinoma. Hum Pathol 2012; 43:1719-30. [PMID: 22446018 DOI: 10.1016/j.humpath.2011.11.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/18/2011] [Accepted: 11/23/2011] [Indexed: 11/16/2022]
Abstract
We performed a comparative proteomic analysis of protein expression profiles in 4 cholangiocarcinoma cell lines: K100, M156, M213, and M139. The H69 biliary cell line was used as a control. Peroxiredoxin 1 and ezrin-radixin-moesin-binding phosphoprotein 50 were selected for further validation by immunohistochemistry using a cholangiocarcinoma tissue microarray (n = 301) to assess their prognostic value in this cancer. Both peroxiredoxin 1 and ezrin-radixin-moesin-binding phosphoprotein 50 were overexpressed in cholangiocarcinoma tissues compared with normal liver tissues. Of the 301 cholangiocarcinoma cases, overexpression of peroxiredoxin 1 in 103 (34.3%) was associated with an age-related effect in young patients (P = .011) and the absence of cholangiocarcinoma in lymphatic vessels and perineural tissues (P = .004 and P = .037, respectively). Expression of radixin-moesin-binding phosphoprotein 50 correlated with histopathologic type, with 180 (59.8%) of moderately or poorly differentiated tumors (P = .039) being higher, and was associated with the presence of cholangiocarcinoma in lymphatic and vascular vessels (P < .001 and P < .001, respectively). The high expression of radixin-moesin-binding phosphoprotein 50 and the low expression of peroxiredoxin 1 correlated with reduced survival by univariate analysis (P = .017 and P = .048, respectively). Moreover, the impact of peroxiredoxin 1 and radixin-moesin-binding phosphoprotein 50 expression on patient survival was an independent predictor in multivariate analyses (P = .004 and P = .025, respectively). Therefore, altered expression of peroxiredoxin 1 and radixin-moesin-binding phosphoprotein 50 may be used as prognostic markers in cholangiocarcinoma.
Collapse
|
32
|
Goncalves K, Sullivan K, Phelan S. Differential expression and function of peroxiredoxin 1 and peroxiredoxin 6 in cancerous MCF-7 and noncancerous MCF-10A breast epithelial cells. Cancer Invest 2012; 30:38-47. [PMID: 22236188 DOI: 10.3109/07357907.2011.629382] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxiredoxins are thiol-specific antioxidant proteins whose expression is elevated in several cancers. We compared the expression and function of Prdx1 and Prdx6 between the MCF-7 mammary adenocarcinoma cell line and the noncancerous MCF-10A cell line. We found elevated Prdx1 expression in MCF-7 cells and comparable expression of Prdx6. Suppression of Prdx1 and/or Prdx6 resulted in a modest increase in peroxide-induced cytotoxicity of MCF-7 cells, and a dramatic increase in MCF-10A cytotoxicity with and without hydrogen peroxide treatment. Our data confirm a cytoprotective role for peroxiredoxins and suggest a synergistic role for Prdx1 and Prdx6 in MCF-10A cells.
Collapse
Affiliation(s)
- Kevin Goncalves
- Department of Biology, College of Arts and Sciences, Fairfield University, Fairfield, Connecticut 06824, USA
| | | | | |
Collapse
|
33
|
Proteomic analysis of Hemoglobin H-Constant Spring (Hb H-CS) erythroblasts. Blood Cells Mol Dis 2012; 48:77-85. [DOI: 10.1016/j.bcmd.2011.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/07/2011] [Indexed: 12/31/2022]
|
34
|
Shim SY, Kim HS, Kim EK, Choi JH. Expression of peroxiredoxin 1, 2, and 6 in the rat brain during perinatal development and in response to dexamethasone. Free Radic Res 2012; 46:231-9. [PMID: 22166015 DOI: 10.3109/10715762.2011.649749] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Peroxiredoxins (Prdx), a family of antioxidant proteins, have important defensive roles in the degenerative brain diseases and neuronal cell death in adult subjects. However, little is known in the neonatal brain. Here, we studied the developmental expression of Prdxs and their response to dexamethasone in the perinatal rat brain. Prdx 1 expression increased during late gestations and peaked at postnatal-day 1, when its expression gradually decreased. Prdx 2 expression remained largely unchanged. Prdx 6 expression continually increased as growing. Using immunohistochemistry, each Prdx showed a strong expression in the cerebral cortex and hippocampus. Prdx 1 was strongly expressed in the corpus callosum. The dexamethasone injection increased the expression of Prdx 6. In conclusion, we reveal for the first time that Prdx 1, 2 and 6 are found in abundance in the perinatal rat brain and are differentially expressed during development. The expression of Prdx 6 was affected by dexamethasone treatment.
Collapse
Affiliation(s)
- So-Yeon Shim
- Department of Pediatrics, Gachon University of Medicine and Science, Incheon, Republic of Korea
| | | | | | | |
Collapse
|
35
|
Yan C, Siegel D, Newsome J, Chilloux A, Moody CJ, Ross D. Antitumor indolequinones induced apoptosis in human pancreatic cancer cells via inhibition of thioredoxin reductase and activation of redox signaling. Mol Pharmacol 2011; 81:401-10. [PMID: 22147753 DOI: 10.1124/mol.111.076091] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Indolequinones (IQs) were developed as potential antitumor agents against human pancreatic cancer. IQs exhibited potent antitumor activity against the human pancreatic cancer cell line MIA PaCa-2 with growth inhibitory IC(50) values in the low nanomolar range. IQs were found to induce time- and concentration-dependent apoptosis and to be potent inhibitors of thioredoxin reductase 1 (TR1) in MIA PaCa-2 cells at concentrations equivalent to those inducing growth-inhibitory effects. The mechanism of inhibition of TR1 by the IQs was studied in detail in cell-free systems using purified enzyme. The C-terminal selenocysteine of TR1 was characterized as the primary adduction site of the IQ-derived reactive iminium using liquid chromatography-tandem mass spectrometry analysis. Inhibition of TR1 by IQs in MIA PaCa-2 cells resulted in a shift of thioredoxin-1 redox state to the oxidized form and activation of the p38/c-Jun NH(2)-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) signaling pathway. Oxidized thioredoxin is known to activate apoptosis signal-regulating kinase 1, an upstream activator of p38/JNK in the MAPK signaling cascade and this was confirmed in our study providing a potential mechanism for IQ-induced apoptosis. These data describe the redox and signaling events involved in the mechanism of growth inhibition induced by novel inhibitors of TR1 in human pancreatic cancer cells.
Collapse
Affiliation(s)
- Chao Yan
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | |
Collapse
|
36
|
A switching mechanism in doxorubicin bioactivation can be exploited to control doxorubicin toxicity. PLoS Comput Biol 2011; 7:e1002151. [PMID: 21935349 PMCID: PMC3174179 DOI: 10.1371/journal.pcbi.1002151] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/21/2011] [Indexed: 02/07/2023] Open
Abstract
Although doxorubicin toxicity in cancer cells is multifactorial, the enzymatic bioactivation of the drug can significantly contribute to its cytotoxicity. Previous research has identified most of the components that comprise the doxorubicin bioactivation network; however, adaptation of the network to changes in doxorubicin treatment or to patient-specific changes in network components is much less understood. To investigate the properties of the coupled reduction/oxidation reactions of the doxorubicin bioactivation network, we analyzed metabolic differences between two patient-derived acute lymphoblastic leukemia (ALL) cell lines exhibiting varied doxorubicin sensitivities. We developed computational models that accurately predicted doxorubicin bioactivation in both ALL cell lines at high and low doxorubicin concentrations. Oxygen-dependent redox cycling promoted superoxide accumulation while NADPH-dependent reductive conversion promoted semiquinone doxorubicin. This fundamental switch in control is observed between doxorubicin sensitive and insensitive ALL cells and between high and low doxorubicin concentrations. We demonstrate that pharmacological intervention strategies can be employed to either enhance or impede doxorubicin cytotoxicity in ALL cells due to the switching that occurs between oxygen-dependent superoxide generation and NADPH-dependent doxorubicin semiquinone formation. In the United States, acute lymphoblastic leukemia (ALL) is the most common form of cancer among children. Although the survival rate of childhood leukemia is relatively high, those who do not respond to chemotherapy have very low prognostic outcome. Recent reports point to the critical role of metabolism in determining cell sensitivity to doxorubicin, a conventional drug used in leukemia treatment. Most of the molecular components involved in doxorubicin metabolism have been identified; however, how these components operate as a system and how adaptation of the doxorubicin metabolic network to patient-specific changes in protein components is much less understood. We have therefore chosen to investigate via computational modeling the variations in the distribution of proteins that metabolize doxorubicin can control a cell's ability to respond to doxorubicin treatment. This systems-level approach provides a framework for understanding how patient-specific variability leads to patient-sensitivity to doxorubicin treatment at different doses. With this knowledge, we were able to correctly predict complex behavior induced by pharmacological intervention strategies for manipulation of doxorubicin metabolism. When our interventions are used in combination with doxorubicin, cell viability was promoted or potentiated based on dominant control mechanisms within the metabolic network.
Collapse
|
37
|
Leydold SM, Seewald M, Stratowa C, Kaserer K, Sommergruber W, Kraut N, Schweifer N. Peroxireduxin-4 is Over-Expressed in Colon Cancer and its Down-Regulation Leads to Apoptosis. CANCER GROWTH AND METASTASIS 2011. [DOI: 10.4137/cgm.s6584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this study was to gain insight into the biological basis of colon cancer progression by characterizing gene expression differences between normal colon epithelium, corresponding colorectal primary tumors and metastases. We found a close similarity in gene expression patterns between primary tumors and metastases, indicating a correlation between gene expression and morphological characteristics. PRDX4 was identified as highly expressed both in primary colon tumors and metastases, and selected for further characterization. Our study revealed that “Prdx4” (PrxIV, AOE372) shows functional similarities to other Prx family members by negatively affecting apoptosis induction in tumor cells. In addition, our study links Prdx4 with Hif-1α, a key regulatory factor of angiogenesis. Targeting Prdx4 may be an attractive approach in cancer therapy, as its inhibition is expected to lead to induction of apoptosis and blockage of Hif-1α-mediated tumor angiogenesis.
Collapse
Affiliation(s)
- Sandra M. Leydold
- Boehringer ingelheim RCV GmbH and Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Michael Seewald
- Boehringer ingelheim RCV GmbH and Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Christian Stratowa
- Boehringer ingelheim RCV GmbH and Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Klaus Kaserer
- Institute of Clinical Pathology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Wolfgang Sommergruber
- Boehringer ingelheim RCV GmbH and Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Norbert Kraut
- Boehringer ingelheim RCV GmbH and Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| | - Norbert Schweifer
- Boehringer ingelheim RCV GmbH and Co KG, Dr. Boehringer-Gasse 5-11, 1121 Vienna, Austria
| |
Collapse
|
38
|
The nrf1 and nrf2 balance in oxidative stress regulation and androgen signaling in prostate cancer cells. Cancers (Basel) 2010; 2:1354-78. [PMID: 24281119 PMCID: PMC3835133 DOI: 10.3390/cancers2021354] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 06/18/2010] [Accepted: 06/21/2010] [Indexed: 01/14/2023] Open
Abstract
Reactive oxygen species (ROS) signaling has recently sparked a surge of interest as being the molecular underpinning for cancer cell survival, but the precise mechanisms involved have not been completely elucidated. This review covers the possible roles of two ROS-induced transcription factors, Nrf1 and Nrf2, and the antioxidant proteins peroxiredoxin-1 (Prx-1) and Thioredoxin-1 (Txn-1) in modulating AR expression and signaling in aggressive prostate cancer (PCa) cells. In androgen independent (AI) C4-2B cells, in comparison to the parental androgen dependent (AD) LNCaP cells, we present evidence of high Nrf1 and Prx-1 expression and low Nrf2 expression in these aggressive PCa cells. Furthermore, in DHT treated C4-2B cells, increased expression of the p65 (active) isoform of Nrf1 correlated with enhanced AR transactivation. Our findings implicate a crucial balance of Nrf1 and Nrf2 signaling in regulating AR activity in AI-PCa cells. Here we will discuss how understanding the mechanisms by which oxidative stress may affect AR signaling may aid in developing novel therapies for AI-PCa.
Collapse
|
39
|
Sun J, Shi Z, Guo H, Tu C. Changes in the porcine peripheral blood mononuclear cell proteome induced by infection with highly virulent classical swine fever virus. J Gen Virol 2010; 91:2254-62. [PMID: 20463149 DOI: 10.1099/vir.0.022020-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Leukopenia and immunosuppression are characteristic clinical manifestations of classical swine fever and peripheral blood mononuclear cells (PBMCs) are major targets of classical swine fever virus. To investigate proteomic expression changes in swine PBMCs during lethal CSFV infection, proteins of PBMCs from five lethally CSFV-infected pigs were resolved by two-dimensional electrophoresis followed by mass spectrometry. Quantitative intensity analysis revealed that 66 protein spots showed altered expression, 44 of which were identified as 34 unique proteins by MALDI-TOF-MS/MS. Cellular functions of these proteins included cytoskeletal, energy metabolism, protein translation and processing, antioxidative stress, heat shock and blood clotting. Western blot analysis confirmed the upregulation of annexin A1 and downregulation of cofilin. Identification of these changed levels of expression provides an understanding at the molecular level of the response of in vivo target cells to CSFV infection and of the pathogenic mechanisms of leukopenia and immunosuppression induced by the virus.
Collapse
Affiliation(s)
- Jinfu Sun
- College of Science, Northeastern University, Shenyang, People's Republic of China
| | | | | | | |
Collapse
|
40
|
Martínez-González JJ, Guevara-Flores A, Alvarez G, Rendón-Gómez JL, Del Arenal IP. In vitro killing action of auranofin on Taenia crassiceps metacestode (cysticerci) and inactivation of thioredoxin-glutathione reductase (TGR). Parasitol Res 2010; 107:227-31. [PMID: 20431894 DOI: 10.1007/s00436-010-1867-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Accepted: 04/01/2010] [Indexed: 11/30/2022]
Abstract
Control of cellular redox homeostasis is a central issue for all living organisms. Glutathione and thioredoxin enzymatic redox systems are the usual mean used to achieve such a control. However, parasitic platyhelminths studied to date possess a nicotinamide adenine dinucleotide phosphate-dependent thioredoxin-glutathione reductase (TGR) as the sole redox control system. Thus, TGR is considered as a potential therapeutic target of parasitic platyhelminths, and based on this assumption, the gold compound auranofin is a potent inhibitor of TGR. The aim of this research was to investigate the effect of auranofin on metacestode (cysticerci) of Taenia crassiceps in culture. Accordingly, the time course for viability and respiration of cysticerci in culture was evaluated in the presence of this compound. After 4 h at 10 microM auranofin, 90% of cysticerci were alive, but respiration activity had declined by 50%. After 12 h, neither survivors nor respiration was detected; a LD(50) for auranofin of 3.8 microM was calculated. Interestingly, crude extracts of cysticerci pretreated with 3 microM auranofin nearly nil TGR activity (IC(50) = 0.6 microM). Zymography for TGR in polyacrylamide gel electrophoresis was conducted because the previously mentioned extracts clearly showed a dose-response inactivation of TGR toward auranofin. The killing of cysticerci by this gold compound is most likely related with TGR inactivation. Therefore, further research on the suitability of auranofin as a therapeutic tool in the treatment of cysticercosis in animals and humans is sustained.
Collapse
Affiliation(s)
- José J Martínez-González
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Apartado Postal 70-159, México City, 04510, Mexico
| | | | | | | | | |
Collapse
|
41
|
Hadzic T, Aykin-Burns N, Zhu Y, Coleman MC, Leick K, Jacobson GM, Spitz DR. Paclitaxel combined with inhibitors of glucose and hydroperoxide metabolism enhances breast cancer cell killing via H2O2-mediated oxidative stress. Free Radic Biol Med 2010; 48:1024-33. [PMID: 20083194 PMCID: PMC2843822 DOI: 10.1016/j.freeradbiomed.2010.01.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2009] [Revised: 12/14/2009] [Accepted: 01/11/2010] [Indexed: 10/20/2022]
Abstract
Cancer cells (relative to normal cells) demonstrate alterations in oxidative metabolism characterized by increased steady-state levels of reactive oxygen species (i.e., hydrogen peroxide, H(2)O(2)) that may be compensated for by increased glucose metabolism, but the therapeutic significance of these observations is unknown. In this study, inhibitors of glucose (i.e., 2-deoxy-d-glucose, 2DG) and hydroperoxide (i.e., l-buthionine-S,R-sulfoximine, BSO) metabolism were utilized in combination with a chemotherapeutic agent, paclitaxel (PTX), thought to induce oxidative stress, to treat breast cancer cells. 2DG + PTX was more toxic than either agent alone in T47D and MDA-MB231 human breast cancer cells, but not in normal human fibroblasts or normal human mammary epithelial cells. Increases in parameters indicative of oxidative stress, including steady-state levels of H(2)O(2), total glutathione, and glutathione disulfide, accompanied the enhanced toxicity of 2DG + PTX in cancer cells. Antioxidants, including N-acetylcysteine and polyethylene glycol-conjugated catalase and superoxide dismutase, inhibited the toxicity of 2DG + PTX and suppressed parameters indicative of oxidative stress in cancer cells, whereas inhibition of glutathione synthesis using BSO further sensitized breast cancer cells to 2DG + PTX. These results show that combining inhibitors of glucose (2DG) and hydroperoxide (BSO) metabolism with PTX selectively (relative to normal cells) enhances breast cancer cell killing via H(2)O(2)-induced metabolic oxidative stress, and suggest that this biochemical rationale may be effectively utilized to treat breast cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Douglas R. Spitz
- Requests for reprints: Douglas R. Spitz, PhD, Free Radical and Radiation Biology Program, Department of Radiation Oncology, B180 Medical Laboratories, University of Iowa Iowa City, IA 52242. Phone: [319] 335-8019; Fax: [319] 335-8039;
| |
Collapse
|
42
|
Bao R, Zhang Y, Lou X, Zhou CZ, Chen Y. Structural and kinetic analysis of Saccharomyces cerevisiae thioredoxin Trx1: Implications for the catalytic mechanism of GSSG reduced by the thioredoxin system. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2009; 1794:1218-23. [DOI: 10.1016/j.bbapap.2009.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/28/2009] [Accepted: 04/01/2009] [Indexed: 10/20/2022]
|
43
|
Fath MA, Diers AR, Aykin-Burns N, Simons AL, Hua L, Spitz DR. Mitochondrial electron transport chain blockers enhance 2-deoxy-D-glucose induced oxidative stress and cell killing in human colon carcinoma cells. Cancer Biol Ther 2009; 8:1228-36. [PMID: 19411865 DOI: 10.4161/cbt.8.13.8631] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Increasing evidence suggests that cancer cells (relative to normal cells) have altered mitochondrial electron transport chains (ETC) that are more likely to form reactive oxygen species (ROS; i.e., O(2)(*-) and H(2)O(2)) resulting in a condition of chronic metabolic oxidative stress, that maybe compensated for by increasing glucose and hydroperoxide metabolism. In the current study, the ability of an inhibitor of glucose metabolism, 2-deoxy-D-glucose (2DG), combined with mitochondrial electron transport chain blockers (ETCBs) to enhance oxidative stress and cytotoxicity was determined in human colon cancer cells. Treatment of HT29 and HCT116 cancer cells with Antimycin A (Ant A) or rotenone (Rot) increased carboxy-dichlorodihydrofluorescein diacetate (H2DCFDA) and dihydroethidine (DHE) oxidation, caused the accumulation of glutathione disulfide and enhanced 2DG-induced cell killing. In contrast, Rot did not enhance the toxicity of 2DG in normal human fibroblasts supporting the hypotheses that cancer cells are more susceptible to inhibition of glucose metabolism in the presence of ETCBs. In addition, 2-methoxy-antimycin A (Meth A; an analog of Ant A that does not have ETCB activity) did not enhance 2DG-induced DHE oxidation or cytotoxicity in cancer cells. Finally, in HT29 tumor bearing mice treated with the combination of 2DG (500 mg/kg) + Rot (2 mg/kg) the average rate of tumor growth was significantly slower when compared to control or either drug alone. These results show that 2DG-induced cytotoxicity and oxidative stress can be significantly enhanced by ETCBs in human colon cancer cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Wang Y, Cheng Z, Lu X, Tang C. Echinococcus multilocularis: Proteomic analysis of the protoscoleces by two-dimensional electrophoresis and mass spectrometry. Exp Parasitol 2009; 123:162-7. [PMID: 19559023 DOI: 10.1016/j.exppara.2009.06.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2008] [Revised: 06/16/2009] [Accepted: 06/18/2009] [Indexed: 10/20/2022]
Abstract
Echinococcus multilocularis is an important parasite that causes human alveolar echinococcosis. Identification and characterization of the proteins encoded by E. multilocularis metacestode might help to understand the complexity of the parasites and their interactions with the host, and to identify new candidates for immunodiagnosis and vaccine development. Here we present a proteomic analysis of E. multilocularis protoscolex (PSC) proteins. The proteins were resolved by 2-DE (pH range 3.5-10), followed by MALDI-TOF MS analysis. Fourteen known Echinococcus proteins were identified, including cytoskeletal proteins, heat shock proteins, metabolic enzymes, 14-3-3 protein, antigen P-29 and calreticulin. To construct a systematic reference map of the immunogenic proteins from E. multilocularis PSC, immunoblot analysis of PSC 2-DE maps was performed. Over 50 proteins spots were detected on immunoblots as antigens and 15 of them were defined. The results showed that cytoskeletal proteins and heat shock proteins were immunodominant antigens in alveolar echinococcosis.
Collapse
|
45
|
Sørensen BS, Horsman MR, Vorum H, Honoré B, Overgaard J, Alsner J. Proteins upregulated by mild and severe hypoxia in squamous cell carcinomas in vitro identified by proteomics. Radiother Oncol 2009; 92:443-9. [PMID: 19541378 DOI: 10.1016/j.radonc.2009.05.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 05/26/2009] [Accepted: 05/26/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND Solid malignant tumours are characterised by an inadequate vascular system, which can give rise to micro-regional hypoxic areas. As the negative impact of tumour hypoxia is believed largely to depend on dynamic changes in gene expression, it is important to identify the genes regulated by hypoxia to further enlighten the biology behind the cellular response to hypoxia. Previous studies have demonstrated that hypoxia has an impact not only on the gene transcription, but also on gene-specific mRNA translation. Therefore, proteomics is a suitable approach to understand the complexity of gene regulation under hypoxia at protein level. In this in vitro study we have studied the proteome of cells under intermediate hypoxia (1% O2) and anoxia and compared these to normoxic (21% O2) cells to identify proteins upregulated by mild and severe hypoxia. MATERIALS AND METHODS A human cervix cancer cell line (SiHa) and a human head and neck cancer cell line (FaDu(DD)) were used. Total cell lysate from hypoxic and normoxic cells was separated by 2-dimensional gel electrophoresis, and images were analysed using Quantity One software. Proteins from significant spots (difference in intensity by more than a factor 2) were identified by Liquid chromatography-mass spectrometry (LC-MS/MS). In order to confirm the hypoxic regulation of the identified proteins, immunoblotting and qPCR were employed when possible. RESULTS All together 32 spots were found to be upregulated in the hypoxic gels. Of these, 11 different proteins were successfully identified and largely confirmed by Western blotting and qPCR. Amongst these proteins are protein disulfide isomerase family A, member 6 (PDIA6) and dynein light chain roadblock-type 1 (DynLRB1). Both 2D gels and Western blots revealed that PDAI6 exhibited a cell line specific pattern; in FaDu(DD) there was upregulation at 1% and further upregulated at 0% compared to atmospheric air, whereas there was no upregulation in SiHa cells. DynLRB1 was found to be upregulated in FaDu(DD) at both 1% and 0% oxygen. CONCLUSIONS The upregulated proteins observed in this study are involved in different cellular processes, as regulators of both cell metabolism and stress response, and in cell migration and cell division. All of which may contribute to cell survival and adaptation during oxygen starvation.
Collapse
|
46
|
Manandhar G, Miranda-Vizuete A, Pedrajas JR, Krause WJ, Zimmerman S, Sutovsky M, Sutovsky P. Peroxiredoxin 2 and peroxidase enzymatic activity of mammalian spermatozoa. Biol Reprod 2009; 80:1168-77. [PMID: 19208552 DOI: 10.1095/biolreprod.108.071738] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Peroxiredoxin 2 (PRDX2) is a highly efficient redox protein that neutralizes hydrogen peroxide, resulting in protection of cells from oxidative damage and in regulation of peroxide-mediated signal transduction events. The oxidized form of PRDX2 is reverted back to the reduced form by the thioredoxin system. In the present study, we investigated the presence of PRDX2 in mouse and boar spermatozoa and in mouse spermatids using proteomic techniques and immunocytochemistry. Sperm and spermatid extracts displayed a 20-kDa PRDX2 band on Western blotting. PRDX2 occurred as a Triton-soluble form in spermatids and as a Triton-insoluble form in mature spermatozoa. Boar seminiferous tubule extracts were immunoprecipitated with PRDX2 antibody and separated by SDS-PAGE. Peptide mass fingerprinting by matrix-assisted laser desorption ionization-time of flight (TOF) and microsequencing by nanospray quadrupole-quadrupole TOF tandem mass spectrometry revealed the presence of PRDX2 ions in the immunoprecipitated band, along with sperm mitochondria-associated cysteine-rich protein, cellular nucleic acid-binding protein, and glutathione peroxidase 4. In mouse spermatocytes and spermatids, diffuse labeling of PRDX2 was observed in the cytoplasm and residual bodies. After spermiation, PRDX2 localization became confined to the mitochondrial sheath of the sperm tail midpiece. Boar spermatozoa displayed similar PRDX2 localization as in mouse spermatozoa. Boar spermatozoa with disrupted acrosomes expressed PRDX2 in the postacrosomal sheath region. Peroxidase enzyme activity of boar sperm extracts was evaluated by estimating the rate of NADPH oxidation in the presence or absence of a glutathione depletor (diethyl maleate) or a glutathione reductase inhibitor (carmustine). Diethyl maleate partially inhibited peroxidase activity, whereas carmustine showed an insignificant effect. These observations suggest that glutathione and glutathione reductase activity contribute only partially to the total peroxidase activity of the sperm extract. While the specific role of PRDX2 in the total peroxidase activity of sperm extract is still an open question, the present study for the first time (to our knowledge) shows the presence of PRDX2 in mammalian spermatozoa. Peroxidase activity in sperm extracts is not due to the glutathione system and therefore possibly involves PRDX2 and other peroxiredoxins.
Collapse
Affiliation(s)
- Gaurishankar Manandhar
- Division of Animal Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | |
Collapse
|
47
|
Lou X, Zhang Y, Bao R, Zhou CZ, Chen Y. Purification, crystallization and preliminary X-ray diffraction analysis of glutathionylated Trx1 C33S mutant from yeast. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:39-41. [PMID: 19153453 DOI: 10.1107/s1744309108039316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2008] [Accepted: 11/22/2008] [Indexed: 11/10/2022]
Abstract
Thioredoxins (Trxs) are a family of small redox-active proteins that are found in all living organisms. In Saccharomyces cerevisiae, two cytosolic Trxs (Trx1 and Trx2) and one mitochondrial Trx (Trx3) have previously been identified. In this work, cytosolic Trx1 containing a C33S mutant was overexpressed, purified, glutathionylated and crystallized using the hanging-drop vapour-diffusion method. A set of X-ray diffraction data was collected to 1.80 A resolution. The crystal belonged to space group P1, with unit-cell parameters a = 38.53, b = 38.81, c = 41.70 A, alpha = 72.91, beta = 87.51, gamma = 60.58 degrees.
Collapse
Affiliation(s)
- Xiaochu Lou
- Institute of Protein Research, Tongji University, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
48
|
Imai K, Ichibangase T, Saitoh R, Hoshikawa Y. A proteomics study on human breast cancer cell lines by fluorogenic derivatization-liquid chromatography/tandem mass spectrometry. Biomed Chromatogr 2008; 22:1304-14. [DOI: 10.1002/bmc.1102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
49
|
Shiota M, Izumi H, Miyamoto N, Onitsuka T, Kashiwagi E, Kidani A, Hirano G, Takahashi M, Ono M, Kuwano M, Naito S, Sasaguri Y, Kohno K. Ets regulates peroxiredoxin1 and 5 expressions through their interaction with the high-mobility group protein B1. Cancer Sci 2008; 99:1950-9. [PMID: 19016754 PMCID: PMC11159958 DOI: 10.1111/j.1349-7006.2008.00912.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 06/02/2008] [Accepted: 06/08/2008] [Indexed: 01/12/2023] Open
Abstract
Peroxiredoxins (Prdxs) are thiol-specific antioxidant proteins that are highly expressed in human cancer cells. Prdxs have been shown to be involved in tumor cell proliferation under conditions of microenvironmental stress such as hypoxia. We hypothesized that Prdxs could be categorized into two groups, stress-inducible and non-inducible ones. In this study, we analyzed the promoter activity and expression levels of five Prdx family members in human cancer cells. We found that both Prdx1 and Prdx5 are inducible after treatment with hydrogen peroxide or hypoxia, but that Prdx2, Prdx3, and Prdx4 are not or are only marginally inducible. We also found that Ets transcription factors are the key activators for stress-inducible expression. High-mobility group protein HMGB1 was shown to function as a coactivator through direct interactions with Ets transcription factors. The DNA binding of Ets transcription factors was significantly enhanced by HMGB1. Silencing of Ets1, Ets2, Prdx1, and Prdx5 expression sensitized cells to oxidative stress. These data indicate that transcription of Prdx genes mediated by Ets/HMG proteins might protect cells from oxidative stress.
Collapse
Affiliation(s)
- Masaki Shiota
- Department of Molecular Biology, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Schreibelt G, van Horssen J, Haseloff RF, Reijerkerk A, van der Pol SMA, Nieuwenhuizen O, Krause E, Blasig IE, Dijkstra CD, Ronken E, de Vries HE. Protective effects of peroxiredoxin-1 at the injured blood-brain barrier. Free Radic Biol Med 2008; 45:256-64. [PMID: 18452719 DOI: 10.1016/j.freeradbiomed.2008.03.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/28/2008] [Accepted: 03/26/2008] [Indexed: 01/02/2023]
Abstract
Reactive oxygen species (ROS) play a pivotal role in the development of neuroinflammatory disorders, such as multiple sclerosis (MS). Here, we studied the effect of ROS on protein expression in brain endothelial cells (BECs) using proteomic techniques and show that long-term exposure to ROS induces adaptive responses in BECs to counteract an oxidative attack. ROS induce differential protein expression in BECs, among which is peroxiredoxin-1 (Prx1). To further study the role of Prx1 we established a BEC line overexpressing Prx1. Our data indicate that Prx-1 overexpression protects BECs from ROS-induced cell death, reduces adhesion and subsequent transendothelial migration of monocytes by decreasing intercellular adhesion molecule-1 expression, and enhances the integrity of the BEC layer. Interestingly, vascular Prx1 immunoreactivity was markedly upregulated in inflammatory lesions of experimental autoimmune encephalomyelitis (EAE) animals and active demyelinating MS lesions. These findings indicate that enhanced vascular Prx1 expression may reflect the occurrence of vascular oxidative stress in EAE and MS. On the other hand, it may function as an endogenous defense mechanism to inhibit leukocyte infiltration and counteract ROS-induced cellular injury.
Collapse
Affiliation(s)
- Gerty Schreibelt
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|