1
|
Deng JJ, Hu JY, Han XY, Li Y, Luo XC, Wang ZL, Li JZ. Degradation of indole via a two-component indole oxygenase system from Enterococcus hirae GDIAS-5. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131707. [PMID: 37379596 DOI: 10.1016/j.jhazmat.2023.131707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/30/2023]
Abstract
Animal farming copiously generates indoles, which contribute to odor and pose a challenge for deodorization. While biodegradation is widely accepted, there is a lack of suitable indole-degrading bacteria for animal husbandry. In this study, we aimed to construct genetically engineered strains with indole-degrading abilities. Enterococcus hirae GDIAS-5 is a highly efficient indole-degrading bacterium, which functions via a monooxygenase YcnE presumably contributes to indole oxidation. However, the efficiency of engineered Escherichia coli expressing YcnE for indole degradation is lower than that of GDIAS-5. To improve its efficacy, the underlying indole-degradation mechanisms in GDIAS-5 were analyzed. An ido operon that responds to a two-component indole oxygenase system was identified. In vitro experiments showed that the reductase component of YcnE, YdgI, can improve the catalytic efficiency. The reconstruction of the two-component system in E. coli exhibited higher indole removal efficiency than GDIAS-5. Furthermore, isatin, the key intermediate metabolite in indole degradation, might be degraded via a novel isatin-acetaminophen-aminophenol pathway involving an amidase whose coding gene is located near the ido operon. The two-component anaerobic oxidation system, upstream degradation pathway, and engineering strains investigated in this study provide important insights into indole degradation metabolism and offer efficient resources for achieving bacterial odor elimination.
Collapse
Affiliation(s)
- Jun-Jin Deng
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China; Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Jing-Yi Hu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Xue-Ying Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Yang Li
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China
| | - Xiao-Chun Luo
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou, Guangdong 510006, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangdong Academy of Agricultural Sciences, No. 20 Jinying Road, Tianhe, Guangzhou, Guangdong 510640, China.
| | - Jia-Zhou Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, The Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, No. 1 Dafeng Street, Wushan Road, Tianhe, Guangzhou, Guangdong 510640, China; Guangdong Laboratory for Lingnan Modern Agriculture Heyuan Sub-center, Heyuan, Guangdong 517000, China.
| |
Collapse
|
2
|
Zhang J, Gao LX, Chen W, Zhong JJ, Qian C, Zhou WW. Rational Design of Daunorubicin C-14 Hydroxylase Based on the Understanding of Its Substrate-Binding Mechanism. Int J Mol Sci 2023; 24:8337. [PMID: 37176043 PMCID: PMC10179135 DOI: 10.3390/ijms24098337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/26/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Doxorubicin is one of the most widely used antitumor drugs and is currently produced via the chemical conversion method, which suffers from high production costs, complex product separation processes, and serious environmental pollution. Biocatalysis is considered a more efficient and environment-friendly method for drug production. The cytochrome daunorubicin C-14 hydroxylase (DoxA) is the essential enzyme catalyzing the conversion of daunorubicin to doxorubicin. Herein, the DoxA from Streptomyces peucetius subsp. caesius ATCC 27952 was expressed in Escherichia coli, and the rational design strategy was further applied to improve the enzyme activity. Eight amino acid residues were identified as the key sites via molecular docking. Using a constructed screening library, we obtained the mutant DoxA(P88Y) with a more rational protein conformation, and a 56% increase in bioconversion efficiency was achieved by the mutant compared to the wild-type DoxA. Molecular dynamics simulation was applied to understand the relationship between the enzyme's structural property and its substrate-binding efficiency. It was demonstrated that the mutant DoxA(P88Y) formed a new hydrophobic interaction with the substrate daunorubicin, which might have enhanced the binding stability and thus improved the catalytic activity. Our work lays a foundation for further exploration of DoxA and facilitates the industrial process of bio-production of doxorubicin.
Collapse
Affiliation(s)
- Jing Zhang
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ling-Xiao Gao
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Wei Chen
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| | - Jian-Jiang Zhong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Qian
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou 310027, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Li Y, Lin Y, Wang F, Wang J, Shoji O, Xu J. Construction of Biocatalysts Using the P450 Scaffold for the Synthesis of Indigo from Indole. Int J Mol Sci 2023; 24:ijms24032395. [PMID: 36768714 PMCID: PMC9917246 DOI: 10.3390/ijms24032395] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
With the increasing demand for blue dyes, it is of vital importance to develop a green and efficient biocatalyst to produce indigo. This study constructed a hydrogen peroxide-dependent catalytic system for the direct conversion of indole to indigo using P450BM3 with the assistance of dual-functional small molecules (DFSM). The arrangements of amino acids at 78, 87, and 268 positions influenced the catalytic activity. F87G/T268V mutant gave the highest catalytic activity with kcat of 1402 min-1 and with a yield of 73%. F87A/T268V mutant was found to produce the indigo product with chemoselectivity as high as 80%. Moreover, F87G/T268A mutant was found to efficiently catalyze indole oxidation with higher activity (kcat/Km = 1388 mM-1 min-1) than other enzymes, such as the NADPH-dependent P450BM3 (2.4-fold), the Ngb (32-fold) and the Mb (117-fold). Computer simulation results indicate that the arrangements of amino acid residues in the active site can significantly affect the catalytic activity of the protein. The DFSM-facilitated P450BM3 peroxygenase system provides an alternative, simple approach for a key step in the bioproduction of indigo.
Collapse
Affiliation(s)
- Yanqing Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Yingwu Lin
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Fang Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
| | - Jinghan Wang
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Osami Shoji
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Correspondence: (O.S.); (J.X.)
| | - Jiakun Xu
- Key Lab of Sustainable Development of Polar Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Lab for Marine Drugs and Byproducts of Pilot National Lab for Marine Science and Technology, Qingdao 266071, China
- Correspondence: (O.S.); (J.X.)
| |
Collapse
|
4
|
Thomson RES, D'Cunha SA, Hayes MA, Gillam EMJ. Use of engineered cytochromes P450 for accelerating drug discovery and development. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:195-252. [PMID: 35953156 DOI: 10.1016/bs.apha.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Numerous steps in drug development, including the generation of authentic metabolites and late-stage functionalization of candidates, necessitate the modification of often complex molecules, such as natural products. While it can be challenging to make the required regio- and stereoselective alterations to a molecule using purely chemical catalysis, enzymes can introduce changes to complex molecules with a high degree of stereo- and regioselectivity. Cytochrome P450 enzymes are biocatalysts of unequalled versatility, capable of regio- and stereoselective functionalization of unactivated CH bonds by monooxygenation. Collectively they catalyze over 60 different biotransformations on structurally and functionally diverse organic molecules, including natural products, drugs, steroids, organic acids and other lipophilic molecules. This catalytic versatility and substrate range makes them likely candidates for application as potential biocatalysts for industrial chemistry. However, several aspects of the P450 catalytic cycle and other characteristics have limited their implementation to date in industry, including: their lability at elevated temperature, in the presence of solvents, and over lengthy incubation times; the typically low efficiency with which they metabolize non-natural substrates; and their lack of specificity for a single metabolic pathway. Protein engineering by rational design or directed evolution provides a way to engineer P450s for industrial use. Here we review the progress made to date toward engineering the properties of P450s, especially eukaryotic forms, for industrial application, and including the recent expansion of their catalytic repertoire to include non-natural reactions.
Collapse
Affiliation(s)
- Raine E S Thomson
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Stephlina A D'Cunha
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Martin A Hayes
- Compound Synthesis and Management, Discovery Sciences, BioPharmaceuticals R&D AstraZeneca, Mölndal, Sweden
| | - Elizabeth M J Gillam
- School of Chemistry & Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
Kayastha S, Sagwan-Barkdoll L, Anterola A, Jayakody LN. Developing synthetic microbes to produce indirubin-derivatives. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
6
|
|
7
|
Awad G, Garnier A. Promising optimization of bacterial cytochrome P450BM3 enzyme production by engineered Escherichia coli BL21. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Nguyen NA, Jang J, Le TK, Nguyen THH, Woo SM, Yoo SK, Lee YJ, Park KD, Yeom SJ, Kim GJ, Kang HS, Yun CH. Biocatalytic Production of a Potent Inhibitor of Adipocyte Differentiation from Phloretin Using Engineered CYP102A1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6683-6691. [PMID: 32468814 DOI: 10.1021/acs.jafc.0c03156] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, we investigated an efficient enzymatic strategy for producing potentially valuable phloretin metabolites from phlorizin, a glucoside of phloretin that is rich in apple pomace. Almond β-glucosidase efficiently removed phlorizin's glucose moiety to produce phloretin. CYP102A1 engineered by site-directed mutagenesis, domain swapping, and random mutagenesis catalyzed the highly regioselective C-hydroxylation of phloretin into 3-OH phloretin with high conversion yields. Under the optimal hydroxylation conditions of 15 g cells L-1 and a 20 mM substrate for whole-cell biocatalysis, phloretin was regioselectively hydroxylated into 3.1 mM 3-OH phloretin each hour. Furthermore, differentiation of 3T3-L1 preadipocytes into adipocytes and lipid accumulation were dramatically inhibited by 3-OH phloretin but promoted by phloretin. Consistent with these inhibitory effects, the expression of adipogenic regulator genes was downregulated by 3-OH phloretin. We propose a platform for the sustainable production and value creation of phloretin metabolites from apple pomace capable of inhibiting adipogenesis.
Collapse
Affiliation(s)
- Ngoc Anh Nguyen
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Jin Jang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Thien-Kim Le
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Thi Huong Ha Nguyen
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Su-Min Woo
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Su-Kyoung Yoo
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Young Ju Lee
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Ki Deok Park
- Gwangju Center, Korea Basic Science Institute, Gwangju 61186, Republic of Korea
| | - Soo-Jin Yeom
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Hyung-Sik Kang
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbongro, Gwangju 61186, Republic of Korea
| |
Collapse
|
9
|
Li Z, Jiang Y, Guengerich FP, Ma L, Li S, Zhang W. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J Biol Chem 2020; 295:833-849. [PMID: 31811088 PMCID: PMC6970918 DOI: 10.1074/jbc.rev119.008758] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cytochrome P450 enzymes (P450s) are broadly distributed among living organisms and play crucial roles in natural product biosynthesis, degradation of xenobiotics, steroid biosynthesis, and drug metabolism. P450s are considered as the most versatile biocatalysts in nature because of the vast variety of substrate structures and the types of reactions they catalyze. In particular, P450s can catalyze regio- and stereoselective oxidations of nonactivated C-H bonds in complex organic molecules under mild conditions, making P450s useful biocatalysts in the production of commodity pharmaceuticals, fine or bulk chemicals, bioremediation agents, flavors, and fragrances. Major efforts have been made in engineering improved P450 systems that overcome the inherent limitations of the native enzymes. In this review, we focus on recent progress of different strategies, including protein engineering, redox-partner engineering, substrate engineering, electron source engineering, and P450-mediated metabolic engineering, in efforts to more efficiently produce pharmaceuticals and other chemicals. We also discuss future opportunities for engineering and applications of the P450 systems.
Collapse
Affiliation(s)
- Zhong Li
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanyuan Jiang
- Shandong Provincial Key Laboratory of Synthetic Biology and CAS Key Laboratory of Biofuels at Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - F Peter Guengerich
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146
| | - Li Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 Shandong, China
| |
Collapse
|
10
|
|
11
|
Chen Y, Liu L, Shan X, Du G, Zhou J, Chen J. High-Throughput Screening of a 2-Keto-L-Gulonic Acid-Producing Gluconobacter oxydans Strain Based on Related Dehydrogenases. Front Bioeng Biotechnol 2019; 7:385. [PMID: 31921801 PMCID: PMC6923176 DOI: 10.3389/fbioe.2019.00385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/18/2019] [Indexed: 01/31/2023] Open
Abstract
High-throughput screening is a powerful tool for discovering strains in the natural environment that may be suitable for target production. Herein, a novel enzyme-based high-throughput screening method was developed for rapid screening of strains overproducing 2-keto-L-gulonic acid (2-KLG). The screening method detects changes in the fluorescence of reduced nicotinamide adenine dinucleotide (NADH) at 340 nm using a microplate reader when 2-KLG is degraded by 2-KLG reductase. In this research, three different 2-KLG reductases were expressed, purified, and studied. The 2-KLG reductase from Aspergillus niger were selected as the best appropriate reductase to establishment the method for its high activity below pH 7. Using the established method, and coupled with fluorescence-activated cell sorting, we achieved a high 2-KLG-producing strain of Gluconobacter oxydans WSH-004 from soil. When cultured with D-sorbitol as the substrate, the 2-KLG yield was 2.5 g/L from 50 g/L D-sorbitol without any side products. Compared with other reported screening methods, our enzyme-based method is more efficient and accurate for obtaining high-producing 2-KLG strains, and it is also convenient and cost-effective. The method is broadly applicable for screening keto acids and other products that can be oxidized via nicotinamide adenine dinucleotide (NAD+) or nicotinamide adenine dinucleotide phosphate (NADP+).
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Li Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Gerasymenko I, Sheludko Y, Fräbel S, Staniek A, Warzecha H. Combinatorial biosynthesis of small molecules in plants: Engineering strategies and tools. Methods Enzymol 2019; 617:413-442. [PMID: 30784411 DOI: 10.1016/bs.mie.2018.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biosynthetic capacity of plants, rooted in a near inexhaustible supply of photosynthetic energy and founded upon an intricate matrix of metabolic networks, makes them versatile chemists producing myriad specialized compounds. Along with tremendous success in elucidation of several plant biosynthetic routes, their reestablishment in heterologous hosts has been a hallmark of recent bioengineering endeavors. However, current efforts in the field are, in the main, aimed at grafting the pathways to fermentable recipient organisms, like bacteria or yeast. Conversely, while harboring orthologous metabolic trails, select plant species now emerge as viable vehicles for mobilization and engineering of complex biosynthetic pathways. Their distinctive features, like intricate cell compartmentalization and formation of specialized production and storage structures on tissue and organ level, make plants an especially promising chassis for the manufacture of considerable amounts of high-value natural small molecules. Inspired by the fundamental tenets of synthetic biology, capitalizing on the versatility of the transient plant transformation system, and drawing on the unique compartmentation of plant cells, we explore combinatorial approaches affording production of natural and new-to-nature, bespoke chemicals of potential importance. Here, we focus on the transient engineering of P450 monooxygenases, alone or in concert with other orthogonal catalysts, like tryptophan halogenases.
Collapse
Affiliation(s)
- Iryna Gerasymenko
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Yuriy Sheludko
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sabine Fräbel
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Agata Staniek
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Darmstadt, Germany.
| |
Collapse
|
13
|
Ma Q, Zhang X, Qu Y. Biodegradation and Biotransformation of Indole: Advances and Perspectives. Front Microbiol 2018; 9:2625. [PMID: 30443243 PMCID: PMC6221969 DOI: 10.3389/fmicb.2018.02625] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/15/2018] [Indexed: 11/17/2022] Open
Abstract
Indole is long regarded as a typical N-heterocyclic aromatic pollutant in industrial and agricultural wastewater, and recently it has been identified as a versatile signaling molecule with wide environmental distributions. An exponentially growing number of researches have been reported on indole due to its significant roles in bacterial physiology, pathogenesis, animal behavior and human diseases. From the viewpoint of both environmental bioremediation and biological studies, the researches on metabolism and fates of indole are important to realize environmental treatment and illuminate its biological function. Indole can be produced from tryptophan by tryptophanase in many bacterial species. Meanwhile, various bacterial strains have obtained the ability to transform and degrade indole. The characteristics and pathways for indole degradation have been investigated for a century, and the functional genes for indole aerobic degradation have also been uncovered recently. Interestingly, many oxygenases have proven to be able to oxidize indole to indigo, and this historic and motivating case for biological applications has attracted intensive attention for decades. Herein, the bacteria, enzymes and pathways for indole production, biodegradation and biotransformation are systematically summarized, and the future researches on indole-microbe interactions are also prospected.
Collapse
Affiliation(s)
- Qiao Ma
- Institute of Environmental Systems Biology, College of Environmental Science and Engineering, Dalian Maritime University, Dalian, China
| | - Xuwang Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Food and Environment, Dalian University of Technology, Panjin, China
| | - Yuanyuan Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
14
|
Liu C, Xu J, Gao SQ, He B, Wei CW, Wang XJ, Wang Z, Lin YW. Green and efficient biosynthesis of indigo from indole by engineered myoglobins. RSC Adv 2018; 8:33325-33330. [PMID: 35548150 PMCID: PMC9086478 DOI: 10.1039/c8ra07825d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 11/21/2022] Open
Abstract
With the demand nowadays for blue dyes, it is of practical importance to develop a green and efficient biocatalyst for the production of indigo. The design of artificial enzymes has been shown to be attractive in recent years. In a previous study, we engineered a single mutant of sperm whale myoglobin, F43Y Mb, with a novel Tyr-heme cross-link. In this study, we found that it can efficiently catalyze the oxidation of indole to indigo, with a yield as high as 54% compared to the highest yield (∼20%) reported to date in the literature. By further modifying the heme active site, we engineered a double mutant of F43Y/H64D Mb, which exhibited the highest catalytic efficiency (198 M-1 s-1) among the artificial enzymes designed in Mb. Moreover, both F43Y Mb and F43Y/H64D Mb were found to produce the indigo product with a chemoselectivity as high as ∼80%. Based on the reaction system, we also established a convenient and green dyeing method by dyeing a cotton textile during the biosynthesis of indigo, followed by further spraying the concentrated indigo, without the need of strong acids/bases or any reducing agents. The successful application of dyeing a white cotton textile with a blue color further indicates that the designed enzyme and the dyeing method have practical applications in the future.
Collapse
Affiliation(s)
- Can Liu
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Jiakun Xu
- Yellow Sea Fisheries Research Institute Qingdao 266071 China
| | - Shu-Qin Gao
- Laboratory of Protein Structure and Function, University of South China Hengyang 421001 China
| | - Bo He
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Chuan-Wan Wei
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Xiao-Juan Wang
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
| | - Zhonghua Wang
- College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 China
| | - Ying-Wu Lin
- School of Chemistry and Chemical Engineering, University of South China Hengyang 421001 China
- Laboratory of Protein Structure and Function, University of South China Hengyang 421001 China
| |
Collapse
|
15
|
Guengerich FP, Yoshimoto FK. Formation and Cleavage of C-C Bonds by Enzymatic Oxidation-Reduction Reactions. Chem Rev 2018; 118:6573-6655. [PMID: 29932643 DOI: 10.1021/acs.chemrev.8b00031] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Many oxidation-reduction (redox) enzymes, particularly oxygenases, have roles in reactions that make and break C-C bonds. The list includes cytochrome P450 and other heme-based monooxygenases, heme-based dioxygenases, nonheme iron mono- and dioxygenases, flavoproteins, radical S-adenosylmethionine enzymes, copper enzymes, and peroxidases. Reactions involve steroids, intermediary metabolism, secondary natural products, drugs, and industrial and agricultural chemicals. Many C-C bonds are formed via either (i) coupling of diradicals or (ii) generation of unstable products that rearrange. C-C cleavage reactions involve several themes: (i) rearrangement of unstable oxidized products produced by the enzymes, (ii) oxidation and collapse of radicals or cations via rearrangement, (iii) oxygenation to yield products that are readily hydrolyzed by other enzymes, and (iv) activation of O2 in systems in which the binding of a substrate facilitates O2 activation. Many of the enzymes involve metals, but of these, iron is clearly predominant.
Collapse
Affiliation(s)
- F Peter Guengerich
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| | - Francis K Yoshimoto
- Department of Biochemistry , Vanderbilt University School of Medicine , Nashville , Tennessee 37232-0146 , United States.,Department of Chemistry , University of Texas-San Antonio , San Antonio , Texas 78249-0698 , United States
| |
Collapse
|
16
|
Fräbel S, Wagner B, Krischke M, Schmidts V, Thiele CM, Staniek A, Warzecha H. Engineering of new-to-nature halogenated indigo precursors in plants. Metab Eng 2018; 46:20-27. [PMID: 29466700 DOI: 10.1016/j.ymben.2018.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/14/2017] [Accepted: 02/13/2018] [Indexed: 11/16/2022]
Abstract
Plants are versatile chemists producing a tremendous variety of specialized compounds. Here, we describe the engineering of entirely novel metabolic pathways in planta enabling generation of halogenated indigo precursors as non-natural plant products. Indican (indolyl-β-D-glucopyranoside) is a secondary metabolite characteristic of a number of dyers plants. Its deglucosylation and subsequent oxidative dimerization leads to the blue dye, indigo. Halogenated indican derivatives are commonly used as detection reagents in histochemical and molecular biology applications; their production, however, relies largely on chemical synthesis. To attain the de novo biosynthesis in a plant-based system devoid of indican, we employed a sequence of enzymes from diverse sources, including three microbial tryptophan halogenases substituting the amino acid at either C5, C6, or C7 of the indole moiety. Subsequent processing of the halotryptophan by bacterial tryptophanase TnaA in concert with a mutant of the human cytochrome P450 monooxygenase 2A6 and glycosylation of the resulting indoxyl derivatives by an endogenous tobacco glucosyltransferase yielded corresponding haloindican variants in transiently transformed Nicotiana benthamiana plants. Accumulation levels were highest when the 5-halogenase PyrH was utilized, reaching 0.93 ± 0.089 mg/g dry weight of 5-chloroindican. The identity of the latter was unambiguously confirmed by NMR analysis. Moreover, our combinatorial approach, facilitated by the modular assembly capabilities of the GoldenBraid cloning system and inspired by the unique compartmentation of plant cells, afforded testing a number of alternative subcellular localizations for pathway design. In consequence, chloroplasts were validated as functional biosynthetic venues for haloindican, with the requisite reducing augmentation of the halogenases as well as the cytochrome P450 monooxygenase fulfilled by catalytic systems native to the organelle. Thus, our study puts forward a viable alternative production platform for halogenated fine chemicals, eschewing reliance on fossil fuel resources and toxic chemicals. We further contend that in planta generation of halogenated indigoid precursors previously unknown to nature offers an extended view on and, indeed, pushes forward the established frontiers of biosynthetic capacity of plants.
Collapse
Affiliation(s)
- Sabine Fräbel
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287 Darmstadt, Germany
| | - Bastian Wagner
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287 Darmstadt, Germany
| | - Markus Krischke
- Lehrstuhl für Pharmazeutische Biologie, Julius-von-Sachs-Institut der Universität Würzburg, Julius-von-Sachs-Platz 2, 97082 Würzburg, Germany
| | - Volker Schmidts
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Christina M Thiele
- Clemens-Schöpf-Institut für Organische Chemie und Biochemie, Technische Universität Darmstadt, Alarich-Weiss-Str. 4, 64287 Darmstadt, Germany
| | - Agata Staniek
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287 Darmstadt, Germany
| | - Heribert Warzecha
- Plant Biotechnology and Metabolic Engineering, Technische Universität Darmstadt, Schnittspahnstraße 4, 64287 Darmstadt, Germany.
| |
Collapse
|
17
|
Kim J, Lee PG, Jung EO, Kim BG. In vitro characterization of CYP102G4 from Streptomyces cattleya: A self-sufficient P450 naturally producing indigo. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1866:60-67. [PMID: 28821467 DOI: 10.1016/j.bbapap.2017.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/22/2017] [Accepted: 08/04/2017] [Indexed: 02/01/2023]
Abstract
Self-sufficient CYP102As possess outstanding hydroxylating activity to fatty acids such as myristic acid. Other CYP102 subfamily members share substrate specificity of CYP102As, but, occasionally, unusual characteristics of its own subfamily have been found. In this study, only one self-sufficient cytochrome P450 from Streptomyces cattleya was renamed from CYP102A_scat to CYP102G4, purified and characterized. UV-Vis spectrometry pattern, FAD/FMN analysis, and protein sequence comparison among CYP102s have shown that CYP102 from Streptomyces cattleya belongs to CYP102G subfamily. It showed hydroxylation activity toward fatty acids generating ω-1, ω-2, and ω-3-hydroxyfatty acids, which is similar to the general substrate specificity of CYP102 family. Unexpectedly, however, expression of CYP102G4 showed indigo production in LB medium batch flask culture, and high catalytic activity (kcat/Km) for indole was measured as 6.14±0.10min-1mM-1. Besides indole, CYP102G4 was able to hydroxylate aromatic compounds such as flavone, benzophenone, and chloroindoles. Homology model has shown such ability to accept aromatic compounds is due to its bigger active site cavity. Unlike other CYP102s, CYP102G4 did not have biased cofactor dependency, which was possibly determined by difference in NAD(P)H binding residues (Ala984, Val990, and Tyr1064) compared to CYP102A1 (Arg966, Lys972 and Trp1046). Overall, a self-sufficient CYP within CYP102G subfamily was characterized using purified enzymes, which appears to possess unique properties such as an only prokaryotic CYP naturally producing indigo.
Collapse
Affiliation(s)
- Joonwon Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Pyung-Gang Lee
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Ok Jung
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Byung-Gee Kim
- Department of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
18
|
Shimada T, Takenaka S, Murayama N, Kramlinger VM, Kim JH, Kim D, Liu J, Foroozesh MK, Yamazaki H, Guengerich FP, Komori M. Oxidation of pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene by human cytochrome P450 2A13. Xenobiotica 2015; 46:211-24. [PMID: 26247835 PMCID: PMC5270756 DOI: 10.3109/00498254.2015.1069419] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. The polycyclic hydrocarbons (PAHs), pyrene, 1-hydroxypyrene, 1-nitropyrene and 1-acetylpyrene, were found to induce Type I binding spectra with human cytochrome P450 (P450) 2A13 and were converted to various mono- and di-oxygenated products by this enzyme. 2. Pyrene was first oxidized by P450 2A13 to 1-hydroxypyrene which was further oxidized to di-oxygenated products, i.e. 1,8- and 1,6-dihydroxypyrene. Of five other human P450s examined, P450 1B1 catalyzed pyrene oxidation to 1-hydroxypyrene at a similar rate to P450 2A13 but was less efficient in forming dihydroxypyrenes. P450 2A6, a related human P450 enzyme, which did not show any spectral changes with these four PAHs, showed lower activities in oxidation of these compounds than P450 2A13. 3. 1-Nitropyrene and 1-acetylpyrene were also found to be efficiently oxidized by P450 2A13 to several oxygenated products, based on mass spectrometry analysis. 4. Molecular docking analysis supported preferred orientations of pyrene and its derivatives in the active site of P450 2A13, with lower interaction energies (U values) than observed for P450 2A6 and that several amino acid residues (including Ala-301, Asn-297 and Ala-117) play important roles in directing the orientation of these PAHs in the P450 2A13 active site. In addition, Phe-231 and Gly-329 were found to interact with pyrene to orient this compound in the active site of P450 1B1. 5. These results suggest that P450 2A13 is one of the important enzymes that oxidizes these PAH compounds and may determine how these chemicals are detoxicated and bioactivated in humans.
Collapse
Affiliation(s)
- Tsutomu Shimada
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Shigeo Takenaka
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| | - Norie Murayama
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - Valerie M. Kramlinger
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Joo-Hwan Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701, Republic of Korea
| | - Jiawang Liu
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Maryam K. Foroozesh
- Department of Chemistry, Xavier University of Louisiana, New Orleans, Louisiana 70125, United States
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo 194-8543, Japan
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, United States
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Orai-Kita, Izumisano, Osaka 598-8531, Japan
| |
Collapse
|
19
|
Directed evolution of cytochrome P450 enzymes for biocatalysis: exploiting the catalytic versatility of enzymes with relaxed substrate specificity. Biochem J 2015; 467:1-15. [DOI: 10.1042/bj20141493] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 enzymes are renowned for their ability to insert oxygen into an enormous variety of compounds with a high degree of chemo- and regio-selectivity under mild conditions. This property has been exploited in Nature for an enormous variety of physiological functions, and representatives of this ancient enzyme family have been identified in all kingdoms of life. The catalytic versatility of P450s makes them well suited for repurposing for the synthesis of fine chemicals such as drugs. Although these enzymes have not evolved in Nature to perform the reactions required for modern chemical industries, many P450s show relaxed substrate specificity and exhibit some degree of activity towards non-natural substrates of relevance to applications such as drug development. Directed evolution and other protein engineering methods can be used to improve upon this low level of activity and convert these promiscuous generalist enzymes into specialists capable of mediating reactions of interest with exquisite regio- and stereo-selectivity. Although there are some notable successes in exploiting P450s from natural sources in metabolic engineering, and P450s have been proven repeatedly to be excellent material for engineering, there are few examples to date of practical application of engineered P450s. The purpose of the present review is to illustrate the progress that has been made in altering properties of P450s such as substrate range, cofactor preference and stability, and outline some of the remaining challenges that must be overcome for industrial application of these powerful biocatalysts.
Collapse
|
20
|
Monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 851:1-61. [PMID: 26002730 DOI: 10.1007/978-3-319-16009-2_1] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review examines the monooxygenase, peroxidase and peroxygenase properties and reaction mechanisms of cytochrome P450 (CYP) enzymes in bacterial, archaeal and mammalian systems. CYP enzymes catalyze monooxygenation reactions by inserting one oxygen atom from O2 into an enormous number and variety of substrates. The catalytic versatility of CYP stems from its ability to functionalize unactivated carbon-hydrogen (C-H) bonds of substrates through monooxygenation. The oxidative prowess of CYP in catalyzing monooxygenation reactions is attributed primarily to a porphyrin π radical ferryl intermediate known as Compound I (CpdI) (Por•+FeIV=O), or its ferryl radical resonance form (FeIV-O•). CYP-mediated hydroxylations occur via a consensus H atom abstraction/oxygen rebound mechanism involving an initial abstraction by CpdI of a H atom from the substrate, generating a highly-reactive protonated Compound II (CpdII) intermediate (FeIV-OH) and a carbon-centered alkyl radical that rebounds onto the ferryl hydroxyl moiety to yield the hydroxylated substrate. CYP enzymes utilize hydroperoxides, peracids, perborate, percarbonate, periodate, chlorite, iodosobenzene and N-oxides as surrogate oxygen atom donors to oxygenate substrates via the shunt pathway in the absence of NAD(P)H/O2 and reduction-oxidation (redox) auxiliary proteins. It has been difficult to isolate the historically elusive CpdI intermediate in the native NAD(P)H/O2-supported monooxygenase pathway and to determine its precise electronic structure and kinetic and physicochemical properties because of its high reactivity, unstable nature (t½~2 ms) and short life cycle, prompting suggestions for participation in monooxygenation reactions of alternative CYP iron-oxygen intermediates such as the ferric-peroxo anion species (FeIII-OO-), ferric-hydroperoxo species (FeIII-OOH) and FeIII-(H2O2) complex.
Collapse
|
21
|
Rebelo SL, Linhares M, Simões MM, Silva AM, Neves MGP, Cavaleiro JA, Freire C. Indigo dye production by enzymatic mimicking based on an iron(III)porphyrin. J Catal 2014. [DOI: 10.1016/j.jcat.2014.04.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
22
|
Choi S, Han S, Lee H, Chun YJ, Kim D. Evaluation of Luminescent P450 Analysis for Directed Evolution of Human CYP4A11. Biomol Ther (Seoul) 2014; 21:487-92. [PMID: 24404341 PMCID: PMC3879922 DOI: 10.4062/biomolther.2013.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 11/08/2013] [Accepted: 11/13/2013] [Indexed: 11/29/2022] Open
Abstract
Cytochrome P450 4A11 (CYP4A11) is a fatty acid hydroxylase enzyme expressed in human liver. It catalyzes not only the hydroxylation of saturated and unsaturated fatty acids, but the conversion of arachidonic acid to 20-hydroxyeicosatetraenoic acid (20-HETE), a regulator of blood pressure. In this study, we performed a directed evolution analysis of CYP4A11 using the luminogenic assay system. A random mutant library of CYP4A11, in which mutations were made throughout the entire coding region, was screened with luciferase activity to detect the demethylation of luciferin-4A (2-[6-methoxyquinolin-2-yl]-4,5-dihydrothiazole-4-carboxylic acid) of CYP4A11 mutants in Escherichia coli. Consecutive rounds of random mutagenesis and screening yielded three improved CYP4A11 mutants, CP2600 (A24T/T263A), CP2601 (T263A), and CP2616 (A24T/T263A/V430E) with ~3-fold increase in whole cells and >10-fold increase in purified proteins on the luminescence assay. However, the steady state kinetic analysis for lauric acid hydroxylation showed the significant reductions in enzymatic activities in all three mutants. A mutant, CP2600, showed a 51% decrease in catalytic efficiency (kcat/Km) for lauric acid hydroxylation mainly due to an increase in Km. CP2601 and CP2616 showed much greater reductions (>75%) in the catalytic efficiency due to both a decrease in kcat and an increase in Km. These decreased catalytic activities of CP2601 and CP2616 can be partially attributed to the changes in substrate affinities. These results suggest that the enzymatic activities of CYP4A11 mutants selected from directed evolution using a luminogenic P450 substrate may not demonstrate a direct correlation with the hydroxylation activities of lauric acid.
Collapse
Affiliation(s)
- Seunghye Choi
- Department of Biological Sciences, Konkuk University, Seoul 143-701
| | - Songhee Han
- Department of Biological Sciences, Konkuk University, Seoul 143-701
| | - Hwayoun Lee
- Department of Biological Sciences, Konkuk University, Seoul 143-701
| | - Young-Jin Chun
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Donghak Kim
- Department of Biological Sciences, Konkuk University, Seoul 143-701
| |
Collapse
|
23
|
Lee H, Kim JH, Han S, Lim YR, Park HG, Chun YJ, Park SW, Kim D. Directed-evolution analysis of human cytochrome P450 2A6 for enhanced enzymatic catalysis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:1409-1418. [PMID: 25343290 DOI: 10.1080/15287394.2014.951757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cytochrome P450 2A6 (P450 2A6) is the major enzyme responsible for the oxidation of coumarin, nicotine, and tobacco-specific nitrosamines in human liver. In this study, the catalytic turnover of coumarin oxidation was improved by directed-evolution analysis of P450 2A6 enzyme. A random mutant library was constructed using error-prone polymerase chain reaction (PCR) of the open reading frame of the P450 2A6 gene and individual mutant clones were screened for improved catalytic activity in analysis of fluorescent coumarin 7-hydroxylation. Four consecutive rounds of random mutagenesis and screening were performed and catalytically enhanced mutants were selected in each round of screening. The selected mutants showed the sequentially accumulated mutations of amino acid residues of P450 2A6: B1 (F209S), C1 (F209S, S369G), D1 (F209S, S369G, E277K), and E1 (F209S, S369G, E277K, A10V). E1 mutants displayed approximately 13-fold increased activity based on fluorescent coumarin hydroxylation assays at bacterial whole cell level. Steady-state kinetic parameters for coumarin 7-hydroxylation and nicotine oxidation were measured in purified mutant enzymes and indicated catalytic turnover numbers (kcat) of selected mutants were enhanced up to sevenfold greater than wild-type P450 2A6. However, all mutants displayed elevated Km values and therefore catalytic efficiencies (kcat/Km) were not improved. The increase in Km values was partially attributed to reduction in substrate binding affinities measured in the analysis of substrate binding titration. The structural analysis of P450 2A6 indicates that F209S mutation is sufficient to affect direct interaction of substrate at the active site.
Collapse
Affiliation(s)
- Hwayoun Lee
- a Department of Biological Sciences , Konkuk University , Seoul , Korea
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Analysis of Substrate Recognition Site 2 (SRS2) in human cytochrome P450 1A2 using whole-plasmid random mutagenesis. Mol Cell Toxicol 2013. [DOI: 10.1007/s13273-013-0002-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
25
|
|
26
|
DNA shuffling of cytochromes P450 for indigoid pigment production. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2013; 987:205-24. [PMID: 23475680 DOI: 10.1007/978-1-62703-321-3_18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
DNA family shuffling is a powerful method of directed evolution applied for the generation of novel enzymes with the aim of improving their existing features or creating completely new enzyme properties. This method of evolution in vitro requires parental sequences containing a high level of sequence similarity, such as is found in family members of cytochrome P450 enzymes. Cytochromes P450 (P450s or CYPs) are capable of catalyzing a variety of chemical reactions and generating a wide range of products including dye production (e.g., pigments indigo and indirubin). Application of the method of DNA family shuffling described here has enabled us to create novel P450 enzymes and to further extend the capacity of P450 to oxidize indole, leading to pigment formation.
Collapse
|
27
|
Abstract
The heme enzyme indoleamine 2,3-dioxygenase (IDO) was found to catalyze the oxidation of indole by H(2)O(2), with generation of 2- and 3-oxoindole as the major products. This reaction occurred in the absence of O(2) and reducing agents and was not inhibited by superoxide dismutase or hydroxyl radical scavengers, although it was strongly inhibited by L-Trp. The stoichiometry of the reaction indicated a one-to-one correspondence for the consumption of indole and H(2)O(2). The (18)O-labeling experiments indicated that the oxygen incorporated into the monooxygenated products was derived almost exclusively from H(2)(18)O(2), suggesting that electron transfer was coupled to the transfer of oxygen from a ferryl intermediate of IDO. These results demonstrate that IDO oxidizes indole by means of a previously unrecognized peroxygenase activity. We conclude that IDO inserts oxygen into indole in a reaction that is mechanistically analogous to the "peroxide shunt" pathway of cytochrome P450.
Collapse
|
28
|
Lin GH, Chen HP, Huang JH, Liu TT, Lin TK, Wang SJ, Tseng CH, Shu HY. Identification and characterization of an indigo-producing oxygenase involved in indole 3-acetic acid utilization by Acinetobacter baumannii. Antonie van Leeuwenhoek 2012; 101:881-90. [DOI: 10.1007/s10482-012-9704-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Accepted: 01/21/2012] [Indexed: 01/01/2023]
|
29
|
Xu J, Shoji O, Fujishiro T, Ohki T, Ueno T, Watanabe Y. Construction of biocatalysts using the myoglobin scaffold for the synthesis of indigo from indole. Catal Sci Technol 2012. [DOI: 10.1039/c2cy00427e] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Oezguen N, Kumar S. Analysis of Cytochrome P450 Conserved Sequence Motifs between Helices E and H: Prediction of Critical Motifs and Residues in Enzyme Functions. ACTA ACUST UNITED AC 2011; 2:1000110. [PMID: 25426333 PMCID: PMC4241269 DOI: 10.4172/2157-7609.1000110] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rational approaches have been extensively used to investigate the role of active site residues in cytochrome P450 (CYP) functions. However, recent studies using random mutagenesis suggest an important role for non-active site residues in CYP functions. Meta-analysis of the random mutants showed that 75% of the functionally important non-active site residues are present in 20% of the entire protein between helices E and H (E-H) and conserved sequence motif (CSM) between 7 and 11. The CSM approach was developed recently to investigate the functional role of non-active site residues in CYP2B4. Furthermore, we identified and analyzed the CSM in multiple CYP families and subfamilies in the E-H region. Results from CSM analysis showed that CSM 7, 8, 10, and 11 are conserved in CYP1, CYP2, and CYP3 families, while CSM 9 is conserved only in CYP2 family. Analysis of different CYP2 subfamilies showed that CYP2B and CYP2C have similar characteristics in the CSM, while the characteristics of CYP2A and CYP2D subfamilies are different. Finally, we analyzed CSM 7, 8, 10, and 11, which are common in all the CYP families/subfamilies analyzed, in fifteen important drug-metabolizing CYPs. The results showed that while CSM 8 is most conserved among these CYPs, CSM 7, 9, and 10 have significant variations. We suggest that CSM8 has a common role in all the CYPs that have been analyzed, while CSM 7, 10, and 11 may have relatively specific role within the subfamily. We further suggest that these CSM play important role in opening and closing of the substrate access/egress channel by modulating the flexible/plastic region of the protein. Thus, site-directed mutagenesis of these CSM can be used to study structure-function and dynamic/plasticity-function relationships and to design CYP biocatalysts.
Collapse
Affiliation(s)
- Numan Oezguen
- Internal Medicine-Endocrinology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1060, USA
| | - Santosh Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, 2464 Charlotte St., Kansas City, MO, USA
| |
Collapse
|
31
|
Kumar S. Engineering cytochrome P450 biocatalysts for biotechnology, medicine and bioremediation. Expert Opin Drug Metab Toxicol 2010; 6:115-31. [PMID: 20064075 DOI: 10.1517/17425250903431040] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
IMPORTANCE OF THE FIELD Cytochrome P450 enzymes comprise a superfamily of heme monooxygenases that are of considerable interest for the: i) synthesis of novel drugs and drug metabolites; ii) targeted cancer gene therapy; iii) biosensor design; and iv) bioremediation. However, their applications are limited because cytochrome P450, especially mammalian P450 enzymes, show a low turnover rate and stability, and require a complex source of electrons through cytochrome P450 reductase and NADPH. AREAS COVERED IN THIS REVIEW In this review, we discuss the recent progress towards the use of P450 enzymes in a variety of the above-mentioned applications. We also present alternate and cost-effective ways to perform P450-mediated reaction, especially using peroxides. Furthermore, we expand upon the current progress in P450 engineering approaches describing several recent examples that are utilized to enhance heterologous expression, stability, catalytic efficiency and utilization of alternate oxidants. WHAT THE READER WILL GAIN The review provides a comprehensive knowledge in the design of P450 biocatalysts for potentially practical purposes. Finally, we provide a prospective on the future aspects of P450 engineering and its applications in biotechnology, medicine and bioremediation. TAKE HOME MESSAGE Because of its wide applications, academic and pharmaceutical researchers, environmental scientists and healthcare providers are expected to gain current knowledge and future prospects of the practical use of P450 biocatalysts.
Collapse
Affiliation(s)
- Santosh Kumar
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology and Toxicology, 2464 Charlotte St., Kansas City, MO 64108, USA.
| |
Collapse
|
32
|
Park SH, Kim DH, Kim D, Kim DH, Jung HC, Pan JG, Ahn T, Kim D, Yun CH. Engineering Bacterial Cytochrome P450 (P450) BM3 into a Prototype with Human P450 Enzyme Activity Using Indigo Formation. Drug Metab Dispos 2010; 38:732-9. [DOI: 10.1124/dmd.109.030759] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
33
|
Rabe KS, Spengler M, Erkelenz M, Müller J, Gandubert VJ, Hayen H, Niemeyer CM. Screening for cytochrome p450 reactivity by harnessing catalase as reporter enzyme. Chembiochem 2009; 10:751-7. [PMID: 19241405 DOI: 10.1002/cbic.200800750] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cytochrome P450 enzymes are known to catalyze a variety of reactions that are difficult to perform by standard organic synthesis, such as the oxidation of unactivated C--C bonds. Cytochrome P450 enzymes can also be used in artificial systems in which organic peroxides act as cosubstrates. To find substrates that are converted by a certain P450 catalyst in the presence of an organic peroxide, various screening assays have been established, however, most of them are limited to one or only a few specific substrates. Here, we report a simple and rapid screening assay that works independently of the nature of the substrate and utilizes a previously undescribed reactivity of catalase as reporter enzyme. In an initial demonstration of this assay, we screened 180 enzyme/peroxide/substrate combinations for potential bioconversions. As shown by subsequent verification of the screening results with liquid chromatography/multistage mass spectrometry (LC/MS(n)), we were able to identify three new substrates for the enzyme CYP152A1 and at least two previously undescribed conversions by the enzyme CYP119.
Collapse
Affiliation(s)
- Kersten S Rabe
- Technische Universität Dortmund, Fakultät Chemie, Biologisch-Chemische Mikrostrukturtechnik, Otto-Hahn Strasse 6, Dortmund, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Li W, Ode H, Hoshino T, Liu H, Tang Y, Jiang H. Reduced Catalytic Activity of P450 2A6 Mutants with Coumarin: A Computational Investigation. J Chem Theory Comput 2009; 5:1411-20. [DOI: 10.1021/ct900018t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Weihua Li
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hirotaka Ode
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tyuji Hoshino
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hong Liu
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yun Tang
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hualiang Jiang
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 263-8522, Japan, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China, and Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
35
|
Schlicht KE, Berg JZ, Murphy SE. Effect of CYP2A13 active site mutation N297A on metabolism of coumarin and tobacco-specific nitrosamines. Drug Metab Dispos 2009; 37:665-71. [PMID: 19074523 PMCID: PMC2680511 DOI: 10.1124/dmd.108.025072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 12/10/2008] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 2A13-catalyzed alpha-hydroxylation is a critical step in the activation of the tobacco carcinogens 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and (S)-N'-nitrosonornicotine [(S)-NNN]. In the enzyme's active site, a single polar residue, Asn297, can influence substrate binding, orientation, and metabolism. We determined the effects of N297A mutation on enzyme kinetics and specificity for NNK, NNN, and coumarin metabolism. [5-(3)H]-NNK, [5-(3)H]-(S)-NNN, [(14)C]coumarin, and radioflow high-performance liquid chromatography analysis were used to quantify metabolites. Cytochrome P450 (P450) 2A13 N297A catalyzed NNK alpha-hydroxylation, with a 3-fold preference for methylene versus methyl hydroxylation, similar to wild type. Docking studies using the P450 2A13 crystal structure predicted that when the pyridine ring of NNK cannot hydrogen bond to residue 297 it tilts and orients NNK in positions unfavorable for alpha-hydroxylation. The N297A mutation resulted in a 5- and 4-fold decrease in catalytic efficiency of NNK and NNN metabolism, respectively, primarily because of increased K(m) values. The N297A mutation strikingly affected coumarin metabolism. The ratio of coumarin 7-hydroxylation to coumarin 3,4-epoxidation is approximately equal for wild-type enzyme, whereas the ratio was 1:9 for the N297A mutant. Coumarin 3,4-epoxidation was significantly underestimated unless the epoxide was trapped and quantified as its glutathione conjugate. The K(m) value for this reaction was 4-fold greater for the mutant enzyme; the V(max) value increased nearly 40-fold. The observed shift toward coumarin 3,4-epoxidation is consistent with docking studies. In summary, Asn297 in P450 2A13 is important for orienting NNK and coumarin in the active site, changing this residue to Ala results in altered enzyme kinetics for NNK, NNN, and coumarin.
Collapse
Affiliation(s)
- Kari E Schlicht
- Department of Biochemistry Molecular Biology and Biophysics and Masonic Cancer Center, University of Minnesota,Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
36
|
Zhang ZG, Liu Y, Guengerich FP, Matse JH, Chen J, Wu ZL. Identification of amino acid residues involved in 4-chloroindole 3-hydroxylation by cytochrome P450 2A6 using screening of random libraries. J Biotechnol 2009; 139:12-8. [PMID: 18984015 PMCID: PMC4755720 DOI: 10.1016/j.jbiotec.2008.09.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2008] [Revised: 09/22/2008] [Accepted: 09/26/2008] [Indexed: 11/28/2022]
Abstract
Cytochrome P450 (P450) 2A6 is able to catalyze indole hydroxylation to form the blue dye indigo. The wild-type P450 2A6 enzyme was randomly mutated throughout the whole open reading frame and screened using 4-chloroindole hydroxylation, a substituted indole selected from 30 indole compounds for enhanced color development. Mutants with up to 5-fold increases of catalytic efficiency (k(cat)/K(m)) and 2-fold increases in k(cat) were selected after two rounds of screening. Important residues located both in (e.g., Thr305) and outside the active site (e.g., Ser224) were identified. The study utilized a better substrate for "indigo assay" to obtain new information on the structure-functional relationship of P450 2A6 that was not revealed by previous mutagenesis studies with this enzyme.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - Yan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| | - F. Peter Guengerich
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Johannes H. Matse
- Department of Biochemistry and Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, USA
| | - Jun Chen
- Institute of Burns, Third Military Medical University, Chongqing, 400038, People's Republic of China
| | - Zhong-Liu Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People's Republic of China
| |
Collapse
|
37
|
Versatile capacity of shuffled cytochrome P450s for dye production. Appl Microbiol Biotechnol 2008; 82:203-10. [PMID: 19107474 DOI: 10.1007/s00253-008-1812-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 11/21/2008] [Accepted: 12/05/2008] [Indexed: 10/21/2022]
Abstract
DNA family shuffling is a relatively new method of directed evolution used to create novel enzymes in order to improve their existing properties or to develop new features. This method of evolution in vitro has one basic requirement: a high similarity of initial parental sequences. Cytochrome P450 enzymes are relatively well conserved in their amino acid sequences. Members of the same family can have more than 40% of sequence identity at the protein level and are therefore good candidates for DNA family shuffling. These xenobiotic-metabolising enzymes have an ability to metabolise a wide range of chemicals and produce a variety of products including blue pigments such as indigo. By applying the specifically designed DNA family shuffling approach, catalytic properties of cytochrome P450 enzymes were further extended in the chimeric progeny to include a new range of blue colour formations. This mini-review evokes the possibility of exploiting directed evolution of cytochrome P450s and the novel enzymes created by DNA family shuffling for the production of new dyes.
Collapse
|
38
|
Oezguen N, Kumar S, Hindupur A, Braun W, Muralidhara BK, Halpert JR. Identification and analysis of conserved sequence motifs in cytochrome P450 family 2. Functional and structural role of a motif 187RFDYKD192 in CYP2B enzymes. J Biol Chem 2008; 283:21808-16. [PMID: 18495666 PMCID: PMC2490781 DOI: 10.1074/jbc.m708582200] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 05/20/2008] [Indexed: 11/06/2022] Open
Abstract
Using a multiple alignment of 175 cytochrome P450 (CYP) family 2 sequences, 20 conserved sequence motifs (CSMs) were identified with the program PCPMer. Functional importance of the CSM in CYP2B enzymes was assessed from available data on site-directed mutants and genetic variants. These analyses suggested an important role of the CSM 8, which corresponds to(187)RFDYKD(192) in CYP2B4. Further analysis showed that residues 187, 188, 190, and 192 have a very high rank order of conservation compared with 189 and 191. Therefore, eight mutants (R187A, R187K, F188A, D189A, Y190A, K191A, D192A, and a negative control K186A) were made in an N-terminal truncated and modified form of CYP2B4 with an internal mutation, which is termed 2B4dH/H226Y. Function was examined with the substrates 7-methoxy-4-(trifluoromethyl)coumarin (7-MFC), 7-ethoxy-4-(trifluoromethyl)coumarin (7-EFC), 7-benzyloxy-4-(trifluoromethyl)coumarin (7-BFC), and testosterone and with the inhibitors 4-(4-chlorophenyl)imidazole (4-CPI) and bifonazole (BIF). Compared with the template and K186A, the mutants R187A, R187K, F188A, Y190A, and D192A showed > or =2-fold altered substrate specificity, k(cat), K(m), and/or k(cat)/K(m) for 7-MFC and 7-EFC and 3- to 6-fold decreases in differential inhibition (IC(50,BIF)/IC(50,4-CPI)). Subsequently, these mutants displayed 5-12 degrees C decreases in thermal stability (T(m)) and 2-8 degrees C decreases in catalytic tolerance to temperature (T(50)) compared with the template and K186A. Furthermore, when R187A and D192A were introduced in CYP2B1dH, the P450 expression and thermal stability were decreased. In addition, R187A showed increased activity with 7-EFC and decreased IC(50,BIF)/IC(50,4-CPI) compared with 2B1dH. Analysis of long range residue-residue interactions in the CYP2B4 crystal structures indicated strong hydrogen bonds involving Glu(149)-Asn(177)-Arg(187)-Tyr(190) and Asp(192)-Val(194), which were significantly-reduced/abolished by the Arg(187)-->Ala and Asp(192)-->Alasubstitutions, respectively.
Collapse
Affiliation(s)
- Numan Oezguen
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | |
Collapse
|
39
|
Rabe KS, Gandubert VJ, Spengler M, Erkelenz M, Niemeyer CM. Engineering and assaying of cytochrome P450 biocatalysts. Anal Bioanal Chem 2008; 392:1059-73. [PMID: 18622752 DOI: 10.1007/s00216-008-2248-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Revised: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 11/29/2022]
Abstract
Cytochrome P450s constitute a highly fascinating superfamily of enzymes which catalyze a broad range of reactions. They are essential for drug metabolism and promise industrial applications in biotechnology and biosensing. The constant search for cytochrome P450 enzymes with enhanced catalytic performances has generated a large body of research. This review will concentrate on two key aspects related to the identification and improvement of cytochrome P450 biocatalysts, namely the engineering and assaying of these enzymes. To this end, recent advances in cytochrome P450 development are reported and commonly used screening methods are surveyed.
Collapse
Affiliation(s)
- Kersten S Rabe
- Fakultät für Chemie, Biologisch-Chemische Mikrostrukturtechnik, Technische Universität Dortmund, Otto-Hahn-Strabetae 6, 44227, Dortmund, Germany
| | | | | | | | | |
Collapse
|
40
|
Affiliation(s)
- Elizabeth M. J. Gillam
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane, Australia 4072
| |
Collapse
|
41
|
Cytochrome P450 BM-3 Evolved by Random and Saturation Mutagenesis as an Effective Indole-Hydroxylating Catalyst. Appl Biochem Biotechnol 2007; 144:27-36. [DOI: 10.1007/s12010-007-8002-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
42
|
Lamb DC, Waterman MR, Kelly SL, Guengerich FP. Cytochromes P450 and drug discovery. Curr Opin Biotechnol 2007; 18:504-12. [PMID: 18006294 DOI: 10.1016/j.copbio.2007.09.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 09/27/2007] [Accepted: 09/29/2007] [Indexed: 10/22/2022]
Abstract
Cytochromes P450 (CYP) are a superfamily of haem-containing proteins distributed widely throughout nature. Historically, they have a central role in drug metabolism and following the advent of genomics they have been shown to have key roles in the biosynthesis of natural products which are used as medicines. Herein, we provide an overview of CYP systems with particular emphasis on their role as drug targets, their involvement in drug biosynthesis and potential strategies for developing new derivatives of drugs based on CYP engineering. The applied importance of CYPs for medicinal and biotechnological applications will also be discussed.
Collapse
Affiliation(s)
- David C Lamb
- Institute of Life Science, Swansea Medical School, Grove Building, Swansea University, Swansea SA2 8PP, UK.
| | | | | | | |
Collapse
|
43
|
Huang WC, Westlake ACG, Maréchal JD, Joyce MG, Moody PCE, Roberts GCK. Filling a Hole in Cytochrome P450 BM3 Improves Substrate Binding and Catalytic Efficiency. J Mol Biol 2007; 373:633-51. [PMID: 17868686 DOI: 10.1016/j.jmb.2007.08.015] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 07/09/2007] [Accepted: 08/07/2007] [Indexed: 11/19/2022]
Abstract
Cytochrome P450BM3 (CYP102A1) from Bacillus megaterium, a fatty acid hydroxylase, is a member of a very large superfamily of monooxygenase enzymes. The available crystal structures of the enzyme show non-productive binding of substrates with their omega-end distant from the iron in a hydrophobic pocket at one side of the active site. We have constructed and characterised mutants in which this pocket is filled by large hydrophobic side-chains replacing alanine at position 82. The mutants having phenylalanine or tryptophan at this position have very much (approximately 800-fold) greater affinity for substrate, with a greater conversion of the haem iron to the high-spin state, and similarly increased catalytic efficiency. The enzyme as isolated contains bound palmitate, reflecting this much higher affinity. We have determined the crystal structure of the haem domain of the Ala82Phe mutant with bound palmitate; this shows that the substrate is binding differently from the wild-type enzyme but still distant from the haem iron. Detailed analysis of the structure indicates that the tighter binding in the mutant reflects a shift in the conformational equilibrium of the substrate-free enzyme towards the conformation seen in the substrate complex rather than differences in the enzyme-substrate interactions. On this basis, we outline a sequence of events for the initial stages of the catalytic cycle. The Ala82Phe and Ala82Trp mutants are also very much more effective catalysts of indole hydroxylation than the wild-type enzyme, suggesting that they will be valuable starting points for the design of mutants to catalyse synthetically useful hydroxylation reactions.
Collapse
Affiliation(s)
- Wei-Cheng Huang
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | |
Collapse
|
44
|
Production of Indigo by Immobilization of E. coli BL21 (DE3) Cells in Calcium-Alginate Gel Capsules. Chin J Chem Eng 2007. [DOI: 10.1016/s1004-9541(07)60096-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Gillam EMJ. Extending the capabilities of nature's most versatile catalysts: directed evolution of mammalian xenobiotic-metabolizing P450s. Arch Biochem Biophys 2007; 464:176-86. [PMID: 17537393 DOI: 10.1016/j.abb.2007.04.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2007] [Accepted: 04/24/2007] [Indexed: 10/23/2022]
Abstract
Cytochrome P450 enzymes are amongst the most versatile enzymatic catalysts known. The ability to introduce a single atom of oxygen into an organic substrate has led to the diversification and exploitation of these enzymes throughout nature. Nowhere is this versatility more apparent than in the mammalian liver, where P450 monooxygenases catalyze the metabolic clearance of innumerate drugs and other environmental chemicals. In addition to the aromatic and aliphatic hydroxylations, N- and O-dealkylations, and heteroatom oxidations that are common in drug metabolism, many more unusual reactions catalyzed by P450s have been discovered, including reductions, group transfers and other biotransformations not typically associated with monooxygenases. A research area that shows great potential for development over the next few decades is the directed evolution of P450s as biocatalysts. Mammalian xenobiotic-metabolizing P450s are especially well suited to such protein engineering due to their ability to interact with relatively wide ranges of substrates with marked differences in structure and physicochemical properties. Typical characteristics, such as the low turnover rates and poor coupling seen during the metabolism of xenobiotics, as well as the enzyme specificity towards particular substrates and reactions, can be improved by directed evolution. This mini-review will cover the fundamental enabling technologies required to successfully engineer P450s, examine the work done to date on the directed evolution of mammalian forms, and provide a perspective on what will be required for the successful implementation of engineered enzymes.
Collapse
Affiliation(s)
- Elizabeth M J Gillam
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Brisbane 4072, Australia.
| |
Collapse
|
46
|
Sansen S, Hsu MH, Stout CD, Johnson EF. Structural insight into the altered substrate specificity of human cytochrome P450 2A6 mutants. Arch Biochem Biophys 2007; 464:197-206. [PMID: 17540336 PMCID: PMC2773796 DOI: 10.1016/j.abb.2007.04.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2007] [Revised: 04/21/2007] [Accepted: 04/24/2007] [Indexed: 11/26/2022]
Abstract
Human P450 2A6 displays a small active site that is well adapted for the oxidation of small planar substrates. Mutagenesis of CYP2A6 resulted in an increased catalytic efficiency for indole biotransformation to pigments and conferred a capacity to oxidize substituted indoles (Wu, Z.-L., Podust, L.M., Guengerich, F.P. J. Biol. Chem. 49 (2005) 41090-41100.). Here, we describe the structural basis that underlies the altered metabolic profile of three mutant enzymes, P450 2A6 N297Q, L240C/N297Q and N297Q/I300V. The Asn297 substitution abolishes a potential hydrogen bonding interaction with substrates in the active site, and replaces a structural water molecule between the helix B'-C region and helix I while maintaining structural hydrogen bonding interactions. The structures of the P450 2A6 N297Q/L240C and N297Q/I300V mutants provide clues as to how the protein can adapt to fit the larger substituted indoles in the active site, and enable a comparison with other P450 family 2 enzymes for which the residue at the equivalent position was seen to function in isozyme specificity, structural integrity and protein flexibility.
Collapse
Affiliation(s)
- Stefaan Sansen
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Mei-Hui Hsu
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - C. David Stout
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037
- To whom to address correspondence: Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, MB8, La Jolla, CA 92037 USA, 858-784-8738, 858-784-2857 fax,
| | - Eric F. Johnson
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037
- To whom to address correspondence: Department of Molecular and Experimental Medicine, The Scripps Research Institute, 10550 N. Torrey Pines Road, MEM-255, La Jolla, CA 92037 USA, 858-784-7918, 858-784-7978 fax,
| |
Collapse
|
47
|
Lu Y, Mei LH. Optimization of fermentation conditions for P450 BM-3 monooxygenase production by hybrid design methodology. J Zhejiang Univ Sci B 2007; 8:27-32. [PMID: 17173359 PMCID: PMC1764919 DOI: 10.1631/jzus.2007.b0027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Factorial design and response surface techniques were used to design and optimize increasing P450 BM-3 expression in E. coli. Operational conditions for maximum production were determined with twelve parameters under consideration: the concentration of FeCl(3), induction at OD(578) (optical density measured at 578 nm), induction time and inoculum concentration. Initially, Plackett-Burman (PB) design was used to evaluate the process variables relevant in relation to P450 BM-3 production. Four statistically significant parameters for response were selected and utilized in order to optimize the process. With the 416C model of hybrid design, response surfaces were generated, and P450 BM-3 production was improved to 57.90x10(-3) U/ml by the best combinations of the physicochemical parameters at optimum levels of 0.12 mg/L FeCl(3), inoculum concentration of 2.10%, induction at OD(578) equal to 1.07, and with 6.05 h of induction.
Collapse
|
48
|
Rosic NN, Huang W, Johnston WA, DeVoss JJ, Gillam EMJ. Extending the diversity of cytochrome P450 enzymes by DNA family shuffling. Gene 2007; 395:40-8. [PMID: 17400405 DOI: 10.1016/j.gene.2007.01.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/20/2007] [Accepted: 01/24/2007] [Indexed: 11/26/2022]
Abstract
The cytochrome P450 enzymes involved in xenobiotic metabolism are an excellent starting point for the directed evolution of novel biocatalysts due to their wide substrate specificity. A shuffled library of three highly homologous mammalian genes (for P450 2C9, P450 2C11 and P450 2C19) was constructed by applying a modified DNA family shuffling procedure. The modifications made to the traditional DNA shuffling protocols involved non-random digestion via the use of different combinations of restriction enzymes (REs) followed by isolation of fragments under 300 bp by size-selective filtration. Shuffled cytochrome P450 mutants were co-expressed in Escherichia coli with their redox partner, NADPH-cytochrome P450 reductase (NPR). We report here how non-random fragmentation may help in chimeragenesis within the areas of low sequence similarity such as substrate recognition sites (SRSs) that are generally underrepresented in recombination using the random fragmentation process. Size-selective filtration was used to limit recovery of incompletely digested fragments and consequently minimize the chances for contamination of the shuffled library with parental forms. No parental forms could be detected in the shuffled library using restriction fragment length polymorphism (RFLP) analysis, suggesting the library was free of parental contamination. Sequencing of randomly selected mutants demonstrated a high level of chimeragenesis with on average of 8.0+/-2.2 crossovers and a low level of mutagenesis with 5.2+/-2.8 spontaneous mutations per approximately 1.5 kbp of the full-length P450 sequence. The proportion of properly folded protein as indicated by the observation of characteristic Fe(II).CO vs. Fe(II) difference spectra was 15% (4/27) of analysed mutants. Screening of the shuffled library for indole oxidation revealed four clones with similar or higher levels of indigo pigment production to those of the parental P450s and two clones with elevated P450 expression. In this paper we present a method for the effective family shuffling of cytochrome P450 enzymes, applicable to the creation of mutant libraries with expanded metabolic diversity and with a significant proportion of functional clones.
Collapse
Affiliation(s)
- Nedeljka N Rosic
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Australia.
| | | | | | | | | |
Collapse
|
49
|
Sun L, Chen CS, Waxman DJ, Liu H, Halpert JR, Kumar S. Re-engineering cytochrome P450 2B11dH for enhanced metabolism of several substrates including the anti-cancer prodrugs cyclophosphamide and ifosfamide. Arch Biochem Biophys 2007; 458:167-74. [PMID: 17254539 PMCID: PMC1805465 DOI: 10.1016/j.abb.2006.12.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 12/14/2006] [Accepted: 12/17/2006] [Indexed: 11/17/2022]
Abstract
Based on recent directed evolution of P450 2B1, six P450 2B11 mutants at three positions were created in an N-terminal modified construct termed P450 2B11dH and characterized for enzyme catalysis using five substrates. Mutant I209A demonstrated a 3.2-fold enhanced k(cat)/K(m) for 7-ethoxy-4-trifluoromethylcourmarin O-deethylation, largely due to a dramatic decrease in K(m) (0.72 microM vs. 18 microM). I209A also demonstrated enhanced selectivity for testosterone 16beta-hydroxylation over 16alpha-hydroxylation. In contrast, V183L showed a 4-fold increased k(cat) for 7-benzyloxyresorufin debenzylation and a 4.7-fold increased k(cat)/K(m) for testosterone 16alpha-hydroxylation. V183L also displayed a 1.7-fold higher k(cat)/K(m) than P450 2B11dH with the anti-cancer prodrugs cyclophosphamide and ifosfamide, resulting from a approximately 4-fold decrease in K(m). Introduction of the V183L mutation into full-length P450 2B11 did not enhance the k(cat)/K(m). Overall, the re-engineered P450 2B11dH enzymes exhibited enhanced catalytic efficiency with several substrates including the anti-cancer prodrugs.
Collapse
Affiliation(s)
- Ling Sun
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031
| | - Chong S. Chen
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215
| | - David J. Waxman
- Department of Biology, Boston University, 5 Cummington Street, Boston, MA 02215
| | - Hong Liu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Drug Discovery and Design Center, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Pudong, Shanghai 201203, P.R. China
| | - James R. Halpert
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031
| | - Santosh Kumar
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031
- *Corresponding Author: Santosh Kumar, Ph. D., Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1031 Phone: (409) 772 9677, Fax: (409) 772 9642,
| |
Collapse
|
50
|
Urlacher VB, Eiben S. Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol 2006; 24:324-30. [PMID: 16759725 DOI: 10.1016/j.tibtech.2006.05.002] [Citation(s) in RCA: 203] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Revised: 04/12/2006] [Accepted: 05/17/2006] [Indexed: 10/24/2022]
Abstract
Cytochrome P450 monooxygenases are versatile biocatalysts that introduce oxygen into a vast range of molecules. These enzymes catalyze diverse reactions in a regio- and stereoselective manner, and their properties have been used for drug development, bioremediation and the synthesis of fine chemicals and other useful compounds. However, the potential of P450 monooxygenases has not been fully exploited; there are some drawbacks limiting the broader implementation of these catalysts for commercial needs. Protein engineering has produced P450 enzymes with widely altered substrate specificities, substantially increased activity and higher stability. Furthermore, electrochemical and enzymatic approaches for the replacement or regeneration of NAD(P)H have been developed, enabling the more cost-effective use of P450 enzymes. In this review, we focus on the aspects relevant to the synthetic applications of P450 enzymes and their optimization for commercial needs.
Collapse
Affiliation(s)
- Vlada B Urlacher
- Institute of Technical Biochemistry, University of Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany.
| | | |
Collapse
|