1
|
Bueschbell B, Magalhães PR, Barreto CA, Melo R, Schiedel AC, Machuqueiro M, Moreira IS. The World of GPCR dimers - Mapping dopamine receptor D 2 homodimers in different activation states and configuration arrangements. Comput Struct Biotechnol J 2023; 21:4336-4353. [PMID: 37711187 PMCID: PMC10497915 DOI: 10.1016/j.csbj.2023.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/16/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are known to dimerize, but the molecular and structural basis of GPCR dimers is not well understood. In this study, we developed a computational framework to generate models of symmetric and asymmetric GPCR dimers using different monomer activation states and identified their most likely interfaces with molecular details. We chose the dopamine receptor D2 (D2R) homodimer as a case study because of its biological relevance and the availability of structural information. Our results showed that transmembrane domains 4 and 5 (TM4 and TM5) are mostly found at the dimer interface of the D2R dimer and that these interfaces have a subset of key residues that are mostly nonpolar from TM4 and TM5, which was in line with experimental studies. In addition, TM2 and TM3 appear to be relevant for D2R dimers. In some cases, the inactive configuration is unaffected by the partnered protomer, whereas in others, the active protomer adopts the properties of an inactive receptor. Additionally, the β-arrestin configuration displayed the properties of an active receptor in the absence of an agonist, suggesting that a switch to another meta-state during dimerization occurred. Our findings are consistent with the experimental data, and this method can be adapted to study heterodimers and potentially extended to include additional proteins such as G proteins or β-arrestins. In summary, this approach provides insight into the impact of the conformational status of partnered protomers on the overall quaternary GPCR macromolecular structure and dynamics.
Collapse
Affiliation(s)
- Beatriz Bueschbell
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- IIIs-Institute for Interdisciplinary Research, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Pedro R. Magalhães
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande C8 bdg, 1749-016 Lisboa, Portugal
| | - Carlos A.V. Barreto
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- IIIs-Institute for Interdisciplinary Research, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Rita Melo
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000-456 Coimbra, Portugal
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, University of Coimbra, Coimbra, Portugal
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany
| | - Miguel Machuqueiro
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Campo Grande C8 bdg, 1749-016 Lisboa, Portugal
| | - Irina S. Moreira
- Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-535 Coimbra, Portugal
| |
Collapse
|
2
|
Juza R, Musilek K, Mezeiova E, Soukup O, Korabecny J. Recent advances in dopamine D 2 receptor ligands in the treatment of neuropsychiatric disorders. Med Res Rev 2023; 43:55-211. [PMID: 36111795 DOI: 10.1002/med.21923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Dopamine is a biologically active amine synthesized in the central and peripheral nervous system. This biogenic monoamine acts by activating five types of dopamine receptors (D1-5 Rs), which belong to the G protein-coupled receptor family. Antagonists and partial agonists of D2 Rs are used to treat schizophrenia, Parkinson's disease, depression, and anxiety. The typical pharmacophore with high D2 R affinity comprises four main areas, namely aromatic moiety, cyclic amine, central linker and aromatic/heteroaromatic lipophilic fragment. From the literature reviewed herein, we can conclude that 4-(2,3-dichlorophenyl), 4-(2-methoxyphenyl)-, 4-(benzo[b]thiophen-4-yl)-1-substituted piperazine, and 4-(6-fluorobenzo[d]isoxazol-3-yl)piperidine moieties are critical for high D2 R affinity. Four to six atoms chains are optimal for D2 R affinity with 4-butoxyl as the most pronounced one. The bicyclic aromatic/heteroaromatic systems are most frequently occurring as lipophilic appendages to retain high D2 R affinity. In this review, we provide a thorough overview of the therapeutic potential of D2 R modulators in the treatment of the aforementioned disorders. In addition, this review summarizes current knowledge about these diseases, with a focus on the dopaminergic pathway underlying these pathologies. Major attention is paid to the structure, function, and pharmacology of novel D2 R ligands, which have been developed in the last decade (2010-2021), and belong to the 1,4-disubstituted aromatic cyclic amine group. Due to the abundance of data, allosteric D2 R ligands and D2 R modulators from patents are not discussed in this review.
Collapse
Affiliation(s)
- Radomir Juza
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Eva Mezeiova
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ondrej Soukup
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Jan Korabecny
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic.,Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
3
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
4
|
Fernández-Dueñas V, Bonaventura J, Aso E, Luján R, Ferré S, Ciruela F. Overcoming the Challenges of Detecting GPCR Oligomerization in the Brain. Curr Neuropharmacol 2022; 20:1035-1045. [PMID: 34736381 PMCID: PMC9886828 DOI: 10.2174/1570159x19666211104145727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/14/2021] [Accepted: 10/14/2021] [Indexed: 11/22/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest group of membrane receptor proteins controlling brain activity. Accordingly, GPCRs are the main target of commercial drugs for most neurological and neuropsychiatric disorders. One of the mechanisms by which GPCRs regulate neuronal function is by homo- and heteromerization, with the establishment of direct protein-protein interactions between the same and different GPCRs. The occurrence of GPCR homo- and heteromers in artificial systems is generally well accepted, but more specific methods are necessary to address GPCR oligomerization in the brain. Here, we revise some of the techniques that have mostly contributed to reveal GPCR oligomers in native tissue, which include immunogold electron microscopy, proximity ligation assay (PLA), resonance energy transfer (RET) between fluorescent ligands and the Amplified Luminescent Proximity Homogeneous Assay (ALPHA). Of note, we use the archetypical GPCR oligomer, the adenosine A2A receptor (A2AR)-dopamine D2 receptor (D2R) heteromer as an example to illustrate the implementation of these techniques, which can allow visualizing GPCR oligomers in the human brain under normal and pathological conditions. Indeed, GPCR oligomerization may be involved in the pathophysiology of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Víctor Fernández-Dueñas
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;,Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L’Hospitalet de Llobregat, Spain;,Address correspondence to these authors at the Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain; E-mails: ,
| | - Jordi Bonaventura
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;,Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L’Hospitalet de Llobregat, Spain
| | - Ester Aso
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;,Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L’Hospitalet de Llobregat, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Albacete, Spain
| | - Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain;,Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, 08907 L’Hospitalet de Llobregat, Spain;,Address correspondence to these authors at the Pharmacology Unit, Department of Pathology and Experimental Therapeutics, School of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, 08907 L’Hospitalet de Llobregat, Spain; E-mails: ,
| |
Collapse
|
5
|
Ferraiolo M, Atik H, Ponthot R, Belo do Nascimento I, Beckers P, Stove C, Hermans E. Receptor density influences ligand-induced dopamine D 2L receptor homodimerization. Eur J Pharmacol 2021; 911:174557. [PMID: 34626593 DOI: 10.1016/j.ejphar.2021.174557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 01/23/2023]
Abstract
Chronic treatments with dopamine D2 receptor ligands induce fluctuations in D2 receptor density. Since D2 receptors tend to assemble as homodimers, we hypothesized that receptor density might influence constitutive and ligand-induced homodimerization. Using a nanoluciferase-based complementation assay to monitor dopamine D2L receptor homodimerization in a cellular model enabling the tetracycline-controlled expression of dopamine D2L receptors, we observed that increasing receptor density promoted constitutive dopamine D2L receptor homodimerization. Receptor full agonists promoted homodimerization, while antagonists and partial agonists disrupted dopamine D2L receptor homodimers. High receptor densities enhanced this inhibitory effect only for receptor antagonists. Taken together, our findings indicate that both receptor density and receptor ligands influence dopamine D2L receptor homodimerization, albeit excluding any strict correlation with ligands' intrinsic activity and highlighting further complexity to dopaminergic pharmacology.
Collapse
Affiliation(s)
- Mattia Ferraiolo
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Hicham Atik
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Romane Ponthot
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | | | - Pauline Beckers
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Ghent University, Ghent, Belgium
| | - Emmanuel Hermans
- Neuropharmacology Laboratory, Institute of Neuroscience, UCLouvain, Brussels, Belgium.
| |
Collapse
|
6
|
Fonseca-Barriendos D, Frías-Soria CL, Pérez-Pérez D, Gómez-López R, Borroto Escuela DO, Rocha L. Drug-resistant epilepsy: Drug target hypothesis and beyond the receptors. Epilepsia Open 2021; 7 Suppl 1:S23-S33. [PMID: 34542940 PMCID: PMC9340308 DOI: 10.1002/epi4.12539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/21/2021] [Accepted: 08/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epilepsy is a chronic neurological disorder that affects more than 50 million people worldwide. Despite a recent introduction of antiseizure drugs for the treatment of epileptic seizures, one-third of these patients suffer from drug-resistant epilepsy (DRE). The therapeutic target hypothesis is a cited theory to explain DRE. According to the target hypothesis, the failure to achieve seizure freedom leads to alteration of the structure and/or function of the antiseizure medication (ASM) target. However, this hypothesis fails to explain why patients with DRE do not respond to antiseizure medications of different targets. This review presents different conditions, such as epigenetic mechanisms and protein-protein interactions that may result in alterations of diverse drug targets using different mechanisms. These novel conditions represent new targets to control DRE.
Collapse
Affiliation(s)
| | | | - Daniel Pérez-Pérez
- Plan of Combined Studies in Medicine (PECEM), Faculty of Medicine, UNAM, México City, Mexico
| | - Rosenda Gómez-López
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, México
| | | | - Luisa Rocha
- Pharmacobiology Department, Center for Research and Advanced Studies, México City, México
| |
Collapse
|
7
|
Cevheroğlu O, Murat M, Mingu-Akmete S, Son ÇD. Ste2p Under the Microscope: the Investigation of Oligomeric States of a Yeast G Protein-Coupled Receptor. J Phys Chem B 2021; 125:9526-9536. [PMID: 34433281 DOI: 10.1021/acs.jpcb.1c05872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Oligomerization of G protein-coupled receptors (GPCRs) may play important roles in maturation, internalization, signaling, and pharmacology of these receptors. However, the nature and extent of their oligomerization is still under debate. In our study, Ste2p, a yeast mating pheromone GPCR, was tagged with enhanced green fluorescent protein (EGFP), mCherry, and with split florescent protein fragments at the receptor C-terminus. The Förster resonance energy transfer (FRET) technique was used to detect receptors' oligomerization by calculating the energy transfer from EGFP to mCherry. Stimulation of Ste2p oligomers with the receptor ligand did not result in any significant change on observed FRET values. The bimolecular fluorescence complementation (BiFC) assay was combined with FRET to further investigate the tetrameric complexes of Ste2p. Our results suggest that in its quiescent (nonligand-activated) state, Ste2p is found at least as a tetrameric complex on the plasma membrane. Intriguingly, receptor tetramers in their active form showed a significant increase in FRET. This study provides a direct in vivo visualization of Ste2p tetramers and the pheromone effect on the extent of the receptor oligomerization.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey
| | - Merve Murat
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| | - Sara Mingu-Akmete
- Stem Cell Institute, Ankara University, Cankaya, 06520 Ankara, Turkey.,Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Cankaya, 06800 Ankara, Turkey
| |
Collapse
|
8
|
Yokoi F, Chen HX, Oleas J, Dang MT, Xing H, Dexter KM, Li Y. Characterization of the direct pathway in Dyt1 ΔGAG heterozygous knock-in mice and dopamine receptor 1-expressing-cell-specific Dyt1 conditional knockout mice. Behav Brain Res 2021; 411:113381. [PMID: 34038798 PMCID: PMC8323984 DOI: 10.1016/j.bbr.2021.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 04/29/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
DYT1 dystonia is a movement disorder mainly caused by a trinucleotide deletion (ΔGAG) in DYT1 (TOR1A), coding for torsinA. DYT1 dystonia patients show trends of decreased striatal ligand-binding activities to dopamine receptors 1 (D1R) and 2 (D2R). Dyt1 ΔGAG knock-in (KI) mice, which have the corresponding ΔGAG deletion, similarly exhibit reduced striatal D1R and D2R-binding activities and their expression levels. While the consequences of D2R reduction have been well characterized, relatively little is known about the effect of D1R reduction. Here, locomotor responses to D1R and D2R antagonists were examined in Dyt1 KI mice. Dyt1 KI mice showed significantly less responsiveness to both D1R antagonist SCH 23390 and D2R antagonist raclopride. The electrophysiological recording indicated that Dyt1 KI mice showed a significantly increased paired-pulse ratio of the striatal D1R-expressing medium spiny neurons and altered miniature excitatory postsynaptic currents. To analyze the in vivo torsinA function in the D1R-expressing neurons further, Dyt1 conditional knockout (Dyt1 d1KO) mice in these neurons were generated. Dyt1 d1KO mice had decreased spontaneous locomotor activity and reduced numbers of slips in the beam-walking test. Dyt1 d1KO male mice showed abnormal gait. Dyt1 d1KO mice showed defective striatal D1R maturation. Moreover, the mutant striatal D1R-expressing medium spiny neurons had increased capacitance, decreased sEPSC frequency, and reduced intrinsic excitability. The results suggest that torsinA in the D1R-expressing cells plays an important role in the electrophysiological function and motor performance. Medical interventions to the direct pathway may affect the onset and symptoms of this disorder.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA.
| | - Huan-Xin Chen
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Janneth Oleas
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Mai Tu Dang
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Hong Xing
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Kelly M Dexter
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA
| | - Yuqing Li
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, and Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, 32610-0236, USA.
| |
Collapse
|
9
|
Huang B, St Onge CM, Ma H, Zhang Y. Design of bivalent ligands targeting putative GPCR dimers. Drug Discov Today 2020; 26:189-199. [PMID: 33075471 DOI: 10.1016/j.drudis.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/15/2020] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
G protein-coupled receptors (GPCRs) have been exploited as primary targets for drug discovery, and GPCR dimerization offers opportunities for drug design and disease treatment. An important strategy for targeting putative GPCR dimers is the use of bivalent ligands, which are single molecules that contain two pharmacophores connected through a spacer. Here, we discuss the selection of pharmacophores, the optimal length and chemical composition of the spacer, and the choice of spacer attachment points to the pharmacophores. Furthermore, we review the most recent advances (from 2018 to the present) in the design, discovery and development of bivalent ligands. We aim to reveal the state-of-the-art design strategy for bivalent ligands and provide insights into future opportunities in this promising field of drug discovery.
Collapse
Affiliation(s)
- Boshi Huang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Celsey M St Onge
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Hongguang Ma
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA
| | - Yan Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Virginia Commonwealth University, 800 E. Leigh Street, Richmond, VA 23298, USA.
| |
Collapse
|
10
|
Yokoi F, Oleas J, Xing H, Liu Y, Dexter KM, Misztal C, Gerard M, Efimenko I, Lynch P, Villanueva M, Alsina R, Krishnaswamy S, Vaillancourt DE, Li Y. Decreased number of striatal cholinergic interneurons and motor deficits in dopamine receptor 2-expressing-cell-specific Dyt1 conditional knockout mice. Neurobiol Dis 2020; 134:104638. [PMID: 31618684 PMCID: PMC7323754 DOI: 10.1016/j.nbd.2019.104638] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/28/2022] Open
Abstract
DYT1 early-onset generalized torsion dystonia is a hereditary movement disorder characterized by abnormal postures and repeated movements. It is caused mainly by a heterozygous trinucleotide deletion in DYT1/TOR1A, coding for torsinA. The mutation may lead to a partial loss of torsinA function. Functional alterations of the basal ganglia circuits have been implicated in this disease. Striatal dopamine receptor 2 (D2R) levels are significantly decreased in DYT1 dystonia patients and in the animal models of DYT1 dystonia. D2R-expressing cells, such as the medium spiny neurons in the indirect pathway, striatal cholinergic interneurons, and dopaminergic neurons in the basal ganglia circuits, contribute to motor performance. However, the function of torsinA in these neurons and its contribution to the motor symptoms is not clear. Here, D2R-expressing-cell-specific Dyt1 conditional knockout (d2KO) mice were generated and in vivo effects of torsinA loss in the corresponding cells were examined. The Dyt1 d2KO mice showed significant reductions of striatal torsinA, acetylcholine metabolic enzymes, Tropomyosin receptor kinase A (TrkA), and cholinergic interneurons. The Dyt1 d2KO mice also showed significant reductions of striatal D2R dimers and tyrosine hydroxylase without significant alteration in striatal monoamine contents or the number of dopaminergic neurons in the substantia nigra. The Dyt1 d2KO male mice showed motor deficits in the accelerated rotarod and beam-walking tests without overt dystonic symptoms. Moreover, the Dyt1 d2KO male mice showed significant correlations between striatal monoamines and locomotion. The results suggest that torsinA in the D2R-expressing cells play a critical role in the development or survival of the striatal cholinergic interneurons, expression of striatal D2R mature form, and motor performance. Medical interventions to compensate for the loss of torsinA function in these neurons may affect the onset and symptoms of this disease.
Collapse
Affiliation(s)
- Fumiaki Yokoi
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States.
| | - Janneth Oleas
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Hong Xing
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Yuning Liu
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Kelly M Dexter
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Carly Misztal
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Melinda Gerard
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Iakov Efimenko
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Patrick Lynch
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Matthew Villanueva
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Raul Alsina
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - Shiv Krishnaswamy
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States
| | - David E Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL 32611-8205, United States; J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-8205, United States; Department of Neurology and Center for Movement Disorders and Neurorestoration, College of Medicine, University of Florida, Gainesville, FL 32611-8205, United States
| | - Yuqing Li
- Norman Fixel Institue for Neurological Diseases, Department of Neurology, College of Medicine, University of Florida, Gainesville, FL 32610-0236, United States.
| |
Collapse
|
11
|
Reyes-Resina I, Awad Alkozi H, del Ser-Badia A, Sánchez-Naves J, Lillo J, Jiménez J, Pintor J, Navarro G, Franco R. Expression of Melatonin and Dopamine D 3 Receptor Heteromers in Eye Ciliary Body Epithelial Cells and Negative Correlation with Ocular Hypertension. Cells 2020; 9:cells9010152. [PMID: 31936298 PMCID: PMC7016594 DOI: 10.3390/cells9010152] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/23/2019] [Accepted: 01/02/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via specific cell surface dopamine and melatonin receptors. This study investigated whether these receptors formed heteromers whose function impact on eye physiology. We performed biophysical assays to identify interactions in heterologous systems. Particular heteromer functionality was detected using Gi coupling, MAPK activation, and label-free assays. The expression of the heteroreceptor complexes was assessed using proximity ligation assays in cells producing the aqueous humor and human eye samples. Dopamine D3 receptors (D3Rs) were identified in eye ciliary body epithelial cells. We discovered heteromers formed by D3R and either MT1 (MT1R) or MT2 (MT2R) melatonin receptors. Heteromerization led to the blockade of D3R-Gi coupling and regulation of signaling to the MAPK pathway. Heteromer expression was negatively correlated with intraocular hypertension. CONCLUSIONS Heteromers likely mediate melatonin and dopamine actions in structures regulating intraocular pressure. Significant expression of D3R-MT1R and D3R-MT1R was associated with normotensive conditions, whereas expression diminished in a cell model of hypertension. A clear trend of expression reduction was observed in samples from glaucoma cases. The trend was marked but no statistical analysis was possible as the number of available eyes was 2.
Collapse
Affiliation(s)
- Irene Reyes-Resina
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Neuroplasticity Research Group, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| | - Hanan Awad Alkozi
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, 28037 Madrid, Spain; (H.A.A.); (J.P.)
| | - Anna del Ser-Badia
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Department de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Juan Sánchez-Naves
- Department of Ophthalmology, Balearic Islands Institute of Ophthalmology, 07013 Palma de Mallorca, Mallorca, Spain;
| | - Jaume Lillo
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, 08028 Barcelona, Spain;
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
| | - Jasmina Jiménez
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology, Faculty of Optics and Optometry, University Complutense of Madrid, 28037 Madrid, Spain; (H.A.A.); (J.P.)
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Universitat de Barcelona, 08027 Barcelona, Spain
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas, CiberNed, Instituto de Salud Carlos III, 28029 Madrid, Spain; (A.d.S.-B.); (J.J.)
- School of Chemistry, Universitat de Barcelona, 08028 Barcelona, Spain
- Correspondence: (I.R.-R.); (G.N.); or (R.F.); Tel.: +34-934021208 (I.R.-R. & G.N.)
| |
Collapse
|
12
|
Exploring functional consequences of GPCR oligomerization requires a different lens. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:181-211. [DOI: 10.1016/bs.pmbts.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Botta J, Appelhans J, McCormick PJ. Continuing challenges in targeting oligomeric GPCR-based drugs. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 169:213-245. [DOI: 10.1016/bs.pmbts.2019.11.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Westerfield JM, Barrera FN. Membrane receptor activation mechanisms and transmembrane peptide tools to elucidate them. J Biol Chem 2019; 295:1792-1814. [PMID: 31879273 DOI: 10.1074/jbc.rev119.009457] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Single-pass membrane receptors contain extracellular domains that respond to external stimuli and transmit information to intracellular domains through a single transmembrane (TM) α-helix. Because membrane receptors have various roles in homeostasis, signaling malfunctions of these receptors can cause disease. Despite their importance, there is still much to be understood mechanistically about how single-pass receptors are activated. In general, single-pass receptors respond to extracellular stimuli via alterations in their oligomeric state. The details of this process are still the focus of intense study, and several lines of evidence indicate that the TM domain (TMD) of the receptor plays a central role. We discuss three major mechanistic hypotheses for receptor activation: ligand-induced dimerization, ligand-induced rotation, and receptor clustering. Recent observations suggest that receptors can use a combination of these activation mechanisms and that technical limitations can bias interpretation. Short peptides derived from receptor TMDs, which can be identified by screening or rationally developed on the basis of the structure or sequence of their targets, have provided critical insights into receptor function. Here, we explore recent evidence that, depending on the target receptor, TMD peptides cannot only inhibit but also activate target receptors and can accommodate novel, bifunctional designs. Furthermore, we call for more sharing of negative results to inform the TMD peptide field, which is rapidly transforming into a suite of unique tools with the potential for future therapeutics.
Collapse
Affiliation(s)
- Justin M Westerfield
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee 37996.
| |
Collapse
|
15
|
Detecting G protein-coupled receptor complexes in postmortem human brain with proximity ligation assay and a Bayesian classifier. Biotechniques 2019; 68:122-129. [PMID: 31859535 PMCID: PMC7092707 DOI: 10.2144/btn-2019-0083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Despite the controversy regarding the existence and physiological relevance of class A G protein-coupled receptor dimerization, there is substantial evidence for functional interactions between the dopamine D2 receptor (D2R) and the adenosine A2A receptor (A2AR). A2AR-D2R complexes have been detected in rodent brains by proximity ligation assay; however, their existence in the human brain has not been demonstrated. In this study, we used Brightfield proximity ligation assay, combined with a systematic sampling and a parameter-free naive Bayesian classifier, and demonstrated proximity between the D2R and the A2AR in the adult human ventral striatum, consistent with their colocalization within complexes and the possible existence of D2R-A2AR heteromers. These methods are applicable to the relative quantification of proximity of two proteins, as well as the expression levels of individual proteins. Brightfield proximity ligation assay was used to assess the expression of G protein-coupled receptors and their proximity in postmortem adult human brains. A novel automated machine learning method (Bayesian optimized PLA signal sorting) was developed to automatically quantify Brightfield proximity ligation assay data.
Collapse
|
16
|
Gonzalez AA, Salinas-Parra N, Cifuentes-Araneda F, Reyes-Martinez C. Vasopressin actions in the kidney renin angiotensin system and its role in hypertension and renal disease. VITAMINS AND HORMONES 2019; 113:217-238. [PMID: 32138949 DOI: 10.1016/bs.vh.2019.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Vasopressin, also named antidiuretic hormone (ADH), arginine vasopressin (AVP) is the main hormone responsible for water maintenance in the body through the antidiuretic actions in the kidney. The posterior pituitary into the blood releases vasopressin formed in the hypothalamus. Hypothalamic osmotic neurons are responsible to initiate the cascade for AVP actions. The effects of AVP peptide includes activation of V2 receptors which stimulate the formation of cyclic AMP (cAMP) and phosphorylation of water channels aquaporin 2 (AQP2) in the collecting duct. AVP also has vasoconstrictor effects through V1a receptors in the vasculature, while V1b is found in the nervous system. V1a and b receptors increases intracellular Ca2+ while activation of V2 receptors of signaling pathways are related to cAMP-dependent phosphorylation in kidney collecting ducts acting in coordination to stimulate water and electrolyte homeostasis. AVP potentiate formation of intratubular angiotensin II (Ang II) through V2 receptors-dependent distal tubular renin formation, contributing to Na+ reabsorption. On the same way, Ang II receptors are able to potentiate the effects of V2-dependent stimulation of AQP2 abundance in the plasma membrane. The role of AVP in hypertension and renal disease has been demonstrated in pathological states with the involvement of V2 receptors in the progression of kidney damage in diabetes and also on the stimulation of intracellular pathways linked to the development of polycystic kidney.
Collapse
Affiliation(s)
- Alexis A Gonzalez
- Instituto de Química Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.
| | - Nicolas Salinas-Parra
- Instituto de Química Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | | |
Collapse
|
17
|
Wouters E, Marín AR, Dalton JAR, Giraldo J, Stove C. Distinct Dopamine D₂ Receptor Antagonists Differentially Impact D₂ Receptor Oligomerization. Int J Mol Sci 2019; 20:ijms20071686. [PMID: 30987329 PMCID: PMC6480712 DOI: 10.3390/ijms20071686] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/27/2019] [Accepted: 04/02/2019] [Indexed: 12/21/2022] Open
Abstract
Dopamine D2 receptors (D2R) are known to form transient homodimer complexes, of which the increased formation has already been associated with development of schizophrenia. Pharmacological targeting and modulation of the equilibrium of these receptor homodimers might lead to a better understanding of the critical role played by these complexes in physiological and pathological conditions. Whereas agonist addition has shown to prolong the D2R dimer lifetime and increase the level of dimer formation, the possible influence of D2R antagonists on dimerization has remained rather unexplored. Here, using a live-cell reporter assay based on the functional complementation of a split Nanoluciferase, a panel of six D2R antagonists were screened for their ability to modulate the level of D2LR dimer formation. Incubation with the D2R antagonist spiperone decreased the level of D2LR dimer formation significantly by 40–60% in real-time and after long-term (≥16 h) incubations. The fact that dimer formation of the well-studied A2a–D2LR dimer was not altered following incubation with spiperone supports the specificity of this observation. Other D2R antagonists, such as clozapine, risperidone, and droperidol did not significantly evoke this dissociation event. Furthermore, molecular modeling reveals that spiperone presents specific Tyr1995.48 and Phe3906.52 conformations, compared to clozapine, which may determine D2R homodimerization.
Collapse
Affiliation(s)
- Elise Wouters
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Adrián Ricarte Marín
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - James Andrew Rupert Dalton
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Jesús Giraldo
- Laboratory of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Instituto de Salud Carlos III, Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
- Unitat de Neurociència Traslacional, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Christophe Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
18
|
Aguinaga D, Medrano M, Cordomí A, Jiménez-Rosés M, Angelats E, Casanovas M, Vega-Quiroga I, Canela EI, Petrovic M, Gysling K, Pardo L, Franco R, Navarro G. Cocaine Blocks Effects of Hunger Hormone, Ghrelin, Via Interaction with Neuronal Sigma-1 Receptors. Mol Neurobiol 2019; 56:1196-1210. [PMID: 29876881 DOI: 10.1007/s12035-018-1140-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 05/21/2018] [Indexed: 10/14/2022]
Abstract
Despite ancient knowledge on cocaine appetite-suppressant action, the molecular basis of such fact remains unknown. Addiction/eating disorders (e.g., binge eating, anorexia, bulimia) share a central control involving reward circuits. However, we here show that the sigma-1 receptor (σ1R) mediates cocaine anorectic effects by interacting in neurons with growth/hormone/secretagogue (ghrelin) receptors. Cocaine increases colocalization of σ1R and GHS-R1a at the cell surface. Moreover, in transfected HEK-293T and neuroblastoma SH-SY5Y cells, and in primary neuronal cultures, pretreatment with cocaine or a σ1R agonist inhibited ghrelin-mediated signaling, in a similar manner as the GHS-R1a antagonist YIL-781. Results were similar in G protein-dependent (cAMP accumulation and calcium release) and in partly dependent or independent (ERK1/2 phosphorylation and label-free) assays. We provide solid evidence for direct interaction between receptors and the functional consequences, as well as a reliable structural model of the macromolecular σ1R-GHS-R1a complex, which arises as a key piece in the puzzle of the events linking cocaine consumption and appetitive/consummatory behaviors.
Collapse
Affiliation(s)
- David Aguinaga
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Mireia Medrano
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Arnau Cordomí
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Mireia Jiménez-Rosés
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Edgar Angelats
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Mireia Casanovas
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Enric I Canela
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain
| | - Milos Petrovic
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Leonardo Pardo
- Laboratori de Medicina Computacional, Unitat de Bioestadística, Facultat de Medicina, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Rafael Franco
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Biochemistry and Molecular Biomedicine, School of Biology, Universitat de Barcelona, Barcelona, Spain.
- School of Biology, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain.
| | - Gemma Navarro
- Centro de Investigación en Red, Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Biochemistry and Physiology, Faculty of Pharmacy, Universitat de Barcelona, Barcelona, Spain.
- School of Biology, Universitat de Barcelona, Diagonal 643, 08028, Barcelona, Spain.
| |
Collapse
|
19
|
Abstract
Initially G protein-coupled receptors, GPCRs, were thought to act as monomers, but recently strong evidence has been gathered indicating that they are capable of forming homo- and heterodimers or higher order oligomeric complexes, and that the dimerization phenomenon can modulate the pharmacological response and function of these receptors. In this chapter we point to the great potential of alternative therapeutic approach targeted at GPCR dimers, which is especially important in the field of neuropsychopharmacology. We also included a brief description of methods used for studying the phenomenon of GPCR oligomerization, with particular attention paid to the proximity ligation assay, PLA, the procedure which allows the study of interactions between receptors not only in vitro but also in vivo, with good anatomical resolution, what is especially important in the studies of various GPCRs involved in central neurotransmission.
Collapse
|
20
|
Borroto-Escuela DO, Rodriguez D, Romero-Fernandez W, Kapla J, Jaiteh M, Ranganathan A, Lazarova T, Fuxe K, Carlsson J. Mapping the Interface of a GPCR Dimer: A Structural Model of the A 2A Adenosine and D 2 Dopamine Receptor Heteromer. Front Pharmacol 2018; 9:829. [PMID: 30214407 PMCID: PMC6125358 DOI: 10.3389/fphar.2018.00829] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
The A2A adenosine (A2AR) and D2 dopamine (D2R) receptors form oligomers in the cell membrane and allosteric interactions across the A2AR–D2R heteromer represent a target for development of drugs against central nervous system disorders. However, understanding of the molecular determinants of A2AR–D2R heteromerization and the allosteric antagonistic interactions between the receptor protomers is still limited. In this work, a structural model of the A2AR–D2R heterodimer was generated using a combined experimental and computational approach. Regions involved in the heteromer interface were modeled based on the effects of peptides derived from the transmembrane (TM) helices on A2AR–D2R receptor–receptor interactions in bioluminescence resonance energy transfer (BRET) and proximity ligation assays. Peptides corresponding to TM-IV and TM-V of the A2AR blocked heterodimer interactions and disrupted the allosteric effect of A2AR activation on D2R agonist binding. Protein–protein docking was used to construct a model of the A2AR–D2R heterodimer with a TM-IV/V interface, which was refined using molecular dynamics simulations. Mutations in the predicted interface reduced A2AR–D2R interactions in BRET experiments and altered the allosteric modulation. The heterodimer model provided insights into the structural basis of allosteric modulation and the technique developed to characterize the A2AR–D2R interface can be extended to study the many other G protein-coupled receptors that engage in heteroreceptor complexes.
Collapse
Affiliation(s)
| | - David Rodriguez
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Wilber Romero-Fernandez
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jon Kapla
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Mariama Jaiteh
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Anirudh Ranganathan
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Tzvetana Lazarova
- Department of Biochemistry and Molecular Biology, Institute of Neuroscience, Faculty of Medicine, Autonomous University of Barcelona, Barcelona, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Jens Carlsson
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Stępnicki P, Kondej M, Kaczor AA. Current Concepts and Treatments of Schizophrenia. Molecules 2018; 23:molecules23082087. [PMID: 30127324 PMCID: PMC6222385 DOI: 10.3390/molecules23082087] [Citation(s) in RCA: 265] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/10/2018] [Accepted: 08/18/2018] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia is a debilitating mental illness which involves three groups of symptoms, i.e., positive, negative and cognitive, and has major public health implications. According to various sources, it affects up to 1% of the population. The pathomechanism of schizophrenia is not fully understood and current antipsychotics are characterized by severe limitations. Firstly, these treatments are efficient for about half of patients only. Secondly, they ameliorate mainly positive symptoms (e.g., hallucinations and thought disorders which are the core of the disease) but negative (e.g., flat affect and social withdrawal) and cognitive (e.g., learning and attention disorders) symptoms remain untreated. Thirdly, they involve severe neurological and metabolic side effects and may lead to sexual dysfunction or agranulocytosis (clozapine). It is generally agreed that the interactions of antipsychotics with various neurotransmitter receptors are responsible for their effects to treat schizophrenia symptoms. In particular, several G protein-coupled receptors (GPCRs), mainly dopamine, serotonin and adrenaline receptors, are traditional molecular targets for antipsychotics. Comprehensive research on GPCRs resulted in the exploration of novel important signaling mechanisms of GPCRs which are crucial for drug discovery: intentionally non-selective multi-target compounds, allosteric modulators, functionally selective compounds and receptor oligomerization. In this review, we cover current hypotheses of schizophrenia, involving different neurotransmitter systems, discuss available treatments and present novel concepts in schizophrenia and its treatment, involving mainly novel mechanisms of GPCRs signaling.
Collapse
Affiliation(s)
- Piotr Stępnicki
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
| | - Magda Kondej
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
| | - Agnieszka A Kaczor
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy with Division of Medical Analytics, Medical University of Lublin, 4A Chodzki St., PL-20093 Lublin, Poland.
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
22
|
Critical role of angiotensin II type 2 receptors in the control of mitochondrial and cardiac function in angiotensin II-preconditioned rat hearts. Pflugers Arch 2018; 470:1391-1403. [PMID: 29748710 DOI: 10.1007/s00424-018-2153-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 05/02/2018] [Indexed: 10/16/2022]
Abstract
Angiotensin II preconditioning (APC) involves an angiotensin II type 1 receptor (AT1-R)-dependent translocation of PKCε and survival kinases to the mitochondria leading to cardioprotection after ischemia-reperfusion (IR). However, the role that mitochondrial AT1-Rs and angiotensin II type 2 receptors (AT2-Rs) play in APC is unknown. We investigated whether pretreatment of Langendorff-perfused rat hearts with losartan (L, AT1-R blocker), PD 123,319 (PD, AT2-R blocker), or their combination (L + PD) affects mitochondrial AT1-R, AT2-R, PKCε, PKCδ, Akt, PKG-1, MAPKs (ERK1/2, JNK, p38), mitochondrial respiration, cardiac function, and infarct size (IS). The results indicate that expression of mitochondrial AT1-Rs and AT2-Rs were enhanced by APC 1.91-fold and 2.32-fold, respectively. Expression of AT2-R was abolished by PD but not by L, whereas the AT1-R levels were abrogated by both blockers. The AT1-R response profile to L and PD was also shared by PKCε, Akt, MAPKs, and PKG-1, but not by PKCδ. A marked increase in state 3 (1.84-fold) and respiratory control index (1.86-fold) of mitochondria was observed with PD regardless of L treatment. PD also enhanced the post-ischemic recovery of rate pressure product (RPP) by 74% (p < 0.05) compared with APC alone. Losartan, however, inhibited the (RPP) by 44% (p < 0.05) before IR and reduced the APC-induced increase of post-ischemic cardiac recovery by 73% (p < 0.05). Finally, L enhanced the reduction of IS by APC through a PD-sensitive mechanism. These findings suggest that APC upregulates angiotensin II receptors in mitochondria and that AT2-Rs are cardioprotective through their permissive action on AT1-R signaling and the suppression of cardiac function.
Collapse
|
23
|
Abstract
Wnt/β-catenin signaling is crucial for adult homeostasis and stem cell maintenance, and its dysregulation is strongly associated to cancer. Upon Wnt binding, Wnt receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The assembly and regulation of these signalosomes remains largely elusive. Here, we use internally tagged Wnt ligands as a tool to isolate and analyze the composition and regulation of endogenous Wnt receptor complexes. We identify a positive regulator of Wnt signaling that facilitates signalosome formation by promoting intramembrane receptor interactions. Our results reveal that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps and involves regulated intramembrane interactions. Wnt/β-catenin signaling controls development and adult tissue homeostasis by regulating cell proliferation and cell fate decisions. Wnt binding to its receptors Frizzled (FZD) and low-density lipoprotein-related 6 (LRP6) at the cell surface initiates a signaling cascade that leads to the transcription of Wnt target genes. Upon Wnt binding, the receptors assemble into large complexes called signalosomes that provide a platform for interactions with downstream effector proteins. The molecular basis of signalosome formation and regulation remains elusive, largely due to the lack of tools to analyze its endogenous components. Here, we use internally tagged Wnt3a proteins to isolate and characterize activated, endogenous Wnt receptor complexes by mass spectrometry-based proteomics. We identify the single-span membrane protein TMEM59 as an interactor of FZD and LRP6 and a positive regulator of Wnt signaling. Mechanistically, TMEM59 promotes the formation of multimeric Wnt–FZD assemblies via intramembrane interactions. Subsequently, these Wnt–FZD–TMEM59 clusters merge with LRP6 to form mature Wnt signalosomes. We conclude that the assembly of multiprotein Wnt signalosomes proceeds along well-ordered steps that involve regulated intramembrane interactions.
Collapse
|
24
|
Wang L, Yuan Y, Chen X, Chen J, Guo Y, Li M, Li C, Pu X. Probing the cooperative mechanism of the μ–δ opioid receptor heterodimer by multiscale simulation. Phys Chem Chem Phys 2018; 20:29969-29982. [DOI: 10.1039/c8cp06652c] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The activation-cooperativity of the μ–δ opioid receptor heterodimer was probed by multiscale simulation coupled with a protein structure network.
Collapse
Affiliation(s)
- Longrong Wang
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yuan Yuan
- College of Management
- Southwest University for Nationalities
- Chengdu 610041
- P. R. China
| | - Xin Chen
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Jiangfan Chen
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Yanzhi Guo
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Menglong Li
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| | - Chuan Li
- College of Computer Science
- Sichuan University
- Chengdu
- P. R. China
| | - Xuemei Pu
- Faculty of Chemistry
- Sichuan University
- Chengdu
- People's Republic of China
| |
Collapse
|
25
|
Kasai RS, Ito SV, Awane RM, Fujiwara TK, Kusumi A. The Class-A GPCR Dopamine D2 Receptor Forms Transient Dimers Stabilized by Agonists: Detection by Single-Molecule Tracking. Cell Biochem Biophys 2017; 76:29-37. [PMID: 29116599 PMCID: PMC5913388 DOI: 10.1007/s12013-017-0829-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/18/2017] [Indexed: 01/06/2023]
Abstract
Whether class-A G-protein coupled receptors (GPCRs) exist and work as monomers or dimers has drawn extensive attention. A class-A GPCR dopamine D2 receptor (D2R) is involved in many physiological and pathological processes and diseases, indicating its critical role in proper functioning of neuronal circuits. In particular, D2R homodimers might play key roles in schizophrenia development and amphetamine-induced psychosis. Here, using single-molecule imaging, we directly tracked single D2R molecules in the plasma membrane at a physiological temperature of 37 °C, and unequivocally determined that D2R forms transient dimers with a lifetime of 68 ms in its resting state. Agonist addition prolonged the dimer lifetime by a factor of ~1.5, suggesting the possibility that transient dimers might be involved in signaling.
Collapse
Affiliation(s)
- Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Shuichi V Ito
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Ryo M Awane
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan
| | - Takahiro K Fujiwara
- Center for Meso-Bio Single-Molecule Imaging (CeMI), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8507, Japan
| | - Akihiro Kusumi
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, 606-8507, Japan. .,Center for Meso-Bio Single-Molecule Imaging (CeMI), Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, 606-8507, Japan. .,Membrane Cooperativity Unit, Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan.
| |
Collapse
|
26
|
Cevheroğlu O, Kumaş G, Hauser M, Becker JM, Son ÇD. The yeast Ste2p G protein-coupled receptor dimerizes on the cell plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:698-711. [PMID: 28073700 DOI: 10.1016/j.bbamem.2017.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/23/2016] [Accepted: 01/05/2017] [Indexed: 12/17/2022]
Abstract
Dimerization of G protein-coupled receptors (GPCR) may play an important role in maturation, internalization, signaling and/or pharmacology of these receptors. However, the location where dimerization occurs is still under debate. In our study, variants of Ste2p, a yeast mating pheromone GPCR, were tagged with split EGFP (enhanced green fluorescent protein) fragments inserted between transmembrane domain seven and the C-terminus or appended to the C-terminus. Bimolecular Fluorescence Complementation (BiFC) assay was used to determine where receptor dimerization occurred during protein trafficking by monitoring generation of EGFP fluorescence, which occurred upon GPCR dimerization. Our results suggest that these tagged receptors traffic to the membrane as monomers, undergo dimerization or higher ordered oligomerization predominantly on the plasma membrane, and are internalized as dimers/oligomers. This study is the first to provide direct in vivo visualization of GPCR dimerization/oligomerization, during trafficking to and from the plasma membrane.
Collapse
Affiliation(s)
- Orkun Cevheroğlu
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey; Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Gözde Kumaş
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey
| | - Melinda Hauser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Jeffrey M Becker
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, United States
| | - Çağdaş D Son
- Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupinar Blv. No: 1, 06800 Cankaya, Ankara, Turkey.
| |
Collapse
|
27
|
Variants of G protein-coupled receptors: a reappraisal of their role in receptor regulation. Biochem Soc Trans 2016; 44:589-94. [PMID: 27068974 DOI: 10.1042/bst20150239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Indexed: 01/11/2023]
Abstract
Truncated or shorter forms of G protein-coupled receptors (GPCRs), originating by alternative splicing, have been considered physiologically irrelevant for a rather long time. Nevertheless, it is now recognized that alternative splicing variants of GPCRs greatly increase the total number of receptor isoforms and can regulate receptor trafficking and signalling. Furthermore, dimerization of these truncated variants with other receptors concurs to expand receptor diversity. Highly truncated variants of GPCRs, typically, are retained in the endoplasmic reticulum (ER) and by heteromerization prevent the wild-type receptor to reach the plasma membrane, exerting a dominant-negative effect on its function. This can be responsible for some pathological conditions but in some other cases, it can offer protection from a disease because the expression of the receptor, that is necessary for binding an infectious agent, is attenuated. Here, we propose a possible new mechanism of creation of truncated GPCR variants through an internal ribosome entry site (IRES), a nucleotide sequence that allows cap independent translation of proteins by recruiting the ribosome in proximity of an internal initiation codon. We suggest that an IRES, situated in the third cytoplasmic loop, could be responsible for the translation of the last two transmembrane (TM) regions of the muscarinic M2receptor. IRES driven expression of this C-terminal part of the muscarinic M2receptor could represent a novel and additional mechanism of receptor regulation.
Collapse
|
28
|
Stone TA, Deber CM. Therapeutic design of peptide modulators of protein-protein interactions in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1859:577-585. [PMID: 27580024 DOI: 10.1016/j.bbamem.2016.08.013] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
Membrane proteins play the central roles in a variety of cellular processes, ranging from nutrient uptake and signalling, to cell-cell communication. Their biological functions are directly related to how they fold and assemble; defects often lead to disease. Protein-protein interactions (PPIs) within the membrane are therefore of great interest as therapeutic targets. Here we review the progress in the application of membrane-insertable peptides for the disruption or stabilization of membrane-based PPIs. We describe the design and preparation of transmembrane peptide mimics; and of several categories of peptidomimetics used for study, including d-enantiomers, non-natural amino acids, peptoids, and β-peptides. Further aspects of the review describe modifications to membrane-insertable peptides, including lipidation and cyclization via hydrocarbon stapling. These approaches provide a pathway toward the development of metabolically stable, non-toxic, and efficacious peptide modulators of membrane-based PPIs. This article is part of a Special Issue entitled: Lipid order/lipid defects and lipid-control of protein activity edited by Dirk Schneider.
Collapse
Affiliation(s)
- Tracy A Stone
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Ontario, Canada
| | - Charles M Deber
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Ontario, Canada; Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Ontario, Canada.
| |
Collapse
|
29
|
Ulloa-Aguirre A, Zariñán T. The Follitropin Receptor: Matching Structure and Function. Mol Pharmacol 2016; 90:596-608. [DOI: 10.1124/mol.116.104398] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/28/2016] [Indexed: 12/19/2022] Open
|
30
|
Multivalent approaches and beyond: novel tools for the investigation of dopamine D2 receptor pharmacology. Future Med Chem 2016; 8:1349-72. [DOI: 10.4155/fmc-2016-0010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The dopamine D2 receptor (D2R) has been implicated in the symptomology of disorders such as schizophrenia and Parkinson's disease. Multivalent ligands provide useful tools to investigate emerging concepts of G protein-coupled receptor drug action such as allostery, bitopic binding and receptor dimerization. This review focuses on the approaches taken toward the development of multivalent ligands for the D2R recently and highlights the challenges associated with each approach, their utility in probing D2R function and approaches to develop new D2R-targeting drugs. Furthermore, we extend our discussion to the possibility of designing multitarget ligands. The insights gained from such studies may provide the basis for improved therapeutic targeting of the D2R.
Collapse
|
31
|
Abstract
The majority of therapeutics target membrane proteins, accessible on the surface of cells, to alter cellular signaling. Cells use membrane proteins to transduce signals into cells, transport ions and molecules, bind cells to a surface or substrate, and catalyze reactions. Newly devised technologies allow us to drug conventionally "undruggable" regions of membrane proteins, enabling modulation of protein-protein, protein-lipid, and protein-nucleic acid interactions. In this review, we survey the state of the art of high-throughput screening and rational design in drug discovery, and we evaluate the advances in biological understanding and technological capacity that will drive pharmacotherapy forward against unorthodox membrane protein targets.
Collapse
Affiliation(s)
- Hang Yin
- Department of Chemistry and Biochemistry.,BioFrontiers Institute, and.,Center of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100082, China
| | - Aaron D Flynn
- BioFrontiers Institute, and.,Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309; ,
| |
Collapse
|
32
|
|
33
|
Nørskov-Lauritsen L, Jørgensen S, Bräuner-Osborne H. N-glycosylation and disulfide bonding affects GPRC6A receptor expression, function, and dimerization. FEBS Lett 2015; 589:588-97. [PMID: 25617829 DOI: 10.1016/j.febslet.2015.01.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 12/28/2014] [Accepted: 01/14/2015] [Indexed: 12/20/2022]
Abstract
Investigation of post-translational modifications of receptor proteins is important for our understanding of receptor pharmacology and disease physiology. However, our knowledge about post-translational modifications of class C G protein-coupled receptors and how these modifications regulate expression and function is very limited. Herein, we show that the nutrient-sensing class C G protein-coupled receptor GPRC6A carries seven N-glycans and that one of these sites modulates surface expression whereas mutation of another site affects receptor function. GPRC6A has been speculated to form covalently linked dimers through cysteine disulfide linkage in the extracellular amino-terminal domain and here we show that GPRC6A indeed is a homodimer and that a disulfide bridge between the C131 residues is formed.
Collapse
Affiliation(s)
- Lenea Nørskov-Lauritsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Stine Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
34
|
Synthesis and binding profile of haloperidol-based bivalent ligands targeting dopamine D(2)-like receptors. Bioorg Med Chem Lett 2014; 24:3753-6. [PMID: 25047579 DOI: 10.1016/j.bmcl.2014.06.079] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 06/24/2014] [Accepted: 06/26/2014] [Indexed: 01/06/2023]
Abstract
Homodimers of dopamine D2-like receptors are suggested to be of particular importance in the pathophysiology of schizophrenia and, thus, serve as promising targets for the discovery of atypical antipsychotics. This study describes the development of a series of novel bivalent molecules with a pharmacophore derived from the dopamine receptor antagonist haloperidol. These dimers were investigated in comparison to their monomeric analogues for their D2long, D2short, D3, and D4 receptor binding and the ability to bridge two neighboring receptor protomers. Radioligand binding studies provided diagnostic insights when Hill slopes close to two for the bivalent ligand 13 incorporating 22 spacer atoms and a comparative analysis with monovalent control ligands indicated a bivalent binding mode with a simultaneous occupancy of two neighboring binding sites.
Collapse
|
35
|
Perrey DA, Gilmour BP, Thomas BF, Zhang Y. Toward the Development of Bivalent Ligand Probes of Cannabinoid CB1 and Orexin OX1 Receptor Heterodimers. ACS Med Chem Lett 2014; 5:634-8. [PMID: 24944734 DOI: 10.1021/ml4004759] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/25/2014] [Indexed: 11/28/2022] Open
Abstract
Cannabinoid CB1 and orexin OX1 receptors have been suggested to form heterodimers and oligomers. Aimed at studying these complexes, a series of bivalent CB1 and OX1 ligands combining SR141716 and ACT-078573 pharmacophores were designed, synthesized, and tested for activity against CB1 and OX1 individually and in cell lines that coexpress both receptors. Compound 20 showed a robust enhancement in potency at both receptors when coexpressed as compared to individually expressed, suggesting possible interaction with CB1-OX1 dimers. Bivalent ligands targeting CB1-OX1 receptor dimers could be potentially useful as a tool for further exploring the roles of such heterodimers in vitro and in vivo.
Collapse
Affiliation(s)
- David A. Perrey
- Research Triangle Institute, Research Triangle
Park, North Carolina 27709, United States
| | - Brian P. Gilmour
- Research Triangle Institute, Research Triangle
Park, North Carolina 27709, United States
| | - Brian F. Thomas
- Research Triangle Institute, Research Triangle
Park, North Carolina 27709, United States
| | - Yanan Zhang
- Research Triangle Institute, Research Triangle
Park, North Carolina 27709, United States
| |
Collapse
|
36
|
Ulloa-Aguirre A, Zariñán T, Dias JA, Conn PM. Mutations in G protein-coupled receptors that impact receptor trafficking and reproductive function. Mol Cell Endocrinol 2014; 382:411-423. [PMID: 23806559 PMCID: PMC3844050 DOI: 10.1016/j.mce.2013.06.024] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/28/2013] [Accepted: 06/17/2013] [Indexed: 11/15/2022]
Abstract
G protein coupled receptors (GPCRs) are a large superfamily of integral cell surface plasma membrane proteins that play key roles in transducing extracellular signals, including sensory stimuli, hormones, neurotransmitters, or paracrine factors into the intracellular environment through the activation of one or more heterotrimeric G proteins. Structural alterations provoked by mutations or variations in the genes coding for GPCRs may lead to misfolding, altered plasma membrane expression of the receptor protein and frequently to disease. A number of GPCRs regulate reproductive function at different levels; these receptors include the gonadotropin-releasing hormone receptor (GnRHR) and the gonadotropin receptors (follicle-stimulating hormone receptor and luteinizing hormone receptor), which regulate the function of the pituitary-gonadal axis. Loss-of-function mutations in these receptors may lead to hypogonadotropic or hypergonadotropic hypogonadism, which encompass a broad spectrum of clinical phenotypes. In this review we describe mutations that provoke misfolding and failure of these receptors to traffick from the endoplasmic reticulum to the plasma membrane. We also discuss some aspects related to the therapeutic potential of some target-specific drugs that selectively bind to and rescue function of misfolded mutant GnRHR and gonadotropin receptors, and that represent potentially valuable strategies to treat diseases caused by inactivating mutations of these receptors.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Division of Reproductive Health, Research Center in Population Health, National Institute of Public Health, Cuernavaca, Mexico; Divisions of Reproductive Sciences and Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA.
| | - Teresa Zariñán
- Research Unit in Reproductive Medicine, UMAE Hospital de Ginecobstetricia "Luis Castelazo Ayala", Mexico, DF, Mexico
| | - James A Dias
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY, USA
| | - P Michael Conn
- Divisions of Reproductive Sciences and Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Pharmacology and Physiology, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Cell and Developmental Biology, Oregon Health and Science University, Beaverton, OR 97006, USA; Department of Obstetrics and Gynecology, Oregon Health and Science University, Beaverton, OR 97006, USA
| |
Collapse
|
37
|
Navarro G, Moreno E, Bonaventura J, Brugarolas M, Farré D, Aguinaga D, Mallol J, Cortés A, Casadó V, Lluís C, Ferre S, Franco R, Canela E, McCormick PJ. Cocaine inhibits dopamine D2 receptor signaling via sigma-1-D2 receptor heteromers. PLoS One 2013; 8:e61245. [PMID: 23637801 PMCID: PMC3630156 DOI: 10.1371/journal.pone.0061245] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 03/08/2013] [Indexed: 11/19/2022] Open
Abstract
Under normal conditions the brain maintains a delicate balance between inputs of reward seeking controlled by neurons containing the D1-like family of dopamine receptors and inputs of aversion coming from neurons containing the D2-like family of dopamine receptors. Cocaine is able to subvert these balanced inputs by altering the cell signaling of these two pathways such that D1 reward seeking pathway dominates. Here, we provide an explanation at the cellular and biochemical level how cocaine may achieve this. Exploring the effect of cocaine on dopamine D2 receptors function, we present evidence of σ1 receptor molecular and functional interaction with dopamine D2 receptors. Using biophysical, biochemical, and cell biology approaches, we discovered that D2 receptors (the long isoform of the D2 receptor) can complex with σ1 receptors, a result that is specific to D2 receptors, as D3 and D4 receptors did not form heteromers. We demonstrate that the σ1-D2 receptor heteromers consist of higher order oligomers, are found in mouse striatum and that cocaine, by binding to σ1 -D2 receptor heteromers, inhibits downstream signaling in both cultured cells and in mouse striatum. In contrast, in striatum from σ1 knockout animals these complexes are not found and this inhibition is not seen. Taken together, these data illuminate the mechanism by which the initial exposure to cocaine can inhibit signaling via D2 receptor containing neurons, destabilizing the delicate signaling balance influencing drug seeking that emanates from the D1 and D2 receptor containing neurons in the brain.
Collapse
Affiliation(s)
- Gemma Navarro
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Estefania Moreno
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jordi Bonaventura
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Marc Brugarolas
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Daniel Farré
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - David Aguinaga
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefa Mallol
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Antoni Cortés
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Vicent Casadó
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Carmen Lluís
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Sergi Ferre
- National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland, United States of America
| | - Rafael Franco
- Centro de Investigación Médica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Enric Canela
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Peter J. McCormick
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED) and Institute of Biomedicine of the University of Barcelona (IBUB) and Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Rivero-Müller A, Jonas KC, Hanyaloglu AC, Huhtaniemi I. Di/Oligomerization of GPCRs—Mechanisms and Functional Significance. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:163-85. [DOI: 10.1016/b978-0-12-386931-9.00007-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
39
|
Abstract
The follitropin or follicle-stimulating hormone receptor (FSHR) belongs to a highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily and is mainly expressed in specific cells in the gonads. As any other GPCR, the newly synthesized FSHR has to be correctly folded and processed in order to traffic to the cell surface plasma membrane and interact with its cognate ligand. In this chapter, we describe in detail the conditions and procedures used to study outward trafficking of the FSHR from the endoplasmic reticulum to the plasma membrane. We also describe some methods to analyze phosphorylation, β-arrestin recruitment, internalization, and recycling of this particular receptor, which have proved useful in our hands for dissecting its downward trafficking and fate following agonist stimulation.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Division of Reproductive Health, Research Center in Population Health, National Institute of Public Health, México D.F., Mexico
| | - James A. Dias
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- New York State Department of Health and Department of Biomedical Sciences, Wadsworth Center, School of Public Health, University at Albany, Albany, USA
| | - George Bousfield
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Ilpo Huhtaniemi
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Eric Reiter
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- BIOS Group, INRA, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, Nouzilly, France
- Université François Rabelais, Tours, France
| |
Collapse
|
40
|
Quaternary Structure Predictions and Structural Communication Features of GPCR Dimers. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:105-42. [DOI: 10.1016/b978-0-12-386931-9.00005-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
41
|
Wang CIA, Lewis RJ. Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochem Pharmacol 2012; 85:153-62. [PMID: 22975406 DOI: 10.1016/j.bcp.2012.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 09/03/2012] [Accepted: 09/04/2012] [Indexed: 12/23/2022]
Abstract
Their ubiquitous nature, wide cellular distribution and versatile molecular recognition and signalling help make G-protein binding receptors (GPCRs) the most important class of membrane proteins in clinical medicine, accounting for ∼40% of all current therapeutics. A large percentage of current drugs target the endogenous ligand binding (orthosteric) site, which are structurally and evolutionarily conserved, particularly among members of the same GPCR subfamily. With the recent advances in GPCR X-ray crystallography, new opportunities for developing novel subtype selective drugs have emerged. Given the increasing recognition that the extracellular surface conformation changes in response to ligand binding, it is likely that all GPCRs possess an allosteric site(s) capable of regulating GPCR signalling. Allosteric sites are less structurally conserved than their corresponding orthosteric site and thus provide new opportunities for the development of more selective drugs. Constitutive oligomerisation (dimerisation) identified in many of the GPCRs investigated, adds another dimension to the structural and functional complexity of GPCRs. In this review, we compare 60 crystal structures of nine GPCR subtypes (rhodopsin, ß₂-AR, ß₁-AR, A(2a)-AR, CXCR4, D₃R, H₁R, M₂R, M₃R) across four subfamilies of Class A GPCRs, and discuss mechanisms involved in receptor activation and potential allosteric binding sites across the highly variable extracellular surface of these GPCRs. This analysis has identified a new extracellular salt bridge (ESB-2) that might be exploited in the design of allosteric modulators.
Collapse
Affiliation(s)
- Ching-I Anderson Wang
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072 Australia
| | | |
Collapse
|
42
|
Regulation of cell migration by sphingomyelin synthases: sphingomyelin in lipid rafts decreases responsiveness to signaling by the CXCL12/CXCR4 pathway. Mol Cell Biol 2012; 32:3242-52. [PMID: 22688512 DOI: 10.1128/mcb.00121-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sphingomyelin synthase (SMS) catalyzes the formation of sphingomyelin, a major component of the plasma membrane and lipid rafts. To investigate the role of SMS in cell signaling and migration induced by binding of the chemokine CXCL12 to CXCR4, we used mouse embryonic fibroblasts deficient in SMS1 and/or SMS2 and examined the effects of SMS deficiency on cell migration. SMS deficiency promoted cell migration through a CXCL12/CXCR4-dependent signaling pathway involving extracellular signal-regulated kinase (ERK) activation. In addition, SMS1/SMS2 double-knockout cells had heightened sensitivity to CXCL12, which was significantly suppressed upon transfection with the SMS1 or SMS2 gene or when they were treated with exogenous sphingomyelin but not when they were treated with the SMS substrate ceramide. Notably, SMS deficiency facilitated relocalization of CXCR4 to lipid rafts, which form platforms for the regulation and transduction of receptor-mediated signaling. Furthermore, we found that SMS deficiency potentiated CXCR4 dimerization, which is required for signal transduction. This dimerization was significantly repressed by sphingomyelin treatment. Collectively, our data indicate that SMS-derived sphingomyelin lowers responsiveness to CXCL12, thereby reducing migration induced by this chemokine. Our findings provide the first direct evidence for an involvement of SMS-generated sphingomyelin in the regulation of cell migration.
Collapse
|
43
|
Ciruela F, Fernández-Dueñas V, Llorente J, Borroto-Escuela D, Cuffí ML, Carbonell L, Sánchez S, Agnati LF, Fuxe K, Tasca CI. G protein-coupled receptor oligomerization and brain integration: focus on adenosinergic transmission. Brain Res 2012; 1476:86-95. [PMID: 22575562 DOI: 10.1016/j.brainres.2012.04.056] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
Abstract
The control of glutamatergic corticostriatal transmission is essential for the induction and expression of plasticity mechanisms in the striatum, a phenomenon thickly regulated by G protein-coupled receptors (GPCRs). Interestingly, in addition to dopamine receptors, adenosine and metabotropic glutamate receptors also play a key role in striatal functioning. The existence of a supramolecular organization (i.e. oligomer) containing dopamine, adenosine and metabotropic glutamate receptors in the striatal neurons is now being widely accepted by the scientific community. Indeed, these oligomers may enhance the diversity and performance by which extracellular striatal signals are transferred to the G-proteins in the process of receptor transduction, and also may allow unpredictable receptor-receptor allosteric regulations. Overall, here we want to review how formations of adenosine, dopamine and metabotropic glutamate receptors-containing oligomers impinge into striatal functioning in both normal and pathological conditions. This article is part of a Special Issue entitled: Brain Integration.
Collapse
Affiliation(s)
- Francisco Ciruela
- Unitat de Farmacologia, Departament Patologia i Terapèutica Experimental, Facultat de Medicina, Universitat de Barcelona, L'Hospitalet de Llobregat, 08907 Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Vauquelin G, Bostoen S, Vanderheyden P, Seeman P. Clozapine, atypical antipsychotics, and the benefits of fast-off D2 dopamine receptor antagonism. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:337-72. [PMID: 22331262 DOI: 10.1007/s00210-012-0734-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 01/25/2012] [Indexed: 12/20/2022]
Abstract
Drug-receptor interactions are traditionally quantified in terms of affinity and efficacy, but there is increasing awareness that the drug-on-receptor residence time also affects clinical performance. While most interest has hitherto been focused on slow-dissociating drugs, D(2) dopamine receptor antagonists show less extrapyramidal side effects but still have excellent antipsychotic activity when they dissociate swiftly. Fast dissociation of clozapine, the prototype of the "atypical antipsychotics", has been evidenced by distinct radioligand binding approaches both on cell membranes and intact cells. The surmountable nature of clozapine in functional assays with fast-emerging responses like calcium transients is confirmatory. Potential advantages and pitfalls of the hitherto used techniques are discussed, and recommendations are given to obtain more precise dissociation rates for such drugs. Surmountable antagonism is necessary to allow sufficient D(2) receptor stimulation by endogenous dopamine in the striatum. Simulations are presented to find out whether this can be achieved during sub-second bursts in dopamine concentration or rather during much slower, activity-related increases thereof. While the antagonist's dissociation rate is important to distinguish between both mechanisms, this becomes much less so when contemplating time intervals between successive drug intakes, i.e., when pharmacokinetic considerations prevail. Attention is also drawn to the divergent residence times of hydrophobic antagonists like haloperidol when comparing radioligand binding data on cell membranes with those on intact cells and clinical data.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department of Molecular and Biochemical Pharmacology, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
| | | | | | | |
Collapse
|
45
|
Cottet M, Faklaris O, Maurel D, Scholler P, Doumazane E, Trinquet E, Pin JP, Durroux T. BRET and Time-resolved FRET strategy to study GPCR oligomerization: from cell lines toward native tissues. Front Endocrinol (Lausanne) 2012; 3:92. [PMID: 22837753 PMCID: PMC3401989 DOI: 10.3389/fendo.2012.00092] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/03/2012] [Indexed: 11/13/2022] Open
Abstract
The concept of oligomerization of G protein-coupled receptor (GPCR) opens new perspectives regarding physiological function regulation. The capacity of one GPCR to modify its binding and coupling properties by interacting with a second one can be at the origin of regulations unsuspected two decades ago. Although the concept is interesting, its validation at a physiological level is challenging and probably explains why receptor oligomerization is still controversial. Demonstrating direct interactions between two proteins is not trivial since few techniques present a spatial resolution allowing this precision. Resonance energy transfer (RET) strategies are actually the most convenient ones. During the last two decades, bioluminescent resonance energy transfer and time-resolved fluorescence resonance energy transfer (TR-FRET) have been widely used since they exhibit high signal-to-noise ratio. Most of the experiments based on GPCR labeling have been performed in cell lines and it has been shown that all GPCRs have the propensity to form homo- or hetero-oligomers. However, whether these data can be extrapolated to GPCRs expressed in native tissues and explain receptor functioning in real life, remains an open question. Native tissues impose different constraints since GPCR sequences cannot be modified. Recently, a fluorescent ligand-based GPCR labeling strategy combined to a TR-FRET approach has been successfully used to prove the existence of GPCR oligomerization in native tissues. Although the RET-based strategies are generally quite simple to implement, precautions have to be taken before concluding to the absence or the existence of specific interactions between receptors. For example, one should exclude the possibility of collision of receptors diffusing throughout the membrane leading to a specific FRET signal. The advantages and the limits of different approaches will be reviewed and the consequent perspectives discussed.
Collapse
Affiliation(s)
- Martin Cottet
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Orestis Faklaris
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Damien Maurel
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Pauline Scholler
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Etienne Doumazane
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | | | - Jean-Philippe Pin
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
| | - Thierry Durroux
- Institut de Génomique Fonctionnelle CNRS, UMR 5203,Montpellier, France
- INSERM, U.661, Montpellier and Université Montpellier 1,2,Montpellier, France
- *Correspondence: Thierry Durroux, Institut de Génomique Fonctionnelle CNRS, UMR 5203, Montpellier, France; INSERM U661, Montpellier and Université Montpellier 1,2, 141 Rue de la Cardonille, 34094 Montpellier Cedex 5, France. e-mail:
| |
Collapse
|
46
|
Abstract
G protein-coupled receptor (GPCR) export to the plasma membrane is considered to follow the default secretory pathway. Several observations indicate that trafficking from the endoplasmic reticulum to the plasma membrane is strictly regulated and involves interactions with specific proteins, such as resident ER chaperones. These interactions help with GPCR folding, but more importantly, they ensure that only properly folded proteins proceed from the ER to the trans-golgi network. The assembly of several GPCRs into a quaternary structure is started in the ER, before cell surface delivery, and helps in the correct expression of the GPCRs. This review will mainly focus on the role of GPCR oligomerization in receptor biogenesis.
Collapse
|
47
|
Ng SYL, Lee LTO, Chow BKC. Receptor oligomerization: from early evidence to current understanding in class B GPCRs. Front Endocrinol (Lausanne) 2012; 3:175. [PMID: 23316183 PMCID: PMC3539651 DOI: 10.3389/fendo.2012.00175] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2012] [Accepted: 12/11/2012] [Indexed: 01/06/2023] Open
Abstract
Dimerization or oligomerization of G protein-coupled receptors (GPCRs) are known to modulate receptor functions in terms of ontogeny, ligand-oriented regulation, pharmacological diversity, signal transduction, and internalization. Class B GPCRs are receptors to a family of hormones including secretin, growth hormone-releasing hormone, vasoactive intestinal polypeptide and parathyroid hormone, among others. The functional implications of receptor dimerization have extensively been studied in class A GPCRs, while less is known regarding its function in class B GPCRs. This article reviews receptor oligomerization in terms of the early evidence and current understanding particularly of class B GPCRs.
Collapse
Affiliation(s)
| | | | - Billy K. C. Chow
- *Correspondence: Billy K. C. Chow, Endocrinology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China. e-mail:
| |
Collapse
|
48
|
Fanelli F, De Benedetti PG. Update 1 of: computational modeling approaches to structure-function analysis of G protein-coupled receptors. Chem Rev 2011; 111:PR438-535. [PMID: 22165845 DOI: 10.1021/cr100437t] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Francesca Fanelli
- Dulbecco Telethon Institute, University of Modena and Reggio Emilia, via Campi 183, 41125 Modena, Italy.
| | | |
Collapse
|
49
|
Kühhorn J, Götz A, Hübner H, Thompson D, Whistler J, Gmeiner P. Development of a bivalent dopamine D₂ receptor agonist. J Med Chem 2011; 54:7911-9. [PMID: 21999579 DOI: 10.1021/jm2009919] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bivalent D₂ agonists may function as useful molecular probes for the discovery of novel neurological therapeutics. On the basis of our recently developed bivalent dopamine D₂ receptor antagonists of type 1, the bivalent agonist 2 was synthesized when a spacer built from 22 atoms was employed. Compared to the monovalent control compound 6 containing a capped spacer, the bis-aminoindane derivative 2 revealed substantial steepening of the competition curve, indicating a bivalent binding mode. Dimer-specific Hill slopes were not a result of varying functional properties because both the dopaminergic 2 and the monovalent control agent 6 proved to be D₂ agonists substantially inhibiting cAMP accumulation and inducing D₂ receptor internalization. Investigation of the heterobivalent ligands 8 and 9, containing an agonist and a phenylpiperazine-based antagonist pharmacophore, revealed moderate steepening of the displacement curves and antagonist to very weak partial agonist properties.
Collapse
Affiliation(s)
- Julia Kühhorn
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstraße 19, D-91052 Erlangen, Germany
| | | | | | | | | | | |
Collapse
|
50
|
Huber D, Löber S, Hübner H, Gmeiner P. Bivalent molecular probes for dopamine D2-like receptors. Bioorg Med Chem 2011; 20:455-66. [PMID: 22100258 DOI: 10.1016/j.bmc.2011.10.063] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 10/14/2011] [Accepted: 10/19/2011] [Indexed: 12/26/2022]
Abstract
Merging two arylamidoalkyl substituted phenylpiperazines as prototypical recognition elements for dopamine D(2)-like receptors by oligoethylene glycol linkers led to a series of bivalent ligands. These dimers were investigated in comparison to their monomeric analogues for their dopamine D(2long), D(2short), D(3) and D(4) receptor binding. Radioligand binding experiments revealed strong bivalent effects for some para-substituted benzamide derivatives. For the D(3) subtype, the target compounds 32, 34 and 36 showed an up to 70-fold increase of affinity and a substantial enhancement of subtype selectivity when compared to the monovalent analogue 24. Analysis of the binding curves displayed Hill slopes very close to one indicating that the bivalent ligands displace 1equiv of radioligand. Obviously, the two pharmacophores occupy an orthosteric and an allosteric binding site rather than adopting a receptor-bridging binding mode.
Collapse
Affiliation(s)
- Daniela Huber
- Department of Chemistry and Pharmacy, Emil Fischer Center, Friedrich Alexander University, Schuhstrasse 19, D-91052 Erlangen, Germany
| | | | | | | |
Collapse
|