1
|
Tian Y, Jing G, Zhang M. Insulin-degrading enzyme: Roles and pathways in ameliorating cognitive impairment associated with Alzheimer's disease and diabetes. Ageing Res Rev 2023; 90:101999. [PMID: 37414154 DOI: 10.1016/j.arr.2023.101999] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/12/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Accumulation of amyloid-β in the central nervous system is a common feature of Alzheimer's disease (AD) and diabetes-related cognitive impairment. Since the insulin-degrading enzyme (IDE) can break down amyloid-β plaques, there is considerable interest in using this enzyme to treat both neurological disorders. In this review, we have summarized the pre-clinical and clinical research on the potential application of IDE for the improvement of cognitive impairment. Furthermore, we have presented an overview of the main pathways that can be targeted to mitigate the progression of AD and the cognitive impairment caused by diabetes.
Collapse
Affiliation(s)
- Yue Tian
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Guangchan Jing
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Mengren Zhang
- Department of Traditional Chinese Medicine, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China.
| |
Collapse
|
2
|
Altered Surface Expression of Insulin-Degrading Enzyme on Monocytes and Lymphocytes from COVID-19 Patients Both at Diagnosis and after Hospital Discharge. Int J Mol Sci 2022; 23:ijms231911070. [PMID: 36232381 PMCID: PMC9570012 DOI: 10.3390/ijms231911070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Although the COVID-19 disease has developed into a worldwide pandemic, its pathophysiology remains to be fully understood. Insulin-degrading enzyme (IDE), a zinc-metalloprotease with a high affinity for insulin, has been found in the interactomes of multiple SARS-CoV-2 proteins. However, the relevance of IDE in the innate and adaptative immune responses elicited by circulating peripheral blood mononuclear cells is unknown. Here, we show that IDE is highly expressed on the surface of circulating monocytes, T-cells (both CD4+ and CD4−), and, to a lower extent, in B-cells from healthy controls. Notably, IDE’s surface expression was upregulated on monocytes from COVID-19 patients at diagnosis, and it was increased in more severe patients. However, IDE’s surface expression was downregulated (relative to healthy controls) 3 months after hospital discharge in all the studied immune subsets, with this effect being more pronounced in males than in females, and thus it was sex-dependent. Additionally, IDE levels in monocytes, CD4+ T-cells, and CD4− T-cells were inversely correlated with circulating insulin levels in COVID-19 patients (both at diagnosis and after hospital discharge). Of note, high glucose and insulin levels downregulated IDE surface expression by ~30% in the monocytes isolated from healthy donors, without affecting its expression in CD4+ T-cells and CD4− T-cells. In conclusion, our studies reveal the sex- and metabolism-dependent regulation of IDE in monocytes, suggesting that its regulation might be important for the recruitment of immune cells to the site of infection, as well as for glucometabolic control, in COVID-19 patients.
Collapse
|
3
|
Lesire L, Leroux F, Deprez-Poulain R, Deprez B. Insulin-Degrading Enzyme, an Under-Estimated Potential Target to Treat Cancer? Cells 2022; 11:1228. [PMID: 35406791 PMCID: PMC8998118 DOI: 10.3390/cells11071228] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Insulin-degrading enzyme (IDE) is a multifunctional protease due to the variety of its substrates, its various cellular locations, its conservation between species and its many non-proteolytic functions. Numerous studies have successfully demonstrated its implication in two main therapeutic areas: metabolic and neuronal diseases. In recent years, several reports have underlined the overexpression of this enzyme in different cancers. Still, the exact role of IDE in the physiopathology of cancer remains to be elucidated. Known as the main enzyme responsible for the degradation of insulin, an essential growth factor for healthy cells and cancer cells, IDE has also been shown to behave like a chaperone and interact with the proteasome. The pharmacological modulation of IDE (siRNA, chemical compounds, etc.) has demonstrated interesting results in cancer models. All these results point towards IDE as a potential target in cancer. In this review, we will discuss evidence of links between IDE and cancer development or resistance, IDE's functions, catalytic or non-catalytic, in the context of cell proliferation, cancer development and the impact of the pharmacomodulation of IDE via cancer therapeutics.
Collapse
Affiliation(s)
| | | | - Rebecca Deprez-Poulain
- INSERM U1177 Drugs and Molecules for Living Systems, Institut Pasteur de Lille, European Genomic Institute for Diabetes, University of Lille, F-59000 Lille, France; (L.L.); (F.L.); (B.D.)
| | | |
Collapse
|
4
|
Sousa L, Guarda M, Meneses MJ, Macedo MP, Vicente Miranda H. Insulin-degrading enzyme: an ally against metabolic and neurodegenerative diseases. J Pathol 2021; 255:346-361. [PMID: 34396529 DOI: 10.1002/path.5777] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/01/2021] [Accepted: 08/09/2021] [Indexed: 11/11/2022]
Abstract
Insulin-degrading enzyme (IDE) function goes far beyond its known proteolytic role as a regulator of insulin levels. IDE has a wide substrate promiscuity, degrading several proteins such as amyloid-β peptide, glucagon, islet amyloid polypeptide (IAPP) and insulin-like growth factors, that have diverse physiological and pathophysiological functions. Importantly, IDE plays other non-proteolytical functions such as a chaperone/dead-end chaperone, an E1-ubiquitin activating enzyme, and a proteasome modulator. It also responds as a heat shock protein, regulating cellular proteostasis. Notably, amyloidogenic proteins such as IAPP, amyloid-β and α-synuclein have been reported as substrates for IDE chaperone activity. This is of utmost importance as failure of IDE may result in increased protein aggregation, a key hallmark in the pathogenesis of beta cells in type 2 diabetes mellitus and of neurons in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. In this review, we focus on the biochemical and biophysical properties of IDE and the regulation of its physiological functions. We further raise the hypothesis that IDE plays a central role in the pathological context of dysmetabolic and neurodegenerative diseases and discuss its potential as a therapeutic target. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Luís Sousa
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Mariana Guarda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria João Meneses
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal
| | - M Paula Macedo
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal.,APDP-Diabetes Portugal Education and Research Center (APDP-ERC), Lisbon, Portugal.,Departamento de Ciências Médicas, Instituto de Biomedicina - iBiMED, Universidade de Aveiro, Aveiro, Portugal
| | - Hugo Vicente Miranda
- CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1169-056, Lisbon, Portugal
| |
Collapse
|
5
|
Leissring MA, González-Casimiro CM, Merino B, Suire CN, Perdomo G. Targeting Insulin-Degrading Enzyme in Insulin Clearance. Int J Mol Sci 2021; 22:ijms22052235. [PMID: 33668109 PMCID: PMC7956289 DOI: 10.3390/ijms22052235] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/20/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic insulin clearance, a physiological process that in response to nutritional cues clears ~50–80% of circulating insulin, is emerging as an important factor in our understanding of the pathogenesis of type 2 diabetes mellitus (T2DM). Insulin-degrading enzyme (IDE) is a highly conserved Zn2+-metalloprotease that degrades insulin and several other intermediate-size peptides. Both, insulin clearance and IDE activity are reduced in diabetic patients, albeit the cause-effect relationship in humans remains unproven. Because historically IDE has been proposed as the main enzyme involved in insulin degradation, efforts in the development of IDE inhibitors as therapeutics in diabetic patients has attracted attention during the last decades. In this review, we retrace the path from Mirsky’s seminal discovery of IDE to the present, highlighting the pros and cons of the development of IDE inhibitors as a pharmacological approach to treating diabetic patients.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine (UCI MIND), Irvine, CA 92697-4545, USA
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| | - Carlos M. González-Casimiro
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Beatriz Merino
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
| | - Caitlin N. Suire
- Department of Biomedical Sciences, Florida State University, Tallahassee, FL 32306-4300, USA;
| | - Germán Perdomo
- Instituto de Biología y Genética Molecular (University of Valladolid-CSIC), 47003 Valladolid, Spain; (C.M.G.-C.); (B.M.)
- Correspondence: (M.A.L.); (G.P.); Tel.: +1-904-254-3050 (M.A.L.); +34-983-184-805 (G.P.)
| |
Collapse
|
6
|
Sofer Y, Nash Y, Osher E, Fursht O, Goldsmith G, Nahary L, Shaklai S, Tordjman KM, Serebro M, Touati EB, Yacobi Bach M, Marcus Y, Tal B, Sack J, Shefer G, Margaliot M, Landis N, Goldiner I, Abu Ahmad W, Stern N, Benhar I, Frenkel D. Insulin-degrading enzyme higher in subjects with metabolic syndrome. Endocrine 2021; 71:357-364. [PMID: 33398768 DOI: 10.1007/s12020-020-02548-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
Metabolic syndrome (MS) is comprised of a cluster of abnormalities in glucose, lipid, and vascular homeostasis, which is most commonly linked to abdominal obesity. MS heralds increased risk for development of diabetes and is linked to impairment in insulin signaling. Insulin-degrading enzyme (IDE) is one of the mechanisms through which insulin blood levels are maintained. It has been previously suggested that controlling IDE levels could provide yet another potential therapeutic approach in diabetes. Here we aim to investigate whether changes in serum IDE levels correlate with the severity of MS. Using a highly sensitive ELISA assay of active IDE in human serum, we found a strong correlation between circulating IDE levels and circulating levels of triglycerides, insulin, and c-peptide and an inverse correlation with HDL cholesterol (HDLc). Serum IDE levels were higher in MS subjects than in control subjects. Hence, circulating IDE may serve as a tool to identify subjects with abnormal insulin metabolism, possibly those with MS that are at risk to develop diabetes.
Collapse
Affiliation(s)
- Y Sofer
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel.
| | - Y Nash
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - E Osher
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - O Fursht
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - G Goldsmith
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - L Nahary
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - S Shaklai
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - K M Tordjman
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - M Serebro
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - E B Touati
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - M Yacobi Bach
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - Y Marcus
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - B Tal
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - J Sack
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - G Shefer
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - M Margaliot
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - N Landis
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - I Goldiner
- Laboratory Medicine, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - W Abu Ahmad
- Hebrew University-Hadassah Braun School of Public Health and Community Medicine, Jerusalem, Israel
| | - N Stern
- Institute of Endocrinology, Metabolism and Hypertension and The Sagol Center for Epigenetics of Metabolism and Aging, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv, Israel
| | - I Benhar
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - D Frenkel
- Department of Neurobiology, School of Neurobiology, Biochemistry and Biophysics, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
7
|
Fiorentino TV, Sesti F, Succurro E, Pedace E, Andreozzi F, Sciacqua A, Hribal ML, Perticone F, Sesti G. Higher serum levels of uric acid are associated with a reduced insulin clearance in non-diabetic individuals. Acta Diabetol 2018; 55:835-842. [PMID: 29774469 DOI: 10.1007/s00592-018-1153-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/01/2018] [Indexed: 11/25/2022]
Abstract
AIMS Decreased insulin clearance has been reported to be associated with insulin resistance-related disorders and incident type 2 diabetes. The aim of this study was to evaluate whether higher levels of uric acid (UA), a known risk factor of type 2 diabetes, are associated with a reduced insulin clearance. METHODS 440 non-diabetic individuals were stratified in tertiles according to serum UA levels. Insulin clearance and skeletal muscle insulin sensitivity were assessed by euglycemic hyperinsulinemic clamp. Hepatic insulin resistance was estimated by the liver IR index. RESULTS Subjects with higher levels of UA displayed an unfavorable metabolic phenotype with a worse lipid profile, increased levels of 2-h post-load glucose levels, fasting, and 2-h post-load insulin levels, hsCRP, liver IR index, and lower levels of eGFR and skeletal muscle insulin sensitivity, in comparison to individuals with lower UA levels. Moreover, subjects with higher UA concentrations exhibited decreased levels of insulin clearance even after adjustment for age, gender, BMI, eGFR, and skeletal muscle insulin sensitivity. In a multivariate regression analysis model including several confounding factors, UA concentration was an independent predictor of insulin clearance (β = - 0.145; P = 0.03). However, when liver IR index was included in the model, the independent association between UA levels and insulin clearance was not retained. Accordingly, in a mediation analysis, liver IR index was a mediator of the negative effects of UA levels on insulin clearance (t = - 2.55, P = 0.01). CONCLUSIONS Higher serum levels of UA may affect insulin clearance by impairing hepatic insulin sensitivity.
Collapse
Affiliation(s)
- Teresa Vanessa Fiorentino
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Franz Sesti
- Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Elena Succurro
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Elisabetta Pedace
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Andreozzi
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Angela Sciacqua
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Marta Letizia Hribal
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Perticone
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy
| | - Giorgio Sesti
- Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
8
|
Kurochkin IV, Guarnera E, Berezovsky IN. Insulin-Degrading Enzyme in the Fight against Alzheimer's Disease. Trends Pharmacol Sci 2017; 39:49-58. [PMID: 29132916 DOI: 10.1016/j.tips.2017.10.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/18/2017] [Accepted: 10/23/2017] [Indexed: 11/19/2022]
Abstract
After decades of research and clinical trials there is still no cure for Alzheimer's disease (AD). While impaired clearance of amyloid beta (Aβ) peptides is considered as one of the major causes of AD, it was recently complemented by a potential role of other toxic amyloidogenic species. Insulin-degrading enzyme (IDE) is the proteolytic culprit of various β-forming peptides, both extracellular and intracellular. On the basis of demonstrated allosteric activation of IDE against Aβ, it is possible to propose a new strategy for the targeted IDE-based cleansing of different toxic aggregation-prone peptides. Consequently, specific allosteric activation of IDE coupled with state-of-the-art compound delivery and CRISP-Cas9 technique of transgene insertion can be instrumental in the fight against AD and related neurodegenerative maladies.
Collapse
Affiliation(s)
- Igor V Kurochkin
- Sysmex Corporation, 4-4-4 Takatsukadai, Nishi-ku, Kobe 651-2271, Japan
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, 07-01, Matrix, Singapore 138671
| | - Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, 07-01, Matrix, Singapore 138671; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579.
| |
Collapse
|
9
|
Tundo GR, Sbardella D, Ciaccio C, Grasso G, Gioia M, Coletta A, Polticelli F, Di Pierro D, Milardi D, Van Endert P, Marini S, Coletta M. Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit Rev Biochem Mol Biol 2017. [PMID: 28635330 DOI: 10.1080/10409238.2017.1337707] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Insulin-degrading enzyme (IDE) is a ubiquitous zinc peptidase of the inverzincin family, which has been initially discovered as the enzyme responsible for insulin catabolism; therefore, its involvement in the onset of diabetes has been largely investigated. However, further studies on IDE unraveled its ability to degrade several other polypeptides, such as β-amyloid, amylin, and glucagon, envisaging the possible implication of IDE dys-regulation in the "aggregopathies" and, in particular, in neurodegenerative diseases. Over the last decade, a novel scenario on IDE biology has emerged, pointing out a multi-functional role of this enzyme in several basic cellular processes. In particular, latest advances indicate that IDE behaves as a heat shock protein and modulates the ubiquitin-proteasome system, suggesting a major implication in proteins turnover and cell homeostasis. In addition, recent observations have highlighted that the regulation of glucose metabolism by IDE is not merely based on its largely proposed role in the degradation of insulin in vivo. There is increasing evidence that improper IDE function, regulation, or trafficking might contribute to the etiology of metabolic diseases. In addition, the enzymatic activity of IDE is affected by metals levels, thus suggesting a role also in the metal homeostasis (metallostasis), which is thought to be tightly linked to the malfunction of the "quality control" machinery of the cell. Focusing on the physiological role of IDE, we will address a comprehensive vision of the very complex scenario in which IDE takes part, outlining its crucial role in interconnecting several relevant cellular processes.
Collapse
Affiliation(s)
- Grazia R Tundo
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Diego Sbardella
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| | - Chiara Ciaccio
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Giuseppe Grasso
- d Department of Chemistry , University of Catania , Catania , Italy.,e CNR IBB , Catania , Italy
| | - Magda Gioia
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | - Andrea Coletta
- f Department of Chemistry , University of Aarhus , Aarhus , Denmark
| | | | - Donato Di Pierro
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy
| | | | - Peter Van Endert
- h Université Paris Descartes, INSERM, U1151, CNRS , Paris , France
| | - Stefano Marini
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| | - Massimo Coletta
- a Department of Clinical Sciences and Translation Medicine , University of Roma Tor Vergata , Roma , Italy.,b CIRCMSB , Bari , Italy.,c Center for TeleInfrastructures, University of Roma Tor Vergata , Roma , Italy
| |
Collapse
|
10
|
Pivovarova O, Höhn A, Grune T, Pfeiffer AFH, Rudovich N. Insulin-degrading enzyme: new therapeutic target for diabetes and Alzheimer's disease? Ann Med 2016; 48:614-624. [PMID: 27320287 DOI: 10.1080/07853890.2016.1197416] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Insulin-degrading enzyme (IDE) is a major enzyme responsible for insulin degradation. In addition to insulin, IDE degrades many targets including glucagon, atrial natriuretic peptide, and beta-amyloid peptide, regulates proteasomal degradation and other cell functions. IDE represents a pathophysiological link between type 2 diabetes (T2DM) and late onset Alzheimer's disease (AD). Potent and selective modulators of IDE activity are potential drugs for therapies of both diseases. Acute treatment with a novel IDE inhibitor was recently tested in a mouse study as a therapeutic approach for the treatment of T2DM. In contrast, effective IDE activators can be used for the AD treatment. However, because of the pleiotropic IDE action, the sustained treatment with systemic IDE modulators should be carefully tested in animal studies. Development of substrate-selective IDE modulators could overcome possible adverse effects of IDE modulators associated with multiplicity of IDE targets. KEY MESSAGES Insulin-degrading enzyme (IDE) represents a pathophysiological link between type 2 diabetes (T2DM) and Alzheimer's disease (AD). Selective modulators of IDE activity are potential drugs for both T2DM and AD treatment. Development of substrate-selective IDE modulators could overcome possible adverse effects of IDE modulators associated with multiplicity of IDE targets.
Collapse
Affiliation(s)
- Olga Pivovarova
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| | - Annika Höhn
- c German Center for Diabetes Research (DZD) , München , Germany.,d Department of Molecular Toxicology , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany
| | - Tilman Grune
- c German Center for Diabetes Research (DZD) , München , Germany.,d Department of Molecular Toxicology , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,e German Center for Cardiovascular Research (DZHK) , Berlin , Germany
| | - Andreas F H Pfeiffer
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| | - Natalia Rudovich
- a Department of Clinical Nutrition , German Institute of Human Nutrition Potsdam-Rehbruecke , Nuthetal , Germany.,b Department of Endocrinology, Diabetes and Nutrition , Campus Benjamin Franklin, Charité University Medicine , Berlin , Germany.,c German Center for Diabetes Research (DZD) , München , Germany
| |
Collapse
|
11
|
Khodyrev DS, Nikitin AG, Brovkin AN, Lavrikova EY, Lebedeva NO, Vikulova OK, Shamhalova MS, Shestakova MV, Mayorov MY, Potapov VA, Nosikov VV, Averyanov AV. The analysis of association between type 2 diabetes and polymorphic markers in the CDKAL1 gene and in the HHEX/IDE locus. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416110065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Grizzanti J, Lee HG, Camins A, Pallas M, Casadesus G. The therapeutic potential of metabolic hormones in the treatment of age-related cognitive decline and Alzheimer's disease. Nutr Res 2016; 36:1305-1315. [PMID: 27923524 DOI: 10.1016/j.nutres.2016.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 01/04/2023]
Abstract
Aging leads to a number of physiological alterations, specifically changes in circulating hormone levels, increases in fat deposition, decreases in metabolism, changes in inflammatory responses, and reductions in growth factors. These progressive changes in physiology and metabolism are exacerbated by modern culture and Western diet and give rise to diseases such as obesity, metabolic syndrome, and type 2 (non-insulin-dependent) diabetes (T2D). These age and lifestyle-related metabolic diseases are often accompanied by insulin and leptin resistance, as well as aberrant amylin production and signaling. Many of these alterations in hormone production and signaling are directly influenced by an increase in both oxidative stress and inflammation. Importantly, changes in hormone production and signaling have direct effects on brain function and the development of age-related neurologic disorders. Therefore, this review aims to present evidence on the effects that diet and metabolic disease have on age-related cognitive decline and the development of cognitive diseases, particularly Alzheimer disease. This review will focus on the metabolic hormones insulin, leptin, and amylin and their role in cognitive decline, as well as the therapeutic potential of these hormones in treating cognitive disease. Future investigations targeting the long-term effects of insulin and leptin treatment may reveal evidence to reduce risk of cognitive decline and Alzheimer disease.
Collapse
Affiliation(s)
- John Grizzanti
- School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Hyoung-Gon Lee
- Department of Biology, University of Texas, San Antonio, TX, USA
| | - Antoni Camins
- Department of Pharmacology and Therapeutic Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Merce Pallas
- Department of Pharmacology and Therapeutic Chemistry, Universitat de Barcelona, Barcelona, Spain
| | - Gemma Casadesus
- School of Biomedical Sciences, Kent State University, Kent, OH, USA; Department of Biological Sciences, Kent State University, Kent, OH, USA.
| |
Collapse
|
13
|
Grasso G, Lanza V, Malgieri G, Fattorusso R, Pietropaolo A, Rizzarelli E, Milardi D. The insulin degrading enzyme activates ubiquitin and promotes the formation of K48 and K63 diubiquitin. Chem Commun (Camb) 2015; 51:15724-7. [PMID: 26364617 DOI: 10.1039/c5cc06786c] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report an ATP-dependent ubiquitin conjugation with IDE which, in turn, promotes Ub-Ub linkages in tube tests. We propose a novel function for IDE as a non-canonical ubiquitin activating enzyme.
Collapse
Affiliation(s)
- G Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, V.le A. Doria 6, 95125 Catania, Italy
| | | | | | | | | | | | | |
Collapse
|
14
|
Proteasome Activity Is Affected by Fluctuations in Insulin-Degrading Enzyme Distribution. PLoS One 2015; 10:e0132455. [PMID: 26186340 PMCID: PMC4506093 DOI: 10.1371/journal.pone.0132455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 06/11/2015] [Indexed: 01/13/2023] Open
Abstract
Insulin-Degrading-Enzyme (IDE) is a Zn2+-dependent peptidase highly conserved throughout evolution and ubiquitously distributed in mammalian tissues wherein it displays a prevalent cytosolic localization. We have recently demonstrated a novel Heat Shock Protein-like behaviour of IDE and its association with the 26S proteasome. In the present study, we examine the mechanistic and molecular features of IDE-26S proteasome interaction in a cell experimental model, extending the investigation also to the effect of IDE on the enzymatic activities of the 26S proteasome. Further, kinetic investigations indicate that the 26S proteasome activity undergoes a functional modulation by IDE through an extra-catalytic mechanism. The IDE-26S proteasome interaction was analyzed during the Heat Shock Response and we report novel findings on IDE intracellular distribution that might be of critical relevance for cell metabolism.
Collapse
|
15
|
Durham TB, Toth JL, Klimkowski VJ, Cao JXC, Siesky AM, Alexander-Chacko J, Wu GY, Dixon JT, McGee JE, Wang Y, Guo SY, Cavitt RN, Schindler J, Thibodeaux SJ, Calvert NA, Coghlan MJ, Sindelar DK, Christe M, Kiselyov VV, Michael MD, Sloop KW. Dual Exosite-binding Inhibitors of Insulin-degrading Enzyme Challenge Its Role as the Primary Mediator of Insulin Clearance in Vivo. J Biol Chem 2015; 290:20044-59. [PMID: 26085101 DOI: 10.1074/jbc.m115.638205] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Indexed: 01/07/2023] Open
Abstract
Insulin-degrading enzyme (IDE, insulysin) is the best characterized catabolic enzyme implicated in proteolysis of insulin. Recently, a peptide inhibitor of IDE has been shown to affect levels of insulin, amylin, and glucagon in vivo. However, IDE(-/-) mice display variable phenotypes relating to fasting plasma insulin levels, glucose tolerance, and insulin sensitivity depending on the cohort and age of animals. Here, we interrogated the importance of IDE-mediated catabolism on insulin clearance in vivo. Using a structure-based design, we linked two newly identified ligands binding at unique IDE exosites together to construct a potent series of novel inhibitors. These compounds do not interact with the catalytic zinc of the protease. Because one of these inhibitors (NTE-1) was determined to have pharmacokinetic properties sufficient to sustain plasma levels >50 times its IDE IC50 value, studies in rodents were conducted. In oral glucose tolerance tests with diet-induced obese mice, NTE-1 treatment improved the glucose excursion. Yet in insulin tolerance tests and euglycemic clamp experiments, NTE-1 did not enhance insulin action or increase plasma insulin levels. Importantly, IDE inhibition with NTE-1 did result in elevated plasma amylin levels, suggesting the in vivo role of IDE action on amylin may be more significant than an effect on insulin. Furthermore, using the inhibitors described in this report, we demonstrate that in HEK cells IDE has little impact on insulin clearance. In total, evidence from our studies supports a minimal role for IDE in insulin metabolism in vivo and suggests IDE may be more important in helping regulate amylin clearance.
Collapse
Affiliation(s)
| | - James L Toth
- From the Discovery Chemistry Research and Technologies
| | | | | | | | | | | | | | - James E McGee
- From the Discovery Chemistry Research and Technologies
| | - Yong Wang
- From the Discovery Chemistry Research and Technologies
| | - Sherry Y Guo
- From the Discovery Chemistry Research and Technologies
| | | | | | | | - Nathan A Calvert
- Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285
| | | | | | | | | | | | | |
Collapse
|
16
|
Grasso G, Satriano C, Milardi D. A neglected modulator of insulin-degrading enzyme activity and conformation: The pH. Biophys Chem 2015; 203-204:33-40. [PMID: 26025789 DOI: 10.1016/j.bpc.2015.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 12/16/2022]
Abstract
Insulin-degrading enzyme (IDE), a ubiquitously expressed zinc metalloprotease, has multiple activities in addition to insulin degradation and its malfunction is believed to connect type 2 diabetes with Alzheimer's disease. IDE has been found in many different cellular compartments, where it may experience significant physio-pathological pH variations. However, the exact role of pH variations on the interplay between enzyme conformations, stability, oligomerization state and catalysis is not understood. Here, we use ESI mass spectrometry, atomic force microscopy, surface plasmon resonance and circular dichroism to investigate the structure-activity relationship of IDE at different pH values. We show that acidic pH affects the ability of the enzyme to bind the substrate and decrease the stability of the protein by inducing an α-helical bundle conformation with a concomitant dissociation of multi-subunit IDE assemblies into monomeric units and loss of activity. These effects suggest a major role played by electrostatic forces in regulating multi-subunit enzyme assembly and function. Our results clearly indicate a pH dependent coupling among enzyme conformation, assembly and stability and suggest that cellular acidosis can have a large effect on IDE oligomerization state, inducing an enzyme inactivation and an altered insulin degradation that could have an impact on insulin signaling.
Collapse
Affiliation(s)
- Giuseppe Grasso
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy.
| | - Cristina Satriano
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Danilo Milardi
- Istituto Biostrutture e Bioimmagini, CNR, Via P. Gaifami 18, 95126 Catania, Italy
| |
Collapse
|
17
|
Reduced insulin clearance and lower insulin-degrading enzyme expression in the liver might contribute to the thrifty phenotype of protein-restricted mice. Br J Nutr 2014; 112:900-7. [PMID: 25036874 DOI: 10.1017/s0007114514001238] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Nutrient restriction during the early stages of life usually leads to alterations in glucose homeostasis, mainly insulin secretion and sensitivity, increasing the risk of metabolic disorders in adulthood. Despite growing evidence regarding the importance of insulin clearance during glucose homeostasis in health and disease, no information exists about this process in malnourished animals. Thus, in the present study, we aimed to determine the effect of a nutrient-restricted diet on insulin clearance using a model in which 30-d-old C57BL/6 mice were exposed to a protein-restricted diet for 14 weeks. After this period, we evaluated many metabolic variables and extracted pancreatic islet, liver, gastrocnemius muscle (GCK) and white adipose tissue samples from the control (normal-protein diet) and restricted (low-protein diet, LP) mice. Insulin concentrations were determined using RIA and protein expression and phosphorylation by Western blot analysis. The LP mice exhibited lower body weight, glycaemia, and insulinaemia, increased glucose tolerance and altered insulin dynamics after the glucose challenge. The improved glucose tolerance could partially be explained by an increase in insulin sensitivity through the phosphorylation of the insulin receptor/protein kinase B and AMP-activated protein kinase/acetyl-CoA carboxylase in the liver, whereas the changes in insulin dynamics could be attributed to reduced insulin secretion coupled with reduced insulin clearance and lower insulin-degrading enzyme (IDE) expression in the liver and GCK. In summary, protein-restricted mice not only produce and secrete less insulin, but also remove and degrade less insulin. This phenomenon has the double benefit of sparing insulin while prolonging and potentiating its effects, probably due to the lower expression of IDE in the liver, possibly with long-term consequences.
Collapse
|
18
|
Galagovsky D, Katz MJ, Acevedo JM, Sorianello E, Glavic A, Wappner P. The Drosophila insulin-degrading enzyme restricts growth by modulating the PI3K pathway in a cell-autonomous manner. Mol Biol Cell 2014; 25:916-24. [PMID: 24430872 PMCID: PMC3952859 DOI: 10.1091/mbc.e13-04-0213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Drosophila insulin-degrading enzyme (dIDE) is a negative modulator of the PI3K pathway that restrains tissue growth in an autonomous manner. Larvae reared in high sucrose exhibit reduced growth and delayed developmental timing due to insulin resistance; dIDE loss of function exacerbates these phenotypes. Mammalian insulin-degrading enzyme (IDE) cleaves insulin, among other peptidic substrates, but its function in insulin signaling is elusive. We use the Drosophila system to define the function of IDE in the regulation of growth and metabolism. We find that either loss or gain of function of Drosophila IDE (dIDE) can restrict growth in a cell-autonomous manner by affecting both cell size and cell number. dIDE can modulate Drosophila insulin-like peptide 2 levels, thereby restricting activation of the phosphatidylinositol-3-phosphate kinase pathway and promoting activation of Drosophila forkhead box, subgroup O transcription factor. Larvae reared in high sucrose exhibit delayed developmental timing due to insulin resistance. We find that dIDE loss of function exacerbates this phenotype and that mutants display increased levels of circulating sugar, along with augmented expression of a lipid biosynthesis marker. We propose that dIDE is a modulator of insulin signaling and that its loss of function favors insulin resistance, a hallmark of diabetes mellitus type II.
Collapse
Affiliation(s)
- Diego Galagovsky
- Instituto Leloir, Buenos Aires C1405BWE, Argentina National Scientific and Technical Research Council, Buenos Aires C1033AAJ, Argentina Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago 7800024, Chile Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires C1053ABJ, Argentina
| | | | | | | | | | | |
Collapse
|
19
|
Ali S, Chopra R, Manvati S, Singh YP, Kaul N, Behura A, Mahajan A, Sehajpal P, Gupta S, Dhar MK, Chainy GBN, Bhanwer AS, Sharma S, Bamezai RNK. Replication of type 2 diabetes candidate genes variations in three geographically unrelated Indian population groups. PLoS One 2013; 8:e58881. [PMID: 23527042 PMCID: PMC3602599 DOI: 10.1371/journal.pone.0058881] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/07/2013] [Indexed: 11/18/2022] Open
Abstract
Type 2 diabetes (T2D) is a syndrome of multiple metabolic disorders and is genetically heterogeneous. India comprises one of the largest global populations with highest number of reported type 2 diabetes cases. However, limited information about T2D associated loci is available for Indian populations. It is, therefore, pertinent to evaluate the previously associated candidates as well as identify novel genetic variations in Indian populations to understand the extent of genetic heterogeneity. We chose to do a cost effective high-throughput mass-array genotyping and studied the candidate gene variations associated with T2D in literature. In this case-control candidate genes association study, 91 SNPs from 55 candidate genes have been analyzed in three geographically independent population groups from India. We report the genetic variants in five candidate genes: TCF7L2, HHEX, ENPP1, IDE and FTO, are significantly associated (after Bonferroni correction, p<5.5E−04) with T2D susceptibility in combined population. Interestingly, SNP rs7903146 of the TCF7L2 gene passed the genome wide significance threshold (combined P value = 2.05E−08) in the studied populations. We also observed the association of rs7903146 with blood glucose (fasting and postprandial) levels, supporting the role of TCF7L2 gene in blood glucose homeostasis. Further, we noted that the moderate risk provided by the independently associated loci in combined population with Odds Ratio (OR)<1.38 increased to OR = 2.44, (95%CI = 1.67–3.59) when the risk providing genotypes of TCF7L2, HHEX, ENPP1 and FTO genes were combined, suggesting the importance of gene-gene interactions evaluation in complex disorders like T2D.
Collapse
Affiliation(s)
- Shafat Ali
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupali Chopra
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Siddharth Manvati
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Shri Mata Vaishno Devi University, Katra, J&K, India
| | - Yoginder Pal Singh
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Guru Nanak Dev University, Amritsar, Punjab, India
| | - Nabodita Kaul
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Guru Nanak Dev University, Amritsar, Punjab, India
| | - Anita Behura
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Department of Biotechnology, Utkal University, Bhubaneshwar, Odisha, India
| | - Ankit Mahajan
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Jammu University, Jammu, J&K, India
| | | | | | | | - Gagan B. N. Chainy
- Department of Biotechnology, Utkal University, Bhubaneshwar, Odisha, India
| | | | - Swarkar Sharma
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Texas Scottish Rite Hospital, Dallas, Texas, United States of America
- School of Biology and Chemistry, Shri Mata Vaishno Devi University, Katra, J&K, India
- * E-mail: (SS); (RNKB)
| | - Rameshwar N. K. Bamezai
- National Centre of Applied Human Genetics, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- Shri Mata Vaishno Devi University, Katra, J&K, India
- * E-mail: (SS); (RNKB)
| |
Collapse
|
20
|
Grasso G, Giuffrida ML, Rizzarelli E. Metallostasis and amyloid β-degrading enzymes. Metallomics 2012; 4:937-49. [DOI: 10.1039/c2mt20105d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
21
|
Aβ-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 2011; 70:944-59. [PMID: 22002425 DOI: 10.1097/nen.0b013e3182345e46] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that deficient clearance of β-amyloid (Aβ) contributes to its accumulation in late-onset Alzheimer disease (AD). Several Aβ-degrading enzymes, including neprilysin (NEP), insulin-degrading enzyme, and endothelin-converting enzyme reduce Aβ levels and protect against cognitive impairment in mouse models of AD. The activity of several Aβ-degrading enzymes rises with age and increases still further in AD, perhaps as a physiological response to minimize the buildup of Aβ. The age- and disease-related changes in expression of more recently recognized Aβ-degrading enzymes (e.g. NEP-2 and cathepsin B) remain to be investigated, and there is strong evidence that reduced NEP activity contributes to the development of cerebral amyloid angiopathy. Regardless of the role of Aβ-degrading enzymes in the development of AD, experimental data indicate that increasing the activity of these enzymes (NEP in particular) has therapeutic potential in AD, although targeting their delivery to the brain remains a major challenge. The most promising current approaches include the peripheral administration of agents that enhance the activity of Aβ-degrading enzymes and the direct intracerebral delivery of NEP by convection-enhanced delivery. In the longer term, genetic approaches to increasing the intracerebral expression of NEP or other Aβ-degrading enzymes may offer advantages.
Collapse
|
22
|
Overexpression of Insulin Degrading Enzyme could Greatly Contribute to Insulin Down-regulation Induced by Short-Term Swimming Exercise. Lab Anim Res 2011; 27:29-36. [PMID: 21826157 PMCID: PMC3145980 DOI: 10.5625/lar.2011.27.1.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 02/25/2011] [Accepted: 02/25/2011] [Indexed: 12/17/2022] Open
Abstract
Exercise training is highly correlated with the reduced glucose-stimulated insulin secretion (GSIS), although it enhanced insulin sensitivity, glucose uptake and glucose transporter expression to reduce severity of diabetic symptoms. This study investigated the impact of short-term swimming exercise on insulin regulation in the Goto-Kakizaki (GK) rat as a non-obese model of non-insulin-dependent diabetes mellitus. Wistar (W/S) and GK rats were trained 2 hours daily with the swimming exercise for 4 weeks, and then the changes in the metabolism of insulin and glucose were assessed. Body weight was markedly decreased in the exercised GK rats compare to their non-exercised counterpart, while W/S rats did not show any exercise-related changes. Glucose concentration was not changed by exercise, although impaired glucose tolerance was improved in GK rats 120 min after glucose injection. However, insulin concentration was decreased by swimming exercise as in the decrease of GSIS after running exercise. To identify the other cause for exercise-induced insulin down-regulation, the changes in the levels of key factors involved in insulin production (C-peptide) and clearance (insulin-degrading enzyme; IDE) were measured in W/S and GK rats. The C-peptide level was maintained while IDE expression increased markedly. Therefore, these results showed that insulin down-regulation induced by short-term swimming exercise likely attributes to enhanced insulin clearance via IDE over-expression than by altered insulin production.
Collapse
|
23
|
|
24
|
Abstract
Extensive β-amyloid (Aβ) deposits in brain parenchyma
in the form of senile plaques and in blood vessels in the form of
amyloid angiopathy are pathological hallmarks of Alzheimer's
disease (AD). The mechanisms underlying Aβ deposition
remain unclear. Major efforts have focused on Aβ production,
but there is little to suggest that increased production of
Aβ plays a role in Aβ deposition, except for rare
familial forms of AD. Thus, other mechanisms must be involved in
the accumulation of Aβ in AD. Recent data shows that
impaired clearance may play an important role in Aβ
accumulation in the pathogenesis of AD. This review focuses on our
current knowledge of Aβ-degrading enzymes, including
neprilysin (NEP), endothelin-converting enzyme (ECE),
insulin-degrading enzyme (IDE), angiotensin-converting enzyme
(ACE), and the plasmin/uPA/tPA system as they relate to amyloid
deposition in AD.
Collapse
Affiliation(s)
- Deng-Shun Wang
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Wisconsin, Madison, WI 53705, USA
- *Deng-Shun Wang:
| | - Dennis W. Dickson
- Departments of Pathology (Neuropathology) and Neuroscience, Mayo Clinic College of Medicine, Jacksonville, FL 32224, USA
| | - James S. Malter
- Department of Pathology and Laboratory Medicine, School of Medicine, University of Wisconsin, Madison, WI 53705, USA
- Waisman Center for Developmental Disabilities, School of Medicine, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
25
|
Leissring MA, Malito E, Hedouin S, Reinstatler L, Sahara T, Abdul-Hay SO, Choudhry S, Maharvi GM, Fauq AH, Huzarska M, May PS, Choi S, Logan TP, Turk BE, Cantley LC, Manolopoulou M, Tang WJ, Stein RL, Cuny GD, Selkoe DJ. Designed inhibitors of insulin-degrading enzyme regulate the catabolism and activity of insulin. PLoS One 2010; 5:e10504. [PMID: 20498699 PMCID: PMC2866327 DOI: 10.1371/journal.pone.0010504] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 04/12/2010] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Insulin is a vital peptide hormone that is a central regulator of glucose homeostasis, and impairments in insulin signaling cause diabetes mellitus. In principle, it should be possible to enhance the activity of insulin by inhibiting its catabolism, which is mediated primarily by insulin-degrading enzyme (IDE), a structurally and evolutionarily distinctive zinc-metalloprotease. Despite interest in pharmacological inhibition of IDE as an attractive anti-diabetic approach dating to the 1950s, potent and selective inhibitors of IDE have not yet emerged. METHODOLOGY/PRINCIPAL FINDINGS We used a rational design approach based on analysis of combinatorial peptide mixtures and focused compound libraries to develop novel peptide hydroxamic acid inhibitors of IDE. The resulting compounds are approximately 10(6) times more potent than existing inhibitors, non-toxic, and surprisingly selective for IDE vis-à-vis conventional zinc-metalloproteases. Crystallographic analysis of an IDE-inhibitor complex reveals a novel mode of inhibition based on stabilization of IDE's "closed," inactive conformation. We show further that pharmacological inhibition of IDE potentiates insulin signaling by a mechanism involving reduced catabolism of internalized insulin. CONCLUSIONS/SIGNIFICANCE The inhibitors we describe are the first to potently and selectively inhibit IDE or indeed any member of this atypical zinc-metalloprotease superfamily. The distinctive structure of IDE's active site, and the mode of action of our inhibitors, suggests that it may be possible to develop inhibitors that cross-react minimally with conventional zinc-metalloproteases. Significantly, our results reveal that insulin signaling is normally regulated by IDE activity not only extracellularly but also within cells, supporting the longstanding view that IDE inhibitors could hold therapeutic value for the treatment of diabetes.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, Florida, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Alper BJ, Rowse JW, Schmidt WK. Yeast Ste23p shares functional similarities with mammalian insulin-degrading enzymes. Yeast 2010; 26:595-610. [PMID: 19750477 DOI: 10.1002/yea.1709] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The S. cerevisiae genome encodes two M16A enzymes: Axl1p and Ste23p. Of the two, Ste23p shares significantly higher sequence identity with M16A enzymes from other species, including mammalian insulin-degrading enzymes (IDEs). In this study, recombinant Ste23p and R. norvegicus IDE (RnIDE) were isolated from E. coli, and their enzymatic properties compared. Ste23p was found to cleave established RnIDE substrates, including the amyloid-beta peptide (Abeta1-40) and insulin B-chain. A novel internally quenched fluorogenic substrate (Abz-SEKKDNYIIKGV-nitroY-OH) based on the polypeptide sequence of the yeast P2 a-factor mating propheromone was determined to be a suitable substrate for both Ste23p and RnIDE, and was used to conduct comparative enzymological studies. Both enzymes were most active at 37 degrees C, in alkaline buffers and in high salt environments. In addition, the proteolytic activities of both enzymes towards the fluorogenic substrate were inhibited by metal chelators, thiol modifiers, inhibitors of cysteine protease activity and insulin. Characteristics of STE23 expression were also evaluated. Our analysis indicates that the 5' terminus of the STE23 gene has been mischaracterized, with the physiologically relevant initiator corresponding to residue M53 of the publicly annotated protein sequence. Finally, we demonstrate that, unlike haploid-specific Axl1p, Ste23p is expressed in both haploid and diploid cell types. Our study presents the first comprehensive biochemical analysis of a yeast M16A enzyme, and provides evidence that S. cerevisiae Ste23p has enzymatic properties that are highly consistent with mammalian IDEs and other M16A enzymes.
Collapse
Affiliation(s)
- Benjamin J Alper
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
| | | | | |
Collapse
|
27
|
Rudovich N, Pivovarova O, Fisher E, Fischer-Rosinsky A, Spranger J, Möhlig M, Schulze MB, Boeing H, Pfeiffer AFH. Polymorphisms within insulin-degrading enzyme (IDE) gene determine insulin metabolism and risk of type 2 diabetes. J Mol Med (Berl) 2009; 87:1145-51. [PMID: 19809796 DOI: 10.1007/s00109-009-0540-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 09/03/2009] [Accepted: 09/04/2009] [Indexed: 11/27/2022]
Abstract
Insulin-degrading enzyme (IDE) is the ubiquitously expressed major enzyme responsible for insulin degradation. Insulin-degrading enzyme gene is located on chromosome region 10q23-q25 and exhibits a well-replicated peak of linkage with type 2 diabetes (T2DM). Several genetic association studies examined IDE gene as a susceptibility gene for T2DM with controversial results. However, pathophysiological mechanisms involved have remained elusive. We verified associations of two IDE polymorphisms (rs1887922 and rs2149632) with T2DM risk in two independent German cohorts and evaluated in detail the association of common variants with insulin metabolism and glycemic traits. We confirmed previously published findings for diabetes-associated rs1887922 and rs2149632 in the European Prospective Investigation into Cancer and Nutrition-Potsdam cohort (n = 3049; RR 1.26, p = 0.003 and RR 1.33, p < 0.0001 for additive model). Haplotypes which carried one risk allele of rs2149632 or two risk alleles of both studied IDE SNPs also demonstrated a strong association with increased T2DM risk in this cohort (p = 0.001 and p < 0.0001, respectively). However, we found no significant T2DM association in the cross-sectional metabolic syndrome Berlin-Potsdam cohort (n = 1026). In nondiabetic subjects (NGT+IFG/IGT; n = 739), we found an association of rs2149632 with impaired glucose-derived insulin secretion and a trend to decreased insulin sensitivity for rs1887922. In the NGT subjects (n = 440), the association with decreased insulin secretion for rs2149632 remain significant, and the association with decreased hepatic insulin degradation for rs1887922 were observed additionally. This study validates and confirms the association of IDE polymorphisms with T2DM risk in the prospective German cohort and provides novel evidence of influences of IDE genetic variants on insulin metabolism.
Collapse
Affiliation(s)
- Natalia Rudovich
- Department of Internal Medicine, Division of Endocrinology, Diabetes, and Nutrition, Campus Benjamin Franklin, Charité University Medicine, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Pivovarova O, Gögebakan O, Pfeiffer AFH, Rudovich N. Glucose inhibits the insulin-induced activation of the insulin-degrading enzyme in HepG2 cells. Diabetologia 2009; 52:1656-64. [PMID: 19396426 DOI: 10.1007/s00125-009-1350-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Accepted: 03/06/2009] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS Hepatic insulin degradation decreases in type 2 diabetes. Insulin-degrading enzyme (IDE) plays a key role in insulin degradation and its gene is located in a diabetes-associated chromosomal region. We hypothesised that IDE may be regulated by insulin and/or glucose in a liver cell model. To validate the observed regulation of IDE in vivo, we analysed biopsies of human adipose tissue during different clamp experiments in men. METHODS Human hepatoma HepG2 cells were incubated in normal (1 g/l) or high (4.5 g/l) glucose medium and treated with insulin for 24 h. Catalytic activity, mRNA and protein levels of IDE were assessed. IDE mRNA levels were measured in biopsies of human subcutaneous adipose tissue before and at 240 min of hyperinsulinaemic, euglycaemic and hyperglycaemic clamps. RESULTS In HepG2 cells, insulin increased IDE activity under normal glucose conditions with no change in IDE mRNA or protein levels. Under conditions of high glucose, insulin increased mRNA levels of IDE without changes in IDE activity. Both in normal and high glucose medium, insulin increased levels of the catalytically more active 15a IDE isoform compared with the 15b isoform. In subcutaneous adipose tissue, IDE mRNA levels were not significantly upregulated after euglycaemic or hyperglycaemic clamps. CONCLUSIONS/INTERPRETATION Insulin increases IDE activity in HepG2 cells in normal but not in high glucose conditions. This disturbance cannot be explained by corresponding alterations in IDE protein levels or IDE splicing. The loss of insulin-induced regulation of IDE activity under hyperglycaemia may contribute to the reduced insulin extraction and peripheral hyperinsulinaemia in type 2 diabetes.
Collapse
Affiliation(s)
- O Pivovarova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany.
| | | | | | | |
Collapse
|
29
|
Du J, Sun B, Chen K, Fan L, Wang Z. Antagonist of peroxisome proliferator-activated receptor gamma induces cerebellar amyloid-beta levels and motor dysfunction in APP/PS1 transgenic mice. Biochem Biophys Res Commun 2009; 384:357-61. [PMID: 19422805 DOI: 10.1016/j.bbrc.2009.04.148] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 04/29/2009] [Indexed: 12/23/2022]
Abstract
Recent evidences show that peroxisome proliferator-activated receptor gamma (PPARgamma) is involved in the modulation of the amyloid-beta (Abeta) cascade causing Alzheimer's disease (AD) and treatment with PPARgamma agonists protects against AD pathology. However, the function of PPARgamma steady-state activity in Abeta cascade and AD pathology remains unclear. In this study, an antagonist of PPARgamma, GW9662, was injected into the fourth ventricle of APP/PS1 transgenic mice to inhibit PPARgamma activity in cerebellum. The results show that inhibition of PPARgamma significantly induced Abeta levels in cerebellum and caused cerebellar motor dysfunction in APP/PS1 transgenic mice. Moreover, GW9662 treatment markedly decreased the cerebellar levels of insulin-degrading enzyme (IDE), which is responsible for the cellular degradation of Abeta. Since cerebellum is spared from significant Abeta accumulation and neurotoxicity in AD patients and animal models, these findings suggest a crucial role of PPARgamma steady-state activity in protection of cerebellum against AD pathology.
Collapse
Affiliation(s)
- Jing Du
- Protein Science Key Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, School of Medicine, Tsinghua University, Beijing 100084, PR China
| | | | | | | | | |
Collapse
|
30
|
Bulloj A, Leal MC, Surace EI, Zhang X, Xu H, Ledesma MD, Castaño EM, Morelli L. Detergent resistant membrane-associated IDE in brain tissue and cultured cells: Relevance to Abeta and insulin degradation. Mol Neurodegener 2008; 3:22. [PMID: 19117523 PMCID: PMC2648957 DOI: 10.1186/1750-1326-3-22] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 12/31/2008] [Indexed: 11/10/2022] Open
Abstract
Background Insulin degrading enzyme (IDE) is implicated in the regulation of amyloid β (Aβ) steady-state levels in the brain, and its deficient expression and/or activity may be a risk factor in sporadic Alzheimer's disease (AD). Although IDE sub-cellular localization has been well studied, the compartments relevant to Aβ degradation remain to be determined. Results Our results of live immunofluorescence, immuno gold electron-microscopy and gradient fractionation concurred to the demonstration that endogenous IDE from brain tissues and cell cultures is, in addition to its other localizations, a detergent-resistant membrane (DRM)-associated metallopeptidase. Our pulse chase experiments were in accordance with the existence of two pools of IDE: the cytosolic one with a longer half-life and the membrane-IDE with a faster turn-over. DRMs-associated IDE co-localized with Aβ and its distribution (DRMs vs. non-DRMs) and activity was sensitive to manipulation of lipid composition in vitro and in vivo. When IDE was mis-located from DRMs by treating cells with methyl-β-cyclodextrin (MβCD), endogenous Aβ accumulated in the extracellular space and exogenous Aβ proteolysis was impaired. We detected a reduced amount of IDE in DRMs of membranes isolated from mice brain with endogenous reduced levels of cholesterol (Chol) due to targeted deletion of one seladin-1 allele. We confirmed that a moderate shift of IDE from DRMs induced a substantial decrement on IDE-mediated insulin and Aβ degradation in vitro. Conclusion Our results support the notion that optimal substrate degradation by IDE may require its association with organized-DRMs. Alternatively, DRMs but not other plasma membrane regions, may act as platforms where Aβ accumulates, due to its hydrophobic properties, reaching local concentration close to its Km for IDE facilitating its clearance. Structural integrity of DRMs may also be required to tightly retain insulin receptor and IDE for insulin proteolysis. The concept that mis-location of Aβ degrading proteases away from DRMs may impair the physiological turn-over of Aβ in vivo deserves further investigation in light of therapeutic strategies based on enhancing Aβ proteolysis in which DRM protease-targeting may need to be taken into account.
Collapse
Affiliation(s)
- Ayelén Bulloj
- Fundación Instituto Leloir, IIBBA-CONICET, Ave, Patricias Argentinas 435, Ciudad de Buenos Aires C1405BWE, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Jaya Prasanthi RP, Schommer E, Thomasson S, Thompson A, Feist G, Ghribi O. Regulation of beta-amyloid levels in the brain of cholesterol-fed rabbit, a model system for sporadic Alzheimer's disease. Mech Ageing Dev 2008; 129:649-55. [PMID: 18845178 DOI: 10.1016/j.mad.2008.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 08/12/2008] [Accepted: 09/08/2008] [Indexed: 11/30/2022]
Abstract
Accumulation of beta-amyloid (Abeta) peptide in the brain is a major hallmark of Alzheimer's disease (AD). Hypercholesterolemia is a risk factor for AD and has been shown by laboratory studies to cause Abeta accumulation. Abeta levels in the brain are governed by its generation from amyloid precursor protein by beta-secretase (BACE1), degradation by the insulin degrading enzyme (IDE), clearance from the brain by the low density lipoprotein receptor-related protein (LRP-1), and transport from circulation into the brain by receptor for advanced glycation end products (RAGE). However, the mechanisms by which hypercholesterolemia causes Abeta accumulation in the brain and contributes to the pathogenesis of AD are still to be determined. In the present study, we determined the extent to which hypercholesterolemia-induced Abeta accumulation is associated with alterations in BACE1, IDE, LRP-1, and RAGE expression levels. We show that hypercholesterolemia increases Abeta production, an effect that is associated with increased levels of BACE1 and RAGE and reduced levels of IDE and LRP-1. These results suggest that reducing Abeta accumulation in the brain may require strategies that combine reduction of generation and transport of Abeta in addition to acceleration of degradation and clearance of this peptide.
Collapse
Affiliation(s)
- R P Jaya Prasanthi
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota School of Medicine and Health Sciences, 501 North Columbia Road, Grand Forks, ND 58202, United States
| | | | | | | | | | | |
Collapse
|
32
|
Epting CL, King FW, Pedersen A, Zaman J, Ritner C, Bernstein HS. Stem cell antigen-1 localizes to lipid microdomains and associates with insulin degrading enzyme in skeletal myoblasts. J Cell Physiol 2008; 217:250-60. [PMID: 18506847 DOI: 10.1002/jcp.21500] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Stem cell antigen-1 (Sca-1, Ly6A/E) is a glycosylphosphotidylinositol-anchored protein that identifies many tissue progenitor cells. We originally identified Sca-1 as a marker of myogenic precursor cells and subsequently demonstrated that Sca-1 regulates proliferation of activated myoblasts, suggesting an important role for Sca-1 in skeletal muscle homeostasis. Beyond its functional role in regulating proliferation, however, little is known about the mechanism(s) that drive Sca-1-mediated events. We now report that lipid microdomain organization is essential for normal myogenic differentiation, and that Sca-1 constitutively localizes to these domains during myoblast proliferation and differentiation. We also demonstrate that Sca-1 associates with insulin degrading enzyme (IDE), a catalytic protein responsible for the cleavage of mitogenic peptides, in differentiating myoblasts. We show that chemical inhibition of IDE as well as RNAi knockdown of IDE mRNA recapitulates the phenotype of Sca-1 interference, that is, sustained myoblast proliferation and delayed myogenic differentiation. These findings identify the first signaling protein that physically and functionally associates with Sca-1 in myogenic precursor cells, and suggest a potential pathway for Sca-1-mediated signaling. Future efforts to manipulate this pathway may lead to new strategies for augmenting the myogenic proliferative response, and ultimately muscle repair.
Collapse
Affiliation(s)
- Conrad L Epting
- Cardiovascular Research Institute, University of California, San Francisco, California, USA
| | | | | | | | | | | |
Collapse
|
33
|
Kwak SH, Cho YM, Moon MK, Kim JH, Park BL, Cheong HS, Shin HD, Jang HC, Kim SY, Lee HK, Park KS. Association of polymorphisms in the insulin-degrading enzyme gene with type 2 diabetes in the Korean population. Diabetes Res Clin Pract 2008; 79:284-90. [PMID: 17913278 DOI: 10.1016/j.diabres.2007.08.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2007] [Accepted: 08/22/2007] [Indexed: 11/23/2022]
Abstract
Insulin-degrading enzyme (IDE) is a metalloproteinase which degrades insulin and terminates its action. Homologous deletion of IDE gene resulted in hyperinsulinemia and glucose intolerance in a rat model of type 2 diabetes mellitus. Several genetic association studies examined IDE as a susceptibility gene for type 2 diabetes in European descents. Here we investigated the genetic association of IDE polymorphisms with the risk of type 2 diabetes and its related phenotypes in the Korean population. Among six single nucleotide polymorphisms analyzed, g.-179T>C (OR=1.73, P=0.04), and g.IVS18+99G>A (OR=1.23, P=0.02) revealed borderline association with increased risk of type 2 diabetes. Combining our results with previous data obtained from the European population, g.-179T>C (OR=1.11, P=0.03), and g.IVS24-64A>T (OR=1.18, P=0.005) showed significant association with type 2 diabetes. Haplotype consisting of common alleles of the six polymorphisms was associated with decreased risk of type 2 diabetes (OR=0.82, P=0.02). However, none of the polymorphisms was significantly associated with metabolic phenotypes. We can conclude that variations in IDE might contribute to diabetes susceptibility in the Korean population.
Collapse
Affiliation(s)
- S H Kwak
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Zeggini E, Weedon MN, Lindgren CM, Frayling TM, Elliott KS, Lango H, Timpson NJ, Perry JRB, Rayner NW, Freathy RM, Barrett JC, Shields B, Morris AP, Ellard S, Groves CJ, Harries LW, Marchini JL, Owen KR, Knight B, Cardon LR, Walker M, Hitman GA, Morris AD, Doney ASF, McCarthy MI, Hattersley AT. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316:1336-41. [PMID: 17463249 PMCID: PMC3772310 DOI: 10.1126/science.1142364] [Citation(s) in RCA: 1626] [Impact Index Per Article: 95.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular mechanisms involved in the development of type 2 diabetes are poorly understood. Starting from genome-wide genotype data for 1924 diabetic cases and 2938 population controls generated by the Wellcome Trust Case Control Consortium, we set out to detect replicated diabetes association signals through analysis of 3757 additional cases and 5346 controls and by integration of our findings with equivalent data from other international consortia. We detected diabetes susceptibility loci in and around the genes CDKAL1, CDKN2A/CDKN2B, and IGF2BP2 and confirmed the recently described associations at HHEX/IDE and SLC30A8. Our findings provide insight into the genetic architecture of type 2 diabetes, emphasizing the contribution of multiple variants of modest effect. The regions identified underscore the importance of pathways influencing pancreatic beta cell development and function in the etiology of type 2 diabetes.
Collapse
Affiliation(s)
- Eleftheria Zeggini
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford, OX3 7LJ, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Li Q, Ali MA, Cohen JI. Insulin degrading enzyme is a cellular receptor mediating varicella-zoster virus infection and cell-to-cell spread. Cell 2006; 127:305-16. [PMID: 17055432 PMCID: PMC7125743 DOI: 10.1016/j.cell.2006.08.046] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 05/25/2006] [Accepted: 08/07/2006] [Indexed: 11/29/2022]
Abstract
Varicella-zoster virus (VZV) causes chickenpox and shingles. While varicella is likely spread as cell-free virus to susceptible hosts, the virus is transmitted by cell-to-cell spread in the body and in vitro. Since VZV glycoprotein E (gE) is essential for virus infection, we postulated that gE binds to a cellular receptor. We found that insulin-degrading enzyme (IDE) interacts with gE through its extracellular domain. Downregulation of IDE by siRNA, or blocking of IDE with antibody, with soluble IDE protein extracted from liver, or with bacitracin inhibited VZV infection. Cell-to-cell spread of virus was also impaired by blocking IDE. Transfection of cell lines impaired for VZV infection with a plasmid expressing human IDE resulted in increased entry and enhanced infection with cell-free and cell-associated virus. These studies indicate that IDE is a cellular receptor for both cell-free and cell-associated VZV.
Collapse
Affiliation(s)
- Qingxue Li
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Mir A. Ali
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
| | - Jeffrey I. Cohen
- Medical Virology Section, Laboratory of Clinical Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892 USA
- Corresponding author
| |
Collapse
|
36
|
Yin KJ, Cirrito JR, Yan P, Hu X, Xiao Q, Pan X, Bateman R, Song H, Hsu FF, Turk J, Xu J, Hsu CY, Mills JC, Holtzman DM, Lee JM. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-beta peptide catabolism. J Neurosci 2006; 26:10939-48. [PMID: 17065436 PMCID: PMC6674654 DOI: 10.1523/jneurosci.2085-06.2006] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
It has been postulated that the development of amyloid plaques in Alzheimer's disease (AD) may result from an imbalance between the generation and clearance of the amyloid-beta peptide (Abeta). Although familial AD appears to be caused by Abeta overproduction, sporadic AD (the most prevalent form) may result from impairment in clearance. Recent evidence suggests that several proteases may contribute to the degradation of Abeta. Furthermore, astrocytes have recently been implicated as a potential cellular mediator of Abeta degradation. In this study, we examined the possibility that matrix metalloproteinases (MMPs), proteases known to be expressed and secreted by astrocytes, could play a role in extracellular Abeta degradation. We found that astrocytes surrounding amyloid plaques showed enhanced expression of MMP-2 and MMP-9 in aged amyloid precursor protein (APP)/presenilin 1 mice. Moreover, astrocyte-conditioned medium (ACM) degraded Abeta, lowering levels and producing several fragments after incubation with synthetic human Abeta(1-40) and Abeta(1-42). This activity was attenuated with specific inhibitors of MMP-2 and -9, as well as in ACM derived from mmp-2 or -9 knock-out (KO) mice. In vivo, significant increases in the steady-state levels of Abeta were found in the brains of mmp-2 and -9 KO mice compared with wild-type controls. Furthermore, pharmacological inhibition of the MMPs with N-[(2R)-2-(hydroxamidocarbonylmethyl)-4-methylpentanoyl]-L-tryptophan methylamide (GM 6001) increased brain interstitial fluid Abeta levels and elimination of half-life in APPsw mice. These results suggest that MMP-2 and -9 may contribute to extracellular brain Abeta clearance by promoting Abeta catabolism.
Collapse
Affiliation(s)
- Ke-Jie Yin
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - John R. Cirrito
- Department of Neurology and the Hope Center for Neurological Disorders, and
- Departments of Psychiatry
| | - Ping Yan
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Xiaoyan Hu
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Qingli Xiao
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Xiaoou Pan
- Molecular Biology and Pharmacology
- Pathology and Immunology, and
| | - Randall Bateman
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Haowei Song
- Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Fong-Fu Hsu
- Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - John Turk
- Internal Medicine, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, Missouri 63110, and
| | - Jan Xu
- Department of Neurology and the Hope Center for Neurological Disorders, and
| | - Chung Y Hsu
- Taipei Medical University, Taipei City, Taiwan 110
| | - Jason C. Mills
- Molecular Biology and Pharmacology
- Pathology and Immunology, and
| | - David M. Holtzman
- Department of Neurology and the Hope Center for Neurological Disorders, and
- Molecular Biology and Pharmacology
| | - Jin-Moo Lee
- Department of Neurology and the Hope Center for Neurological Disorders, and
| |
Collapse
|
37
|
Lynch JA, George AM, Eisenhauer PB, Conn K, Gao W, Carreras I, Wells JM, McKee A, Ullman MD, Fine RE. Insulin degrading enzyme is localized predominantly at the cell surface of polarized and unpolarized human cerebrovascular endothelial cell cultures. J Neurosci Res 2006; 83:1262-70. [PMID: 16511862 DOI: 10.1002/jnr.20809] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Insulin degrading enzyme (IDE) is expressed in the brain and may play an important role there in the degradation of the amyloid beta peptide (Abeta). Our results show that cultured human cerebrovascular endothelial cells (HCECs), a primary component of the blood-brain barrier, express IDE and may respond to exposure to low levels of Abeta by upregulating its expression. When radiolabeled Abeta is introduced to the medium of cultured HCECs, it is rapidly degraded to smaller fragments. We believe that this degradation is largely the result of the action of IDE, as it can be substantially blocked by the presence of insulin in the medium, a competitive substrate of IDE. No inhibition is seen when an inhibitor of neprilysin, another protease that may degrade Abeta, is present in the medium. Our evidence suggests that the action of IDE occurs outside the cell, as inhibitors of internalization fail to affect the rate of the observed degradation. Further, our evidence suggests that degradation by IDE occurs on the plasma membrane, as much of the IDE present in HCECs was biotin-labeled by a plasma membrane impermeable reagent. This activity seems to be polarity dependent, as measurement of Abeta degradation by each surface of differentiated HCECs shows greater degradation on the basolateral (brain-facing) surface. Thus, IDE could be an important therapeutic target to decrease the amount of Abeta in the cerebrovasculature.
Collapse
Affiliation(s)
- John A Lynch
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hwang DY, Cho JS, Kim CK, Shim SB, Jee SW, Lee SH, Seo SJ, Cho JY, Lee SH, Kim YK. Aging-related Correlation of Insulin-degrading Enzyme with γ-Secretase-generated Products Involving Insulin and Glucose Levels in Transgenic Mice. Neurochem Res 2005; 30:1171-7. [PMID: 16292511 DOI: 10.1007/s11064-005-7952-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2005] [Indexed: 11/28/2022]
Abstract
Insulin-degrading enzyme (IDE) is a 110-kDa thiol zinc-methalloendopeptidase that can cleave small Abeta peptides and the APP intracellular domain (AICD). The aim of this study was to examine aging-related correlation of IDE with gamma-secretase-generated products involving insulin and glucose levels in transgenic brains expressing neuron-specific enolase (NSE)-controlled human mutant presenilin-2 (hPS2m). Herein, we concluded that the levels of IDE expression in transgenic brains were decreased relative to those of control mice at 15 months of age. In parallel, inhibition in the IDE expression at this age underlies to the levels-up of Abeta-42, AICD, gamma-secretase, and glucose with a level-down of insulin. Thus, IDE expression is critical target for the therapeutic trials.
Collapse
Affiliation(s)
- Dae Y Hwang
- Division of Laboratory Animal Resources, , National Institute of Toxicological Research, Korea FDA, Seoul, 122-704, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Kim S, Lapham AN, Freedman CGK, Reed TL, Schmidt WK. Yeast as a tractable genetic system for functional studies of the insulin-degrading enzyme. J Biol Chem 2005; 280:27481-90. [PMID: 15944156 DOI: 10.1074/jbc.m414192200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have developed yeast as an expression and genetic system for functional studies of the insulin-degrading enzyme (IDE), which cleaves and inactivates certain small peptide molecules, including insulin and the neurotoxic A beta peptide. We show that heterologously expressed rat IDE is enzymatically active, as judged by the ability of IDE-containing yeast extracts to cleave insulin in vitro. We also show that IDE can promote the in vivo production of the yeast a-factor mating pheromone, a function normally attributed to the yeast enzymes Axl1p and Ste23p. However, IDE cannot substitute for the function of Axl1p in promoting haploid axial budding and repressing haploid invasive growth, activities that require an uncharacterized activity of Axl1p. Particulate fractions enriched for Axl1p or Ste23p are incapable of cleaving insulin, suggesting that the functional conservation of these enzymes may not be bidirectionally conserved. We have made practical use of our genetic system to confirm that residues composing the extended zinc metalloprotease motif of M16A family enzymes are required for the enzymatic activity of IDE, Ste23p, and Axl1p. We have determined that IDE and Axl1p both require an intact C terminus for optimal activity. We expect that the tractable genetic system that we have developed will be useful for investigating the enzymatic and structure/function properties of IDE and possibly for the identification of novel IDE alleles having altered substrate specificity.
Collapse
Affiliation(s)
- Seonil Kim
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | |
Collapse
|
40
|
Leissring M, Farris W, Wu X, Christodoulou D, Haigis M, Guarente L, Selkoe D. Alternative translation initiation generates a novel isoform of insulin-degrading enzyme targeted to mitochondria. Biochem J 2005; 383:439-46. [PMID: 15285718 PMCID: PMC1133736 DOI: 10.1042/bj20041081] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
IDE (insulin-degrading enzyme) is a widely expressed zinc-metallopeptidase that has been shown to regulate both cerebral amyloid beta-peptide and plasma insulin levels in vivo. Genetic linkage and allelic association have been reported between the IDE gene locus and both late-onset Alzheimer's disease and Type II diabetes mellitus, suggesting that altered IDE function may contribute to some cases of these highly prevalent disorders. Despite the potentially great importance of this peptidase to health and disease, many fundamental aspects of IDE biology remain unresolved. Here we identify a previously undescribed mitochondrial isoform of IDE generated by translation at an in-frame initiation codon 123 nucleotides upstream of the canonical translation start site, which results in the addition of a 41-amino-acid N-terminal mitochondrial targeting sequence. Fusion of this sequence to the N-terminus of green fluorescent protein directed this normally cytosolic protein to mitochondria, and full-length IDE constructs containing this sequence were also directed to mitochondria, as revealed by immuno-electron microscopy. Endogenous IDE protein was detected in purified mitochondria, where it was protected from digestion by trypsin and migrated at a size consistent with the predicted removal of the N-terminal targeting sequence upon transport into the mitochondrion. Functionally, we provide evidence that IDE can degrade cleaved mitochondrial targeting sequences. Our results identify new mechanisms regulating the subcellular localization of IDE and suggest previously unrecognized roles for IDE within mitochondria.
Collapse
Affiliation(s)
- Malcolm A. Leissring
- *Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, U.S.A
| | - Wesley Farris
- *Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, U.S.A
| | - Xining Wu
- *Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, U.S.A
| | - Danos C. Christodoulou
- †Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Marcia C. Haigis
- †Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Leonard Guarente
- †Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, U.S.A
| | - Dennis J. Selkoe
- *Center for Neurologic Diseases, Department of Neurology, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, U.S.A
- To whom correspondence should be addressed: Harvard Institutes of Medicine, 77 Avenue Louis Pasteur, Boston, MA 02115, U.S.A. (email )
| |
Collapse
|
41
|
Song ES, Daily A, Fried MG, Juliano MA, Juliano L, Hersh LB. Mutation of Active Site Residues of Insulin-degrading Enzyme Alters Allosteric Interactions. J Biol Chem 2005; 280:17701-6. [PMID: 15749695 DOI: 10.1074/jbc.m501896200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The active site glutamate (Glu(111)) and the active site histidine (His(112)) of insulin-degrading enzyme (IDE) were mutated. These mutant enzymes exhibit, in addition to a large decrease in catalytic activity, a change in the substrate-velocity response from a sigmoidal one seen with the native enzyme (Hill coefficient > 2), to a hyperbolic response. With 2-aminobenzoyl-GGFLRKHGQ-N-(2,4-dinitrophenyl)ethylenediamine as substrate, ATP and triphosphate increase the reaction rate of the wild type enzyme some 50-80-fold. This effect is dampened with glutamate mutants to no effect or less than a 3-fold increase in activity and changed to inhibition with the histidine mutants. Sedimentation equilibrium shows the IDE mutants exhibit a similar oligomeric distribution as the wild type enzyme, being predominantly monomeric, with triphosphate having little if any effect on the oligomeric state. Triphosphate did induce aggregation of many of the IDE mutants. Thus, the oligomeric state of IDE does not correlate with kinetic properties. The His(112) mutants were shown to bind zinc, but with a lower affinity than the wild type enzyme. The glutamate mutants displayed an altered cleavage profile for the peptide beta-endorphin. Wild type IDE cleaved beta-endorphin at Leu(17)-Phe(18) and Phe(18)-Lys(19), whereas the glutamate mutants cleaved at these sites, but in addition at Lys(19)-Asn(20) and at Met(5)-Thr(6). Thus, active site mutations of IDE are suggested to not only reduce catalytic activity but also cause local conformational changes that affect the allosteric properties of the enzyme.
Collapse
Affiliation(s)
- Eun Suk Song
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | | | |
Collapse
|
42
|
Amin R, Williams RM, Frystyk J, Umpleby M, Matthews D, Orskov H, Dalton RN, Dunger DB. Increasing urine albumin excretion is associated with growth hormone hypersecretion and reduced clearance of insulin in adolescents and young adults with type 1 diabetes: the Oxford Regional Prospective Study. Clin Endocrinol (Oxf) 2005; 62:137-44. [PMID: 15670188 DOI: 10.1111/j.1365-2265.2005.02185.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS We previously described lower insulin-like growth factor I (IGF-I) levels in association with increased microalbuminuria (MA) risk in type 1 diabetic subjects followed from diabetes diagnosis through puberty into adulthood. By inference lower IGF-I levels may be associated with higher GH levels and changes in insulin sensitivity. METHODS To test this hypothesis, microalbuminuric subjects (MA+, n = 14) from the same cohort had overnight GH levels measured during euglycaemia (5 mmol/l, 01:00-07:30 h) maintained by a variable rate insulin infusion followed by a 2-step hyperinsulinaemic, euglycaemic clamp study using [6.6 2H2] glucose, and were compared to MA- controls (MA-, n = 14), matched for age (median 19.3 years, range 15.8-30.5), sex, duration of diabetes (11.1 years, range 5.1-16.4). RESULTS In MA+ cases GH levels, measured by the Pulsar programme, were higher (baseline; 1.8 +/- 1.4 vs. 0.7 +/- 0.5 ng/ml, P = 0.02, mean; 3.8 +/- 1.3 vs. 2.6 +/- 1.6 ng/ml, P = 0.03, maximum; 16.7 +/- 7.0 vs. 12.3 +/- 5.4, P = 0.02), despite similar HbA1(c) levels (9.8%vs. 9.6%, P = 0.6) and body or truncal fat mass. Fourier transform revealed increased GH pulse amplitude at all periodicities and overnight insulin clearance was reduced (11.7 +/- 6.9 vs. 20.1 +/- 6.5 ml/kg/min, P < 0.02). In multiple regression analysis, urine albumin excretion was associated with higher GH levels and reduced insulin clearance, independent of HbA1(c) and body composition. In female cases (n = 9), dextrose requirements were reduced during the first step of the euglycaemic clamp (1.7 +/- 0.8 vs. 2.7 +/- 1.4, P < 0.05) but no such differences existed in males or in the rate of glucose production or disposal. CONCLUSION The development of MA during puberty and young adulthood is associated with higher GH levels and abnormalities in insulin metabolism, particularly in females. These data extend support for our previous findings indicating a role for the GH/IGF-I axis in the pathogenesis of MA.
Collapse
Affiliation(s)
- Rakesh Amin
- University Department of Paediatrics, Addenbrookes Hospital, Cambridge, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gao W, Eisenhauer PB, Conn K, Lynch JA, Wells JM, Ullman MD, McKee A, Thatte HS, Fine RE. Insulin degrading enzyme is expressed in the human cerebrovascular endothelium and in cultured human cerebrovascular endothelial cells. Neurosci Lett 2004; 371:6-11. [PMID: 15500957 DOI: 10.1016/j.neulet.2004.07.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Revised: 07/09/2004] [Accepted: 07/10/2004] [Indexed: 10/26/2022]
Abstract
Insulin degrading enzyme (IDE) is found in the cytosol, peroxisomes and plasma membrane of many cells. Although it preferentially cleaves insulin it can also cleave many other small proteins with diverse sequences including the monomeric form of the amyloid beta peptide (A beta). In the brain, IDE has been reported to be expressed predominantly in neurons. In this study, IDE expression was detected in cultured human cerebrovascular endothelial cells. Using laser capture microdissection followed by PCR analysis, it was found that IDE mRNA is expressed in human brain blood vessels. Using immunofluorescence and multiphoton microscopy IDE was localized to the endothelium of the cerebrovascular blood vessels in human.
Collapse
Affiliation(s)
- Wenwu Gao
- ENR VA Medical Center, Bedford, MA 01730, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Farris W, Mansourian S, Leissring MA, Eckman EA, Bertram L, Eckman CB, Tanzi RE, Selkoe DJ. Partial loss-of-function mutations in insulin-degrading enzyme that induce diabetes also impair degradation of amyloid beta-protein. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:1425-34. [PMID: 15039230 PMCID: PMC1615329 DOI: 10.1016/s0002-9440(10)63229-4] [Citation(s) in RCA: 195] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The causes of cerebral accumulation of amyloid beta-protein (Abeta) in most cases of Alzheimer's disease (AD) remain unknown. We recently found that homozygous deletion of the insulin-degrading enzyme (IDE) gene in mice results in an early and marked elevation of cerebral Abeta. Both genetic linkage and allelic association in the IDE region of chromosome 10 have been reported in families with late-onset AD. For IDE to remain a valid candidate gene for late-onset AD on functional grounds, it must be shown that partial loss of function of IDE can still alter Abeta degradation, but without causing early, severe elevation of brain Abeta. Here, we show that naturally occurring IDE missense mutations in a well-characterized rat model of type 2 diabetes mellitus (DM2) result in decreased catalytic efficiency and a significant approximately 15 to 30% deficit in the degradation of both insulin and Abeta. Endogenously secreted Abeta(40) and Abeta(42) are significantly elevated in primary neuronal cultures from animals with the IDE mutations, but there is no increase in steady-state levels of rodent Abeta in the brain up to age 14 months. We conclude that naturally occurring, partial loss-of-function mutations in IDE sufficient to cause DM2 also impair neuronal regulation of Abeta levels, but the brain can apparently compensate for the partial deficit during the life span of the rat. Our findings have relevance for the emerging genetic evidence suggesting that IDE may be a late-onset AD-risk gene, and for the epidemiological relationships among hyperinsulinemia, DM2, and AD.
Collapse
Affiliation(s)
- Wesley Farris
- Department of Neurology, Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Ma Z, Chow KM, Yao J, Hersh LB. Nuclear shuttling of the peptidase nardilysin. Arch Biochem Biophys 2004; 422:153-60. [PMID: 14759602 DOI: 10.1016/j.abb.2003.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/05/2003] [Indexed: 11/19/2022]
Abstract
The metalloendopeptidase nardilysin contains a putative N-terminal nuclear localization signal. The functionality of this sequence was tested with nardilysin-GFP fusion constructs. Expression in NIH3T3 cells showed approximately 90-95% of nardilysin-GFP as cytoplasmic. However, 3-6% of transfected cells showed both cytosolic and nuclear staining, while 2-4% showed predominantly nuclear staining. A nuclear localization signal mutant and an N-terminally truncated nardilysin-GFP with the nuclear localization signal deleted were completely cytoplasmic. Although endogenous nardilysin was barely detectable in the nucleus, after treatment with leptomycin B, nuclear nardilysin rose to approximately 15% and to over 25% after addition of spermine. The ability of a methionine 49 to act as the sole initiator methionine, as previously proposed, was tested by inserting a c-myc epitope between leucine28 and glycine29. Expression in HEK293 cells showed the presence of the c-myc tag, demonstrating that the enzyme can be translated from the first methionine and contains the nuclear localization signal.
Collapse
Affiliation(s)
- Zhangliang Ma
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| | | | | | | |
Collapse
|
46
|
Desbuquois B, Chauvet G, Kouach M, Authier F. Cell itinerary and metabolic fate of proinsulin in rat liver: in vivo and in vitro studies. Endocrinology 2003; 144:5308-21. [PMID: 12970169 DOI: 10.1210/en.2002-0154] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Proinsulin, the insulin precursor in pancreatic beta-cells, displays a slower hepatic clearance than insulin and exerts a more prolonged metabolic effect on liver in vivo. To elucidate the mechanisms underlying these differences, the cellular itinerary and processing of proinsulin and insulin in rat liver have been comparatively studied using cell fractionation. As [125I]-insulin, [125I]-proinsulin taken up into liver in vivo was internalized and accumulated in endosomes, in which it underwent dissociation from the insulin receptor and degradation in a pH- and ATP-dependent manner. However, relative to [125I]-insulin, [125I]-proinsulin showed a delayed and prolonged in vivo association with endosomes, a slower in vivo and cell-free endosomal processing, and a higher cell-free endosome-lysosome transfer. Endosomal extracts degraded to a lesser extent proinsulin than insulin at acidic pH; so did, and even proportionally less, at neutral pH, plasma membrane and cytosolic fractions. Proinsulin degradation products generated by soluble endosomal extracts were isolated by HPLC and characterized by mass spectrometry. Under conditions resulting in multiple cleavages in insulin, proinsulin was cleaved at eight bonds in the C peptide but only at the Phe24-Phe25 bond in the insulin moiety. As native insulin, native proinsulin induced a dose- and time-dependent endocytosis and tyrosine phosphorylation of the insulin receptor; but at an inframaximal dose, proinsulin effects on these processes were of longer duration. We conclude that a reduced proteolysis of proinsulin in endosomes, and probably also at the plasma membrane, accounts for its slower hepatic clearance and prolonged effects on insulin receptor endocytosis and tyrosine phosphorylation.
Collapse
Affiliation(s)
- Bernard Desbuquois
- Intitut National de la Santé et de la Recherche Médicale U567 and CentreNational de la Recherche Scientifique Unite Mixte de Recherche 8104, Paris, France.
| | | | | | | |
Collapse
|
47
|
Leissring MA, Farris W, Chang AY, Walsh DM, Wu X, Sun X, Frosch MP, Selkoe DJ. Enhanced Proteolysis of β-Amyloid in APP Transgenic Mice Prevents Plaque Formation, Secondary Pathology, and Premature Death. Neuron 2003; 40:1087-93. [PMID: 14687544 DOI: 10.1016/s0896-6273(03)00787-6] [Citation(s) in RCA: 540] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Converging evidence suggests that the accumulation of cerebral amyloid beta-protein (Abeta) in Alzheimer's disease (AD) reflects an imbalance between the production and degradation of this self-aggregating peptide. Upregulation of proteases that degrade Abeta thus represents a novel therapeutic approach to lowering steady-state Abeta levels, but the consequences of sustained upregulation in vivo have not been studied. Here we show that transgenic overexpression of insulin-degrading enzyme (IDE) or neprilysin (NEP) in neurons significantly reduces brain Abeta levels, retards or completely prevents amyloid plaque formation and its associated cytopathology, and rescues the premature lethality present in amyloid precursor protein (APP) transgenic mice. Our findings demonstrate that chronic upregulation of Abeta-degrading proteases represents an efficacious therapeutic approach to combating Alzheimer-type pathology in vivo.
Collapse
Affiliation(s)
- Malcolm A Leissring
- Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kanemitsu H, Tomiyama T, Mori H. Human neprilysin is capable of degrading amyloid beta peptide not only in the monomeric form but also the pathological oligomeric form. Neurosci Lett 2003; 350:113-6. [PMID: 12972166 DOI: 10.1016/s0304-3940(03)00898-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Amyloid beta-peptide (Abeta) is widely believed to play a central role in Alzheimer's disease (AD). Coordinate regulation of cerebral Abeta level is important in the pathogenesis of AD since either increased production of Abeta from amyloid precursor protein or decreased degradation causes elevated levels of Abeta, leading to accumulation of cerebral plaque formation or amyloid angiopathy. Here we studied neprilysin, a putative proteolytic enzyme for Abeta, and found that it degraded not only monomeric but also oligomeric forms of Abeta1-40. Moreover, neprilysin was found to be capable of degradation of the oligomeric form of Abeta1-42, a significant Abeta species in early pathogenesis. Neprilysin to decrease cerebral Abeta is suggested to be inevitable factor as a vital therapeutic target.
Collapse
Affiliation(s)
- Hyoe Kanemitsu
- Department of Neuroscience, Graduate School of Medicine Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan
| | | | | |
Collapse
|
49
|
Song ES, Juliano MA, Juliano L, Hersh LB. Substrate activation of insulin-degrading enzyme (insulysin). A potential target for drug development. J Biol Chem 2003; 278:49789-94. [PMID: 14527953 DOI: 10.1074/jbc.m308983200] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The rate of the insulin-degrading enzyme (IDE)-catalyzed hydrolysis of the fluorogenic substrate 2-aminobenzoyl-GGFLRKHGQ-ethylenediamine-2,4-dinitrophenyl is increased 2-7-fold by other peptide substrates but not by peptide non-substrates. This increased rate is attributed to a decrease in Km with little effect on Vmax. An approximately 2.5-fold increase in the rate of amyloid beta peptide hydrolysis is produced by dynorphin B-9. However, with insulin as substrate, dynorphin B-9 is inhibitory. Immunoprecipitation of differentially tagged IDE and gel filtration analysis were used to show that IDE exists as a mixture of dimers and tetramers. The equilibrium between dimer and tetramer is concentration-dependent, with the dimer the more active form. Bradykinin shifted the equilibrium toward dimer. Activation of substrate hydrolysis is not seen with a mixed dimer of IDE containing one active subunit and one subunit that is catalytically inactive and deficient in substrate binding. On the other hand, a mixed dimer containing one active subunit and one subunit that is catalytically inactive but binds substrate with normal affinity is activated by peptides. These findings suggest that peptides bind to one subunit of IDE and induce a conformational change that shifts the equilibrium to the more active dimer as well as activates the adjacent subunit. The selective activation of IDE toward amyloid beta peptide relative to insulin suggests the potential for development of compounds that increase IDE activity toward amyloid beta peptide as a therapeutic intervention for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Eun-Suk Song
- Department of Molecular and Cellular Biochemistry and the Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536-0084, USA
| | | | | | | |
Collapse
|
50
|
Abstract
Insulin-degrading enzyme (IDE) is a metalloprotease implicated in insulin degradation and suggested to have a variety of additional functions, including the clearance of amyloid beta peptides of Alzheimer's disease. Little is known about endogenous proteins that may interact with and modulate IDE's activity in the cell. We purified and characterized two proteins from mouse leukemic splenocytes that interact with IDE and inhibit its insulin-degrading activity. A protein of 14 kDa was similar to a competitive IDE inhibitor reported previously. The major inhibitor was identified by amino acid sequencing as ubiquitin, a protein that is post-translationally covalently attached to other intracellular proteins and regulates diverse cellular processes. Ubiquitin inhibited insulin-degrading activity of IDE and diminished crosslinking of 125I-insulin to IDE in a specific, concentration-dependent, reversible, and ATP-independent manner. Ubiquitin did not affect the crosslinking of 125I-insulin to insulin receptors or of 125I-atrial natriuretic peptide (ANP) to its receptor guanylate cyclase-A. These findings suggest a novel role for ubiquitin or perhaps proteins with ubiquitin-like domains in regulating the function of IDE.
Collapse
Affiliation(s)
- Tomo Saric
- Division of Molecular Medicine, Rudjer Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb, Croatia.
| | | | | | | |
Collapse
|