1
|
Nugteren S, Simons-Oosterhuis Y, Menckeberg CL, Hulleman-van Haaften DH, Lindenbergh-Kortleve DJ, Samsom JN. Endogenous secretory leukocyte protease inhibitor inhibits microbial-induced monocyte activation. Eur J Immunol 2023; 53:e2249964. [PMID: 36480463 PMCID: PMC10107746 DOI: 10.1002/eji.202249964] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 11/06/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
In the intestine, epithelial factors condition incoming immune cells including monocytes to adapt their threshold of activation and prevent undesired inflammation. Colonic epithelial cells express Secretory Leukocyte Protease Inhibitor (SLPI), an inhibitor of NF kappa light chain enhancer of activated B cells (NF-κB) that mediates epithelial hyporesponsiveness to microbial stimuli. Uptake of extracellular SLPI by monocytes has been proposed to inhibit monocyte activation. We questioned whether monocytes can produce SLPI and whether endogenous SLPI can inhibit monocyte activation. We demonstrate that human THP-1 monocytic cells produce SLPI and that CD68+ SLPI-producing cells can be detected in human intestinal lamina propria. Knockdown of SLPI in human THP-1 cells significantly increased NF-κB activation and subsequent C-X-C motif chemokine ligand 8 (CXCL8) and TNF-α production in response to microbial stimulation. Reconstitution of SLPI-deficient cells with either full-length SLPI or SLPI lacking its signal peptide rescued inhibition of NF-κB activation and cytokine production, demonstrating that endogenous SLPI inhibits monocytic cell activation. Unexpectedly, exogenous SLPI did not inhibit CXCL8 or TNF-α production, despite efficient uptake. Our data argue that endogenous SLPI can regulate the threshold of activation in monocytes, thereby preventing activation by commensal bacteria in mucosal tissues.
Collapse
Affiliation(s)
- Sandrine Nugteren
- Laboratory of Pediatrics, division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ytje Simons-Oosterhuis
- Laboratory of Pediatrics, division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Celia L Menckeberg
- Laboratory of Pediatrics, division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danielle H Hulleman-van Haaften
- Laboratory of Pediatrics, division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dicky J Lindenbergh-Kortleve
- Laboratory of Pediatrics, division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Nugteren S, Samsom JN. Secretory Leukocyte Protease Inhibitor (SLPI) in mucosal tissues: Protects against inflammation, but promotes cancer. Cytokine Growth Factor Rev 2021; 59:22-35. [PMID: 33602652 DOI: 10.1016/j.cytogfr.2021.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/24/2021] [Indexed: 12/20/2022]
Abstract
The immune system is continuously challenged with large quantities of exogenous antigens at the barriers between the external environment and internal human tissues. Antimicrobial activity is essential at these sites, though the immune responses must be tightly regulated to prevent tissue destruction by inflammation. Secretory Leukocyte Protease Inhibitor (SLPI) is an evolutionarily conserved, pleiotropic protein expressed at mucosal surfaces, mainly by epithelial cells. SLPI inhibits proteases, exerts antimicrobial activity and inhibits nuclear factor-kappa B (NF-κB)-mediated inflammatory gene transcription. SLPI maintains homeostasis at barrier tissues by preventing tissue destruction and regulating the threshold of inflammatory immune responses, while protecting the host from infection. However, excessive expression of SLPI in cancer cells may have detrimental consequences, as recent studies demonstrate that overexpression of SLPI increases the metastatic potential of epithelial tumors. Here, we review the varied functions of SLPI in the respiratory tract, skin, gastrointestinal tract and genitourinary tract, and then discuss the mechanisms by which SLPI may contribute to cancer.
Collapse
Affiliation(s)
- Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands.
| |
Collapse
|
3
|
Vargas-Albores F, Martínez-Porchas M. Crustins are distinctive members of the WAP-containing protein superfamily: An improved classification approach. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:9-17. [PMID: 28512012 DOI: 10.1016/j.dci.2017.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/10/2017] [Accepted: 05/12/2017] [Indexed: 06/07/2023]
Abstract
Crustins are considered effector molecules of innate immunity in arthropods, and classification schemes have been proposed over the last 10 years. However, classification problems have emerged: for example, proteins that have been well identified as members of a particular category have also been classified as crustins. Therefore, the objective of this manuscript was to analyze and, based on solid arguments, improve the original proposed nomenclature to make crustins a distinctive group of antibacterial proteins. The presence of WAP or 4DSC domain has been considered a distinctive feature of crustins; however, several antibacterial proteins containing WAP domains have been detected in diverse taxonomic groups (including mammals). Here, we present evidence supporting the idea that the Cys-rich region and the 4DSC domain can be considered a signature of crustins and, together with some distance arrangements occurring within this 12-Cys region, yield enough information for the classification of these proteins. Herein, the core characteristics to be considered for classification purposes are the length of the Gly-rich region and the repetitive tetrapeptides occurring within this region; these characteristics are then hierarchically followed by the F and A distances located within the 4DSC domain. Finally, the proposed system considers the crustin signature as the common structure in all members, which is a differentiator from other proteins containing WAP domains, separating crustins as a well-distinguished member of the superfamily of WAP-domain containing proteins.
Collapse
Affiliation(s)
- Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria, Hermosillo, Sonora, Mexico.
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria, Hermosillo, Sonora, Mexico
| |
Collapse
|
4
|
Majchrzak-Gorecka M, Majewski P, Grygier B, Murzyn K, Cichy J. Secretory leukocyte protease inhibitor (SLPI), a multifunctional protein in the host defense response. Cytokine Growth Factor Rev 2015; 28:79-93. [PMID: 26718149 DOI: 10.1016/j.cytogfr.2015.12.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 12/07/2015] [Indexed: 12/12/2022]
Abstract
Secretory leukocyte protease inhibitor (SLPI), a ∼12kDa nonglycosylated cationic protein, is emerging as an important regulator of innate and adaptive immunity and as a component of tissue regenerative programs. First described as an inhibitor of serine proteases such as neutrophil elastase, this protein is increasingly recognized as a molecule that benefits the host via its anti-proteolytic, anti-microbial and immunomodulatory activities. Here, we discuss the diverse functions of SLPI. Moreover, we review several novel layers of SLPI-mediated control that protect the host from excessive/dysregulated inflammation typical of infectious, allergic and autoinflammatory diseases and that support healing responses through affecting cell proliferation, differentiation and apoptosis.
Collapse
Affiliation(s)
- Monika Majchrzak-Gorecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Pawel Majewski
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Beata Grygier
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Krzysztof Murzyn
- Department of Computational Biophysics and Bioinformatics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Müller AM, Jun E, Conlon H, Sadiq SA. Inhibition of SLPI ameliorates disease activity in experimental autoimmune encephalomyelitis. BMC Neurosci 2012; 13:30. [PMID: 22436018 PMCID: PMC3352067 DOI: 10.1186/1471-2202-13-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 03/21/2012] [Indexed: 12/27/2022] Open
Abstract
Background The secretory leukocyte protease inhibitor (SLPI) exerts wide ranging effects on inflammatory pathways and is upregulated in EAE but the biological role of SLPI in EAE, an animal model of multiple sclerosis is unknown Methods To investigate the pathophysiological effects of SLPI within EAE, we induced SLPI-neutralizing antibodies in mice and rats to determine the clinical severity of the disease. In addition we studied the effects of SLPI on the anti-inflammatory cytokine TGF-β. Results The induction of SLPI neutralizing antibodies resulted in a milder disease course in mouse and rat EAE. SLPI neutralization was associated with increased serum levels of TGF-β and increased numbers of FoxP3+ CD4+ T cells in lymph nodes. In vitro, the addition of SLPI significantly decreased the number of functional FoxP3+ CD25hi CD4+ regulatory T cells in cultures of naive human CD4+ T cells. Adding recombinant TGF-β to SLPI-treated human T cell cultures neutralized SLPI's inhibitory effect on regulatory T cell differentiation. Conclusion In EAE, SLPI exerts potent pro-inflammatory actions by modulation of T-cell activity and its neutralization may be beneficial for the disease.
Collapse
Affiliation(s)
- André Michael Müller
- Multiple Sclerosis Research Center of New York, 521 W 57th Street, 4th floor, New York, NY 10019, USA.
| | | | | | | |
Collapse
|
6
|
Plog S, Grötzsch T, Klymiuk N, Kobalz U, Gruber AD, Mundhenk L. The porcine chloride channel calcium-activated family member pCLCA4a mirrors lung expression of the human hCLCA4. J Histochem Cytochem 2012; 60:45-56. [PMID: 22205680 PMCID: PMC3283134 DOI: 10.1369/0022155411426455] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/17/2011] [Indexed: 11/22/2022] Open
Abstract
Pig models of cystic fibrosis (CF) have recently been established that are expected to mimic the human disease closer than mouse models do. The human CLCA (originally named chloride channels, calcium-activated) member hCLCA4 is considered a potential modifier of disease severity in CF, but its murine ortholog, mCLCA6, is not expressed in the mouse lung. Here, we have characterized the genomic structure, protein processing, and tissue expression patterns of the porcine ortholog to hCLCA4, pCLCA4a. The genomic structure and cellular protein processing of pCLCA4a were found to closely mirror those of hCLCA4 and mCLCA6. Similar to human lung, pCLCA4a mRNA was strongly expressed in porcine lungs, and the pCLCA4a protein was immunohistochemically detected on the apical membranes of tracheal and bronchial epithelial cells. This stands in sharp contrast to mouse mCLCA6, which has been detected exclusively in intestinal epithelia but not the murine lung. The results may add to the understanding of species-specific differences in the CF phenotype and support the notion that the CF pig model may be more suitable than murine models to study the role of hCLCA4.
Collapse
Affiliation(s)
- Stephanie Plog
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Suthianthong P, Pulsook N, Supungul P, Tassanakajon A, Rimphanitchayakit V. A double WAP domain-containing protein PmDWD from the black tiger shrimp Penaeus monodon is involved in the controlling of proteinase activities in lymphoid organ. FISH & SHELLFISH IMMUNOLOGY 2011; 30:783-790. [PMID: 21216291 DOI: 10.1016/j.fsi.2010.12.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 12/17/2010] [Accepted: 12/30/2010] [Indexed: 05/30/2023]
Abstract
A homolog of mammalian secretory leucocyte proteinase inhibitor or SLPI known as a double WAP domain (DWD) protein has been found in penaeid shrimp and believed to play an important role in innate immune system of the shrimp. The PmDWD identified from the Penaeus monodon EST database was investigated for its expression under pathogen infection. Infections by Vibrio harveyi and white spot syndrome virus (WSSV) up-regulated the expression of the PmDWD, which was peaked at about 24 h post infection and, then, subsided to more or less normal level. The PmDWD was expressed in various tissues of normal, 24-h WSSV-injected and leg-amputated shrimp, predominantly in the hemocytes. The expression was dramatically increased in lymphoid organ upon WSSV infection and leg amputation. The recombinant PmDWD (rPmDWD) was not active against the commercial proteinases: trypsin, chymotrypsin, elastase and subtilisin while its mutant rPmDWD_F70R was active against the subtilisin. By using agar diffusion assay, the rPmDWD inhibited the crude proteinases from lymphoid organs of leg-amputated and WSSV-infected shrimp. It inhibited the crude proteinases from Bacillus subtilis as well. Unlike the mammalian SLPIs, the rPmDWD had no antimicrobial activity against various bacteria.
Collapse
Affiliation(s)
- Pranisa Suthianthong
- Center of Excellence for Molecular Biology and Genomics of Shrimp, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | |
Collapse
|
8
|
Yue F, Pan L, Miao J, Zhang L, Li J. Molecular cloning, characterization and mRNA expression of two antibacterial peptides: Crustin and anti-lipopolysaccharide factor in swimming crab Portunus trituberculatus. Comp Biochem Physiol B Biochem Mol Biol 2010; 156:77-85. [DOI: 10.1016/j.cbpb.2010.02.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 02/05/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
9
|
Roghanian A, Sallenave JM. Neutrophil elastase (NE) and NE inhibitors: canonical and noncanonical functions in lung chronic inflammatory diseases (cystic fibrosis and chronic obstructive pulmonary disease). J Aerosol Med Pulm Drug Deliv 2008; 21:125-44. [PMID: 18518838 DOI: 10.1089/jamp.2007.0653] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Proteases and antiproteases have multiple important roles both in normal homeostasis and during inflammation. Antiprotease molecules may have developed in a parallel network, consisting of "alarm" and "systemic" inhibitors. Their primary function was thought until recently to mainly prevent the potential injurious effects of excess release of proteolytic enzymes, such as neutrophil elastase (NE), from inflammatory cells. However, recently, new potential roles have been ascribed to these antiproteases. We will review "canonical" and new "noncanonical" functions for these molecules, and more particularly, those pertaining to their role in innate and adaptive immunity (antibacterial activity and biasing of the adaptive immune response).
Collapse
Affiliation(s)
- Ali Roghanian
- MRC Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh University Medical School, Edinburgh, United Kingdom
| | | |
Collapse
|
10
|
Mueller AM, Pedré X, Stempfl T, Kleiter I, Couillard-Despres S, Aigner L, Giegerich G, Steinbrecher A. Novel role for SLPI in MOG-induced EAE revealed by spinal cord expression analysis. J Neuroinflammation 2008; 5:20. [PMID: 18501024 PMCID: PMC2438345 DOI: 10.1186/1742-2094-5-20] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2008] [Accepted: 05/26/2008] [Indexed: 11/10/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte protein (MOG) in female Dark Agouti (DA) rats is a chronic demyelinating animal model of multiple sclerosis (MS). To identify new candidate molecules involved in the evolution or repair of EAE-lesions we used Affymetrix oligonucleotide microarrays to compare the spinal cord transcriptome at the peak of EAE, during remission and at the first relapse with healthy DA rats. Methods Untreated DA rats and DA rats immunised with MOG protein were sacrificed at defined time points. Total RNA was isolated from spinal cord tissue and used for hybridization of Affymetrix rat genome arrays RG U34 A-C. Selected expression values were confirmed by RealTime PCR. Adult neural stem cells were incubated with recombinant secretory leukocyte protease inhibitor (SLPI). Proliferation was assessed by BrdU incorporation, cyclin D1 and HES1 expression by RealTime PCR, cell differentiation by immunofluorescence analysis and IkappaBalpha degradation by Western blot. Results Among approximately 26,000 transcripts studied more than 1,100 were differentially regulated. Focussing on functional themes, we noticed a sustained downregulation of most of the transcripts of the cholesterol biosynthesis pathway. Furthermore, we found new candidate genes possibly contributing to regenerative processes in the spinal cord. Twelve transcripts were solely upregulated in the recovery phase, including genes not previously associated with repair processes. Expression of SLPI was upregulated more than hundredfold during EAE attack. Using immunohistochemistry, SLPI was identified in macrophages, activated microglia, neuronal cells and astrocytes. Incubation of adult neural stem cells (NSC) with recombinant SLPI resulted in an increase of cell proliferation and of differentiation towards oligodendrocytes. These processes were paralleled by an upregulation of the cell-cycle promotor cyclin D1 and a suppression of the cell differentiation regulator HES1. Finally, SLPI prevented the degradation of IkappaBalpha, which may explain the suppression of the cell differentiation inhibitor HES1 suggesting a possible mechanism of oligodendroglial differentiation. Conclusion We identified novel features of gene expression in the CNS during EAE, in particular the suppression of genes of cholesterol biosynthesis and a strong upregulation of SLPI, a gene which is for the first time associated with autoimmune inflammation. The capacity of SLPI to increase proliferation of adult NSC and of oligodendroglial differentiation suggests a novel role for SLPI in the promotion of tissue repair, beyond its known functions in the prevention of tissue damages by protease inhibition damage and modulation of inflammatory reactions.
Collapse
Affiliation(s)
- Andre M Mueller
- Department of Neurology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schneeberger S, Hautz T, Wahl SM, Brandacher G, Sucher R, Steinmassl O, Steinmassl P, Wright CD, Obrist P, Werner ER, Mark W, Troppmair J, Margreiter R, Amberger A. The effect of secretory leukocyte protease inhibitor (SLPI) on ischemia/reperfusion injury in cardiac transplantation. Am J Transplant 2008; 8:773-82. [PMID: 18294346 DOI: 10.1111/j.1600-6143.2008.02158.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We investigated the role of secretory leukocyte protease inhibitor (SLPI) in ischemia/reperfusion injury in cardiac transplantation. SLPI-/- mouse hearts and wild-type (WT) controls were transplanted immediately or after 10 h of cold ischemia (CI). Recombinant SLPI (rSLPI) was added to the preservation solution or given systemically. After evaluation of myocardial performance, grafts were investigated for histology, SLPI, TNF-alpha, TGF-beta, NF-kappaB and protease expression at indicated time points. Early myocardial contraction was profoundly impaired in SLPI-/- hearts exposed to CI and associated with high intra-graft protease expression. Systemic administration of rSLPI had no effect, however, when SLPI was added to the preservation solution, myocardial contraction was restored to normal. At 10 days, inflammation, myocyte vacuolization and necrosis were significantly more severe in SLPI-/- hearts. SLPI gene expression was detected in WT mice at 12 and 24 h and was significantly higher after CI. SLPI protein was observed at 24 h and 10 days. High intra-graft concentrations of SLPI after administration of rSLPI were inversely correlated with protease levels early and TGF-beta expression late after reperfusion. SLPI plays a crucial role in early myocardial performance and postischemic inflammation after cardiac transplantation. A dual inhibitory effect on protease and TGF-beta expression might be the underlying mechanism.
Collapse
Affiliation(s)
- S Schneeberger
- D. Swarovski Research Laboratory, Department of General and Transplant Surgery, Innsbruck Medical University, Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Supungul P, Tang S, Maneeruttanarungroj C, Rimphanitchayakit V, Hirono I, Aoki T, Tassanakajon A. Cloning, expression and antimicrobial activity of crustinPm1, a major isoform of crustin, from the black tiger shrimp Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2008; 32:61-70. [PMID: 17573111 DOI: 10.1016/j.dci.2007.04.004] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Revised: 04/11/2007] [Accepted: 04/12/2007] [Indexed: 05/15/2023]
Abstract
Crustin antibacterial homologues, containing a whey acidic protein (WAP) domain, have been identified from the haemocyte library of the black tiger shrimp, Penaeus monodon. Sequence analysis of these cDNAs indicates the presence of several isoforms of crustin in P. monodon. CrustinPm1, the most abundant isoform, contains an open reading frame of 435bp encoding a precursor of 145 amino acids that comprises 17 amino acid signal peptides and 128 amino acid mature peptides. The peptides contain a Gly-Pro rich region at the amino-terminus and a single whey acidic protein (WAP) domain at the carboxyl-terminus. In order to characterize the properties and biological activities of this peptide, crustinPm1 was overexpressed in Escherichia coli. The recombinant crustinPm1 has a molecular mass of 14.7kDa with a predicted pI of 8.3. Antimicrobial assays demonstrated that recombinant crustinPm1 exhibited antimicrobial activity against only Gram-positive bacteria with strong inhibition against Staphylococcus aureus and Streptococcus iniae. In addition, the study of inhibition mechanism revealed that the antimicrobial activity of crustinPm1 was a result of bactericidal effect. In situ hybridization with crustinPm1 antisense probes showed strong hybridization signals in a certain haemocyte population of unchallenged shrimp, indicating that crustinPm1 transcript is differentially expressed in different subsets of haemocyte cells.
Collapse
Affiliation(s)
- Premruethai Supungul
- Shrimp Molecular Biology and Genomics Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | | | | | | | | | | |
Collapse
|
13
|
Dorai H, Li K, Huang CC, Bittner A, Galindo J, Carmen A. Genome-Wide Analysis of Mouse Myeloma Cell Lines Expressing Therapeutic Antibodies. Biotechnol Prog 2007. [DOI: 10.1002/bp0700051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Roghanian A, Drost EM, MacNee W, Howie SEM, Sallenave JM. Inflammatory lung secretions inhibit dendritic cell maturation and function via neutrophil elastase. Am J Respir Crit Care Med 2006; 174:1189-98. [PMID: 16959917 DOI: 10.1164/rccm.200605-632oc] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Continuous episodes of infection are a feature of lung diseases such as chronic obstructive pulmonary disease (COPD) and cystic fibrosis (CF). Lung antigen-presenting dendritic cells (DCs) sample inhaled antigen to initiate immune responses. Therefore, we hypothesized that inflammatory mediators, such as neutrophil elastase (NE) released into the lung, may be able to modulate their activity. OBJECTIVE To determine whether sputum (from patients with COPD and those with CF) or NE can alter DC phenotype and function. METHOD NE and sputum samples were incubated with immature or mature murine DCs (mDCs). DC phenotype and function were studied by fluorescence-activated cell sorter and Western Blot analysis, assessing their expression of costimulatory molecules and their ability to induce T cell proliferation. RESULTS COPD/CF sputum samples and human NE downregulated the expression of CD40, CD80, and CD86 (but not major histocompatibility complex II) on DCs and inhibited LPS-induced DC maturation. This effect was partially (sputa) to significantly (NE) reversed by addition of recombinant secretory leukocyte protease inhibitor. Western Blot analysis showed that purified NE degraded CD86 in mDC lysates in a time- and dose-dependent fashion, and caused shedding of CD86 into the supernatants of mDC cultures. NE treatment also inhibited the antigen-presenting ability of mDCs, as measured by their ability to induce ovalbumin-specific D011.10-transgenic T-cell proliferation. CONCLUSIONS Our data indicate that NE in lung inflammatory secretions of patients with COPD/CF may disable DCs and prevent them from mounting an adequate immune response. This may have implications for the infection-driven generation of disease exacerbations in these two pathologies.
Collapse
Affiliation(s)
- Ali Roghanian
- Medical Research Council (MRC) Centre for Inflammation Research (CIR), The Queen's Medical Research Institute, Edinburgh University Medical School, Edinburgh, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
15
|
Abstract
Elafin and SLPI (secretory leucocyte protease inhibitor) have multiple important roles both in normal homoeostasis and at sites of inflammation. These include antiprotease and antimicrobial activity as well as modulation of the response to LPS (lipopolysaccharide) stimulation. Elafin and SLPI are members of larger families of proteins secreted predominantly at mucosal sites, and have been shown to be modulated in multiple pathological conditions. We believe that elafin and SLPI are important molecules in the controlled functioning of the innate immune system, and may have further importance in the integration of this system with the adaptive immune response. Recent interest has focused on the influence of inflamed tissues on the recruitment and phenotypic modulation of cells of the adaptive immune system and, indeed, the local production of elafin and SLPI indicate that they are ideally placed in this regard. Functionally related proteins, such as the defensins and cathelicidins, have been shown to have direct effects upon dendritic cells with potential alteration of their phenotype towards type I or II immune responses. This review addresses the multiple functions of elafin and SLPI in the inflammatory response and discusses further their roles in the development of the adaptive immune response.
Collapse
Affiliation(s)
- Steven E Williams
- Rayne Laboratory, Respiratory Medicine Unit, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | | | | | | |
Collapse
|
16
|
Brown TI, Mistry R, Gray R, Imrie M, Collie DD, Sallenave JM. Characterization of the ovine ortholog of secretory leukoprotease inhibitor. Mamm Genome 2005; 16:621-30. [PMID: 16180144 DOI: 10.1007/s00335-005-0030-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2005] [Accepted: 04/27/2005] [Indexed: 10/25/2022]
Abstract
There is great interest in the use of the sheep as a model for the investigation of inflammation in the lung. The serine antiproteases secretory leukoprotease inhibitor (SLPI) and elafin are important "alarm antiproteases" in the lung and have potentially important roles in the innate immune response. SLPI was first characterized in man and subsequently in murine, porcine, and rat tissues. Here we present the first data concerning the gene and cDNA sequence encoding for the ovine ortholog of SLPI, a protein of 132 amino acids with 66% sequence identity at the amino acid level with human SLPI. A 24-amino-acid signal sequence signifies that, like the other mammalian orthologs, ovine SLPI is a secreted protein. Tissue distribution of expression is demonstrated by reverse transcription polymerase chain reaction (RT-PCR) and shows features similar to SLPI expression in other mammals, specifically at mucosal surfaces such as the upper respiratory and intestinal tracts, and also the skin, liver, and kidney. This distribution lends credence to SLPI having important roles in innate immunity. We have also cloned the ovine SLPI cDNA into an expression vector and expressed the ovine SLPI protein in vitro. This has enabled us to demonstrate that ovine SLPI is correctly processed (Western blot analysis and SELDI-TOF mass spectrometry analysis) and has biological antihuman neutrophil elastase activity. In summary, the ovine ortholog of SLPI shows similarities to other members of the SLPI family and has all the features of a modulator of innate immunity.
Collapse
Affiliation(s)
- Thomas I Brown
- Rayne Laboratory, Respiratory Medicine Unit, MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, Scotland, EHS 9AG, UK
| | | | | | | | | | | |
Collapse
|
17
|
Vargas-Albores F, Yepiz-Plascencia G, Jiménez-Vega F, Avila-Villa A. Structural and functional differences of Litopenaeus vannamei crustins. Comp Biochem Physiol B Biochem Mol Biol 2005; 138:415-22. [PMID: 15325343 DOI: 10.1016/j.cbpc.2004.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2003] [Revised: 05/07/2004] [Accepted: 05/08/2004] [Indexed: 11/25/2022]
Abstract
Penaeid crustins were described in Litopenaeus vannamei and L. setiferus as proteins belonging to an antibacterial peptide family with similar sequences but different sizes. Six crustin-coding clones were isolated from a cDNA library from L. vannamei hemocytes, sequenced and compared. Two different isoforms (named I and P) were found, based on two nucleotide differences that produce one change in amino acid sequence (Ile/Pro). Other single differences in nucleotide sequences were also noted, but they did not change the translated product. The mRNA steady state levels of crustin I, but not of crustin P, were down regulated by Vibrio alginolyticus inoculation. Thus, the differences among penaeid crustins seem to be associated with one amino acid substitution, which affects their expression after bacterial inoculation. By structural similarity, shrimp crustins seem to belong to an antibacterial WAP-domain containing protein family.
Collapse
|
18
|
Schulze H, Korpal M, Bergmeier W, Italiano JE, Wahl SM, Shivdasani RA. Interactions between the megakaryocyte/platelet-specific beta1 tubulin and the secretory leukocyte protease inhibitor SLPI suggest a role for regulated proteolysis in platelet functions. Blood 2004; 104:3949-57. [PMID: 15315966 DOI: 10.1182/blood-2004-03-1179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Platelet-restricted beta1 tubulin is required for optimal thrombopoiesis and discoid cell shape. To identify interacting factors, we used the divergent beta1-tubulin C-terminus as the bait in a yeast 2-hybrid screen of megakaryocyte (MK) cDNAs. We isolated secretory leukocyte protease inhibitor (SLPI), a serine protease antagonist characterized principally as a secreted factor with multiple roles in inflammation. SLPI is expressed in MKs and platelets in 2 discrete compartments. One pool resides in punctate cytoplasmic structures, whereas a significant fraction localizes along peripheral microtubules (MTs) and is lost with cold-induced MT disruption or in beta1 tubulin(-/-) platelets. These findings reveal unexpected interaction between a prominent cytoskeletal protein and an inhibitor of proteolysis. SLPI(-/-) mice show intact proplatelet formation, platelet numbers and shape, and marginal MT bands; thus, SLPI is not essential for thrombopoiesis. However, SLPI is released upon platelet activation, which also reverses its association with the resting marginal band. Platelet SLPI inhibits neutrophil elastase, an activity that is reduced when beta1 tubulin is absent. We conclude that SLPI localizes in part along the MK and platelet MT cytoskeleton by virtue of specific interactions with beta1 tubulin. SLPI may thus have unanticipated roles in MK and platelet functions, including regulated proteolysis after activation.
Collapse
Affiliation(s)
- Harald Schulze
- Dana-Farber Cancer Institute, 1 Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Henriksen PA, Hitt M, Xing Z, Wang J, Haslett C, Riemersma RA, Webb DJ, Kotelevtsev YV, Sallenave JM. Adenoviral gene delivery of elafin and secretory leukocyte protease inhibitor attenuates NF-kappa B-dependent inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. THE JOURNAL OF IMMUNOLOGY 2004; 172:4535-44. [PMID: 15034071 DOI: 10.4049/jimmunol.172.7.4535] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease affecting arterial vessels. Strategies to reduce the inflammatory responses of endothelial cells and macrophages may slow lesion development and prevent complications such as plaque rupture. The human protease human neutrophil elastase (HNE), oxidized low density lipoprotein, LPS, and TNF-alpha were chosen as model stimuli of arterial wall inflammation and led to production of the chemokine IL-8 in endothelial cells. To counteract the activity of HNE, we have examined the effects of adenoviral gene delivery of the anti-elastases elafin, previously demonstrated within human atheroma, and murine secretory leukocyte protease inhibitor (SLPI), a related molecule, on the inflammatory responses of human endothelial cells and macrophages to atherogenic stimuli. We developed a technique of precomplexing adenovirus with cationic lipid to augment adenoviral infection efficiency in endothelial cells and to facilitate infection in macrophages. Elafin overexpression protected endothelial cells from HNE-induced IL-8 production and cytotoxicity. Elafin and murine SLPI also reduced endothelial IL-8 release in response to oxidized low density lipoprotein, LPS, and TNF-alpha and macrophage TNF-alpha production in response to LPS. This effect was associated with reduced activation of the inflammatory transcription factor NF-kappaB, through up-regulation of IkappaBalpha, in both cell types. Our work suggests a novel and extended anti-inflammatory role for these HNE inhibitors working as effectors of innate immunity to protect tissues against maladaptive inflammatory responses. Our findings indicate that elafin and SLPI may be gene therapy targets for the treatment of atheroma.
Collapse
Affiliation(s)
- Peter A Henriksen
- Rayne Laboratory, Medical Research Council Centre for Inflammation Research, Medical School, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Brown A, Farmer K, MacDonald L, Kalsheker N, Pritchard D, Haslett C, Lamb J, Sallenave JM. House dust mite Der p 1 downregulates defenses of the lung by inactivating elastase inhibitors. Am J Respir Cell Mol Biol 2003; 29:381-9. [PMID: 12689923 DOI: 10.1165/rcmb.2003-0060oc] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
House dust mites (HDM) are the most common source of aeroallergens and in genetic susceptible individuals can cause symptoms ranging from atopic dermatitis to bronchial asthma. Der p 1, a major target of the human immune responses to HDM, through its enzymatic properties can modulate the adaptive immune system by the cleavage of CD23 and CD25. The consequences of this would be to promote allergic inflammatory responses. Furthermore, by disrupting epithelial tight junctions Der p 1 facilitates the transport of allergen across the epithelium. Here, we report that Der p 1 has additional effects on the innate defense mechanisms of the lung, by inactivating in vitro and ex vivo the elastase inhibitors human (h) alpha1-proteinase inhibitor (h-A1-Pi), mouse (m-), (but not human [h])-SLPI and h-elafin. We confirm that Der p 1 contain both cysteine and serine proteinases, and extend this finding to demonstrate for the first time that h-elafin is particularly sensitive to the biological activity of the latter. Because these elastase inhibitors have antimicrobial, as well as antielastase activity, our results suggest that inactivation of these innate components of the lung defense system by Der p 1 may increase the susceptibility of patients with allergic inflammation to infection.
Collapse
Affiliation(s)
- Alan Brown
- School of Pharmaceutical Sciences, University of Nottingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Devoogdt N, Hassanzadeh Ghassabeh G, Zhang J, Brys L, De Baetselier P, Revets H. Secretory leukocyte protease inhibitor promotes the tumorigenic and metastatic potential of cancer cells. Proc Natl Acad Sci U S A 2003; 100:5778-82. [PMID: 12732717 PMCID: PMC156277 DOI: 10.1073/pnas.1037154100] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Because of their ability to inhibit proteases, protease inhibitors have generally been considered to counteract tumor progression and metastasis. However, expression of serine protease inhibitors (SPIs) in tumors is often associated with poor prognosis of cancer patients. Moreover, there is growing evidence that SPIs may even promote malignancy of cancer cells, opening new avenues for their use as biomarkers in malignancy. To isolate cancer promoting genes, we applied the suppression subtractive hybridization method to low-malignant Lewis Lung Carcinoma 3LL-S versus high-malignant 3LL-S-sc cells. This resulted in the identification of the SPI secretory leukocyte protease inhibitor (SLPI), as one of the genes whose expression was higher in 3LL-S-sc than in 3LL-S cells. By stable transfection of 3LL-S cells with mouse or human SLPI, we demonstrated that elevated levels of SLPI expression increased both the tumorigenicity and lung-colonizing potential of 3LL-S cells. Moreover, we showed that this function of SLPI depended on its protease inhibitory capacity. Our results also reveal that although SLPI enhanced the proliferation of 3LL-S cells in vitro, its promalignant activity in vivo was not solely due to its effect on cell proliferation. In this study, we report a causal role for SLPI in the malignant behavior of cancer cells, underscoring the potential malignancy-promoting activities of SPIs.
Collapse
Affiliation(s)
- Nick Devoogdt
- Department of Molecular and Cellular Interactions, Vlaams Interuniversitair Instituut voor Biotechnologie, Vrije Universiteit Brussel, Gebouw E, Verdieping 8, Pleinlaan 2, 1050 Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
22
|
Samuel S, Bernstein LR. Adhesion, migration, transcriptional, interferon-inducible, and other signaling molecules newly implicated in cancer susceptibility and resistance of JB6 cells by cDNA microarray analyses. Mol Carcinog 2003; 39:34-60. [PMID: 14694446 DOI: 10.1002/mc.10163] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Relative expression levels of 9500 genes were determined by cDNA microarray analyses in mouse skin JB6 cells susceptible (P+) and resistant (P-) to 12-O-tetradecanoyl phorbol-13 acetate (TPA)-induced neoplastic transformation. Seventy-four genes in 6 functional classes were differentially expressed: (I) extracellular matrix (ECM) and basement membrane (BM) proteins (20 genes). P+ cells express higher levels than P- cells of several collagens and proteases, and lower levels of protease inhibitors. Multiple genes encoding adhesion molecules are expressed preferentially in P- cells, including six genes implicated in axon guidance and adhesion. (II) Cytoskeletal proteins (13 genes). These include actin isoforms and regulatory proteins, almost all preferentially expressed in P- cells. (III) Signal transduction proteins (12 genes). Among these are Ras-GTPase activating protein (Ras-GAP), the deleted in oral cancer-1 and SLIT2 tumor suppressors, and connexin 43 (Cx43) gap junctional protein, all expressed preferentially in P- cells. (IV) Interferon-inducible proteins (3 genes). These include interferon-inducible protein (IFI)-16, an Sp1 transcriptional regulator expressed preferentially in P- cells. (V) Other transcription factors (4 genes). Paired related homeobox gene 2 (Prx2)/S8 homeobox, and retinoic acid (RA)-regulated nur77 and cellular retinoic acid-binding protein II (CRABPII) transcription factors are expressed preferentially in P- cells. The RIN-ZF Sp-transcriptional suppressor exhibits preferential P+ expression. (VI) Genes of unknown functions (22 sequences). Numerous mesenchymal markers are expressed in both cell types. Data for multiple genes were confirmed by real-time PCR. Overall, 26 genes were newly implicated in cancer. Detailed analyses of the functions of the genes and their interrelationships provided converging evidence for their possible roles in implementing genetic programs mediating cancer susceptibility and resistance. These results, in conjunction with cell wounding and phalloidin staining data, indicated that concerted genetic programs were implemented that were conducive to cell adhesion and tumor suppression in P- cells and that favored matrix turnover, cell motility, and abrogation of tumor suppression in P+ cells. Such genetic programs may in part be orchestrated by Sp-, RA-, and Hox-transcriptional regulatory pathways implicated in this study.
Collapse
Affiliation(s)
- Shaija Samuel
- Department of Pathology and Laboratory Medicine, Texas A & M University System Health Science Center, College Station, Texas, USA
| | | |
Collapse
|
23
|
Zhu J, Nathan C, Jin W, Sim D, Ashcroft GS, Wahl SM, Lacomis L, Erdjument-Bromage H, Tempst P, Wright CD, Ding A. Conversion of proepithelin to epithelins: roles of SLPI and elastase in host defense and wound repair. Cell 2002; 111:867-78. [PMID: 12526812 DOI: 10.1016/s0092-8674(02)01141-8] [Citation(s) in RCA: 497] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Increased leukocyte elastase activity in mice lacking secretory leukocyte protease inhibitor (SLPI) leads to impaired wound healing due to enhanced activity of TGFbeta and perhaps additional mechanisms. Proepithelin (PEPI), an epithelial growth factor, can be converted to epithelins (EPIs) in vivo by unknown mechanisms with unknown consequences. We found that PEPI and EPIs exert opposing activities. EPIs inhibit the growth of epithelial cells but induce them to secrete the neutrophil attractant IL-8, while PEPI blocks neutrophil activation by tumor necrosis factor, preventing release of oxidants and proteases. SLPI and PEPI form complexes, preventing elastase from converting PEPI to EPIs. Supplying PEPI corrects the wound-healing defect in SLPI null mice. Thus, SLPI/elastase act via PEPI/EPIs to operate a switch at the interface between innate immunity and wound healing.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Ikeda K, Kato M, Yamanouchi K, Naito K, Tojo H. Novel development of mammary glands in the nursing transgenic mouse ubiquitously expressing WAP gene. Exp Anim 2002; 51:395-9. [PMID: 12221934 DOI: 10.1538/expanim.51.395] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Although whey acidic protein (WAP) has been suggested to have some biological functions, its true function has not yet been clearly elucidated. We have generated transgenic mice ubiquitously and highly expressing the WAP gene. The pups born from one female among these transgenic mice showed low growth or died during nursing. This transgenic founder showed novel development of the mammary glands, and demonstrated normal parturition and nursing behavior. The mammary glands showed low-distended ductal structures, and poor development of lobulo-alveolar and acinous formations despite normal nursing, while mammary ducts were rather large in comparison with those of normal lactating females. Although this founder was found to be mosaic for transgenesis, it was shown to be a useful animal model for investigating WAP function.
Collapse
Affiliation(s)
- Kayoko Ikeda
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo 113-8657, Japan
| | | | | | | | | |
Collapse
|
25
|
Cavarra E, Lucattelli M, Gambelli F, Bartalesi B, Fineschi S, Szarka A, Giannerini F, Martorana PA, Lungarella G. Human SLPI inactivation after cigarette smoke exposure in a new in vivo model of pulmonary oxidative stress. Am J Physiol Lung Cell Mol Physiol 2001; 281:L412-7. [PMID: 11435216 DOI: 10.1152/ajplung.2001.281.2.l412] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of oxidative stress in inactivating antiproteases is the object of debate. To address this question, we developed an in vivo model of pulmonary oxidative stress induced by cigarette smoke (CS) in mice. The major mouse trypsin inhibitor contrapsin is not sensitive to oxidation, and the mouse secretory leukoprotease inhibitor (SLPI) does not inhibit trypsin. Instead, human recombinant (hr) SLPI inhibits trypsin and is sensitive to oxidation. Thus we determined the effect of CS in vivo on hrSLPI antiproteolytic function in the airways of mice. CS caused a significant decrease in total antioxidant capacity in bronchoalveolar lavage fluid (BALF) and significant changes in oxidized glutathione, ascorbic acid, protein thiols, and 8-epi-PGF(2alpha). Intratracheal hrSLPI significantly increased BALF antitryptic activity. CS induced a 50% drop in the inhibitory activity of hrSLPI. Pretreatment with N-acetylcysteine prevented the CS-induced loss of hrSLPI activity, the decrease in antioxidant defenses, and the elevation of 8-epi-PGF-(2alpha). Thus an inactivation of hrSLPI was demonstrated in this model. This is a novel model for studying in vivo the effects of CS oxidative stress on human protease inhibitors with antitrypsin activity.
Collapse
Affiliation(s)
- E Cavarra
- Department of Physiopathology and Experimental Medicine, University of Siena, I-53100 Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Takao K, Takai S, Ishihara T, Mita S, Miyazaki M. Isolation of chymase complexed with physiological inhibitor similar to secretory leukocyte protease inhibitor (SLPI) from hamster cheek pouch tissues. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1545:146-52. [PMID: 11342040 DOI: 10.1016/s0167-4838(00)00272-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A low molecular weight protein complexed with chymase was isolated from hamster cheek pouch tissues. This protein had an apparent molecular mass of about 10 kDa on SDS-PAGE and the N-terminal sequence showed some homology to secretory leukocyte protease inhibitor (SLPI), which is known as the predominant inhibitor of neutrophil elastase and cathepsin G. Remarkably enhanced inhibition of chymase activity was achieved in the presence of heparin, indicating that the functional property was also similar to SLPI. These findings suggest that this SLPI-like protein is a candidate for a physiological inhibitor of chymase.
Collapse
Affiliation(s)
- K Takao
- Department of Pharmacology, Osaka Medical College, Japan
| | | | | | | | | |
Collapse
|
27
|
Wang Z, Zheng T, Zhu Z, Homer RJ, Riese RJ, Chapman HA, Shapiro SD, Elias JA. Interferon gamma induction of pulmonary emphysema in the adult murine lung. J Exp Med 2000; 192:1587-600. [PMID: 11104801 PMCID: PMC2193095 DOI: 10.1084/jem.192.11.1587] [Citation(s) in RCA: 320] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2000] [Accepted: 10/17/2000] [Indexed: 11/29/2022] Open
Abstract
Chronic inflammation containing CD8(+) lymphocytes, neutrophils, and macrophages, and pulmonary emphysema coexist in lungs from patients with chronic obstructive pulmonary disease. Although this inflammatory response is believed to cause the remodeling that is seen in these tissues, the mechanism(s) by which inflammation causes emphysema have not been defined. Here we demonstrate that interferon gamma (IFN-gamma), a prominent product of CD8(+) cells, causes emphysema with alveolar enlargement, enhanced lung volumes, enhanced pulmonary compliance, and macrophage- and neutrophil-rich inflammation when inducibly targeted, in a transgenic fashion, to the adult murine lung. Prominent protease and antiprotease alterations were also noted in these mice. They included the induction and activation of matrix metalloproteinase (MMP)-12 and cathepsins B, H, D, S, and L, the elaboration of MMP-9, and the selective inhibition of secretory leukocyte proteinase inhibitor. IFN-gamma causes emphysema and alterations in pulmonary protease/antiprotease balance when expressed in pulmonary tissues.
Collapse
Affiliation(s)
- Zhongde Wang
- Department of Internal Medicine, Section of Pulmonary and Critical Care Medicine
| | - Tao Zheng
- Department of Internal Medicine, Section of Pulmonary and Critical Care Medicine
| | - Zhou Zhu
- Department of Internal Medicine, Section of Pulmonary and Critical Care Medicine
| | - Robert J. Homer
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06520
- Pathology and Laboratory Medicine Service, VA Connecticut Health Care System, West Haven, Connecticut 06516
| | | | - Harold A. Chapman
- Cardiovascular Research Institute, University of California at San Francisco School of Medicine, San Francisco, California 94163
| | - Steven D. Shapiro
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Jack A. Elias
- Department of Internal Medicine, Section of Pulmonary and Critical Care Medicine
| |
Collapse
|
28
|
Kikuchi T, Abe T, Yaekashiwa M, Tominaga Y, Mitsuhashi H, Satoh K, Nakamura T, Nukiwa T. Secretory leukoprotease inhibitor augments hepatocyte growth factor production in human lung fibroblasts. Am J Respir Cell Mol Biol 2000; 23:364-70. [PMID: 10970828 DOI: 10.1165/ajrcmb.23.3.3942] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Secretory leukoprotease inhibitor (SLPI), an 11.7-kD nonglycosylated serine protease inhibitor, is produced and released into the fluids of mucosal surfaces including human lung. It comprises two domains with homologous amino acid sequences: the N-terminal domain possessing antibacterial activity, and the C-terminal domain with antiprotease activity. Here we report the positive regulation of hepatocyte growth factor (HGF) production in human lung fibroblasts exerted by SLPI or its C-terminal domain under physiologic concentrations (1 to 10 microM). This HGF production by SLPI was unaffected by the addition of interleukin (IL)-1 receptor antagonist. In contrast, human skin fibroblasts exerted no SLPI-stimulated increase in HGF production, despite the fact that IL-1beta increased HGF production with an intensity similar to that of human lung fibroblasts. Both the time-course and dose-response studies in human lung fibroblasts revealed that the induction of HGF messenger RNA (mRNA) and protein occurred in parallel, indicating that the mechanism existed at the steady-state mRNA level. A synthetic elastase inhibitor failed to induce HGF, but alpha(1)-antitrypsin also stimulated HGF production in lung fibroblasts. Inactivation of the antiprotease activity of SLPI or its C-terminal domain by an oxidizing agent (N-chlorosuccinimide) abolished their stimulatory effect on HGF production. These findings demonstrate that SLPI exerts a novel HGF induction and functions as an anti-inflammatory and regenerative factor in addition to its role in protease inhibition.
Collapse
Affiliation(s)
- T Kikuchi
- Department of Respiratory Oncology and Molecular Medicine, Division of Cancer Control, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Belaaouaj A, Kim KS, Shapiro SD. Degradation of outer membrane protein A in Escherichia coli killing by neutrophil elastase. Science 2000; 289:1185-8. [PMID: 10947984 DOI: 10.1126/science.289.5482.1185] [Citation(s) in RCA: 265] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In determining the mechanism of neutrophil elastase (NE)-mediated killing of Escherichia coli, we found that NE degraded outer membrane protein A (OmpA), localized on the surface of Gram-negative bacteria. NE killed wild-type, but not OmpA-deficient, E. coli. Also, whereas NE-deficient mice had impaired survival in response to E. coli sepsis, as compared to wild-type mice, the presence or absence of NE had no influence on survival in response to sepsis that had been induced with OmpA-deficient E. coli. These findings define a mechanism of nonoxidative bacterial killing by NE and point to OmpA as a bacterial target in host defense.
Collapse
Affiliation(s)
- A Belaaouaj
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
30
|
Simpson KJ, Ranganathan S, Fisher JA, Janssens PA, Shaw DC, Nicholas KR. The gene for a novel member of the whey acidic protein family encodes three four-disulfide core domains and is asynchronously expressed during lactation. J Biol Chem 2000; 275:23074-81. [PMID: 10801834 DOI: 10.1074/jbc.m002161200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Secretion of whey acidic protein (WAP) in milk throughout lactation has previously been reported for a limited number of species, including the mouse, rat, rabbit, camel, and pig. We report here the isolation of WAP from the milk of a marsupial, the tammar wallaby (Macropus eugenii). Tammar WAP (tWAP) was isolated by reverse-phase HPLC and migrates in SDS-polyacrylamide gel electrophoresis at 29.9 kDa. tWAP is the major whey protein, but in contrast to eutherians, secretion is asynchronous and occurs only from approximately days 130 through 240 of lactation. The full-length cDNA codes for a mature protein of 191 amino acids, which is comprised of three four-disulfide core domains, contrasting with the two four-disulfide core domain arrangement in all other known WAPs. A three-dimensional model for tWAP has been constructed and suggests that the three domains have little interaction and could function independently. Analysis of the amino acid sequence suggests the protein belongs to a family of protease inhibitors; however, the predicted active site of these domains is dissimilar to the confirmed active site for known protease inhibitors. This suggests that any putative protease ligand may be unique to either the mammary gland, milk, or gut of the pouch young. Examination of the endocrine regulation of the tWAP gene showed consistently that the gene is prolactin-responsive but that the endocrine requirements for induction and maintenance of tWAP gene expression are different during lactation.
Collapse
Affiliation(s)
- K J Simpson
- Victorian Institute of Animal Science, 475 Mickleham Rd., Attwood, Victoria 3049, Australia.
| | | | | | | | | | | |
Collapse
|
31
|
Wright CD, Havill AM, Middleton SC, Kashem MA, Dripps DJ, Abraham WM, Thomson DS, Burgess LE. Inhibition of allergen-induced pulmonary responses by the selective tryptase inhibitor 1,5-bis-[4-[(3-carbamimidoyl-benzenesulfonylamino)-methyl]-phenoxy]-pen tane (AMG-126737). Biochem Pharmacol 1999; 58:1989-96. [PMID: 10591155 DOI: 10.1016/s0006-2952(99)00304-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Emerging evidence suggests that mast cell tryptase is a therapeutic target for the treatment of asthma. The effects of this serine protease are associated with both pathophysiologic pulmonary responses and pathologic changes of the asthmatic airway. In this study, the tryptase inhibitor 1,5-bis-[4-[(3-carbamimidoyl-benzenesulfonylamino)-methyl]-p henoxy]-pentane (AMG-126737) was evaluated for its pharmacologic effects against allergen-induced airway responses. AMG-126737 is a potent inhibitor of human lung mast cell tryptase (Ki = 90 nM), with greater than 10- to 200-fold selectivity versus other serine proteases. Intratracheal administration of AMG-126737 inhibited the development of airway hyperresponsiveness in allergen-challenged guinea pigs with an ED50 of 0.015 mg/kg. In addition, the compound exhibited oral activity in the guinea pig model. The in vivo activity of AMG-126737 was confirmed in a sheep model of allergen-induced airway responses, where the compound inhibited early and late phase bronchoconstriction responses and the development of airway hyperresponsiveness. These results support the proposed role of tryptase in the pathology of asthma and suggest that AMG-126737 has potential therapeutic utility in this pulmonary disorder.
Collapse
Affiliation(s)
- C D Wright
- Department of Inflammation Research, Amgen, Inc., Boulder, CO 80301, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Zhu J, Nathan C, Ding A. Suppression of macrophage responses to bacterial lipopolysaccharide by a non-secretory form of secretory leukocyte protease inhibitor. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1451:219-23. [PMID: 10556576 DOI: 10.1016/s0167-4889(99)00111-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Expression of secretory leukocyte protease inhibitor (SLPI) suppresses the ability of macrophages to respond to bacterial lipopolysaccharide (LPS). Here, addition of recombinant or native SLPI to the extracellular medium was non-suppressive, while transfection with a non-secretory form of SLPI was fully suppressive, an effect overcome by treatment with interferon-gamma. A portion of the SLPI produced by untransfected macrophages was localized in the cytosol. Thus, SLPI can act intracellularly to block macrophage activation by LPS.
Collapse
Affiliation(s)
- J Zhu
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, USA
| | | | | |
Collapse
|
33
|
Morita M, Arakawa H, Nishimura S. Identification and cloning of a novel isoform of mouse secretory leukocyte protease inhibitor, mSLPI-beta, overexpressed in murine leukemias and a highly liver metastatic tumor, IMC-HA1 cells. ADVANCES IN ENZYME REGULATION 1999; 39:341-55. [PMID: 10470383 DOI: 10.1016/s0065-2571(98)00020-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Several genes showing transcriptional alteration in a highly liver metastatic murine carcinoma cell line, IMC-HA1, were identified by mRNA differential display system. Among them, a gene identical to mSLPI was isolated as mSLPI-alpha and -beta. They were produced through an alternative splicing. Their full-length cDNA sequences were determined, and their expression in various murine tumors and normal tissues was analysed. The deduced translation product of mSLPI-alpha showed 59% identity to hSLPI. Although mSLPI-beta had the same 103-amino-acid sequence from the carboxyl terminus, the amino terminus showed hydrophilicity opposite mSLPI-alpha or hSLPI. The mSLPI-alpha was expressed ubiquitously in various tumor cell lines. Interestingly, however, mSLPI-beta expression was only observed in P388 and L1210 leukemias and IMC-HA1 cells, and in lower amounts in three normal tissues (thymus, lung and spleen), suggesting that mSLPI, and in particular the unusual splicing product, mSLPI-beta, plays a specific role in these cells, including malignant processes of tumor cells.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- DNA Primers/genetics
- DNA, Complementary/genetics
- Female
- Gene Expression
- Leukemia, Experimental/genetics
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/secondary
- Mice
- Mice, Inbred BALB C
- Mice, Inbred DBA
- Molecular Sequence Data
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/secondary
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Proteinase Inhibitory Proteins, Secretory
- Proteins/chemistry
- Proteins/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Serine Proteinase Inhibitors/chemistry
- Serine Proteinase Inhibitors/genetics
- Tissue Distribution
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- M Morita
- Banyu Tsukuba Research Institute, Merck Research Laboratories, Ibaraki, Japan
| | | | | |
Collapse
|
34
|
Song XY, Zeng L, Jin W, Thompson J, Mizel DE, Lei KJ, Billinghurst R, Poole AR, Wahl SM. Secretory leukocyte protease inhibitor suppresses the inflammation and joint damage of bacterial cell wall-induced arthritis. J Exp Med 1999; 190:535-42. [PMID: 10449524 PMCID: PMC2195606 DOI: 10.1084/jem.190.4.535] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/1999] [Accepted: 06/25/1999] [Indexed: 01/22/2023] Open
Abstract
Disruption of the balance between proteases and protease inhibitors is often associated with pathologic tissue destruction. To explore the therapeutic potential of secretory leukocyte protease inhibitor (SLPI) in erosive joint diseases, we cloned, sequenced, and expressed active rat SLPI, which shares the protease-reactive site found in human SLPI. In a rat streptococcal cell wall (SCW)-induced model of inflammatory erosive polyarthritis, endogenous SLPI was unexpectedly upregulated at both mRNA and protein levels in inflamed joint tissues. Systemic delivery of purified recombinant rat SLPI inhibited joint inflammation and cartilage and bone destruction. Inflammatory pathways as reflected by circulating tumor necrosis factor alpha and nuclear factor kappaB activation and cartilage resorption detected by circulating levels of type II collagen collagenase-generated cleavage products were all diminished by SLPI treatment in acute and chronic arthritis, indicating that the action of SLPI may extend beyond inhibition of serine proteases.
Collapse
Affiliation(s)
- Xiao-yu Song
- From the Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4352
| | - Li Zeng
- From the Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4352
| | - Wenwen Jin
- From the Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4352
| | - John Thompson
- From the Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4352
| | - Diane E. Mizel
- From the Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4352
| | - Ke-jian Lei
- From the Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4352
| | - R.C. Billinghurst
- Joint Diseases Laboratory, Shriners Hospitals for Children, Division of Surgical Research, Department of Surgery, McGill University, Montreal, Canada, H3G1A6
| | - A. Robin Poole
- Joint Diseases Laboratory, Shriners Hospitals for Children, Division of Surgical Research, Department of Surgery, McGill University, Montreal, Canada, H3G1A6
| | - Sharon M. Wahl
- From the Oral Infection and Immunity Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892-4352
| |
Collapse
|
35
|
Gipson TS, Bless NM, Shanley TP, Crouch LD, Bleavins MR, Younkin EM, Sarma V, Gibbs DF, Tefera W, McConnell PC, Mueller WT, Johnson KJ, Ward PA. Regulatory Effects of Endogenous Protease Inhibitors in Acute Lung Inflammatory Injury. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.6.3653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
Inflammatory lung injury is probably regulated by the balance between proteases and protease inhibitors together with oxidants and antioxidants, and proinflammatory and anti-inflammatory cytokines. Rat tissue inhibitor of metalloprotease-2 (TIMP-2) and secreted leukoprotease inhibitor (SLPI) were cloned, expressed, and shown to be up-regulated at the levels of mRNA and protein during lung inflammation in rats induced by deposition of IgG immune complexes. Using immunoaffinity techniques, endogenous TIMP-2 in the inflamed lung was shown to exist as a complex with 72- and 92-kDa metalloproteinases (MMP-2 and MMP-9). In inflamed lung both TIMP-2 and SLPI appeared to exist as enzyme inhibitor complexes. Lung expression of both TIMP-2 and SLPI appeared to involve endothelial and epithelial cells as well as macrophages. To assess how these endogenous inhibitors might affect the lung inflammatory response, animals were treated with polyclonal rabbit Abs to rat TIMP-2 or SLPI. This intervention resulted in significant intensification of lung injury (as revealed by extravascular leak of albumin) and substantially increased neutrophil accumulation, as determined by cell content in bronchoalveolar lavage (BAL) fluids. These events were correlated with increased levels of C5a-related chemotactic activity in BAL fluids, while BAL levels of TNF-α and chemokines were not affected by treatment with anti-TIMP-2 or anti-SLPI. The data suggest that endogenous TIMP-2 and SLPI dynamically regulate the intensity of lung inflammatory injury, doing so at least in part by affecting the generation of the inflammatory mediator, C5a.
Collapse
Affiliation(s)
- Teletha S. Gipson
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
- †Pathology and Experimental Toxicology and Biotechnology Department, Parke-Davis Pharmaceutical Research, Warner-Lambert Co., Ann Arbor, MI 48105
| | - Nicolas M. Bless
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Thomas P. Shanley
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Larry D. Crouch
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
- †Pathology and Experimental Toxicology and Biotechnology Department, Parke-Davis Pharmaceutical Research, Warner-Lambert Co., Ann Arbor, MI 48105
| | - Michael R. Bleavins
- †Pathology and Experimental Toxicology and Biotechnology Department, Parke-Davis Pharmaceutical Research, Warner-Lambert Co., Ann Arbor, MI 48105
| | - Ellen M. Younkin
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Vidya Sarma
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Douglas F. Gibbs
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Wongelawit Tefera
- †Pathology and Experimental Toxicology and Biotechnology Department, Parke-Davis Pharmaceutical Research, Warner-Lambert Co., Ann Arbor, MI 48105
| | - Patrick C. McConnell
- †Pathology and Experimental Toxicology and Biotechnology Department, Parke-Davis Pharmaceutical Research, Warner-Lambert Co., Ann Arbor, MI 48105
| | - William T. Mueller
- †Pathology and Experimental Toxicology and Biotechnology Department, Parke-Davis Pharmaceutical Research, Warner-Lambert Co., Ann Arbor, MI 48105
| | - Kent J. Johnson
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| | - Peter A. Ward
- *Department of Pathology, University of Michigan, Ann Arbor, MI 48109; and
| |
Collapse
|
36
|
Wright CD, Kennedy JA, Zitnik RJ, Kashem MA. Inhibition of murine neutrophil serine proteinases by human and murine secretory leukocyte protease inhibitor. Biochem Biophys Res Commun 1999; 254:614-7. [PMID: 9920787 DOI: 10.1006/bbrc.1998.0108] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human secretory leukocyte protease inhibitor (SLPI) is a predominant physiologic inhibitor of elastase and cathepsin G, proinflammatory serine proteases released by activated neutrophils. In order to fully evaluate the potential pharmacologic efficacy of human SLPI in animal models of inflammation, it is critical to know the potency of the inhibitor for corresponding proteases from the species of interest. In this report, we compare the inhibitory activity of human and murine SLPI against elastase and cathepsin G from both species. Human and murine neutrophil elastase and cathepsin G display comparable Km values for their specific peptide substrates. Murine SLPI inhibits murine neutrophil elastase and cathepsin G with Ki values of 5 and 0.12 nM, respectively, while human SLPI inhibits the both murine serine proteases with Ki's of 0.02 nM. In contrast, murine SLPI inhibits human neutrophil elastase and cathepsin G with Ki values of 1.4 and 90 nM, respectively, while human SLPI inhibits the proteases with Ki's of 0.3 and 10 nM, respectively. These results demonstrate species-specific variations in the protease inhibitory activities of SLPI. Such variations should be considered in the evaluation of the activity of human SLPI in murine pharmacologic models.
Collapse
Affiliation(s)
- C D Wright
- Amgen, Inc., Boulder, Colorado, 80301, USA
| | | | | | | |
Collapse
|
37
|
Barrios VE, Middleton SC, Kashem MA, Havill AM, Toombs CF, Wright CD. Tryptase mediates hyperresponsiveness in isolated guinea pig bronchi. Life Sci 1999; 63:2295-303. [PMID: 9877219 DOI: 10.1016/s0024-3205(98)00518-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Hyperresponsiveness of airway smooth muscle to allergens and environmental factors has long been associated with the pathophysiology of asthma. Tryptase, a serine protease of lung mast cells, has been implicated as one of the mediators involved in the induction of hyperresponsiveness. As a consequence, tryptase inhibitors have become the subject of study as potential novel therapeutic agents for asthma. Secretory leukocyte protease inhibitor (SLPI) is a naturally occurring protein of human airways which exhibits anti-tryptase activity. To assess the potential therapeutic utility of SLPI in asthma, its effects were evaluated using in vitro and ex vivo models of airway hyperresponsiveness and compared with the effects of the small molecule tryptase inhibitor APC-366. Our results demonstrate that SLPI inhibits tryptase-mediated hyperresponsiveness in vitro and attenuates the hyperresponsiveness observed in airway smooth muscle from antigen-sensitized animals subjected to antigen exposure. The small molecule tryptase inhibitor APC-366 has a similar inhibitory effect. Thus, tryptase appears to be a significant contributor to the development of hyperresponsiveness in these models. To the extent that tryptase contributes to the development and progression of asthma, SLPI may possess therapeutic potential in this disease setting.
Collapse
Affiliation(s)
- V E Barrios
- Department of Pharmacology, Amgen, Inc., Thousand Oaks, CA 91320, USA
| | | | | | | | | | | |
Collapse
|
38
|
Kikuchi T, Abe T, Hoshi S, Matsubara N, Tominaga Y, Satoh K, Nukiwa T. Structure of the murine secretory leukoprotease inhibitor (Slpi) gene and chromosomal localization of the human and murine SLPI genes. Am J Respir Cell Mol Biol 1998; 19:875-80. [PMID: 9843921 DOI: 10.1165/ajrcmb.19.6.3314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Secretory leukoprotease inhibitor (SLPI) is a serine protease inhibitor involved in antineutrophil elastase protection at inflammatory sites. To elucidate both the function and regulation of SLPI in vivo, we isolated and characterized the mouse Slpi gene. An entire 3-kb mouse Slpi gene fragment was sequenced, including an 0. 8-kb 5'-flanking region, the 2.2-kb Slpi gene, and a 0.1-kb 3'-flanking region. The mouse Slpi gene spans 2,222 base pairs containing four exons and three introns. All splicing borders between exons and introns are conserved as predicted by GT-AG rules. Using primer extension analysis, the transcription start site was located 20 nucleotides upstream from the methionine (ATG) initiation codon. At the defined transcription start site, the sequence TCA+1GAGC is present. These results indicate that both mouse and human genomic structure are highly conserved. Using fluorescence in situ hybridization, we confirmed that, consistent with the genomic similarity, the human SLPI gene is localized on chromosome 20q12-13. 2 and the mouse homologue on chromosome 2H, which are syntenic with each other.
Collapse
Affiliation(s)
- T Kikuchi
- Department of Respiratory Oncology and Molecular Medicine, Division of Cancer Control, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Jin F, Nathan C, Ding A. Identification of genes involved in innate responsiveness to bacterial products by differential display. Methods 1998; 16:396-406. [PMID: 10049647 DOI: 10.1006/meth.1998.0694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To explore gene regulation by bacterial lipopolysaccharide (LPS), we compared mRNA profiles of macrophage cell lines from two strains of mice congenic for a locus markedly affecting their ability to respond to LPS. Differential display detected four differentially expressed transcripts. One transcript encoded the mouse homolog of human secretory leukocyte protease inhibitor (SLPI), which was expressed by LPS-hyporesponsive macrophage cells (Lps(d)) but not by LPS-normoresponsive cells (Lps(n)). Among five macrophage cell lines, secretion of SLPI was inversely correlated with ability to produce nitric oxide (NO) and tumor necrosis factor alpha in response to LPS. Stable transfection of LPS-responsive macrophages with SLPI suppressed LPS-induced responses. Interferon-gamma (IFN-gamma), which corrects the defective LPS response in Lps(d) macrophages, suppressed the LPS-induced expression of SLPI and restored LPS response to SLPI-overexpressing macrophages. Besides its role as a LPS response inhibitor, mouse SLPI is also a lipoteichoic acid response inhibitor. The expression of SLPI was strongly enhanced by interleukin-10 and -6. SLPI may be an important antiinflammatory molecule in host defense against gram-negative and gram-positive bacteria.
Collapse
Affiliation(s)
- F Jin
- Beatrice and Sammuel A Seaver Laboratory, Department of Medicine, Weill Medical College of Cornell University, New York, New York 10021, USA
| | | | | |
Collapse
|
40
|
Jin F, Nathan CF, Radzioch D, Ding A. Lipopolysaccharide-related stimuli induce expression of the secretory leukocyte protease inhibitor, a macrophage-derived lipopolysaccharide inhibitor. Infect Immun 1998; 66:2447-52. [PMID: 9596701 PMCID: PMC108223 DOI: 10.1128/iai.66.6.2447-2452.1998] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mouse secretory leukocyte protease inhibitor (SLPI) was recently characterized as a lipopolysaccharide (LPS)-induced product of macrophages that antagonizes their LPS-induced activation of NF-kappaB and production of NO and tumor necrosis factor (TNF) (F. Y. Jin, C. Nathan, D. Radzioch, and A. Ding, Cell 88:417-426, 1997). To better understand the role of SLPI in innate immune and inflammatory responses, we examined the kinetics of SLPI expression in response to LPS, LPS-induced cytokines, and LPS-mimetic compounds. SLPI mRNA was detectable in macrophages by Northern blot analysis within 30 min of exposure to LPS but levels peaked only at 24 to 36 h and remained elevated at 72 h. Despite the slowly mounting and prolonged response, early expression of SLPI mRNA was cycloheximide resistant. Two LPS-induced proteins-interleukin-10 (IL-10) and IL-6-also induced SLPI, while TNF and IL-1beta did not. The slow attainment of maximal induction of SLPI by LPS in vitro was mimicked by infection with Pseudomonas aeruginosa in vivo, where SLPI expression in the lung peaked at 3 days. Two LPS-mimetic molecules-taxol from yew bark and lipoteichoic acid (LTA) from gram-positive bacterial cell walls-also induced SLPI. Transfection of macrophages with SLPI inhibited their LTA-induced NO production. An anti-inflammatory role for macrophage-derived SLPI seems likely based on SLPI's slowly mounting production in response to constituents of gram-negative and gram-positive bacteria, its induction both as a direct response to LPS and as a response to anti-inflammatory cytokines induced by LPS, and its ability to suppress the production of proinflammatory products by macrophages stimulated with constituents of both gram-positive and gram-negative bacteria.
Collapse
Affiliation(s)
- F Jin
- Beatrice and Samuel A. Seaver Laboratory, Department of Medicine, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
41
|
Fath MA, Wu X, Hileman RE, Linhardt RJ, Kashem MA, Nelson RM, Wright CD, Abraham WM. Interaction of secretory leukocyte protease inhibitor with heparin inhibits proteases involved in asthma. J Biol Chem 1998; 273:13563-9. [PMID: 9593692 DOI: 10.1074/jbc.273.22.13563] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protease inhibition by secretory leukocyte protease inhibitor (SLPI) is accelerated by the sulfated polysaccharides. The nature of the SLPI-polysaccharide interaction, explored with affinity chromatography, indicated that this interaction was sensitive to the charge and type of polysaccharide. Dextran and chondroitin had the lowest affinity for SLPI, followed by dermatan, heparan, and dextran sulfates. While heparin bound SLPI tightly, the highest affinity heparin chains unexpectedly contained a lower level of sulfation than more weakly interacting chains. Heparin oligosaccharides, prepared using heparin lyase I were SLPI-affinity fractionated. Surprisingly, undersulfated heparin oligosaccharides bound SLPI with the highest affinity, suggesting the importance of free hydroxyl groups for high affinity interaction. Isothermal titration calorimetry was used to determine the thermodynamics of SLPI interaction with a low molecular weight heparin, an undersulfated decasaccharide and a tetrasaccharide. The studies showed 12-14 saccharide units, corresponding to molecular weight of approximately 4,800, were required for a 1:1 (SLPI:heparin) binding stoichiometry. Furthermore, an undersulfated decasaccharide was able to bind SLPI tightly (Kd approximately 13 nM), resulting in its activation and the inhibition of neutrophil elastase and pancreatic chymotrypsin. The in vitro assessment of heparin and the decasaccharide and tetrasaccharide using stopped-flow kinetics suggested that heparin was the optimal choice to study SLPI-based in vivo protease inhibition. SLPI and heparin were co-administered by inhalation in therapy against antigen-induced airway hyperresponsiveness in a sheep bronchoprovocation model. Heparin, in combination with SLPI demonstrated in vivo efficacy reducing early and late phase bronchoconstriction. Heparin also increased the therapeutic activity of SLPI against antigen-induced airway hyperresponsiveness.
Collapse
Affiliation(s)
- M A Fath
- Division of Medicinal and Natural Products Chemistry, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|