1
|
Ocket E, Matthaeus C. Insights in caveolae protein structure arrangements and their local lipid environment. Biol Chem 2024; 0:hsz-2024-0046. [PMID: 38970809 DOI: 10.1515/hsz-2024-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/19/2024] [Indexed: 07/08/2024]
Abstract
Caveolae are 50-80 nm sized plasma membrane invaginations found in adipocytes, endothelial cells or fibroblasts. They are involved in endocytosis, lipid uptake and the regulation of the cellular lipid metabolism as well as sensing and adapting to changes in plasma membrane tension. Caveolae are characterized by their unique lipid composition and their specific protein coat consisting of caveolin and cavin proteins. Recently, detailed structural information was obtained for the major caveolae protein caveolin1 showing the formation of a disc-like 11-mer protein complex. Furthermore, the importance of the cavin disordered regions in the generation of cavin trimers and caveolae at the plasma membrane were revealed. Thus, finally, structural insights about the assembly of the caveolar coat can be elucidated. Here, we review recent developments in caveolae structural biology with regard to caveolae coat formation and caveolae curvature generation. Secondly, we discuss the importance of specific lipid species necessary for caveolae curvature and formation. In the last years, it was shown that specifically sphingolipids, cholesterol and fatty acids can accumulate in caveolae invaginations and may drive caveolae endocytosis. Throughout, we summarize recent studies in the field and highlight future research directions.
Collapse
Affiliation(s)
- Esther Ocket
- Institute of Nutritional Science, Cellular Physiology of Nutrition, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 29, Room 0.08, D-14476 Potsdam, Germany
| | - Claudia Matthaeus
- Institute of Nutritional Science, Cellular Physiology of Nutrition, University of Potsdam, Karl-Liebknecht-Str. 24/25, Building 29, Room 0.08, D-14476 Potsdam, Germany
| |
Collapse
|
2
|
Glatz JFC, Heather LC, Luiken JJFP. CD36 as a gatekeeper of myocardial lipid metabolism and therapeutic target for metabolic disease. Physiol Rev 2024; 104:727-764. [PMID: 37882731 DOI: 10.1152/physrev.00011.2023] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 10/27/2023] Open
Abstract
The multifunctional membrane glycoprotein CD36 is expressed in different types of cells and plays a key regulatory role in cellular lipid metabolism, especially in cardiac muscle. CD36 facilitates the cellular uptake of long-chain fatty acids, mediates lipid signaling, and regulates storage and oxidation of lipids in various tissues with active lipid metabolism. CD36 deficiency leads to marked impairments in peripheral lipid metabolism, which consequently impact on the cellular utilization of multiple different fuels because of the integrated nature of metabolism. The functional presence of CD36 at the plasma membrane is regulated by its reversible subcellular recycling from and to endosomes and is under the control of mechanical, hormonal, and nutritional factors. Aberrations in this dynamic role of CD36 are causally associated with various metabolic diseases, in particular insulin resistance, diabetic cardiomyopathy, and cardiac hypertrophy. Recent research in cardiac muscle has disclosed the endosomal proton pump vacuolar-type H+-ATPase (v-ATPase) as a key enzyme regulating subcellular CD36 recycling and being the site of interaction between various substrates to determine cellular substrate preference. In addition, evidence is accumulating that interventions targeting CD36 directly or modulating its subcellular recycling are effective for the treatment of metabolic diseases. In conclusion, subcellular CD36 localization is the major adaptive regulator of cellular uptake and metabolism of long-chain fatty acids and appears a suitable target for metabolic modulation therapy to mend failing hearts.
Collapse
Affiliation(s)
- Jan F C Glatz
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Lisa C Heather
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, United Kingdom
| | - Joost J F P Luiken
- Department of Genetics & Cell Biology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
3
|
Li Y, Zhang Y, Deng Q, Mao J, Jia Z, Tang M, Zhang Y, Zhao J, Chen J, Wang Y, Feng Z, Wang X, Du L. Resveratrol reverses Palmitic Acid-induced cow neutrophils apoptosis through shifting glucose metabolism into lipid metabolism via Cav-1/ CPT 1-mediated FAO enhancement. J Steroid Biochem Mol Biol 2023; 233:106363. [PMID: 37454955 DOI: 10.1016/j.jsbmb.2023.106363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/16/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Elevated plasma nonesterified fatty acids (NEFAs) affect neutrophils function and longevity during the periparturient period in dairy cows. Previous research has shown that resveratrol (RSV) may protect cell viability from NEFA-induced damage by regulating energy metabolism. However, it is unclear whether RSV has a protective effect on palmitic acid (PA)-treated neutrophils. The aim of this study was to investigate the molecular regulatory mechanism of the protective effect of RSV on neutrophils. The results showed that treatment with high concentrations of RSV (50 μM, 100 μM) maintained neutrophils activity by inhibiting neutrophils apoptosis (P < 0.05). Further analysis showed that high concentrations of RSV enhanced fatty acid oxidation (FAO) to produce ATP by promoting the expression of CAV1, ACSL-1 and CPT1 (P < 0. 05) while inhibiting glycolysis by suppressing PFK1 activity (P < 0. 05) and reducing glucose transport-related protein (GLUT1/GLUT4) expression by inhibiting glucose uptake (P < 0.05). These results suggest that RSV protects neutrophils from PA-induced apoptosis by regulating energy metabolism. Our results revealed that RSV protects neutrophils from PA-induced apoptosis by shifting glucose metabolism to lipid metabolism. This study tenders to a meaningful understanding of the effects of RSV on neutrophils function in periparturient cows suffering from negative energy balance (NEB).
Collapse
Affiliation(s)
- Yansong Li
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Yuming Zhang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China; Inner Mongolia MINZU University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Qinghua Deng
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China; Inner Mongolia MINZU University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Jingdong Mao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Zhenwei Jia
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Mingyu Tang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Yue Zhang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Junkang Zhao
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Jiaojiao Chen
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Yiru Wang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Ziying Feng
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Xinbo Wang
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China
| | - Liyin Du
- College of Animal Science and Technology, Inner Mongolia MINZU University, Tongliao 028000, Inner Mongolia Autonomous Region, China; Inner Mongolia MINZU University Key Laboratory for Prevention and Control of Herbivorous Livestock Perinatal Diseases, Tongliao 028000, Inner Mongolia Autonomous Region, China.
| |
Collapse
|
4
|
Aguilar-Valdés A, González-Vela F, Sánchez-Vidal H, Martínez-Aguilar J. A proteomic signature and potential pharmacological opportunities in the adaptive resistance to MEK and PI3K kinase inhibition in pancreatic cancer cells. Proteomics 2023; 23:e2300041. [PMID: 37140101 DOI: 10.1002/pmic.202300041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/23/2023] [Accepted: 04/18/2023] [Indexed: 05/05/2023]
Abstract
Pancreatic cancer is one of the most lethal cancer types and is becoming a leading cause of cancer-related deaths. The limited benefit offered by chemotherapy agents has propelled the search for alternative approaches that target specific molecular drivers of cancer growth and progression. Mutant KRas and effector pathways Raf/MEK/ERK and PI3K/Akt are key players in pancreatic cancer; however, preclinical studies have shown adaptive tumour response to combined MEK and PI3K kinase inhibition leading to treatment resistance. There is a critical unmet need to decipher the molecular basis underlying adaptation to this targeted approach. Here, we aimed to identify common protein expression alterations associated with adaptive resistance in KRas-mutant pancreatic cancer cells, and test if it can be overcome by selected already available small molecule drugs. We found a group of 14 proteins with common expression change in resistant cells, including KRas, caveolin-1, filamin-a, eplin, IGF2R and cytokeratins CK-8, -18 and -19. Notably, several proteins have previously been observed in pancreatic cancer cells with intrinsic resistance to the combined kinase inhibition treatment, suggesting a proteomic signature. We also found that resistant cells are sensitive to small molecule drugs ERK inhibitor GDC-0994, S6K1 inhibitor DG2 and statins.
Collapse
Affiliation(s)
- Alain Aguilar-Valdés
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Francisco González-Vela
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Hilda Sánchez-Vidal
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Juan Martínez-Aguilar
- Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Peche VS, Pietka TA, Jacome-Sosa M, Samovski D, Palacios H, Chatterjee-Basu G, Dudley AC, Beatty W, Meyer GA, Goldberg IJ, Abumrad NA. Endothelial cell CD36 regulates membrane ceramide formation, exosome fatty acid transfer and circulating fatty acid levels. Nat Commun 2023; 14:4029. [PMID: 37419919 PMCID: PMC10329018 DOI: 10.1038/s41467-023-39752-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/28/2023] [Indexed: 07/09/2023] Open
Abstract
Endothelial cell (EC) CD36 controls tissue fatty acid (FA) uptake. Here we examine how ECs transfer FAs. FA interaction with apical membrane CD36 induces Src phosphorylation of caveolin-1 tyrosine-14 (Cav-1Y14) and ceramide generation in caveolae. Ensuing fission of caveolae yields vesicles containing FAs, CD36 and ceramide that are secreted basolaterally as small (80-100 nm) exosome-like extracellular vesicles (sEVs). We visualize in transwells EC transfer of FAs in sEVs to underlying myotubes. In mice with EC-expression of the exosome marker emeraldGFP-CD63, muscle fibers accumulate circulating FAs in emGFP-labeled puncta. The FA-sEV pathway is mapped through its suppression by CD36 depletion, blocking actin-remodeling, Src inhibition, Cav-1Y14 mutation, and neutral sphingomyelinase 2 inhibition. Suppression of sEV formation in mice reduces muscle FA uptake, raises circulating FAs, which remain in blood vessels, and lowers glucose, mimicking prominent Cd36-/- mice phenotypes. The findings show that FA uptake influences membrane ceramide, endocytosis, and EC communication with parenchymal cells.
Collapse
Affiliation(s)
- V S Peche
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - T A Pietka
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - M Jacome-Sosa
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - D Samovski
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - H Palacios
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G Chatterjee-Basu
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - A C Dudley
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, 22908, USA
| | - W Beatty
- Department of Microbiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - G A Meyer
- Departments of Physical Therapy, Neurology and Orthopedic Surgery, Washington University School of Medicine, St. Louis, 63110, USA
| | - I J Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - N A Abumrad
- Department of Medicine, Division of Nutritional Sciences, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Ceci L, Han Y, Krutsinger K, Baiocchi L, Wu N, Kundu D, Kyritsi K, Zhou T, Gaudio E, Francis H, Alpini G, Kennedy L. Gallstone and Gallbladder Disease: Biliary Tract and Cholangiopathies. Compr Physiol 2023; 13:4909-4943. [PMID: 37358507 DOI: 10.1002/cphy.c220028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Cholestatic liver diseases are named primarily due to the blockage of bile flow and buildup of bile acids in the liver. Cholestasis can occur in cholangiopathies, fatty liver diseases, and during COVID-19 infection. Most literature evaluates damage occurring to the intrahepatic biliary tree during cholestasis; however, there may be associations between liver damage and gallbladder damage. Gallbladder damage can manifest as acute or chronic inflammation, perforation, polyps, cancer, and most commonly gallstones. Considering the gallbladder is an extension of the intrahepatic biliary network, and both tissues are lined by biliary epithelial cells that share common mechanisms and properties, it is worth further evaluation to understand the association between bile duct and gallbladder damage. In this comprehensive article, we discuss background information of the biliary tree and gallbladder, from function, damage, and therapeutic approaches. We then discuss published findings that identify gallbladder disorders in various liver diseases. Lastly, we provide the clinical aspect of gallbladder disorders in liver diseases and ways to enhance diagnostic and therapeutic approaches for congruent diagnosis. © 2023 American Physiological Society. Compr Physiol 13:4909-4943, 2023.
Collapse
Affiliation(s)
- Ludovica Ceci
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Yuyan Han
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | - Kelsey Krutsinger
- School of Biological Sciences, University of Northern Colorado, Greeley, Colorado, USA
| | | | - Nan Wu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Konstantina Kyritsi
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tianhao Zhou
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana, USA
| |
Collapse
|
7
|
Samovski D, Jacome-Sosa M, Abumrad NA. Fatty Acid Transport and Signaling: Mechanisms and Physiological Implications. Annu Rev Physiol 2023; 85:317-337. [PMID: 36347219 DOI: 10.1146/annurev-physiol-032122-030352] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-chain fatty acids (FAs) are components of plasma membranes and an efficient fuel source and also serve as metabolic regulators through FA signaling mediated by membrane FA receptors. Impaired tissue FA uptake has been linked to major complications of obesity, including insulin resistance, cardiovascular disease, and type 2 diabetes. Fatty acid interactions with a membrane receptor and the initiation of signaling can modify pathways related to nutrient uptake and processing, cell proliferation or differentiation, and secretion of bioactive factors. Here, we review the major membrane receptors involved in FA uptake and FA signaling. We focus on two types of membrane receptors for long-chain FAs: CD36 and the G protein-coupled FA receptors FFAR1 and FFAR4. We describe key signaling pathways and metabolic outcomes for CD36, FFAR1, and FFAR4 and highlight the parallels that provide insight into FA regulation of cell function.
Collapse
Affiliation(s)
- Dmitri Samovski
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Miriam Jacome-Sosa
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Li X, Liu Q, Pan Y, Chen S, Zhao Y, Hu Y. New insights into the role of dietary triglyceride absorption in obesity and metabolic diseases. Front Pharmacol 2023; 14:1097835. [PMID: 36817150 PMCID: PMC9932209 DOI: 10.3389/fphar.2023.1097835] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
The incidence of obesity and associated metabolic diseases is increasing globally, adversely affecting human health. Dietary fats, especially triglycerides, are an important source of energy for the body, and the intestine absorbs lipids through a series of orderly and complex steps. A long-term high-fat diet leads to intestinal dysfunction, inducing obesity and metabolic disorders. Therefore, regulating dietary triglycerides absorption is a promising therapeutic strategy. In this review, we will discuss diverse aspects of the dietary triglycerides hydrolysis, fatty acid uptake, triglycerides resynthesis, chylomicron assembly, trafficking, and secretion processes in intestinal epithelial cells, as well as potential targets in this process that may influence dietary fat-induced obesity and metabolic diseases. We also mention the possible shortcomings and deficiencies in modulating dietary lipid absorption targets to provide a better understanding of their administrability as drugs in obesity and related metabolic disorders.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiaohong Liu
- Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Pan
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Si Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Zhao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,Institute of Clinical Pharmacology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China,*Correspondence: Yu Zhao, ; Yiyang Hu,
| |
Collapse
|
9
|
Poudyal NR, Paul KS. Fatty acid uptake in Trypanosoma brucei: Host resources and possible mechanisms. Front Cell Infect Microbiol 2022; 12:949409. [PMID: 36478671 PMCID: PMC9719944 DOI: 10.3389/fcimb.2022.949409] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei spp. causes African Sleeping Sickness in humans and nagana, a wasting disease, in cattle. As T. brucei goes through its life cycle in its mammalian and insect vector hosts, it is exposed to distinct environments that differ in their nutrient resources. One such nutrient resource is fatty acids, which T. brucei uses to build complex lipids or as a potential carbon source for oxidative metabolism. Of note, fatty acids are the membrane anchoring moiety of the glycosylphosphatidylinositol (GPI)-anchors of the major surface proteins, Variant Surface Glycoprotein (VSG) and the Procyclins, which are implicated in parasite survival in the host. While T. brucei can synthesize fatty acids de novo, it also readily acquires fatty acids from its surroundings. The relative contribution of parasite-derived vs. host-derived fatty acids to T. brucei growth and survival is not known, nor have the molecular mechanisms of fatty acid uptake been defined. To facilitate experimental inquiry into these important aspects of T. brucei biology, we addressed two questions in this review: (1) What is known about the availability of fatty acids in different host tissues where T. brucei can live? (2) What is known about the molecular mechanisms mediating fatty acid uptake in T. brucei? Finally, based on existing biochemical and genomic data, we suggest a model for T. brucei fatty acid uptake that proposes two major routes of fatty acid uptake: diffusion across membranes followed by intracellular trapping, and endocytosis of host lipoproteins.
Collapse
Affiliation(s)
- Nava Raj Poudyal
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| | - Kimberly S. Paul
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
- Eukaryotic Pathogens Innovation Center (EPIC), Clemson University, Clemson, SC, United States
| |
Collapse
|
10
|
Enyong EN, Gurley JM, De Ieso ML, Stamer WD, Elliott MH. Caveolar and non-Caveolar Caveolin-1 in ocular homeostasis and disease. Prog Retin Eye Res 2022; 91:101094. [PMID: 35729002 PMCID: PMC9669151 DOI: 10.1016/j.preteyeres.2022.101094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/03/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022]
Abstract
Caveolae, specialized plasma membrane invaginations present in most cell types, play important roles in multiple cellular processes including cell signaling, lipid uptake and metabolism, endocytosis and mechanotransduction. They are found in almost all cell types but most abundant in endothelial cells, adipocytes and fibroblasts. Caveolin-1 (Cav1), the signature structural protein of caveolae was the first protein associated with caveolae, and in association with Cavin1/PTRF is required for caveolae formation. Genetic ablation of either Cav1 or Cavin1/PTRF downregulates expression of the other resulting in loss of caveolae. Studies using Cav1-deficient mouse models have implicated caveolae with human diseases such as cardiomyopathies, lipodystrophies, diabetes and muscular dystrophies. While caveolins and caveolae are extensively studied in extra-ocular settings, their contributions to ocular function and disease pathogenesis are just beginning to be appreciated. Several putative caveolin/caveolae functions are relevant to the eye and Cav1 is highly expressed in retinal vascular and choroidal endothelium, Müller glia, the retinal pigment epithelium (RPE), and the Schlemm's canal endothelium and trabecular meshwork cells. Variants at the CAV1/2 gene locus are associated with risk of primary open angle glaucoma and the high risk HTRA1 variant for age-related macular degeneration is thought to exert its effect through regulation of Cav1 expression. Caveolins also play important roles in modulating retinal neuroinflammation and blood retinal barrier permeability. In this article, we describe the current state of caveolin/caveolae research in the context of ocular function and pathophysiology. Finally, we discuss new evidence showing that retinal Cav1 exists and functions outside caveolae.
Collapse
Affiliation(s)
- Eric N Enyong
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jami M Gurley
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael L De Ieso
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - W Daniel Stamer
- Department of Ophthalmology, Duke Eye Center, Duke University, Durham, NC, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, Dean A. McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
11
|
Roles of IκB kinases and TANK-binding kinase 1 in hepatic lipid metabolism and nonalcoholic fatty liver disease. Exp Mol Med 2021; 53:1697-1705. [PMID: 34848839 PMCID: PMC8639992 DOI: 10.1038/s12276-021-00712-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease and is strongly associated with obesity-related ectopic fat accumulation in the liver. Hepatic lipid accumulation encompasses a histological spectrum ranging from simple steatosis to nonalcoholic steatohepatitis (NASH), which can progress to cirrhosis and hepatocellular carcinoma. Given that dysregulated hepatic lipid metabolism may be an onset factor in NAFLD, understanding how hepatic lipid metabolism is modulated in healthy subjects and which steps are dysregulated in NAFLD subjects is crucial to identify effective therapeutic targets. Additionally, hepatic inflammation is involved in chronic hepatocyte damage during NAFLD progression. As a key immune signaling hub that mediates NF-κB activation, the IκB kinase (IKK) complex, including IKKα, IKKβ, and IKKγ (NEMO), has been studied as a crucial regulator of the hepatic inflammatory response and hepatocyte survival. Notably, TANK-binding kinase 1 (TBK1), an IKK-related kinase, has recently been revealed as a potential link between hepatic inflammation and energy metabolism. Here, we review (1) the biochemical steps of hepatic lipid metabolism; (2) dysregulated lipid metabolism in obesity and NAFLD; and (3) the roles of IKKs and TBK1 in obesity and NAFLD.
Collapse
|
12
|
Montana V, Flint D, Waagepetersen HS, Schousboe A, Parpura V. Two Metabolic Fuels, Glucose and Lactate, Differentially Modulate Exocytotic Glutamate Release from Cultured Astrocytes. Neurochem Res 2021; 46:2551-2579. [PMID: 34057673 PMCID: PMC9015689 DOI: 10.1007/s11064-021-03340-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022]
Abstract
Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis. Astrocytes synthesize glutamate de novo owing to the pyruvate entry to the citric/tricarboxylic acid cycle via pyruvate carboxylase, an astrocyte specific enzyme. Pyruvate can be sourced from two metabolic fuels, glucose and lactate. Thus, we investigated the role of these energy/carbon sources in exocytotic glutamate release from astrocytes. Purified astrocyte cultures were acutely incubated (1 h) in glucose and/or lactate-containing media. Astrocytes were mechanically stimulated, a procedure known to increase intracellular Ca2+ levels and cause exocytotic glutamate release, the dynamics of which were monitored using single cell fluorescence microscopy. Our data indicate that glucose, either taken-up from the extracellular space or mobilized from the intracellular glycogen storage, sustained glutamate release, while the availability of lactate significantly reduced the release of glutamate from astrocytes. Based on further pharmacological manipulation during imaging along with tandem mass spectrometry (proteomics) analysis, lactate alone, but not in the hybrid fuel, caused metabolic changes consistent with an increased synthesis of fatty acids. Proteomics analysis further unveiled complex changes in protein profiles, which were condition-dependent and generally included changes in levels of cytoskeletal proteins, proteins of secretory organelle/vesicle traffic and recycling at the plasma membrane in aglycemic, lactate or hybrid-fueled astrocytes. These findings support the notion that the availability of energy sources and metabolic milieu play a significant role in gliotransmission.
Collapse
Affiliation(s)
- Vedrana Montana
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| | - Daniel Flint
- Luxumbra Strategic Research, LLC, Arlington, VA, USA
| | - Helle S Waagepetersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Vladimir Parpura
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
13
|
Khatibi N, Mirzababaei A, Shiraseb F, Abaj F, Koohdani F, Mirzaei K. Interactions between caveolin 1 polymorphism and the Mediterranean and Mediterranean-DASH Intervention for Neurodegenerative Delay diet (MIND) diet on metabolic dyslipidemia in overweight and obese adult women: a cross-sectional study. BMC Res Notes 2021; 14:364. [PMID: 34544501 PMCID: PMC8454002 DOI: 10.1186/s13104-021-05777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 09/07/2021] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE The increased prevalence of metabolic dyslipidemia (MD) and its association with a variety of disorders raised a lot of attention to its management. Caveolin 1 (CAV1) the key protein in the caval structure of plasma membranes is many cell types that play an important role in its function. (CAV1) is a known gene associated with obesity. Today, a novel diet recognized as the Mediterranean and Mediterranean-DASH Intervention for Neurodegenerative Delay diet (MIND) is reported to have a positive effect on overall health. Hence, we aimed to investigate the interactions between CAV1 polymorphism and MIND diet on the MD in overweight and obese patients. RESULTS Remarkably, there was a significant interaction between the MIND diet and CAV1 rs3807992 for dyslipidemia (β = - 0.25 ± 132, P = 0.05) in the crude model. Whereby, subjects with dominant alleles had a lower risk of dyslipidemia and risk allele carriers with higher adherence to the MIND diet may exhibit the lower dyslipidemia. This study presented the CAV1 gene as a possible genetic marker in recognizing people at higher risks for metabolic diseases. It also indicated that using the MIND diet may help in improving dyslipidemia through providing a probable interaction with CAV1 rs3807992 polymorphism.
Collapse
Affiliation(s)
- Nasim Khatibi
- Shahid Sadoughi University of Medical Science, Yazd, Iran
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran
| | - Fariba Koohdani
- Department of Cellular, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Molecular Nutrition, Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), P.O. Box: 14155-6117, Tehran, Iran.
| |
Collapse
|
14
|
Mirzababaei A, Shiraseb F, Abaj F, Khosroshahi RA, Tavakoli A, Koohdani F, Clark CCT, Mirzaei K. The effect of dietary total antioxidant capacity (DTAC) and Caveolin-1 gene variant interaction on cardiovascular risk factors among overweight and obese women: A cross-sectional investigation. Clin Nutr 2021; 40:4893-4903. [PMID: 34358834 DOI: 10.1016/j.clnu.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 06/26/2021] [Accepted: 07/06/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Previous studies have shown that the Caveolin-1 (CAV-1) gene variant may be associated with Cardiovascular disease (CVD) risk. Moreover, dietary total antioxidant capacity (DTAC) has been shown to potentially elicit favorable effects on CVD risk. Therefore, this study sought to investigate the effect of DTAC and CAV-1 interaction on CVD risk factors. METHODS This cross-sectional study consisted of 352 women, with overweight and/or obesity, aged 18-48years from Iran. A food frequency questionnaire (FFQ), with 147 items, was used to assess dietary intake. The CAV-1 rs 3807992 and anthropometric data were measured by the PCR-RFLP method and bioelectrical impedance analysis (BIA), respectively. Serum profiles were measured by standard protocols. Participants were also divided into two groups based on DTAC score and rs3807992 genotype. RESULTS The mean age of the participants was 37.34 ± 9.11 and 36.01 ± 9.12 years for homozygous (GG) and minor allele carriers (AG + AA) respectively.The mean ± SD of insulin, total cholesterol (TC),high-density lipoprotein (HDL), low-density lipoprotein (LDL) and TG of participants were 1.21 ± 0.23, 185.3 ± 35.77, 46.58 ± 10.86, 95.3 ± 24.12 and 118.1 ± 58.88, respectively. There was a significant difference between genotypes for physical activity (P = 0.05), HDL (P < 0.001), insulin (P = 0.04), CRI-I (TC/HDL-C) (P = 0.01), and CRI-II (LDL-C/HDL-C) (P = 0.04). Our findings also showed, after controlling for confounding factors, significant interactions between DTAC score and the A allele carrier group on TC (Pinteraction = 0.001), LDL (Pinteraction = 0.001), insulin (Pinteraction = 0.08), HOMA-IR (Pinteraction = 0.03), AC ((TC - HDL - C)/HDL - C) (Pinteraction = 0.001), and CHOLINDEX (LDL-C-HDL-C) (Pinteraction = 0.02). CONCLUSION The results of the present study indicate that high DTAC intake may modify the odds of risk factors for CVD in AA and AG genotypes of rs 3807992. These results highlight that diet, gene variants, and their interaction, should be considered in CVD risk assessment.
Collapse
Affiliation(s)
- Atieh Mirzababaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farideh Shiraseb
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Reza Amiri Khosroshahi
- Department of Clinical Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Atefeh Tavakoli
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fariba Koohdani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Cain C T Clark
- Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran.
| |
Collapse
|
15
|
Abaj F, Koohdani F, Rafiee M, Alvandi E, Yekaninejad MS, Mirzaei K. Interactions between Caveolin-1 (rs3807992) polymorphism and major dietary patterns on cardio-metabolic risk factors among obese and overweight women. BMC Endocr Disord 2021; 21:138. [PMID: 34210318 PMCID: PMC8247154 DOI: 10.1186/s12902-021-00800-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 06/19/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Caveolin-1 (CAV-1) is a cholesterol-dependent essential component located in caveolae. Several studies have been CAV-1 related to cardio-metabolic parameters in animal models, however, there are few studies in humans. Importantly, there is no study has investigated the interaction between CAV-1 rs3807992 gene and dietary patterns (DPs) on cardio-metabolic risk factors. METHODS The current cross-sectional study was conducted on 404 overweight and obese women. Dietary intake was obtained from FFQ with 147 items. The CAV-1 genotype was measured by the PCR-RFLP method. The anthropometric measurements, serum lipid profile, and inflammatory markers were measured by standard protocols. RESULTS There was a significant interaction between CAV-1 rs3807992 and healthy DP on high-density cholesterol (HDL) (P-interaction = 0.03), TC/HDL (P-interaction = 0.03) and high sensitivity C-reactive protein (hs-CRP) (P-interaction = 0.04); in A-allele carriers, higher following a healthy DP was related to a higher level of HDL and lower TC/HDL and hs-CRP. As well as, the significant interactions were observed between CAV-1 rs3807992 and unhealthy DP in relation to triglyceride (TG) (P-interaction = 0.001), aspartate aminotransferase (AST) (P-interaction = 0.01) and monocyte chemoattractant protein-1(MCP-1) (P-interaction = 0.01); A-allele carriers were more following the unhealthy DP had lower levels of TG, AST and MCP-1. CONCLUSIONS Our study revealed a significant gene-diet interaction between rs3807992 SNPs and DPs in relation to cardio-metabolic risk factors; A-allele carriers might be more sensitive to dietary composition compared to GG homozygotes. Following a healthy DP in A-allele-carriers may be improved their genetic association with cardio-metabolic risk factors.
Collapse
Affiliation(s)
- Faezeh Abaj
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Fariba Koohdani
- Department of Cellular, Molecular Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Masoumeh Rafiee
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Ehsan Alvandi
- School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Khadijeh Mirzaei
- Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
16
|
Wang L, Leng L, Ding R, Gong P, Liu C, Wang N, Li H, Du ZQ, Cheng B. Integrated transcriptome and proteome analysis reveals potential mechanisms for differential abdominal fat deposition between divergently selected chicken lines. J Proteomics 2021; 241:104242. [PMID: 33901680 DOI: 10.1016/j.jprot.2021.104242] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/18/2021] [Accepted: 04/19/2021] [Indexed: 12/15/2022]
Abstract
Genetic selection for meat production performance of broilers concomitantly causes excessive abdominal fat deposition, accompanied by several adverse effects, such as the reduction of feed conversion efficiency and reproduction performance. Our previous studies have identified important genes regulating chicken fat deposition, using the Northeast Agricultural University broiler lines divergently selected for abdominal fat content (NEAUHLF) as an animal model. However, the molecular mechanism underlying fat deposition differences between fat and lean broilers remains largely unknown. Here, we integrated the transcriptome (RNA-Seq) and quantitative proteome (isobaric tags for relative and absolute quantitation, iTRAQ) profiling analyses on abdominal fat tissues from NEAUHLF chicken lines. Differentially expressed genes (2167 DEGs, corrected p-value < 0.01) and differentially abundant proteins (199 DAPs, corrected p-value < 0.05) were identified in lean line compared to fat line. Down-regulated DEGs and DAPs mainly enriched in pathways related to fatty acid metabolism, fatty acid biosynthesis, and PPAR signaling, and interestingly, up-regulated DEGs and DAPs enriched both in lysosome pathway. Moreover, numerous key DEGs and DAPs involved in long-chain fatty acid uptake, in situ lipogenesis (fatty acid and cholesterol synthesis), and lipid droplet accumulation were discovered after integrated transcriptome and proteome analysis. SIGNIFICANCE: Excessive abdominal fat deposition critically affects the health of broilers and causes economic loss to broiler producers, but the molecular mechanism of abdominal fat deposition is still unclear in chicken. We identified key DEGs/DAPs and potential pathways through an integration of chicken abdominal fat tissues transcriptome and proteome analyses. Our findings will facilitate a better revealing the mechanism and provide a novel insight into abdominal fat content discrepancy between the fat and lean chicken lines.
Collapse
Affiliation(s)
- Lijian Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Li Leng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ran Ding
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Pengfei Gong
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Chang Liu
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Ning Wang
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui Li
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhi-Qiang Du
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| | - Bohan Cheng
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin 150030, PR China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin 150030, PR China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
17
|
Abumrad NA, Cabodevilla AG, Samovski D, Pietka T, Basu D, Goldberg IJ. Endothelial Cell Receptors in Tissue Lipid Uptake and Metabolism. Circ Res 2021; 128:433-450. [PMID: 33539224 DOI: 10.1161/circresaha.120.318003] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lipid uptake and metabolism are central to the function of organs such as heart, skeletal muscle, and adipose tissue. Although most heart energy derives from fatty acids (FAs), excess lipid accumulation can cause cardiomyopathy. Similarly, high delivery of cholesterol can initiate coronary artery atherosclerosis. Hearts and arteries-unlike liver and adrenals-have nonfenestrated capillaries and lipid accumulation in both health and disease requires lipid movement from the circulation across the endothelial barrier. This review summarizes recent in vitro and in vivo findings on the importance of endothelial cell receptors and uptake pathways in regulating FAs and cholesterol uptake in normal physiology and cardiovascular disease. We highlight clinical and experimental data on the roles of ECs in lipid supply to tissues, heart, and arterial wall in particular, and how this affects organ metabolism and function. Models of FA uptake into ECs suggest that receptor-mediated uptake predominates at low FA concentrations, such as during fasting, whereas FA uptake during lipolysis of chylomicrons may involve paracellular movement. Similarly, in the setting of an intact arterial endothelial layer, recent and historic data support a role for receptor-mediated processes in the movement of lipoproteins into the subarterial space. We conclude with thoughts on the need to better understand endothelial lipid transfer for fuller comprehension of the pathophysiology of hyperlipidemia, and lipotoxic diseases such as some forms of cardiomyopathy and atherosclerosis.
Collapse
Affiliation(s)
- Nada A Abumrad
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Ainara G Cabodevilla
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Dmitri Samovski
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Terri Pietka
- Division of Nutritional Sciences, Department of Medicine, Washington University School of Medicine, Saint Louis, MO (N.A.A., D.S., T.P.)
| | - Debapriya Basu
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University Grossman School of Medicine (A.G.C., D.B., I.J.G.)
| |
Collapse
|
18
|
Pol A, Morales-Paytuví F, Bosch M, Parton RG. Non-caveolar caveolins – duties outside the caves. J Cell Sci 2020; 133:133/9/jcs241562. [DOI: 10.1242/jcs.241562] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
ABSTRACT
Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.
Collapse
Affiliation(s)
- Albert Pol
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Frederic Morales-Paytuví
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
| | - Marta Bosch
- Cell Compartments and Signaling Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, 08036, Barcelona, Spain
- Department of Biomedical Sciences, Faculty of Medicine, Universitat de Barcelona, 08036, Barcelona, Spain
| | - Robert G. Parton
- Institute for Molecular Bioscience (IMB), The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
- Centre for Microscopy and Microanalysis (CMM) IMB, The University of Queensland (UQ), Brisbane, Queensland 4072, Australia
| |
Collapse
|
19
|
Martin GG, Landrock D, McIntosh AL, Milligan S, Landrock KK, Kier AB, Mackie J, Schroeder F. High Glucose and Liver Fatty Acid Binding Protein Gene Ablation Differentially Impact Whole Body and Liver Phenotype in High-Fat Pair-Fed Mice. Lipids 2020; 55:309-327. [PMID: 32314395 DOI: 10.1002/lipd.12238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/12/2020] [Accepted: 03/30/2020] [Indexed: 12/14/2022]
Abstract
Ad libitum-fed diets high in fat and carbohydrate (especially fructose) induce weight gain, obesity, and nonalcoholic fatty liver disease (NAFLD) in humans and animal models. However, interpretation is complicated since ad libitum feeding of such diets induces hyperphagia and upregulates expression of liver fatty acid binding protein (L-FABP)-a protein intimately involved in fatty acid and glucose regulation of lipid metabolism. Wild-type (WT) and L-fabp gene ablated (LKO) mice were pair-fed either high-fat diet (HFD) or high-fat/high-glucose diet (HFGD) wherein total carbohydrate was maintained constant but the proportion of glucose was increased at the expense of fructose. In LKO mice, the pair-fed HFD increased body weight and lean tissue mass (LTM) but had no effect on fat tissue mass (FTM) or hepatic fatty vacuolation as compared to pair-fed WT counterparts. These LKO mice exhibited upregulation of hepatic proteins in fatty acid uptake and cytosolic transport (caveolin and sterol carrier protein-2), but lower hepatic fatty acid oxidation (decreased serum β-hydroxybutyrate). LKO mice pair-fed HFGD also exhibited increased body weight; however, these mice had increased FTM, not LTM, and increased hepatic fatty vacuolation as compared to pair-fed WT counterparts. These LKO mice also exhibited upregulation of hepatic proteins in fatty acid uptake and cytosolic transport (caveolin and acyl-CoA binding protein, but not sterol carrier protein-2), but there was no change in hepatic fatty acid oxidation (serum β-hydroxybutyrate) as compared to pair-fed WT counterparts.
Collapse
Affiliation(s)
- Gregory G Martin
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Danilo Landrock
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Avery L McIntosh
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Sherrelle Milligan
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Kerstin K Landrock
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Ann B Kier
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - John Mackie
- Department of Pathobiology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| | - Friedhelm Schroeder
- Department of Physiology and Pharmacology, Texas A&M University, TVMC, College Station, TX, 77843, USA
| |
Collapse
|
20
|
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R. Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers. Int J Mol Sci 2019; 20:E3810. [PMID: 31382686 PMCID: PMC6696273 DOI: 10.3390/ijms20153810] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
| | - Lucas Taoro-González
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Mario Diaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
| |
Collapse
|
21
|
Zong X, Cao X, Wang H, Xiao X, Wang Y, Lu Z. Cathelicidin-WA Facilitated Intestinal Fatty Acid Absorption Through Enhancing PPAR-γ Dependent Barrier Function. Front Immunol 2019; 10:1674. [PMID: 31379865 PMCID: PMC6650583 DOI: 10.3389/fimmu.2019.01674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 07/04/2019] [Indexed: 01/28/2023] Open
Abstract
The molecular mechanisms underlying the cellular uptake of long-chain fatty acids and the regulation of this process have been debated in recent decades. Here, we established an intestinal barrier dysfunction model in mice and Caco2 cell line by Lipopolysaccharide (LPS), and evaluated the fatty acid uptake capacity of the intestine. We found that LPS stimulation restricted the absorption of long chain fatty acid (LCFA), while Cathelicidin-WA (CWA) pretreatment facilitated this physiological process. At the molecular level, our results demonstrated that the stimulatory effects of CWA on intestinal lipid absorption were dependent on cluster determinant 36 and fatty acid transport protein 4, but not fatty acid–binding protein. Further, an enhanced intestinal barrier was observed in vivo and in vitro when CWA alleviated the fatty acid absorption disorder induced by LPS stimulation. Mechanistically, peroxisome proliferator-activated receptor (PPAR-γ) signaling was considered as a key pathway for CWA to enhance LCFA absorption and barrier function. Treatment with a PPAR-γ inhibitor led to impaired intestinal barrier function and suppressed LCFA uptake. Moreover, once PPAR-γ signaling was blocked, CWA pretreatment could not maintain the stability of the intestinal epithelial cell barrier or LCFA uptake after LPS stimulation. Collectively, these findings suggested that PPAR-γ may serve as a target for specific therapies aimed at alleviating fatty acid uptake disorder, and CWA showed considerable potential as a new PPAR-γ agonist to strengthen intestinal barrier function against fatty acid malabsorption.
Collapse
Affiliation(s)
- Xin Zong
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoxuan Cao
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hong Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Xiao Xiao
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yizhen Wang
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Zeqing Lu
- Key Laboratory of Animal Nutrition and Feed Science in Eastern China, Ministry of Agriculture, College of Animal Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
22
|
Codenotti S, Faggi F, Ronca R, Chiodelli P, Grillo E, Guescini M, Megiorni F, Marampon F, Fanzani A. Caveolin-1 enhances metastasis formation in a human model of embryonal rhabdomyosarcoma through Erk signaling cooperation. Cancer Lett 2019; 449:135-144. [DOI: 10.1016/j.canlet.2019.02.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 02/10/2019] [Indexed: 11/15/2022]
|
23
|
Paolicelli RC, Angiari S. Microglia immunometabolism: From metabolic disorders to single cell metabolism. Semin Cell Dev Biol 2019; 94:129-137. [PMID: 30954657 DOI: 10.1016/j.semcdb.2019.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/01/2019] [Accepted: 03/29/2019] [Indexed: 12/16/2022]
Abstract
Since the observation that obesity-associated low-grade chronic inflammation is a crucial driver for the onset of systemic metabolic disorders such as type 2 diabetes, a number of studies have highlighted the role of both the innate and the adaptive immune system in such pathologies. Moreover, researchers have recently demonstrated that immune cells can modulate their intracellular metabolic profile to control their activation and effector functions. These discoveries represent the foundations of a research area known as "immunometabolism", an emerging field of investigation that may lead to the development of new-generation therapies for the treatment of inflammatory and metabolic diseases. Most of the studies in the field have focused their attention on both circulating white blood cells and leukocytes residing within metabolic tissues such as adipose tissue, liver and pancreas. However, immunometabolism of immune cells in non-metabolic tissues, including central nervous system microglia, have long been neglected. In this review, we highlight the most recent findings suggesting that microglial cells play a central role in metabolic disorders and that interfering with the metabolic profile of microglia can modulate their functionality and pathogenicity in neurological diseases.
Collapse
Affiliation(s)
- Rosa C Paolicelli
- Department of Physiology, University of Lausanne, Rue du Bugnon 7, 1005 Lausanne, Switzerland.
| | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590, Dublin, Ireland.
| |
Collapse
|
24
|
Grattagliano I, Montezinho LP, Oliveira PJ, Frühbeck G, Gómez-Ambrosi J, Montecucco F, Carbone F, Wieckowski MR, Wang DQH, Portincasa P. Targeting mitochondria to oppose the progression of nonalcoholic fatty liver disease. Biochem Pharmacol 2018; 160:34-45. [PMID: 30508523 DOI: 10.1016/j.bcp.2018.11.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/28/2018] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a condition characterized by the excessive accumulation of triglycerides in hepatocytes. NAFLD is the most frequent chronic liver disease in developed countries, and is often associated with metabolic disorders such as obesity and type 2 diabetes. NAFLD definition encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL), to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD, therefore, represents a global public health issue. Mitochondrial dysfunction occurs in NAFLD, and contributes to the progression to the necro-inflammatory and fibrotic form (NASH). Disrupted mitochondrial function is associated with a decrease in the energy levels and impaired redox balance, and negatively affects cell survival by altering overall metabolism and subcellular trafficking. Such events reduce the tolerance of hepatocytes towards damaging hits, and favour the injurious effects of extra-cellular factors. Here, we discuss the role of mitochondria in NAFLD and focus on potential therapeutic approaches aimed at preserving mitochondrial function.
Collapse
Affiliation(s)
- Ignazio Grattagliano
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy; Italian College of General Practitioners and Primary Care, Bari, Italy
| | - Liliana P Montezinho
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal; Center for Investigation Vasco da Gama (CIVG), Department of Veterinary Medicine, Escola Universitária Vasco da Gama, Coimbra, Portugal
| | - Paulo J Oliveira
- CNC Center for Neuroscience and Cell Biology, University of Coimbra, UC-Biotech Building, Biocant Park, Cantanhede, Portugal
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, Pamplona, Spain
| | - Javier Gómez-Ambrosi
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Pamplona, Spain; Obesity and Adipobiology Group, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy; Ospedale Policlinico San Martino, 10 Largo Benzi, 16132 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 Viale Benedetto XV, 16132 Genoa, Italy
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
| | | | - David Q-H Wang
- Department of Medicine, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, Bari, Italy.
| |
Collapse
|
25
|
Transferred maternal fatty acids stimulate fetal adipogenesis and lead to neonatal and adult obesity. Med Hypotheses 2018; 122:82-88. [PMID: 30593430 DOI: 10.1016/j.mehy.2018.10.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 09/20/2018] [Accepted: 10/21/2018] [Indexed: 12/16/2022]
Abstract
The prevalence of adult and childhood obesity are increasing. Most of the human newborn's body fat accumulates in the last half of intrauterine life. Fat in the fetus was thought to be mostly synthesized from glucose, but now it is commonly accepted that the bulk of it is the product of placental transfer of maternal fatty acids. Transported fatty acids originate in maternal plasma "free" fatty acids, fatty acids hydrolyzed from maternal plasma triglycerides, and the poly-unsaturated fatty acid component of maternal phospholipids. Glucose remains an important precursor of alpha-glycerol phosphate, to which most transported fatty acids are eventually esterified. Maternal plasma lipids are elevated in late pregnancy and even more in obese and diabetic pregnant women. This accelerates the placental transport of fatty acids. The hypothesis presented in this paper rests on the observations that the exponential increase in fat tissue in the human embryo's body occurs in time to parallel the increase of lipids in the mother's blood and depends on the chemical affinity of the transcription factor PPAR gamma to fatty acids and on fatty acid stimulation of adipocyte generation from precursor cells. The hypothesis asserts that transported maternal fatty acids activate the transcription factors in the fetus and initiate conversion of the mesenchymal stem cells into adipocytes. In obese and diabetic mothers, the higher plasma lipids facilitate increased placental fatty acid transfer. This will increase adipocyte generation and, through this, the prevalence of babies with increased fat cell size and number. Babies born with increased adipose tissue cellularity will have greater probability of growing up to become obese adolescents and adults. These newborns, whose obesity is hyperplastic as well as hypertrophic, as adults will have difficulty losing weight through diet and exercise or will regain the lost weight more quickly than others without these characteristics. Accordingly, increased placental fatty acid transfer and accelerated adipocyte generation may explain not only neonatal obesity, but some aspects of the adult obesity epidemic also. It is therefore recommended that prevention of fetal fat cell hyperplasia, by lowering maternal plasma lipids in mid and late pregnancy, should be attempted in pregnancies at risk for macrosomia.
Collapse
|
26
|
Cavin-2 is a specific marker for detection of well-differentiated liposarcoma. Biochem Biophys Res Commun 2017; 493:660-665. [PMID: 28865960 DOI: 10.1016/j.bbrc.2017.08.135] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 08/29/2017] [Indexed: 12/16/2022]
Abstract
Caveolae are cholesterol enriched invaginations of the plasma membrane involved in a variety of processes, including glucose and fatty acids absorption, cell transduction and mechanoprotection. The biogenesis and function of caveolae depend on the activity of Caveolin (Cav-1, -2 and -3) and Cavin (Cavin-1, -2, -3 and -4) protein families. Since the membrane Cavin-2 protein was reported to play a key role in caveolae formation of adipocytes, in this work we have used a multidisciplinary approach to investigate its expression in liposarcoma (LPS), an adipocytic soft tissue sarcoma affecting adults. Data obtained through an in silico and immunohistochemical analysis suggest that Cavin-2, along with Cavin-1, Cav-1 and Cav-2, is mostly expressed in the least aggressive LPS subtype, namely well-differentiated LPS, while is almost undetectable in the more aggressive myxoid, pleomorphic and dedifferentiated LPS tumors. Accordingly, in vitro analysis confirmed that Cavin-2 expression increases in LPS tumor cell lines during differentiation as compared to proliferation, as detected by immunoblotting and immunofluorescence analysis. Overall, these data suggest that Cavin-2 represents a useful marker for discriminating the degree of differentiation in LPS tumors.
Collapse
|
27
|
Codenotti S, Vezzoli M, Monti E, Fanzani A. Focus on the role of Caveolin and Cavin protein families in liposarcoma. Differentiation 2017; 94:21-26. [DOI: 10.1016/j.diff.2016.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/15/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
|
28
|
Otis JP, Shen MC, Quinlivan V, Anderson JL, Farber SA. Intestinal epithelial cell caveolin 1 regulates fatty acid and lipoprotein cholesterol plasma levels. Dis Model Mech 2017; 10:283-295. [PMID: 28130355 PMCID: PMC5374320 DOI: 10.1242/dmm.027300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 01/23/2017] [Indexed: 12/16/2022] Open
Abstract
Caveolae and their structural protein caveolin 1 (CAV1) have roles in cellular lipid processing and systemic lipid metabolism. Global deletion of CAV1 in mice results in insulin resistance and increases in atherogenic plasma lipids and cholesterol, but protects from diet-induced obesity and atherosclerosis. Despite the fundamental role of the intestinal epithelia in the regulation of dietary lipid processing and metabolism, the contributions of CAV1 to lipid metabolism in this tissue have never been directly investigated. In this study the cellular dynamics of intestinal Cav1 were visualized in zebrafish and the metabolic contributions of CAV1 were determined with mice lacking CAV1 in intestinal epithelial cells (CAV1IEC-KO). Live imaging of Cav1–GFP and fluorescently labeled caveolae cargos shows localization to the basolateral and lateral enterocyte plasma membrane (PM), suggesting Cav1 mediates transport between enterocytes and the submucosa. CAV1IEC-KO mice are protected from the elevation in circulating fasted low-density lipoprotein (LDL) cholesterol associated with a high-fat diet (HFD), but have increased postprandial LDL cholesterol, total free fatty acids (FFAs), palmitoleic acid, and palmitic acid. The increase in circulating FAs in HFD CAV1IEC-KO mice is mirrored by decreased hepatic FAs, suggesting a non-cell-autonomous role for intestinal epithelial cell CAV1 in promoting hepatic FA storage. In conclusion, CAV1 regulates circulating LDL cholesterol and several FA species via the basolateral PM of enterocytes. These results point to intestinal epithelial cell CAV1 as a potential therapeutic target to lower circulating FFAs and LDL cholesterol, as high levels are associated with development of type II diabetes and cardiovascular disease. Summary: Caveolin 1, which forms caveolae, localizes to the basolateral membrane of zebrafish intestinal epithelial cells and regulates circulating murine fatty acid and lipoprotein cholesterol levels.
Collapse
Affiliation(s)
- Jessica P Otis
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Meng-Chieh Shen
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Vanessa Quinlivan
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA.,Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| | - Jennifer L Anderson
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA
| | - Steven A Farber
- Carnegie Institution for Science, Department of Embryology, Baltimore, MD 21218, USA .,Johns Hopkins University, Department of Biology, Baltimore, MD 21218, USA
| |
Collapse
|
29
|
Caveolin-1 Function in Liver Physiology and Disease. Trends Mol Med 2016; 22:889-904. [DOI: 10.1016/j.molmed.2016.08.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/14/2016] [Accepted: 08/17/2016] [Indexed: 12/18/2022]
|
30
|
Codenotti S, Vezzoli M, Poliani PL, Cominelli M, Bono F, Kabbout H, Faggi F, Chiarelli N, Colombi M, Zanella I, Biasiotto G, Montanelli A, Caimi L, Monti E, Fanzani A. Caveolin-1, Caveolin-2 and Cavin-1 are strong predictors of adipogenic differentiation in human tumors and cell lines of liposarcoma. Eur J Cell Biol 2016; 95:252-64. [DOI: 10.1016/j.ejcb.2016.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 12/15/2022] Open
|
31
|
Abstract
Obesity and its major comorbidities, including type 2 diabetes mellitus, nonalcoholic fatty liver disease (NAFLD), obesity cardiomyopathy, and certain cancers, have caused life expectancy in the United States to decline in recent years. Obesity is the increased accumulation of triglycerides (TG), which are synthesized from glycerol and long-chain fatty acids (LCFA) throughout the body. LCFA enter adipocytes, hepatocytes, and cardiomyocytes via specific, facilitated transport processes. Metabolism of increased cellular TG content in obesity may lead to comorbidities such as NAFLD and cardiomyopathy. Better understanding of LCFA transport processes may lead to successful treatment of obesity and NAFLD.
Collapse
Affiliation(s)
- Paul D Berk
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia College of Physicians and Surgeons, Columbia University Medical Center, 650 West 168 Street, New York, NY 10032, USA; Division of Preventive Medicine, Department of Medicine, Columbia College of Physicians and Surgeons, Columbia University Medical Center, William Black Building, 650 West 168 Street, Room 1006, Box 57A, New York, NY 10032, USA.
| | - Elizabeth C Verna
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia College of Physicians and Surgeons, Columbia University Medical Center, 650 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
32
|
Ponziani FR, Pecere S, Gasbarrini A, Ojetti V. Physiology and pathophysiology of liver lipid metabolism. Expert Rev Gastroenterol Hepatol 2016; 9:1055-67. [PMID: 26070860 DOI: 10.1586/17474124.2015.1056156] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Liver lipid metabolism and its modulation are involved in many pathologic conditions, such as obesity, non-alcoholic fatty liver disease, diabetes mellitus, atherosclerosis and cardiovascular disease. Metabolic disorders seem to share a similar background of low-grade chronic inflammation, even if the pathophysiological mechanisms leading to tissue and organ damage have not been completely clarified yet. The accumulation of neutral lipids in the liver is now recognized as a beneficial and protective mechanism; on the other hand, lipoperoxidation is involved in the development and progression of non-alcoholic steatohepatitis. The role of the gut microbiota in liver lipid metabolism has been the object of recent scientific investigations. It is likely that the gut microbiota is involved in a complex metabolic modulation and the translocation of gut microflora may also contribute to maintaining the low-grade inflammatory status of metabolic syndrome. Therefore, lipid metabolism pathology has vague limits and complex mechanisms, and the knowledge of these is essential to guide diagnostic and therapeutic decisions.
Collapse
|
33
|
Kamada C, Mukai R, Kondo A, Sato S, Terao J. Effect of quercetin and its metabolite on caveolin-1 expression induced by oxidized LDL and lysophosphatidylcholine in endothelial cells. J Clin Biochem Nutr 2016; 58:193-201. [PMID: 27257344 PMCID: PMC4865600 DOI: 10.3164/jcbn.16-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 01/08/2023] Open
Abstract
Oxidized low-density lipoprotein contributes to atherosclerotic plaque formation, and quercetin is expected to exert anti-atherosclerotic effects. We previously reported accumulation of conjugated quercetin metabolites in the aorta of rabbits fed high-cholesterol diets with quercetin glucosides, resulting in attenuation of lipid peroxidation and inhibition of lipid accumulation. Caveolin-1, a major structural protein of caveolae in vascular endothelial cells, plays a role in atherosclerosis development. Here we investigated effects of oxidized low-density lipoprotein, quercetin and its metabolite, quercetin 3-O-β-glucuronide, on caveolin-1 expression. Oxidized low-density lipoprotein significantly upregulated caveolin-1 mRNA expression. An oxidized low-density lipoprotein component, lysophosphatidylcholine, also induced expression of both caveolin-1 mRNA and protein. However, lysophosphatidylcholine did not affect the location of caveolin-1 proteins within caveolae structures. Co-treatment with quercetin or quercetin 3-O-β-glucuronide inhibited lysophosphatidylcholine-induced caveolin-1 expression. Quercetin and quercetin 3-O-β-glucuronide also suppressed expression of adhesion molecules induced by oxidized low-density lipoprotein and lysophosphatidylcholine. These results strongly suggest lysophosphatidylcholine derived from oxidized low-density lipoprotein contributes to atherosclerotic events by upregulating caveolin-1 expression, resulting in induction of adhesion molecules. Quercetin metabolites are likely to exert an anti-atherosclerotic effect by attenuating caveolin-1 expression in endothelial cells.
Collapse
Affiliation(s)
- Chiemi Kamada
- Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan; Training Department of Administrative Dietitians, Shikoku University, Ojin-cho Tokushima-shi, Tokushima 771-1192, Japan
| | - Rie Mukai
- Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Akari Kondo
- Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Shinya Sato
- Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Junji Terao
- Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| |
Collapse
|
34
|
Heterogeneity of white adipose tissue: molecular basis and clinical implications. Exp Mol Med 2016; 48:e215. [PMID: 26964831 PMCID: PMC4892883 DOI: 10.1038/emm.2016.5] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 11/29/2015] [Indexed: 02/08/2023] Open
Abstract
Adipose tissue is a highly heterogeneous endocrine organ. The heterogeneity among different anatomical depots stems from their intrinsic differences in cellular and physiological properties, including developmental origin, adipogenic and proliferative capacity, glucose and lipid metabolism, insulin sensitivity, hormonal control, thermogenic ability and vascularization. Additional factors that influence adipose tissue heterogeneity are genetic predisposition, environment, gender and age. Under obese condition, these depot-specific differences translate into specific fat distribution patterns, which are closely associated with differential cardiometabolic risks. For instance, individuals with central obesity are more susceptible to developing diabetes and cardiovascular complications, whereas those with peripheral obesity are more metabolically healthy. This review summarizes the clinical and mechanistic evidence for the depot-specific differences that give rise to different metabolic consequences, and provides therapeutic insights for targeted treatment of obesity.
Collapse
|
35
|
Jayewardene AF, Mavros Y, Reeves A, Hancock DP, Gwinn T, Rooney KB. Interactions Between Fatty Acid Transport Proteins, Genes That Encode for Them, and Exercise: A Systematic Review. J Cell Physiol 2016; 231:1671-87. [PMID: 26638980 DOI: 10.1002/jcp.25281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 12/04/2015] [Indexed: 01/29/2023]
Abstract
Long-chain fatty acid (LCFA) movement into skeletal muscle involves a highly mediated process in which lipid rafts are utilized in the cellular membrane, involving numerous putative plasma membrane-associated LCFA transport proteins. The process of LCFA uptake and oxidation is of particular metabolic significance both at rest and during light to moderate exercise. A comprehensive systematic search of electronic databases was conducted to investigate whether exercise alters protein and/or gene expression of putative LCFA transport proteins. There were 31 studies meeting all eligibility criteria, of these 13 utilized an acute exercise protocol and 18 examined chronic exercise adaptations. Seventeen involved a study design incorporating an exercise stimulus, while the remaining 14 incorporated a combined exercise and diet stimulus. Divergent data relating to acute exercise, as well as prolonged exercise training (≥3 weeks), on protein content (PC) response was identified for proteins CD36, FABPpm and CAV1. Messenger ribonucleic acid (mRNA) data did not always correspond to functional PC, supporting previous suggestions of a disconnect due to potentially limiting factors post gene expression. The large array of study designs, cohorts, and primary dependent variables within the studies included in the present review elucidate the complexity of the interaction between exercise and LCFA transport proteins. Summary of the results in the present review validate the need for further targeted investigation within this topic, and provide an important information base for such research. J. Cell. Physiol. 231: 1671-1687, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Avindra F Jayewardene
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Yorgi Mavros
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Anneliese Reeves
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Dale P Hancock
- School of Molecular Biosciences, Faculty of Science, University of Sydney, Camperdown, New South Wales, Australia
| | - Tom Gwinn
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Kieron B Rooney
- Discipline of Exercise and Sport Science, Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| |
Collapse
|
36
|
Willebrords J, Pereira IVA, Maes M, Crespo Yanguas S, Colle I, Van Den Bossche B, Da Silva TC, de Oliveira CPMS, Andraus W, Alves VA, Cogliati B, Vinken M. Strategies, models and biomarkers in experimental non-alcoholic fatty liver disease research. Prog Lipid Res 2015; 59:106-25. [PMID: 26073454 DOI: 10.1016/j.plipres.2015.05.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/13/2015] [Accepted: 05/13/2015] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease encompasses a spectrum of liver diseases, including simple steatosis, steatohepatitis, liver fibrosis and cirrhosis and hepatocellular carcinoma. Non-alcoholic fatty liver disease is currently the most dominant chronic liver disease in Western countries due to the fact that hepatic steatosis is associated with insulin resistance, type 2 diabetes mellitus, obesity, metabolic syndrome and drug-induced injury. A variety of chemicals, mainly drugs, and diets is known to cause hepatic steatosis in humans and rodents. Experimental non-alcoholic fatty liver disease models rely on the application of a diet or the administration of drugs to laboratory animals or the exposure of hepatic cell lines to these drugs. More recently, genetically modified rodents or zebrafish have been introduced as non-alcoholic fatty liver disease models. Considerable interest now lies in the discovery and development of novel non-invasive biomarkers of non-alcoholic fatty liver disease, with specific focus on hepatic steatosis. Experimental diagnostic biomarkers of non-alcoholic fatty liver disease, such as (epi)genetic parameters and '-omics'-based read-outs are still in their infancy, but show great promise. In this paper, the array of tools and models for the study of liver steatosis is discussed. Furthermore, the current state-of-art regarding experimental biomarkers such as epigenetic, genetic, transcriptomic, proteomic and metabonomic biomarkers will be reviewed.
Collapse
Affiliation(s)
- Joost Willebrords
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabel Veloso Alves Pereira
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Michaël Maes
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Sara Crespo Yanguas
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| | - Isabelle Colle
- Department of Hepatology and Gastroenterology, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Bert Van Den Bossche
- Department of Abdominal Surgery and Hepato-Pancreatico-Biliary Surgery, Algemeen Stedelijk Ziekenhuis Campus Aalst, Merestraat 80, 9300 Aalst, Belgium.
| | - Tereza Cristina Da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | | | - Wellington Andraus
- Department of Gastroenterology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Venâncio Avancini Alves
- Laboratory of Medical Investigation, Department of Pathology, University of São Paulo School of Medicine, Av. Dr. Arnaldo, 455, São Paulo, Brazil.
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, Brazil.
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussels, Belgium.
| |
Collapse
|
37
|
Abstract
The intestinal production of lipoproteins is one of the key processes by which the body prepares dietary lipid for dissemination to locations throughout the body where they are required. Paramount to this is the relationship between dietary lipid and the enterocytes that line the gut, along with the processes which prepare this lipid for efficient uptake by these cells. These include those which occur in the mouth and stomach along with those which occur within the intestinal lumen itself. Additionally, the interplay between digested lipid, dual avenues for lipid uptake by enterocytes (passive and lipid transporter proteins), a system of intercellular lipid resynthesis and transport, and a complex system of lipoprotein synthesis yield a system open to significant modulation. In this review, we will attempt to outline the processes of lipid digestion, lipoprotein synthesis and the exogenous and endogenous factors which exert their influence.
Collapse
Affiliation(s)
- Alan A Hennessy
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland,
| | | | | | | | | |
Collapse
|
38
|
Levy E. Insights from human congenital disorders of intestinal lipid metabolism. J Lipid Res 2014; 56:945-62. [PMID: 25387865 DOI: 10.1194/jlr.r052415] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 12/24/2022] Open
Abstract
The intestine must challenge the profuse daily flux of dietary fat that serves as a vital source of energy and as an essential component of cell membranes. The fat absorption process takes place in a series of orderly and interrelated steps, including the uptake and translocation of lipolytic products from the brush border membrane to the endoplasmic reticulum, lipid esterification, Apo synthesis, and ultimately the packaging of lipid and Apo components into chylomicrons (CMs). Deciphering inherited disorders of intracellular CM elaboration afforded new insight into the key functions of crucial intracellular proteins, such as Apo B, microsomal TG transfer protein, and Sar1b GTPase, the defects of which lead to hypobetalipoproteinemia, abetalipoproteinemia, and CM retention disease, respectively. These "experiments of nature" are characterized by fat malabsorption, steatorrhea, failure to thrive, low plasma levels of TGs and cholesterol, and deficiency of liposoluble vitamins and essential FAs. After summarizing and discussing the functions and regulation of these proteins for reader's comprehension, the current review focuses on their specific roles in malabsorptions and dyslipidemia-related intestinal fat hyperabsorption while dissecting the spectrum of clinical manifestations and managements. The influence of newly discovered proteins (proprotein convertase subtilisin/kexin type 9 and angiopoietin-like 3 protein) on fat absorption has also been provided. Finally, it is stressed how the overexpression or polymorphism status of the critical intracellular proteins promotes dyslipidemia and cardiometabolic disorders.
Collapse
Affiliation(s)
- Emile Levy
- Research Centre, CHU Sainte-Justine and Department of Nutrition, Université de Montréal, Montreal, Quebec H3T 1C5, Canada
| |
Collapse
|
39
|
Méndez-Giménez L, Rodríguez A, Balaguer I, Frühbeck G. Role of aquaglyceroporins and caveolins in energy and metabolic homeostasis. Mol Cell Endocrinol 2014; 397:78-92. [PMID: 25008241 DOI: 10.1016/j.mce.2014.06.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 06/25/2014] [Accepted: 06/26/2014] [Indexed: 12/23/2022]
Abstract
Aquaglyceroporins and caveolins are submicroscopic integral membrane proteins that are particularly abundant in many mammalian cells. Aquaglyceroporins (AQP3, AQP7, AQP9 and AQP10) encompass a subfamily of aquaporins that allow the movement of water, but also of small solutes, such as glycerol, across cell membranes. Glycerol constitutes an important metabolite as a substrate for de novo synthesis of triacylglycerols and glucose as well as an energy substrate to produce ATP via the mitochondrial oxidative phosphorylation. In this sense, the control of glycerol influx/efflux in metabolic organs by aquaglyceroporins plays a crucial role with the dysregulation of these glycerol channels being associated with metabolic diseases, such as obesity, insulin resistance, non-alcoholic fatty liver disease and cardiac hypertrophy. On the other hand, caveolae have emerged as relevant plasma membrane sensors implicated in a wide range of cellular functions, including endocytosis, apoptosis, cholesterol homeostasis, proliferation and signal transduction. Caveolae-coating proteins, namely caveolins and cavins, can act as scaffolding proteins within caveolae by concentrating signaling molecules involved in free fatty acid and cholesterol uptake, proliferation, insulin signaling or vasorelaxation, among others. The importance of caveolae in whole-body homeostasis is highlighted by the link between homozygous mutations in genes encoding caveolins and cavins with metabolic diseases, such as lipodystrophy, dyslipidemia, muscular dystrophy and insulin resistance in rodents and humans. The present review focuses on the role of aquaglyceroporins and caveolins on lipid and glucose metabolism, insulin secretion and signaling, energy production and cardiovascular homeostasis, outlining their potential relevance in the development and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Leire Méndez-Giménez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain.
| | - Inmaculada Balaguer
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain; CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Pamplona, Spain; Department of Endocrinology and Nutrition, Clínica Universidad de Navarra, Pamplona, Spain.
| |
Collapse
|
40
|
Wei C, Pohorille A. Flip-flop of oleic acid in a phospholipid membrane: rate and mechanism. J Phys Chem B 2014; 118:12919-26. [PMID: 25319959 DOI: 10.1021/jp508163e] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Flip-flop of protonated oleic acid molecules dissolved at two different concentrations in membranes made of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine is studied with the aid of molecular dynamics simulations at a time scale of several microseconds. Direct, single-molecule flip-flop events are observed at this time scale, and the flip-flop rate is estimated at 0.2-0.3 μs(-1). As oleic acid molecules move toward the center of the bilayer during flip-flop, they undergo gradual, correlated translational, and rotational motion. Rare, double-flipping events of two hydrogen-bonded oleic acid molecules are also observed. A two-dimensional free energy surface is obtained for the translational and rotational degree of freedom of the oleic acid molecule, and the minimum energy path on this surface is determined. A barrier to flip-flop of ~4.2 kcal/mol is found at the center of the bilayer. A two-dimensional diffusion model is found to provide a good description of the flip-flop process. The fast flip-flop rate lends support to the proposal that fatty acids permeate membranes without assistance of transport proteins. It also suggests that desorption rather than flip-flop is the rate-limiting step in fatty acid transport through membranes. The relation of flip-flop rates to the evolution of ancestral cellular systems is discussed.
Collapse
Affiliation(s)
- Chenyu Wei
- NASA Ames Research Center , Mail Stop 229-1, Moffett Field, California 94035, United States
| | | |
Collapse
|
41
|
Wee K, Yang W, Sugii S, Han W. Towards a mechanistic understanding of lipodystrophy and seipin functions. Biosci Rep 2014; 34:e00141. [PMID: 25195639 PMCID: PMC4182903 DOI: 10.1042/bsr20140114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 09/01/2014] [Accepted: 09/08/2014] [Indexed: 01/11/2023] Open
Abstract
CGL (Congenital generalized lipodystrophy) is a genetic disorder characterized by near complete loss of adipose tissue along with increased ectopic fat storage in other organs including liver and muscle. Of the four CGL types, BSCL2 (Berardinelli-Seip Congenital lipodystrophy type 2), resulting from mutations in the BSCL2/seipin gene, exhibits the most severe lipodystrophic phenotype with loss of both metabolic and mechanical adipose depots. The majority of Seipin mutations cause C-terminal truncations, along with a handful of point mutations. Seipin localizes to the ER and is composed of a conserved region including a luminal loop and two transmembrane domains, plus cytosolic N- and C-termini. Animal models deficient in seipin recapitulate the human lipodystrophic phenotype. Cells isolated from seipin knockout mouse models also exhibit impaired adipogenesis. Mechanistically, seipin appears to function as a scaffolding protein to bring together interacting partners essential for lipid metabolism and LD (lipid droplet) formation during adipocyte development. Moreover, cell line and genetic studies indicate that seipin functions in a cell-autonomous manner. Here we will provide a brief overview of the genetic association of the CGLs, and focus on the current understanding of differential contributions of distinct seipin domains to lipid storage and adipogenesis. We will also discuss the roles of seipin-interacting partners, including lipin 1 and 14-3-3β, in mediating seipin-dependent regulation of cellular pathways such as actin cytoskeletal remodelling.
Collapse
Key Words
- adipocyte
- lipid droplet
- lipin
- lipolysis
- metabolism
- obesity
- agpat, 1-acylglycerol-3-phosphate-o-acyl-transferase
- bscl, berardinelli–seip congenital lipodystrophy
- c/ebp, ccaat/enhancer binding protein
- candle, chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature
- cav1, caveolin-1
- cgl, congenital generalized lipodystrophy
- er, endoplasmic reticulum
- hcv, hepatitis c virus
- il-6, interleukin-6
- ld, lipid droplet
- lpa, lysophosphatidic acid
- mef, mouse embryonic fibroblasts
- nfat, nuclear factor of activated t cells
- nsrebp1c, nuclear srebp1c
- pa, phosphatidic acid
- pio, pioglitazone
- pka, protein kinase a
- pparγ, peroxisome proliferator-activated receptor gamma
- ptrf, polymerase i and transcript release factor
- tag, triacylglycerol
- tmds, transmembrane domains
- tnfα, tumor necrosis factor alpha
- wat, white adipose tissue
Collapse
Affiliation(s)
- Kenneth Wee
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Wulin Yang
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shigeki Sugii
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- ‡Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| | - Weiping Han
- *Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore
- †Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- ‡Cardiovascular and Metabolic Disorders Program, Duke-NUS Graduate Medical School, Singapore
| |
Collapse
|
42
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a clinicopathological change characterized by the accumulation of triglycerides in hepatocytes and has frequently been associated with obesity, type 2 diabetes mellitus, hyperlipidemia, and insulin resistance. It is an increasingly recognized condition that has become the most common liver disorder in developed countries, affecting over one-third of the population and is associated with increased cardiovascular- and liver-related mortality. NAFLD is a spectrum of disorders, beginning as simple steatosis. In about 15% of all NAFLD cases, simple steatosis can evolve into non-alcoholic steatohepatitis, a medley of inflammation, hepatocellular injury, and fibrosis, often resulting in cirrhosis and even hepatocellular cancer. However, the molecular mechanism underlying NAFLD progression is not completely understood. Its pathogenesis has often been interpreted by the “double-hit” hypothesis. The primary insult or the “first hit” includes lipid accumulation in the liver, followed by a “second hit” in which proinflammatory mediators induce inflammation, hepatocellular injury, and fibrosis. Nowadays, a more complex model suggests that fatty acids (FAs) and their metabolites may be the true lipotoxic agents that contribute to NAFLD progression; a multiple parallel hits hypothesis has also been suggested. In NAFLD patients, insulin resistance leads to hepatic steatosis via multiple mechanisms. Despite the excess hepatic accumulation of FAs in NAFLD, it has been described that not only de novo FA synthesis is increased, but FAs are also taken up from the serum. Furthermore, a decrease in mitochondrial FA oxidation and secretion of very-low-density lipoproteins has been reported. This review discusses the molecular mechanisms that underlie the pathophysiological changes of hepatic lipid metabolism that contribute to NAFLD.
Collapse
Affiliation(s)
- Alba Berlanga
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - Esther Guiu-Jurado
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain
| | - José Antonio Porras
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain ; Department of Internal Medicine, Hospital Universitari Joan XXIII Tarragona, Tarragona, Spain
| | - Teresa Auguet
- Group GEMMAIR (AGAUR) and Applied Medicine Research Group, Department of Medicine and Surgery, Universitat Rovira i Virgili (URV), IISPV, Hospital Universitari Joan XXIII, Tarragona, Spain ; Department of Internal Medicine, Hospital Universitari Joan XXIII Tarragona, Tarragona, Spain
| |
Collapse
|
43
|
Shvets E, Ludwig A, Nichols BJ. News from the caves: update on the structure and function of caveolae. Curr Opin Cell Biol 2014; 29:99-106. [PMID: 24908346 DOI: 10.1016/j.ceb.2014.04.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/03/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
Recent data from the study of the cell biology of caveolae have provided insights both into how these flask-shaped invaginations of the plasma membrane are formed and how they may function in different contexts. This review discusses experiments that analyse the composition and ultrastructural distribution of protein complexes responsible for generating caveolae, that suggest functions for caveolae in response to mechanical stress or damage to the plasma membrane, that show that caveolae may have an important role during the signalling events for regulation of metabolism, and that imply that caveolae can act as endocytic vesicles at the plasma membrane. We also highlight unexpected roles for caveolar proteins in regulating circadian rhythms and new insights into the way in which caveolae may be involved in fatty acid uptake in the intestine. Current outstanding questions in the field are emphasised.
Collapse
Affiliation(s)
| | - Alexander Ludwig
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | |
Collapse
|
44
|
Abstract
In adipocytes the hydrolysis of TAG to produce fatty acids and glycerol under fasting conditions or times of elevated energy demands is tightly regulated by neuroendocrine signals, resulting in the activation of lipolytic enzymes. Among the classic regulators of lipolysis, adrenergic stimulation and the insulin-mediated control of lipid mobilisation are the best known. Initially, hormone-sensitive lipase (HSL) was thought to be the rate-limiting enzyme of the first lipolytic step, while we now know that adipocyte TAG lipase is the key enzyme for lipolysis initiation. Pivotal, previously unsuspected components have also been identified at the protective interface of the lipid droplet surface and in the signalling pathways that control lipolysis. Perilipin, comparative gene identification-58 (CGI-58) and other proteins of the lipid droplet surface are currently known to be key regulators of the lipolytic machinery, protecting or exposing the TAG core of the droplet to lipases. The neuroendocrine control of lipolysis is prototypically exerted by catecholaminergic stimulation and insulin-induced suppression, both of which affect cyclic AMP levels and hence the protein kinase A-mediated phosphorylation of HSL and perilipin. Interestingly, in recent decades adipose tissue has been shown to secrete a large number of adipokines, which exert direct effects on lipolysis, while adipocytes reportedly express a wide range of receptors for signals involved in lipid mobilisation. Recently recognised mediators of lipolysis include some adipokines, structural membrane proteins, atrial natriuretic peptides, AMP-activated protein kinase and mitogen-activated protein kinase. Lipolysis needs to be reanalysed from the broader perspective of its specific physiological or pathological context since basal or stimulated lipolytic rates occur under diverse conditions and by different mechanisms.
Collapse
|
45
|
Stremmel W, Staffer S, Wannhoff A, Pathil A, Chamulitrat W. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis. FASEB J 2014; 28:3159-70. [PMID: 24719358 DOI: 10.1096/fj.14-249763] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Excess hepatic fat accumulation leads to nonalcoholic steatohepatitis (NASH), a serious threat to health for which no effective treatment is available. However, the mechanism responsible for fatty acid uptake by hepatocytes remains unclear. Using the human hepatocyte-derived tumor cell line HepG2, we found that fatty acid influx is mediated by a heterotetrameric plasma membrane protein complex consisting of plasma membrane fatty acid-binding protein, caveolin-1, CD36, and calcium-independent membrane phospholipase A2 (iPLA2β). Blocking iPLA2β with the bile acid-phospholipid conjugate ursodeoxycholate-lysophosphatidylethanolamide (UDCA-LPE) caused the dissociation of the complex, thereby inhibiting fatty acid influx (IC50 47 μM), and suppressed the synthesis of all subunits through a reduction in lysophosphatidylcholine from 8.0 to 3.5 μmol/mg of protein and corresponding depletion of phosphorylated c-Jun N-terminal kinase. These findings were substantiated by an observed 56.5% decrease in fatty acid influx in isolated hepatocytes derived from iPLA2β-knockout mice. Moreover, steatosis and inflammation were abrogated by UDCA-LPE treatment in a cellular model of NASH. Thus, iPLA2β acts as an upstream checkpoint for mechanisms that regulate fatty acid uptake, and its inhibition by UDCA-LPE qualifies this nontoxic compound as a therapeutic candidate for the treatment of NASH.-Stremmel, W., Staffer, S., Wannhoff, A., Pathil, A., Chamulitrat, W. Plasma membrane phospholipase A2 controls hepatocellular fatty acid uptake and is responsive to pharmacological modulation: implications for nonalcoholic steatohepatitis.
Collapse
Affiliation(s)
- Wolfgang Stremmel
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Simone Staffer
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Wannhoff
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Anita Pathil
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| | - Walee Chamulitrat
- Department of Gastroenterology, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
46
|
Protein mediated fatty acid uptake: Synergy between CD36/FAT-facilitated transport and acyl-CoA synthetase-driven metabolism. Arch Biochem Biophys 2014; 546:8-18. [DOI: 10.1016/j.abb.2014.01.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/17/2014] [Accepted: 01/23/2014] [Indexed: 11/21/2022]
|
47
|
Qiu Y, Liu S, Chen HT, Yu CH, Teng XD, Yao HT, Xu GQ. Upregulation of caveolin-1 and SR-B1 in mice with non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2013; 12:630-6. [PMID: 24322749 DOI: 10.1016/s1499-3872(13)60099-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is one of the most frequent causes of liver diseases, with markedly increased prevalence. However, its mechanisms are not clear. The present study was undertaken to illustrate the role of caveolin-1 (cav1) and the scavenger receptor class B type 1 (SR-B1) in NAFLD. METHODS Adult male C57BL/6 mice were fed with a normal diet or high fat and cholesterol (HFC) diet for 14 weeks. The mice were sacrificed to collect plasma and harvest the liver; their plasma lipid concentration was measured. Hepatic cav1 and SR-B1 mRNA and protein expression were determined by real-time quantitative polymerase chain reaction (qPCR) and Western blotting, respectively. In order to study cav1 and SR-B1 distribution and change in hepatocytes, immunohistochemical analysis was performed. RESULTS HFC diet increased plasma lipids, induced NAFLD and increased the liver/body weight ratio. Compared to the control mice (n=6), the mRNA and protein levels of cav1 and SR-B1 in liver tissue of the NAFLD mice (n=12) increased significantly (cav1 mRNA: 1.536+/-0.226 vs 0.980+/-0.272, P<0.05; protein: 0.643+/-0.240 vs 0.100+/-0.130, P<0.01; SR-B1 mRNA: 1.377+/-0.125 vs 0.956+/-0.151, P<0.01; protein: 2.156+/-0.507 vs 0.211+/-0.211, P<0.01). Furthermore, both cav1 and SR-B1 immunoreactivity increased and their distribution was also changed, mainly in the plasma membrane of hepatocytes, cytoplasm and membrane of lipid droplets and around. CONCLUSION NAFLD is associated with increased concentration of plasma lipids and upregulation of hepatic cav1 and SR-B1 gene and protein expressions, which indicate that cav1 and SR-B1 might play crucial roles in the pathogenesis of NAFLD.
Collapse
Affiliation(s)
- Yan Qiu
- Department of Gastroenterology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Caveolin: a possible biomarker of degradable metallic materials toxicity in vascular cells. Acta Biomater 2013; 9:8754-60. [PMID: 23597857 DOI: 10.1016/j.actbio.2013.04.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 04/04/2013] [Accepted: 04/09/2013] [Indexed: 01/10/2023]
Abstract
Iron-based materials could constitute an interesting option for cardiovascular biodegradable stent applications due to their appropriate ductility compared with their counterparts, magnesium alloys. However, the predicted degradation rate of pure iron is considered to be too slow for such applications. We explored manganese (35 wt.%) as an alloying element in combination with iron to circumvent this problem through powder metallurgical processing (Fe-35Mn). Manganese, on the other hand, is highly cytotoxic. We recently explored a new method to better characterize the safety of degradable metallic materials (DMMs) by establishing the gene expression profile (GEP) of cells (mouse 3T3 fibroblasts) exposed to Fe-35Mn degradation products in order to better understand their global response to a potentially cytotoxic DMM. We identified a number of up- and down-regulated genes and confirmed the regulation of a subset of them by quantitative real time polymerase chain reaction. Caveolin-1 (cav1), the structural protein of caveolae, small, smooth plasma membrane invaginations present in various differentiated cell types, was one of the most down-regulated genes in our GEPs. In the present study we further studied the potential of this 22 kDa protein to become a biomarker for cytotoxicity after exposure to degradable metallic elements. In order to better characterize cav1 expression in this context 3T3 mouse fibroblasts were exposed to either ferrous and manganese ions at cytostatic concentrations for 24 or 48 h. cav1 gene expression was not influenced by exposure to ferrous ions. On the other hand, exposure to manganese for 24h reduced cav1 gene expression by about 30% and by >65% after 48 h compared with control 3T3 cells. The cav1 cellular protein content was reduced to the same extent. The same pattern of expression of cav3 (the muscle-specific caveolin subtype) was also observed in this study. This strong and reproducible pattern of regulation of caveolins thus indicates potential as a biomarker for the toxicity of DMM elements.
Collapse
|
49
|
Buttet M, Traynard V, Tran TTT, Besnard P, Poirier H, Niot I. From fatty-acid sensing to chylomicron synthesis: role of intestinal lipid-binding proteins. Biochimie 2013; 96:37-47. [PMID: 23958439 DOI: 10.1016/j.biochi.2013.08.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/05/2013] [Indexed: 12/31/2022]
Abstract
Today, it is well established that the development of obesity and associated diseases results, in part, from excessive lipid intake associated with a qualitative imbalance. Among the organs involved in lipid homeostasis, the small intestine is the least studied even though it determines lipid bioavailability and largely contributes to the regulation of postprandial hyperlipemia (triacylglycerols (TG) and free fatty acids (FFA)). Several Lipid-Binding Proteins (LBP) are expressed in the small intestine. Their supposed intestinal functions were initially based on what was reported in other tissues, and took no account of the physiological specificity of the small intestine. Progressively, the identification of regulating factors of intestinal LBP and the description of the phenotype of their deletion have provided new insights into cellular and molecular mechanisms involved in fat absorption. This review will discuss the physiological contribution of each LBP in the main steps of intestinal absorption of long-chain fatty acids (LCFA): uptake, trafficking and reassembly into chylomicrons (CM). Moreover, current data indicate that the small intestine is able to adapt its lipid absorption capacity to the fat content of the diet, especially through the coordinated induction of LBP. This adaptation requires the existence of a mechanism of intestinal lipid sensing. Emerging data suggest that the membrane LBP CD36 may operate as a lipid receptor that triggers an intracellular signal leading to the modulation of the expression of LBP involved in CM formation. This event could be the starting point for the optimized synthesis of large CM, which are efficiently degraded in blood. Better understanding of this intestinal lipid sensing might provide new approaches to decrease the prevalence of postprandial hypertriglyceridemia, which is associated with cardiovascular diseases, insulin resistance and obesity.
Collapse
Affiliation(s)
- Marjorie Buttet
- Physiologie de la Nutrition et Toxicologie Team (NUTox), UMR U866 INSERM, Université de Bourgogne, AgroSup Dijon, 1 Esplanade Erasme, 21000 Dijon, France
| | | | | | | | | | | |
Collapse
|
50
|
Siddiqi S, Sheth A, Patel F, Barnes M, Mansbach CM. Intestinal caveolin-1 is important for dietary fatty acid absorption. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1831:1311-21. [PMID: 23665238 PMCID: PMC3751415 DOI: 10.1016/j.bbalip.2013.05.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 12/16/2022]
Abstract
How dietary fatty acids are absorbed into the enterocyte and transported to the ER is not established. We tested the possibility that caveolin-1 containing lipid rafts and endocytic vesicles were involved. Apical brush border membranes took up 15% of albumin bound (3)H-oleate whereas brush border membranes from caveolin-1 KO mice took up only 1%. In brush border membranes, the (3)H-oleate was in the detergent resistant fraction of an OptiPrep gradient. On OptiPrep gradients of intestinal cytosol, we also found the (3)H-oleate in the detergent resistant fraction, separate from OptiPrep gradients spiked with (3)H-oleate or (3)H-triacylglycerol. Caveolin-1 immuno-depletion of cytosol removed 91% of absorbed (3)H-oleate whereas immuno-depletion using IgG, or anti-caveolin-2 or -3 or anti-clathrin antibodies removed 20%. Electron microscopy showed the presence of caveolin-1 containing vesicles in WT mouse cytosol that were 4 fold increased by feeding intestinal sacs 1mM oleate. No vesicles were seen in caveolin-1 KO mouse cytosol. Caveolin-1 KO mice gained less weight on a 23% fat diet and had increased fat in their stool compared to WT mice. We conclude that dietary fatty acids are absorbed by caveolae in enterocyte brush border membranes, are endocytosed, and transported in cytosol in caveolin-1 containing endocytic vesicles.
Collapse
Affiliation(s)
- Shahzad Siddiqi
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
| | - Atur Sheth
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
| | - Feenalie Patel
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
| | - Matthew Barnes
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
| | - Charles M. Mansbach
- Division of Gastroenterology, Department of Medicine, The University of Tennessee Health Science Center 38163
- Veterans Affairs Medical Center, Memphis, TN 38104
| |
Collapse
|