1
|
Song Z, Bhattacharya S, Clemens RA, Dinauer MC. Molecular regulation of neutrophil swarming in health and disease: Lessons from the phagocyte oxidase. iScience 2023; 26:108034. [PMID: 37854699 PMCID: PMC10579437 DOI: 10.1016/j.isci.2023.108034] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Neutrophil swarming is a complex coordinated process in which neutrophils sensing pathogen or damage signals are rapidly recruited to sites of infections or injuries. This process involves cooperation between neutrophils where autocrine and paracrine positive-feedback loops, mediated by receptor/ligand pairs including lipid chemoattractants and chemokines, amplify localized recruitment of neutrophils. This review will provide an overview of key pathways involved in neutrophil swarming and then discuss the cell intrinsic and systemic mechanisms by which NADPH oxidase 2 (NOX2) regulates swarming, including modulation of calcium signaling, inflammatory mediators, and the mobilization and production of neutrophils. We will also discuss mechanisms by which altered neutrophil swarming in disease may contribute to deficient control of infections and/or exuberant inflammation. Deeper understanding of underlying mechanisms controlling neutrophil swarming and how neutrophil cooperative behavior can be perturbed in the setting of disease may help to guide development of tools for diagnosis and precision medicine.
Collapse
Affiliation(s)
- Zhimin Song
- Guangzhou National Laboratory, Guangzhou 510320, Guangdong Province, China
| | - Sourav Bhattacharya
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Regina A. Clemens
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Mary C. Dinauer
- Department of Pediatrics, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Ball L, Bauer J, Krautwurst D. Heterodimerization of Chemoreceptors TAS1R3 and mGlu 2 in Human Blood Leukocytes. Int J Mol Sci 2023; 24:12942. [PMID: 37629122 PMCID: PMC10454557 DOI: 10.3390/ijms241612942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/08/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The expression of canonical chemosensory receptors of the tongue, such as the heteromeric sweet taste (TAS1R2/TAS1R3) and umami taste (TAS1R1/TAS1R3) receptors, has been demonstrated in many extra-oral cells and tissues. Gene expression studies have revealed transcripts for all TAS1 and metabotropic glutamate (mGlu) receptors in different types of immune cells, where they are involved, for example, in the chemotaxis of human neutrophils and the protection of T cells from activation-induced cell death. Like other class-C G protein-coupling receptors (GPCRs), TAS1Rs and mGlu receptors form heteromers within their families. Since mGlu receptors and TAS1R1/TAS1R3 share the same ligand, monosodium glutamate (MSG), we hypothesized their hitherto unknown heteromerization across receptor families in leukocytes. Here we show, by means of immunocytochemistry and co-IP/Western analysis, that across class-C GPCR families, mGlu2 and TAS1R3 co-localize and heterodimerize in blood leukocytes. Expressing the recombinant receptors in HEK-293 cells, we validated their heterodimerization by bioluminescence resonance energy transfer. We demonstrate MSG-induced, mGlu2/TAS1R3 heteromer-dependent gain-of-function and pertussis toxin-sensitive signaling in luminescence assays. Notably, we show that mGlu2/TAS1R3 is necessary and sufficient for MSG-induced facilitation of N-formyl-methionyl-leucyl-phenylalanine-stimulated IL-8 secretion in neutrophils, using receptor-specific antagonists. In summary, our results demonstrate mGlu2/TAS1R3 heterodimerization in leukocytes, suggesting cellular function-tailored chemoreceptor combinations to modulate cellular immune responses.
Collapse
Affiliation(s)
- Lena Ball
- TUM School of Life Sciences, Technical University of Munich, Alte Akademie 8a, 85354 Freising, Germany;
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| | - Julia Bauer
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Str. 34, 85354 Freising, Germany;
| |
Collapse
|
3
|
Skurk T, Krämer T, Marcinek P, Malki A, Lang R, Dunkel A, Krautwurst T, Hofmann TF, Krautwurst D. Sweetener System Intervention Shifted Neutrophils from Homeostasis to Priming. Nutrients 2023; 15:nu15051260. [PMID: 36904259 PMCID: PMC10005247 DOI: 10.3390/nu15051260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
BACKGROUND Non-nutritive sweeteners (NNS) are part of personalized nutrition strategies supporting healthy glycemic control. In contrast, the consumption of non-nutritive sweeteners has been related to person-specific and microbiome-dependent glycemic impairments. Reports on the effects of NNS on our highly individual cellular immune system are sparse. The recent identification of taste receptor expression in a variety of immune cells, however, suggested their immune-modulatory relevance. METHODS We studied the influence of a beverage-typical NNS system on the transcriptional profiling of sweetener-cognate taste receptors, selected cytokines and their receptors, and on Ca2+ signaling in isolated blood neutrophils. We determined plasma concentrations of saccharin, acesulfame-K, and cyclamate by HPLC-MS/MS, upon ingestion of a soft drink-typical sweetener surrogate. In an open-labeled, randomized intervention study, we determined pre- versus post-intervention transcript levels by RT-qPCR of sweetener-cognate taste receptors and immune factors. RESULTS Here we show that the consumption of a food-typical sweetener system modulated the gene expression of cognate taste receptors and induced the transcriptional regulation signatures of early homeostasis- and late receptor/signaling- and inflammation-related genes in blood neutrophils, shifting their transcriptional profile from homeostasis to priming. Notably, sweeteners at postprandial plasma concentrations facilitated fMLF (N-formyl-Met-Leu-Phe)-induced Ca2+ signaling. CONCLUSIONS Our results support the notion of sweeteners priming neutrophils to higher alertness towards their adequate stimuli.
Collapse
Affiliation(s)
- Thomas Skurk
- ZIEL Institute for Food and Health, Core Facility Human Studies, TUM School for Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Tamara Krämer
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Agne Malki
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Roman Lang
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
| | - Tiffany Krautwurst
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Thomas F. Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology, Technical University of Munich, 85354 Freising, Germany
- Correspondence:
| |
Collapse
|
4
|
Zheng X, Zhao J, Wang S, Hu L. Research Progress of Antioxidant Nanomaterials for Acute Pancreatitis. Molecules 2022; 27:7238. [PMID: 36364064 PMCID: PMC9658789 DOI: 10.3390/molecules27217238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/21/2022] [Indexed: 08/30/2023] Open
Abstract
Acute pancreatitis (AP) is a complex inflammatory disease caused by multiple etiologies, the pathogenesis of which has not been fully elucidated. Oxidative stress is important for the regulation of inflammation-related signaling pathways, the recruitment of inflammatory cells, the release of inflammatory factors, and other processes, and plays a key role in the occurrence and development of AP. In recent years, antioxidant therapy that suppresses oxidative stress by scavenging reactive oxygen species has become a research highlight of AP. However, traditional antioxidant drugs have problems such as poor drug stability and low delivery efficiency, which limit their clinical translation and applications. Nanomaterials bring a brand-new opportunity for the antioxidant treatment of AP. This review focuses on the multiple advantages of nanomaterials, including small size, good stability, high permeability, and long retention effect, which can be used not only as effective carriers of traditional antioxidant drugs but also directly as antioxidants. In this review, after first discussing the association between oxidative stress and AP, we focused on summarizing the literature related to antioxidant nanomaterials for the treatment of AP and highlighting the effects of these nanomaterials on the indicators related to oxidative stress in pathological states, aiming to provide references for follow-up research and promote clinical application.
Collapse
Affiliation(s)
- Xiaoyi Zheng
- Ningxia Medical University, Postgraduate Training Base in Shanghai Gongli Hospital, Pudong New Area, No. 219 Miao Pu Road, Shanghai 200135, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| | - Lianghao Hu
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| |
Collapse
|
5
|
Vogt KL, Summers C, Chilvers ER, Condliffe AM. Priming and de-priming of neutrophil responses in vitro and in vivo. Eur J Clin Invest 2018; 48 Suppl 2:e12967. [PMID: 29896919 DOI: 10.1111/eci.12967] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/10/2018] [Indexed: 12/20/2022]
Abstract
The activation status of neutrophils can cycle from basal through primed to fully activated ("green-amber-red"), and at least in vitro, primed cells can spontaneously revert to a near basal phenotype. This broad range of neutrophil responsiveness confers extensive functional flexibility, allowing neutrophils to respond rapidly and appropriately to varied and evolving threats throughout the body. Primed and activated cells display dramatically enhanced bactericidal capacity (including augmented respiratory burst activity, degranulation and longevity), but this enhancement also confers the capacity for significant unintended tissue injury. Neutrophil priming and its consequences have been associated with adverse outcomes in a range of disease states, hence understanding the signalling processes that regulate the transition between basal and primed states (and back again) may offer new opportunities for therapeutic intervention in pathological settings. A wide array of host- and pathogen-derived molecules is able to modulate the functional status of these versatile cells. Reflecting this extensive repertoire of potential mediators, priming can be established by a range of signalling pathways (including mitogen-activated protein kinases, phosphoinositide 3-kinases, phospholipase D and calcium transients) and intracellular processes (including endocytosis, vesicle trafficking and the engagement of adhesion molecules). The signalling pathways engaged, and the exact cellular phenotype that results, vary according to the priming agent(s) to which the neutrophil is exposed and the precise environmental context. Herein we describe the signals that establish priming (in particular for enhanced respiratory burst, degranulation and prolonged lifespan) and describe the recently recognised process of de-priming, correlating in vitro observations with in vivo significance.
Collapse
Affiliation(s)
- Katja L Vogt
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK.,Bateson Institute, University of Sheffield, Sheffield, UK
| | | | | | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, UK.,Bateson Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
6
|
Wang YH, Feng ZJ, Hao X. Relationship between acute pancreatitis and oxidative stress. Shijie Huaren Xiaohua Zazhi 2007; 15:1266-1272. [DOI: 10.11569/wcjd.v15.i11.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Under the imbalance between generation of reactive oxygen species and inadequate antioxidant defense systems, oxidative stress can cause cell damage either directly or indirectly through altering signaling pathways. It is the etiopathogenisis and also the consequence of many diseases. Oxidative injury plays an important role not only in the pathogenesis of acute pancreatitis (AP) but also in pancreatitis-induced damages of other organs such as heart, liver, lung, kidney, alimentary canal and so on. Oxidative stress can produce a higher level of reactive oxygen species (ROS) and reactive nitrogen species (RNS), which induce inflammatory reaction and microcirculation disturbance, and cell necrosis or apoptosis, leading to pancreatic inflammation and multiple organ dysfunction syndromes. The antioxidants can decrease the production of oxygen free radicals (or directly scavenge them), protect the antioxidant enzyme activity, reinforce the antioxidative capacity of bodies, and consequently play an obvious therapeutic effect on AP.
Collapse
|
7
|
Belostocki K, Park MS, Redecha PB, Masuda E, Salmon JE, Pricop L. FcgammaRIIa is a target for modulation by TNFalpha in human neutrophils. Clin Immunol 2005; 117:78-86. [PMID: 16084773 DOI: 10.1016/j.clim.2005.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 06/30/2005] [Accepted: 07/07/2005] [Indexed: 11/17/2022]
Abstract
Activation of neutrophils by the interaction of immune complexes with Fc gamma receptors (FcgammaR) is amplified in tumor necrosis factor-alpha (TNFalpha)-primed cells, whereas interleukin-10 (IL-10) has been reported to suppress cytokine-mediated neutrophil activation. We examined whether the expression and function of FcgammaR in human neutrophils is modulated by TNFalpha and IL-10 in vitro, and whether FcgammaRIIa expression is altered following treatment with the TNFalpha inhibitor infliximab in rheumatoid arthritis (RA) patients in vivo. TNFalpha treatment induced upregulation of expression and function of the major activating Fc receptor, FcgammaRIIa, in neutrophils from healthy donors. Unexpectedly, treatment with IL-10 led to gain of FcgammaRIIa function in TNFalpha-primed neutrophils. In neutrophils from RA patients initiating infliximab therapy and followed longitudinally through consecutive treatments, FcgammaRIIa protein decreased during the course of TNFalpha blockade, indicating that FcgammaRIIa is a target of TNFalpha modulation in human neutrophils in vivo.
Collapse
Affiliation(s)
- Kristina Belostocki
- Hospital for Special Surgery, Weill Medical College of Cornell University, Department of Medicine and Research Division, New York, NY 10021, USA
| | | | | | | | | | | |
Collapse
|
8
|
Bréchard S, Bueb JL, Tschirhart EJ. Interleukin-8 primes oxidative burst in neutrophil-like HL-60 through changes in cytosolic calcium. Cell Calcium 2005; 37:531-40. [PMID: 15862344 DOI: 10.1016/j.ceca.2005.01.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 11/30/2004] [Accepted: 01/10/2005] [Indexed: 10/25/2022]
Abstract
In response to a variety of stimuli, neutrophils release large amount of reactive oxygen species (ROS) generated by NADPH oxidase. This process known as the respiratory burst is dependent on cytosolic free calcium concentration ([Ca(2+)](i)). Proinflammatory cytokines such as interleukin-8 (IL-8) may modulate ROS generation through a priming phenomenon. The aim of this study was to determine the effect of human IL-8 on ROS production in neutrophil-like dimethylsulfoxide-differentiated HL-60 cells (not equalHL-60 cells) and further to examine the role of Ca(2+) mobilization during the priming. IL-8 at 10 nM induced no ROS production but a [Ca(2+)](i) rise (254 +/- 36 nM). IL-8 induced a strongly enhanced (2 fold) ROS release during stimulation with 1 microM of N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLF). This potentiation of ROS production is dependent of extracellular Ca(2+) (17.0+/-4.5 arbitrary units (A.U.) in the absence of Ca(2+) versus 56.6 +/- 3.9 A.U. in the presence of 1.25 mM of Ca(2+)). Also, IL-8 enhanced fMLF-stimulated increase in [Ca(2+)](i) (375 +/- 35 versus 245 +/- 21 nM, 0.1 microM of fMLF). IL-8 had no effect on not equalHL-60 cells in response to 1 microM of thapsigargin (472 +/- 66 versus 470 +/- 60 nM). In conclusion, Ca(2+) influx is necessary for a full induction of neutrophil priming by IL-8.
Collapse
Affiliation(s)
- S Bréchard
- Laboratoire de Biologie et Physiologie Intégrée, Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg
| | | | | |
Collapse
|
9
|
Loegering DJ, Lennartz MR. Signaling pathways for Fc gamma receptor-stimulated tumor necrosis factor-alpha secretion and respiratory burst in RAW 264.7 macrophages. Inflammation 2004; 28:23-31. [PMID: 15072227 DOI: 10.1023/b:ifla.0000014708.87440.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Fc gamma receptor (Fc gammaR) signaling mediates several important macrophage functions including cytokine secretion and respiratory burst. The present study describes the development of a model using the macrophage cell line, RAW 264.7 for studying Fc gammaR-stimulated tumor necrosis factor-alpha (TNF-alpha) secretion and hydrogen peroxide (H2O2) production. In unprimed cells these functions were low but pretreatment with interferon-gamma augmented Fc gammaR-stimulated TNF-alpha secretion and H2O2 production to levels that were about half that caused by lipopolysaccharide (LPS) and zymosan, respectively. Studies on the signaling pathways found that TNF-alpha secretion stimulated by either Fc gammaR or LPS was decreased by inhibitors of PKC, MAPK p42/p44, and MAPK p38. TNF-alpha secretion was also reduced by the combination of PLC and PLD inhibitors but not by the individual inhibitors alone. H2O2 production stimulated by either Fc gammaR or zymosan was blocked by inhibitors of PKC, PLC, PLD, and MAPK p42/44 but not by MAPK p38. Thus, interferon-gamma treated RAW 264.7 cells are a model of inflammatory macrophages and are well suited for further study of these signaling pathways.
Collapse
Affiliation(s)
- Daniel J Loegering
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | |
Collapse
|
10
|
Almkvist J, Dahlgren C, Leffler H, Karlsson A. Newcastle disease virus neuraminidase primes neutrophils for stimulation by galectin-3 and formyl-Met-Leu-Phe. Exp Cell Res 2004; 298:74-82. [PMID: 15242763 DOI: 10.1016/j.yexcr.2004.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2004] [Revised: 04/02/2004] [Indexed: 11/25/2022]
Abstract
Human neutrophils are activated by the beta-galactoside-binding lectin galectin-3, provided that the cells are primed by in vivo extravasation or by in vitro preactivation with, for example, LPS. Removal of terminal sialic acid can change neutrophil functionality and responsiveness due to exposure of underlying glycoconjugate receptors or change in surface charge. Here, we investigated whether such alteration of the cell surface carbohydrate composition can alter the responsiveness of the cells to galectin-3. Neutrophils were treated with neuraminidases (NA) of different origins: Clostridium perfringens (CP), Salmonella typhimurium, Vibrio cholerae, and Newcastle disease virus (NDV). In the presence of NDV-NA, but no other NA, the otherwise non-responding neutrophils responded readily to galectin-3 by activation of the NADPH-oxidase. The galectin-3 priming effect was inhibited by the sialidase inhibitor 2,3-dehydro-2-deoxy-N-acetyl-neuraminic acid. Earlier studies have shown that priming of the neutrophil response to galectin-3 with, for example, LPS is paralleled by degranulation of intracellular vesicles and granules and upregulation of potential galectin-3 receptors. Also, NDV-NA (but not CP-NA) treatment induced degranulation, shown as an upregulation of complement receptor 3. Since not only the galectin response but also the response to the chemoattractant fMLF was primed, NDV-NA appears to induce a general priming phenomenon, possibly due to receptor upregulation by degranulation.
Collapse
Affiliation(s)
- Jenny Almkvist
- The Phagocyte Research Laboratory, Department of Rheumatology and Inflammation Research, Göteborg University, Sweden
| | | | | | | |
Collapse
|
11
|
Newbrough SA, Mocsai A, Clemens RA, Wu JN, Silverman MA, Singer AL, Lowell CA, Koretzky GA. SLP-76 regulates Fcgamma receptor and integrin signaling in neutrophils. Immunity 2003; 19:761-9. [PMID: 14614862 DOI: 10.1016/s1074-7613(03)00305-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
While the contribution of intracellular adaptor proteins to lymphocyte activation has been well studied, the function of these molecules in innate immune effector cells such as neutrophils has not been extensively addressed. Here we demonstrate a critical role for the adaptor molecule SH2 domain-containing leukocyte-specific phosphoprotein of 76 kDa (SLP-76) in FcgammaR and integrin signaling. Stimulation of these receptors induces tyrosine phosphorylation and cytoplasmic relocalization of SLP-76 in freshly isolated murine neutrophils. Neutrophils lacking SLP-76 demonstrate decreased FcgammaR-induced calcium flux and reactive oxygen intermediate (ROI) production in response to immune complex stimulation. More dramatically, SLP-76-/- neutrophils fail to produce ROI, spread, or activate critical downstream regulators in response to integrin ligation. These results provide genetic evidence for a critical role of SLP-76 in the regulation of neutrophil function.
Collapse
Affiliation(s)
- Sally A Newbrough
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Bylund J, Samuelsson M, Collins LV, Karlsson A. NADPH-oxidase activation in murine neutrophils via formyl peptide receptors. Exp Cell Res 2003; 282:70-7. [PMID: 12531693 DOI: 10.1016/s0014-4827(02)00010-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neutrophils play a key role at inflammatory sites where, in addition to destroying infecting microorganisms, they may also have deleterious effects on host tissues. Both activities involve activation of the NADPH-oxidase that produces bactericidal and tissue-destructive reactive oxygen species (ROS). We activated the murine NADPH-oxidase using different types of neutrophil activators and characterized the oxidative responses with respect to magnitude, localization, and kinetics. We show that agonist-induced activation of murine neutrophils results exclusively in extracellular release of ROS and no intracellular production could be detected. We also show that the formylated peptide, formyl-Met-Leu-Phe (fMLF), is a much less potent activator of the murine NADPH-oxidase than of the human analogue. Nevertheless, fMLF responses can be primed by pretreating the murine neutrophils with either cytochalasin B or bacterial lipopolysaccharide. Finally, we show that a synthetic hexapeptide, WKYMVM, is a more potent stimulus than fMLF for murine neutrophils and that these two agonists probably act via nonidentical high-affinity receptors.
Collapse
Affiliation(s)
- Johan Bylund
- Department of Rheumatology and Inflammation Research, Göteborg University, Sweden.
| | | | | | | |
Collapse
|
13
|
Fazal N, Al-Ghoul WM, Schmidt MJ, Choudhry MA, Sayeed MM. Lyn- and ERK-mediated vs. Ca2+ -mediated neutrophil O responses with thermal injury. Am J Physiol Cell Physiol 2002; 283:C1469-79. [PMID: 12372808 DOI: 10.1152/ajpcell.00114.2002] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the dependency of neutrophil O production on PTK-Lyn and MAPK-ERK1/2 in rats after thermal injury. Activation of PTK-Lyn was assessed by immunoprecipitation. Phosphorylation of ERK1/2 was assessed by Western blot analysis. O production was measured by isoluminol-enhanced luminometry. Imaging technique was employed to measure neutrophil [Ca2+](i) in individual cells. Thermal injury caused marked upregulation of Lyn and ERK1/2 accompanying enhanced neutrophil O production. Treatment of rats with PTK blocker (AG556) or MAPK blocker (AG1478) before burn injury caused complete inhibition of the respective kinase activation. Both AG556 and AG1478 produced an ~66% inhibition in O production. Treatment with diltiazem (DZ) produced an ~37% inhibition of O production without affecting Lyn or ERK1/2 activation with burn injury. Ca2+ mobilization was upregulated with burn injury but not affected by treatment of burn rats with AG556. Unlike the partial inhibition of burn-induced O production by AG556, AG1478, or DZ, platelet-activating factor antagonist (PAFa) treatment of burn rats produced near complete inhibition of O production. PAFa treatment also blocked activation of Lyn. The findings suggest that the near complete inhibition of O production by PAFa was a result of blockade of PTK as well as Ca2+ signaling. Overall, our studies show that enhanced neutrophil O production after thermal injury is a result of potentiation of Ca2+ -linked and -independent signaling triggered by inflammatory agents such as PAF.
Collapse
Affiliation(s)
- Nadeem Fazal
- Burn & Shock Trauma Institute, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | | | |
Collapse
|
14
|
Watson F, Kiernan RS, Dimaline R. GATA proteins are potential negative regulators of HDC gene expression in the gastric epithelium. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1576:198-202. [PMID: 12031502 DOI: 10.1016/s0167-4781(02)00301-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In this study, we used the gastric epithelial cell line AGS-G(R) to investigate the role of GATA transcription factors in the regulation of both basal and gastrin-stimulated L-histidine decarboxylase (HDC) gene transcription. Using reporter gene technology, we compared the transcriptional activity of a construct, hHDC503, which contained the 5'-flanking region of the human HDC gene with that of similar constructs lacking selected GATA consensus sequences. We demonstrated the expression of GATA-4 and GATA-6 proteins within the AGS-G(R) cells and found evidence that these transcription factors can negatively regulate HDC gene expression.
Collapse
Affiliation(s)
- Fiona Watson
- The Department of Pathology, Duncan Building, The University of Liverpool, Daulby Street, Liverpool L69 3GA, UK.
| | | | | |
Collapse
|
15
|
Bylund J, Karlsson A, Boulay F, Dahlgren C. Lipopolysaccharide-induced granule mobilization and priming of the neutrophil response to Helicobacter pylori peptide Hp(2-20), which activates formyl peptide receptor-like 1. Infect Immun 2002; 70:2908-14. [PMID: 12010979 PMCID: PMC127963 DOI: 10.1128/iai.70.6.2908-2914.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2001] [Revised: 09/11/2001] [Accepted: 02/28/2002] [Indexed: 01/21/2023] Open
Abstract
The cecropin-like bactericidal peptide Hp(2-20) from Helicobacter pylori induces activation of the NADPH oxidase in human neutrophils via formyl peptide receptor-like 1 (FPRL1) (J. Bylund, T. Christophe, F. Boulay, T. Nyström, A. Karlsson, and C. Dahlgren, Antimicrob. Agents Chemother. 45:1700-1704, 2001). Here we investigated the ability of bacterial lipopolysaccharide (LPS) to prime this response. Neutrophils treated with LPS for 30 min at 37 degrees C produced substantially more superoxide anion than control cells upon stimulation with Hp(2-20). Hence, LPS primed the cells for subsequent stimulation through FPRL1. To study the molecular background of this priming phenomenon, we measured the degrees of granule mobilization and concomitant receptor upregulation to the cell surface in LPS-treated cells. Exposure of complement receptors 1 and 3 as well as the formyl peptide receptor (FPR) was markedly increased after LPS treatment. Since approximately 60% of the gelatinase granules were mobilized while the specific granules were retained, we hypothesized that the gelatinase granules were potential stores of FPRL1. The presence of FPRL1 mainly in the gelatinase granules was confirmed by Western blotting of subcellular fractions of resting neutrophils. These results suggest that the mechanism behind the LPS-induced priming of FPRL1-mediated responses lies at the level of granule (receptor) mobilization.
Collapse
Affiliation(s)
- Johan Bylund
- Phagocyte Research Laboratory, Department of Rheumatology, University of Göteborg, Göteborg, Sweden
| | | | | | | |
Collapse
|
16
|
Fossati G, Moots RJ, Bucknall RC, Edwards SW. Differential role of neutrophil Fcgamma receptor IIIB (CD16) in phagocytosis, bacterial killing, and responses to immune complexes. ARTHRITIS AND RHEUMATISM 2002; 46:1351-61. [PMID: 12115243 DOI: 10.1002/art.10230] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To determine the roles played by the neutrophil Fcgamma receptor type II (FcgammaRII) (CD32) and FcgammaRIIIb (CD16) in phagocytosis, bacterial killing, and activation by immune complexes (ICs) and to test the hypothesis that inhibition of pathologic effector neutrophil function is possible without compromising host defense. METHODS Receptor function was probed by enzymic removal of FcgammaRIIIb from the cell surface and by use of Fab/F(ab')(2) fragments of monoclonal antibodies to block receptor-ligand binding. Cells were challenged with (a) serum-opsonized Staphylococcus aureus, (b) serum- and IgG-opsonized latex particles, and (c) synthetic soluble and insoluble ICs to mimic bacterial and inflammatory stimuli. RESULTS Phosphatidylinositol-phospholipase C treatment removed >97% of surface FcgammaRIIIb from neutrophils previously treated with tumor necrosis factor alpha to mobilize intracellular stores of receptor. This treatment profoundly inhibited activation of primed neutrophils by soluble ICs of the type found in diseased rheumatoid joints, but had no effect on phagocytosis and killing of serum-opsonized S aureus. CONCLUSION FcgammaRIIIb plays a major role in the secretion of toxic products in response to ICs, but little or no role in the phagocytosis and killing of serum-opsonized bacteria. The selective suppression of effector neutrophil function is therefore possible. FcgammaRIIIb, or its intracellular signaling pathway, is a potential therapeutic target in inflammatory diseases such as rheumatoid arthritis, because disruption of its function should decrease inflammatory tissue damage, but not jeopardize host protection against infection.
Collapse
|
17
|
Fossati G, Bucknall RC, Edwards SW. Insoluble and soluble immune complexes activate neutrophils by distinct activation mechanisms: changes in functional responses induced by priming with cytokines. Ann Rheum Dis 2002; 61:13-9. [PMID: 11779751 PMCID: PMC1753889 DOI: 10.1136/ard.61.1.13] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Rheumatoid synovial fluid contains both soluble and insoluble immune complexes that can activate infiltrating immune cells such as neutrophils. OBJECTIVES To determine if these different complexes activate neutrophils through similar or different receptor signalling pathways. In particular, to determine the circumstances which result in the secretion of tissue damaging reactive oxygen metabolites and granule enzymes. METHODS Blood neutrophils were incubated with synthetic soluble and insoluble immune complexes and the ability to generate reactive oxidants tested by luminescence or spectrophotometric assays that distinguished between intracellular and extracellular production. Degranulation of myeloperoxidase and lactoferrin was determined by western blotting. The roles of FcgammaRII (CD32) and FcgammaRIIIb (CD16) were determined by incubation with Fab/F(ab')(2) fragments before activation. The effect of cytokine priming was determined by incubation with GM-CSF. RESULTS Insoluble immune complexes activated unprimed neutrophils, but most of the oxidants produced were intracellular. This activation required FcgammaRIIIb, but not FcgammaRII function. Soluble complexes failed to activate unprimed neutrophils but generated a rapid and extensive secretion of reactive oxygen metabolites when the cells were primed with granulocyte-macrophage colony stimulating factor (GM-CSF). This activity required both FcgammaRII and FcgammaRIIIb function. Insoluble immune complexes activated the release of granule enzymes from primed or unprimed neutrophils, but the kinetics of release did not parallel those of secretion of reactive oxygen metabolites. Only primed neutrophils released enzymes in response to soluble complexes. CONCLUSIONS Soluble and insoluble immune complexes activate neutrophils by separate receptor signalling pathways. Profound changes in neutrophil responsiveness to these complexes occur after cytokine priming.
Collapse
Affiliation(s)
- G Fossati
- School of Biological Sciences, Life Sciences Building, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | |
Collapse
|
18
|
Fäldt J, Dahlgren C, Ridell M, Karlsson A. Priming of human neutrophils by mycobacterial lipoarabinomannans: role of granule mobilisation. Microbes Infect 2001; 3:1101-9. [PMID: 11709290 DOI: 10.1016/s1286-4579(01)01470-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Lipoarabinomannans (LAMs) from mycobacteria were investigated concerning their effect on human neutrophils. Two types of LAM, the mannose-capped ManLAM from the virulent Mycobacterium tuberculosis H37Rv and the mannose-lacking AraLAM from a rapidly growing mycobacterial strain were used. Neither AraLAM nor ManLAM induced any significant direct activation of the NADPH-oxidase. Both LAMs, however, primed the neutrophils so that subsequent stimulation with the peptide chemoattractants fMet-Leu-Phe (fMLF), Trp-Lys-Tyr-Met-Val-DMet (WKYMVm) and the mammalian lactose-binding lectin galectin-3 resulted in a markedly enhanced oxidative response. The LAM-induced priming was accompanied by an increased exposure of complement receptors 1 and 3 as well as the formyl peptide receptor on the neutrophil surface, suggesting that the enhanced oxidative response could be due to upregulation of receptors on the cell surface as a result of granule mobilisation. Since LAM-primed neutrophils released 65% of the cell content of gelatinase but showed no increased release of vitamin B(12)-binding protein, mobilisation of the gelatinase granules rather than the specific granules is concluded to be responsible for the priming effects. This is in agreement with the subcellular localisation of receptors for fMLF, WKYMVm, as well as galectin-3, which are stored in the secretory vesicles and gelatinase granules. The priming effect appeared very similar to that of Escherichia coli lipopolysaccharide, and since no differences in activity could be detected between AraLAM and ManLAM, we hypothesize that the lipid anchor of the LAM is responsible for the priming effects.
Collapse
Affiliation(s)
- J Fäldt
- Department of Medical Microbiology and Immunology, Göteborg University, Box 435, 405 30, Göteborg, Sweden.
| | | | | | | |
Collapse
|
19
|
Fazal N, Al-Ghoul WM, Choudhry MA, Sayeed MM. PAF receptor antagonist modulates neutrophil responses with thermal injury in vivo. Am J Physiol Cell Physiol 2001; 281:C1310-7. [PMID: 11546669 DOI: 10.1152/ajpcell.2001.281.4.c1310] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of platelet-activating factor (PAF) in Ca(2+) signaling and Ca(2+)-related enhancement of reactive oxygen intermediate (ROI) generation in neutrophils of burn-injured rats was ascertained by evaluating the effect of treatment of the rats with a PAF receptor antagonist. The treatment of rats with the antagonist also allowed us to evaluate the role of PAF in the priming of neutrophil ROI response with burn in vivo. A full skin thickness burn injury was produced in anesthetized rats by exposing 30% of total body surface area to 98 degrees C water for 10 s. Sham and burn rats were killed 1 day later, and their blood was collected to obtain neutrophils. Fluorescence-activated cell sorter analysis was used to quantify ROI production by the neutrophils. Cytosolic-free Ca(2+) concentration ([Ca(2+)](i)) imaging technique was employed to measure neutrophil [Ca(2+)](i) in individual cells and microfluorometry for the assessment of [Ca(2+)](i) responses in suspensions of neutrophils. There was an overt enhancement of ROI generation by burn rat neutrophils. ROI release was accompanied by a marked elevation of [Ca(2+)](i) signaling. The treatment of rats with PAF receptor antagonist before burn prevented the upregulation of both [Ca(2+)](i) and ROI generation in neutrophils. These studies indicate that enhanced ROI production in neutrophils in the early stages after burn injury results from a PAF-mediated priming of the [Ca(2+)](i) signaling pathways in vivo.
Collapse
Affiliation(s)
- N Fazal
- Trauma/Critical Care Labs, Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, Illinois 60153, USA
| | | | | | | |
Collapse
|
20
|
Kogure K, Morita M, Nakashima S, Hama S, Tokumura A, Fukuzawa K. Superoxide is responsible for apoptosis in rat vascular smooth muscle cells induced by alpha-tocopheryl hemisuccinate. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1528:25-30. [PMID: 11514094 DOI: 10.1016/s0304-4165(01)00168-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We investigated the mechanism of cell toxicity of alpha-tocopheryl hemisuccinate (TS). TS concentration- and time-dependently induced the lactate dehydrogenase release and DNA fragmentation of rat vascular smooth muscle cells (VSMC). Exogenous addition of superoxide dismutase, but not catalase, significantly inhibited the cell toxicity of TS. The NADPH-dependent oxidase activity of VSMC was stimulated by TS treatment. The cell toxicity of TS was inhibited by NADPH oxidase inhibitor 4-(2-aminoethyl)-benzenesulfonyl fluoride. Consequently, TS-induced apoptosis of VSMC was suggested to be caused by exogenous O(2)(-) generated via the oxidase system activated with TS.
Collapse
Affiliation(s)
- K Kogure
- Faculty of Pharmaceutical Sciences, University of Tokushima, Shomachi-1, Tokushima 770-8505, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Forsberg M, Löfgren R, Zheng L, Stendahl O. Tumour necrosis factor-alpha potentiates CR3-induced respiratory burst by activating p38 MAP kinase in human neutrophils. Immunology 2001; 103:465-72. [PMID: 11529937 PMCID: PMC1783267 DOI: 10.1046/j.1365-2567.2001.01270.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CR3 and Fc gamma Rs are the main receptors involved in the phagocytic process leading to engulfment and killing of microbes by production of reactive oxygen intermediates (ROI) and degranulation. Various inflammatory mediators, such as tumour necrosis factor-alpha (TNF-alpha) and lipopolysaccharide (LPS), are known to prime neutrophils leading to increased bactericidal responses, but the underlying mechanism of priming has only been partially elucidated. The purpose of this study was to investigate how TNF-alpha primes neutrophils for subsequent stimuli via either CR3 or Fc gamma R. The receptors were specifically activated with pansorbins (protein-A-positive Staphylococcus aureus) coated with anti-CR3, anti-Fc gamma RIIa, or anti-Fc gamma RIIIb monoclonal antibody. Activation of neutrophils with these particles resulted in ROI production as measured by chemiluminescence. Anti-CR3 pansorbins induced the most prominent ROI production in neutrophils. TNF-alpha potentiated the CR3-mediated respiratory burst but had little effect on that mediated by Fc gamma Rs. The priming effect of TNF-alpha on CR3-mediated ROI production is associated with an increased activation of p38 MAPK as well as tyrosine phosphorylation of p72(syk). Pretreatment of neutrophils with the inhibitors for p38 MAPK and p72(syk) markedly suppressed the respiratory burst induced by CR3. Furthermore, TNF-alpha induced about a three-fold increase in the expression of CR3 in neutrophils, an effect which is blocked by the p38 MAPK inhibitor. Taken together, these results showed that TNF-alpha potentiates the CR3-mediated respiratory burst in neutrophils not only by triggering a p38 MAPK-dependent up-regulation of CD11b/CD18 but also by modulating the signalling pathways.
Collapse
Affiliation(s)
- M Forsberg
- Division of Medical Microbiology, Department of Health and Care, Faculty of Health Sciences, Linköping University, SE-581 85 Linköping, Sweden.
| | | | | | | |
Collapse
|
22
|
Abstract
Agonist stimulation of adenosine A(1) receptors has been consistently shown to result in reduction of brain damage following experimentally induced global and focal brain ischaemia in animals. Unsurprisingly, the use of adenosine A(1) receptors as targets for the development of clinical therapeutics suitable for treatment of ischaemic brain disorders has been suggested by many authors. The latest studies of adenosine and its receptors indicate that adenosine-mediated actions might be far more complex than originally anticipated, casting some doubt about the rapid development of stroke treatment based on adenosine. This review discusses the possible role of adenosine receptor subtypes (A(1), A(2) and A(3)) in the context of their potential as therapeutics in stroke.
Collapse
Affiliation(s)
- D K von Lubitz
- Emergency Medicine Research Laboratories, Department of Emergency Medicine, University of Michigan Medical Center, TC/B1354/0303, 1500 E. Medical Center Drive, Ann Arbor, MI 48109-0303, USA.
| |
Collapse
|
23
|
Almkvist J, Fäldt J, Dahlgren C, Leffler H, Karlsson A. Lipopolysaccharide-induced gelatinase granule mobilization primes neutrophils for activation by galectin-3 and formylmethionyl-Leu-Phe. Infect Immun 2001; 69:832-7. [PMID: 11159975 PMCID: PMC97959 DOI: 10.1128/iai.69.2.832-837.2001] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have earlier shown that galectin-3, a lactose-binding mammalian lectin that is secreted from activated macrophages, basophils, and mast cells, induces activation of the NADPH oxidase in exudated but not in peripheral blood neutrophils (A. Karlsson, P. Follin, H. Leffler, and C. Dahlgren, Blood 91:3430-3438, 1998). The alteration in responsiveness occurring during extravasation correlated with mobilization of the gelatinase and/or specific granules to the cell surface, indicating a role for mobilizable galectin-3 receptors. In this study we have investigated galectin-3-induced NADPH oxidase activation, measured as superoxide production, in lipopolysaccharide (LPS)-primed neutrophils. Upon galectin-3 challenge, the LPS-primed cells produced superoxide, both extracellularly and intracellularly. A primed extracellular response to formylmethionyl-Leu-Phe (fMLF) was also achieved. The exposure of complement receptors 1 and 3 as well as the formyl peptide receptor on the cell surface was markedly increased after LPS treatment, indicating that granule fusion with the plasma membrane had occurred. Further assessment of specific markers for neutrophil granules showed that the LPS treatment had mobilized the gelatinase granules but only a minor fraction of the specific granules. We thus suggest that the mechanism behind LPS priming lies at the level of granule (receptor) mobilization for galectin-3 as well as for fMLF.
Collapse
Affiliation(s)
- J Almkvist
- Phagocyte Research Laboratory, Department of Medical Microbiology and Immunology, University of Göteborg, Göteborg, Sweden
| | | | | | | | | |
Collapse
|
24
|
Abstract
Under inflammatory conditions after burn/trauma injuries, circulating neutrophils are frequently hyperactive, contributing to excessive superoxide production and related tissue damage. Although normal neutrophil activation is cooperatively controlled by Ca2+-independent and Ca2+-linked signaling pathways, exuberant Ca2+-linked signaling appears to cause neutrophil hyperactivation in the injury conditions.
Collapse
Affiliation(s)
- Mohammed M. Sayeed
- M. M. Sayeed is in the Departments of Physiology and Surgery and the Burn and Shock Trauma Institute, Loyola University Medical Center, Maywood, IL 60153
| |
Collapse
|
25
|
McPhail LC, Waite KA, Regier DS, Nixon JB, Qualliotine-Mann D, Zhang WX, Wallin R, Sergeant S. A novel protein kinase target for the lipid second messenger phosphatidic acid. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:277-90. [PMID: 10425401 DOI: 10.1016/s1388-1981(99)00100-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Activation of phospholipase D occurs in response to a wide variety of hormones, growth factors, and other extracellular signals. The initial product of phospholipase D, phosphatidic acid (PA), is thought to serve a signaling function, but the intracellular targets for this lipid second messenger are not clearly identified. The production of PA in human neutrophils is closely correlated with the activation of NADPH oxidase, the enzyme responsible for the respiratory burst. We have developed a cell-free system, in which the activation of NADPH oxidase is induced by the addition of PA. Characterization of this system revealed that a multi-functional cytosolic protein kinase was a target for PA, and that two NADPH oxidase components were substrates for the enzyme. Partial purification of the PA-activated protein kinase separated the enzyme from known protein kinase targets of PA. The partially purified enzyme was selectively activated by PA, compared to other phospholipids, and phosphorylated the oxidase component p47-phox on both serine and tyrosine residues. PA-activated protein kinase activity was present in a variety of hematopoietic cells and cell lines and in rat brain, suggesting it has widespread distribution. We conclude that this protein kinase may be a novel target for the second messenger function of PA.
Collapse
Affiliation(s)
- L C McPhail
- Department of Biochemistry, Wake Forest University School of Medicine, Medical Center Blvd., Winston-Salem, NC, 27157-1019, USA.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Moulding DA, Walter C, Hart CA, Edwards SW. Effects of staphylococcal enterotoxins on human neutrophil functions and apoptosis. Infect Immun 1999; 67:2312-8. [PMID: 10225889 PMCID: PMC115972 DOI: 10.1128/iai.67.5.2312-2318.1999] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Staphylococcal enterotoxins have marked effects on the properties of T cells and monocytes and have recently been reported to affect neutrophil function. In this study, we investigated the abilities of staphylococcal enterotoxins A and B and toxic shock syndrome toxin 1 to affect respiratory burst activity and to delay apoptosis in human neutrophils. When cultures containing approximately 97% neutrophils were tested, the toxins all delayed neutrophil apoptosis in a dose-dependent manner and induced the expression of FcgammaRI on the neutrophil cell surface. These effects on apoptosis and expression of FcgammaRI were largely abrogated by the addition of a neutralizing anti-gamma interferon antibody. Similarly, the effects of these toxins on phorbol ester-induced chemiluminescence were decreased after neutralization of gamma interferon. These effects on neutrophil function were mimicked by the addition of conditioned medium from peripheral blood mononuclear cells incubated with the toxins, and again, neutralizing anti-gamma interferon antibodies largely negated the effects. However, when highly purified neutrophils prepared by immunodepletion of T cells and major histocompatibility complex class II-expressing cells were analyzed, the toxins were without effect on apoptosis and FcgammaRI expression, but granulocyte-macrophage colony-stimulating factor and gamma interferon could still delay apoptosis. These data indicate that these toxins have no direct effect on neutrophil apoptosis but can act indirectly via the production of T-cell-derived and monocyte-derived cytokines. It is noteworthy that such effects are detected in neutrophil suspensions containing only 3% contamination with T cells and other mononuclear cells.
Collapse
Affiliation(s)
- D A Moulding
- School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | | | | | | |
Collapse
|
27
|
Abstract
Numerous studies have consistently shown that agonist stimulation of adenosine A1 receptors results in a significant reduction of morbidity and mortality associated with global and focal brain ischemia in animals. Based on these observations, several authors have suggested utilization of adenosine A1 receptors as targets for the development of clinically viable drugs against ischemic brain disorders. Recent advent of adenosine A1 receptor agonists characterized by lowered cardiovascular effects added additional strength to this argument. On the other hand, although cardioprotective, adenosine A3 receptor agonists proved severely cerebrodestructive when administered prior to global ischemia in gerbils. Moreover, stimulation of adenosine A3 receptors appears to reduce the efficacy of some of the neuroprotective actions mediated by adenosine A1 receptors. The review discusses the possible role of adenosine receptor subtypes (A1, A2, and A3) in the context of their involvement in the pathology of cerebral ischemia, and analyzes putative strategies for the development of clinically useful strategies based on adenosine and its receptors. It also stresses the need for further experimental studies before definitive conclusions on the usefulness of the adenosine concept in the treatment of brain ischemia can be made.
Collapse
Affiliation(s)
- D K von Lubitz
- Department of Emergency Medicine, University of Michigan Medical Center, Ann Arbor 48109-0303, USA.
| |
Collapse
|
28
|
Abstract
Numerous studies have consistently shown that agonist stimulation of adenosine A1 receptors results in a significant reduction of morbidity and mortality associated with global and focal brain ischemia in animals. Based on these observations, several authors have suggested utilization of adenosine A1 receptors as targets for the development of clinically viable drugs against ischemic brain disorders. Recent advent of adenosine A1 receptor agonists characterized by lowered cardiovascular effects added additional strength to this argument. On the other hand, although cardioprotective, adenosine A3 receptor agonists proved severely cerebrodestructive when administered prior to global ischemia in gerbils. Moreover, stimulation of adenosine A3 receptors appears to reduce the efficacy of some of the neuroprotective actions mediated by adenosine A receptors. The review discusses the possible role of adenosine receptor subtypes (A1, A2, and A3) in the context of their involvement in the pathology of cerebral ischemia, and analyzes putative strategies for the development of clinically useful strategies based on adenosine and its receptors. It also stresses the need for further experimental studies before definitive conclusions on the usefulness of the adenosine concept in the treatment of brain ischemia can be made.
Collapse
Affiliation(s)
- D K Von Lubitz
- Department of Emergency Medicine, University of Michigan Medical Center, Ann Arbor 48109-0303, USA.
| |
Collapse
|