1
|
Primi MC, Rangarajan ES, Patil DN, Izard T. Conformational flexibility determines the Nf2/merlin tumor suppressor functions. Matrix Biol Plus 2021; 12:100074. [PMID: 34337379 PMCID: PMC8318988 DOI: 10.1016/j.mbplus.2021.100074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 10/26/2022] Open
Abstract
The Neurofibromatosis type 2 gene encodes the Nf2/merlin tumor suppressor protein that is responsible for the regulation of cell proliferation. Once activated, Nf2/merlin modulates adhesive signaling pathways and thereby inhibits cell growth. Nf2/merlin controls oncogenic gene expression by modulating the Hippo pathway. By responding to several physical and biochemical stimuli, Hippo signaling determines contact inhibition of proliferation as well as organ size. The large tumor suppressor (LATS) serine/threonine-protein kinase is the key enzyme in the highly conserved kinase cascade that negatively regulates the activity and localization of the transcriptional coactivators Yes-associated protein (YAP) and its paralogue transcriptional coactivator with PDZ-binding motif (TAZ). Nf2/merlin belongs to the band 4.1, ezrin, radixin, moesin (FERM) gene family that links the actin cytoskeleton to adherens junctions, remodels adherens junctions during epithelial morphogenesis and maintains organized apical surfaces on the plasma cell membrane. Nf2/merlin and ERM proteins have a globular N-terminal cloverleaf head domain, the FERM domain, that binds to the plasma membrane, a central α-helical domain, and a tail domain that binds to its head domain. Here we present the high-resolution crystal structure of Nf2/merlin bound to LATS1 which shows that LATS1 binding to Nf2/merlin displaces the Nf2/merlin tail domain and causes an allosteric shift in the Nf2/merlin α-helix that extends from its FERM domain. This is consistent with the fact that full-length Nf2/merlin binds LATS1 ~10-fold weaker compared to LATS1 binding to the Nf2/merlin-PIP2 complex. Our data increase our understanding of Nf2/merlin biology by providing mechanistic insights into the Hippo pathway that are relevant to several diseases in particular oncogenic features that are associated with cancers.
Collapse
Affiliation(s)
- Marina C Primi
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter 33458, FL, United States
| | - Erumbi S Rangarajan
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter 33458, FL, United States
| | - Dipak N Patil
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter 33458, FL, United States
| | - Tina Izard
- Cell Adhesion Laboratory, Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter 33458, FL, United States
| |
Collapse
|
2
|
Zhang F, Liu B, Gao Y, Long J, Zhou H. The crystal structure of the FERM and C-terminal domain complex of Drosophila Merlin. Biochem Biophys Res Commun 2021; 553:92-98. [PMID: 33765559 DOI: 10.1016/j.bbrc.2021.03.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/25/2022]
Abstract
NF2/Merlin is an upstream regulator of hippo pathway, and it has two states: an auto-inhibited "closed" state and an active "open" form. Previous studies showed that Drosophila Merlin adopts a more closed conformation. However, the molecular mechanism of conformational regulation remains poorly understood. Here, we first confirmed the strong interaction between FERM and the C-terminal domain (CTD) of Merlin, and then determined the crystal structure of the FERM/CTD complex, which reveals the structural basis of Merlin adopting a more closed conformation compared to its human cognate NF2. Interestingly, we found that the conserved lipid-binding site of Merlin might be masked by a linker. Confocal analyses confirmed that all putative lipid-binding site are very important for the membranal location of Merlin. More, we found that the phosphomimic Thr616Asp mutation weakens the interaction between FERM and CTD of Merlin. Collectively, the crystal structure of the FERM/CTD complex not only provides a mechanistic explanation of functionally dormant conformation of Merlin may also serve as a foundation for revealing the mechanism of conformational regulation of Merlin.
Collapse
Affiliation(s)
- Fayou Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Beibei Liu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Yaqi Gao
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China
| | - Jiafu Long
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| | - Hao Zhou
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China.
| |
Collapse
|
3
|
Babich V, Di Sole F. The Na+/H+ Exchanger-3 (NHE3) Activity Requires Ezrin Binding to Phosphoinositide and Its Phosphorylation. PLoS One 2015; 10:e0129306. [PMID: 26042733 PMCID: PMC4455992 DOI: 10.1371/journal.pone.0129306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 05/08/2015] [Indexed: 11/19/2022] Open
Abstract
Na+/H+ exchanger-3 (NHE3) plays an essential role in maintaining sodium and fluid homeostasis in the intestine and kidney epithelium. Thus, NHE3 is highly regulated and its function depends on binding to multiple regulatory proteins. Ezrin complexed with NHE3 affects its activity via not well-defined mechanisms. This study investigates mechanisms by which ezrin regulates NHE3 activity in epithelial Opossum Kidney cells. Ezrin is activated sequentially by phosphatidylinositol-4,5-bisphosphate (PIP2) binding and phosphorylation of threonine 567. Expression of ezrin lacking PIP2 binding sites inhibited NHE3 activity (-40%) indicating that ezrin binding to PIP2 is required for preserving NHE3 activity. Expression of a phosphomimetic ezrin mutated at the PIP2 binding region was sufficient not only to reverse NHE3 activity to control levels but also to increase its activity (+80%) similar to that of the expression of ezrin carrying the phosphomimetic mutation alone. Calcineurin Homologous Protein-1 (CHP1) is part, with ezrin, of the NHE3 regulatory complex. CHP1-mediated activation of NHE3 activity was blocked by expression of an ezrin variant that could not be phosphorylated but not by an ezrin variant unable to bind PIP2. Thus, for NHE3 activity under baseline conditions not only ezrin phosphorylation, but also ezrin spatial-temporal targeting on the plasma membrane via PIP2 binding is required; however, phosphorylation of ezrin appears to overcome the control of NHE3 transport. CHP1 action on NHE3 activity is not contingent on ezrin binding to PIP2 but rather on ezrin phosphorylation. These findings are important in understanding the interrelation and dynamics of a CHP1-ezrin-NHE3 regulatory complex.
Collapse
Affiliation(s)
- Victor Babich
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Francesca Di Sole
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Physiology and Pharmacology Department, Des Moines University, Iowa, United States of America
- * E-mail:
| |
Collapse
|
4
|
Abeysundara N, Leung AC, Primrose DA, Hughes SC. Regulation of cell proliferation and adhesion by means of a novel region of drosophila merlin interacting with Sip1. Dev Dyn 2014; 243:1554-70. [DOI: 10.1002/dvdy.24187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 08/08/2014] [Accepted: 09/03/2014] [Indexed: 01/22/2023] Open
Affiliation(s)
- Namal Abeysundara
- Department of Medical Genetics; University of Alberta; Edmonton Alberta Canada
| | - Albert C. Leung
- Department of Medical Genetics; University of Alberta; Edmonton Alberta Canada
| | - David A. Primrose
- Department of Medical Genetics; University of Alberta; Edmonton Alberta Canada
| | - Sarah C. Hughes
- Department of Medical Genetics; University of Alberta; Edmonton Alberta Canada
| |
Collapse
|
5
|
Laulajainen M, Melikova M, Muranen T, Carpén O, Grönholm M. Distinct overlapping sequences at the carboxy-terminus of merlin regulate its tumour suppressor and morphogenic activity. J Cell Mol Med 2013; 16:2161-75. [PMID: 22325036 PMCID: PMC3822986 DOI: 10.1111/j.1582-4934.2012.01525.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The Neurofibromatosis 2 (NF2) gene product merlin is a tumour suppressor, which in addition to inhibiting cell proliferation regulates cell morphology. The morphogenic properties of merlin may play a role in tumour suppression, as patient-derived tumour cells demonstrate cytoskeletal abnormalities. However, it is still unclear how these functions are linked. The N-terminal FERM-domain of merlin is highly homologous to the oncogenic protein ezrin, while the C-termini are less conserved, suggesting that the opposite effect of the proteins on proliferation could be mediated by their distinct C-terminal regions. In this study we characterize the role of the most C-terminal residues of merlin in the regulation of proliferation, cytoskeletal organization, phosphorylation and intramolecular associations. In addition to the two full-length merlin isoforms and truncating mutations found in patients, we focused on the evolutionally conserved C-terminal residues 545-547, also harbouring disease-causing mutations. We demonstrate that merlin induces cell extensions, which result from impaired retraction of protrusions rather than from increased formation of filopodia. The residues 538-568 were found particularly important for this morphogenic activity. The results further show that both merlin isoforms are able to equally inhibit proliferation, whereas C-terminal mutants affecting residues 545-547 are less effective in growth suppression. This study demonstrates that the C-terminus contains distinct but overlapping functional domains important for regulation of the morphogenic activity, intramolecular associations and cell proliferation.
Collapse
Affiliation(s)
- Minja Laulajainen
- Biomedicum Helsinki, Department of Pathology, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
6
|
Morales FC, Molina JR, Hayashi Y, Georgescu MM. Overexpression of ezrin inactivates NF2 tumor suppressor in glioblastoma. Neuro Oncol 2010; 12:528-39. [PMID: 20156804 DOI: 10.1093/neuonc/nop060] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma is a frequent brain malignancy with a dismal prognosis. The molecular changes causing its aggressive phenotype are under investigation. We report that the cytoskeletal-related proteins neurofibromatosis type 2 (NF2) and ezrin have opposite yet interdependent activities in glioblastoma growth. We show that NF2 is absent in approximately one-third of glioblastoma cell lines and tumors, and that it suppresses growth when expressed in cells. Although ezrin overexpression was previously observed in glioblastoma, we show here that ezrin enhanced cell proliferation and anchorage-independent growth but only in cells expressing NF2. Ezrin interacted and delocalized NF2 from the cortical compartment releasing its inhibition on Rac1. By using swap NF2-ezrin molecules, we identified that the opposite effects on cell growth of NF2 and ezrin depend on their amino-terminal FERM domain. The subcellular cortical localization appeared important for NF2 suppressive activity. In contrast, the ability of ezrin to enhance growth or complex NF2 did not depend on the molecular conformation or subcellular localization. In conclusion, these studies show 2 mechanisms for NF2 inactivation in glioblastoma: (i) decreased protein expression and (ii) increasing dosages of ezrin that disable NF2 by intermolecular association and aberrant intracellular recruitment.
Collapse
Affiliation(s)
- Fabiana C Morales
- Department of Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, 6767 Bertner Avenue, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
7
|
Properties of an ezrin mutant defective in F-actin binding. J Mol Biol 2008; 385:1015-31. [PMID: 19084535 DOI: 10.1016/j.jmb.2008.11.051] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Revised: 11/01/2008] [Accepted: 11/10/2008] [Indexed: 11/21/2022]
Abstract
Ezrin, radixin and moesin are a family of proteins that provide a link between the plasma membrane and the cortical actin cytoskeleton. The regulated targeting of ezrin to the plasma membrane and its association with cortical F-actin are more than likely functions necessary for a number of cellular processes, such as cell adhesion, motility, morphogenesis and cell signalling. The interaction with F-actin was originally mapped to the last 34 residues of ezrin, which correspond to the last three helices (alphaB, alphaC and alphaD) of the C-terminal tail. We set out to identify and mutate the ezrin/F-actin binding site in order to pinpoint the role of F-actin interaction in morphological processes as well as signal transduction. We report here the generation of an ezrin mutant defective in F-actin binding. We identified four actin-binding residues, T576, K577, R579 and I580, that form a contiguous patch on the surface of the last helix, alphaD. Interestingly, mutagenesis of R579 also eliminated the interaction of band four-point one, ezrin, radixin, moesin homology domains (FERM) and the C-terminal tail domain, identifying a hotspot of the FERM/tail interaction. In vivo expression of the ezrin mutant defective in F-actin binding and FERM/tail interaction (R579A) altered the normal cell surface structure dramatically and inhibited cell migration. Further, we showed that ezrin/F-actin binding is required for the receptor tyrosine kinase signal transfer to the Ras/MAP kinase signalling pathway. Taken together, these observations highlight the importance of ezrin/F-actin function in the development of dynamic membrane/actin structures critical for cell shape and motility, as well as signal transduction.
Collapse
|
8
|
Scoles DR. The merlin interacting proteins reveal multiple targets for NF2 therapy. Biochim Biophys Acta Rev Cancer 2007; 1785:32-54. [PMID: 17980164 DOI: 10.1016/j.bbcan.2007.10.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/29/2007] [Accepted: 10/03/2007] [Indexed: 01/20/2023]
Abstract
The neurofibromatosis 2 (NF2) tumor suppressor protein merlin is commonly mutated in human benign brain tumors. The gene altered in NF2 was located on human chromosome 22q12 in 1993 and the encoded protein named merlin and schwannomin. Merlin has homology to ERM family proteins, ezrin, radixin, and moesin, within the protein 4.1 superfamily. In efforts to determine merlin function several groups have discovered 34 merlin interacting proteins, including ezrin, radixin, moesin, CD44, layilin, paxillin, actin, N-WASP, betaII-spectrin, microtubules, TRBP, eIF3c, PIKE, NHERF, MAP, RalGDS, RhoGDI, EG1/magicin, HEI10, HRS, syntenin, caspr/paranodin, DCC, NGB, CRM1/exportin, SCHIP1, MYPT-1-PP1delta, RIbeta, PKA, PAK (three types), calpain and Drosophila expanded. Many of the proteins that interact with the merlin N-terminal domain also bind ezrin, while other merlin interacting proteins do not bind other members of the ERM family. Merlin also interacts with itself. This review describes these proteins, their possible roles in NF2, and the resultant hypothesized merlin functions. Review of all of the merlin interacting proteins and functional consequences of losses of these interactions reveals multiple merlin actions in PI3-kinase, MAP kinase and small GTPase signaling pathways that might be targeted to inhibit the proliferation of NF2 tumors.
Collapse
Affiliation(s)
- Daniel R Scoles
- Women's Cancer Research Institute, CSMC Burns and Allen Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, CA 90048, USA.
| |
Collapse
|
9
|
Neff BA, Welling DB, Akhmametyeva E, Chang LS. The molecular biology of vestibular schwannomas: dissecting the pathogenic process at the molecular level. Otol Neurotol 2007; 27:197-208. [PMID: 16436990 DOI: 10.1097/01.mao.0000180484.24242.54] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The goal of this article was to review concisely what is currently known about the tumorigenesis of vestibular schwannomas. BACKGROUND Recent advances in molecular biology have led to a better understanding of the cause of vestibular schwannomas. Mutations in the neurofibromatosis type 2 tumor suppressor gene (NF2) have been identified in these tumors. In addition, the interactions of merlin, the protein product of the NF2 gene, and other cellular proteins are beginning to give us a better idea of NF2 function and the pathogenesis of vestibular schwannomas. METHODS Review of the relevant basic science studies at our institution as well as the basic science and clinical literature. RESULTS The clinical characteristics of vestibular schwannomas and neurofibromatosis type 2 syndromes are reviewed and related to alterations in the NF2 gene. Studies demonstrating our current understanding of tumor developmental pathways are highlighted. In addition, methods of clinical and genetic screening for neurofibromatosis type 2 disease are outlined. Avenues for the development of potential future research and therapies are discussed. CONCLUSION Great strides have been made to identify why vestibular schwannomas develop at the molecular level. Continued research is needed to find targeted therapies with which to treat these tumors.
Collapse
Affiliation(s)
- Brian A Neff
- Department of Otolaryngology, The Ohio State University College of Medicine and Children's Hospital, Columbus, Ohio, USA
| | | | | | | |
Collapse
|
10
|
Thaxton C, Lopera J, Bott M, Baldwin ME, Kalidas P, Fernandez-Valle C. Phosphorylation of the NF2 tumor suppressor in Schwann cells is mediated by Cdc42-Pak and requires paxillin binding. Mol Cell Neurosci 2006; 34:231-42. [PMID: 17175165 DOI: 10.1016/j.mcn.2006.11.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2006] [Revised: 10/28/2006] [Accepted: 11/07/2006] [Indexed: 11/22/2022] Open
Abstract
Mutations in the Neurofibromatosis type 2 tumor suppressor gene that encodes Schwannomin causes formation of benign schwannomas. Schwannoma cells lose their characteristic bipolar shape and become rounded with excessive ruffling membranes. Schwannomin is phosphorylated at serine 518 (S518) by p21 activated kinase (Pak). Unphosphorylated schwannomin is associated with growth inhibition but little is known about the function of the phosphorylated form, or the molecular events leading to its phosphorylation. Here, we report in SCs that schwannomin S518 phosphorylation requires binding to paxillin and targeting to the plasma membrane. Phospho-S518-schwannomin is enriched in the peripheral-most aspects of membrane specializations where paxillin, activated Pak, Cdc42 but not Rac are highly expressed. Schwannomin and Pak phosphorylation levels are not reduced in response to lowering Rac-GTP levels with NSC23766. Expression of schwannomin S518A/D-GFP variants each distinctively altered Schwann cell shape and polarity. These results are consistent with tight spatial regulation of S518 phosphorylation at the plasma membrane in a paxillin and Cdc42-Pak dependent manner that leads to local reorganization of the SC cytoskeleton.
Collapse
Affiliation(s)
- Courtney Thaxton
- Biomolecular Research Annex, Department of Molecular Biology and Microbiology, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Neurofibromatosis type II (NF2) is an autosomal dominant cancer syndrome characterized by the formation of tumors of the nervous system, particularly schwannomas and meningiomas. The NF2 gene is also implicated in the development of sporadic schwannomas and meningiomas, as well as tumor types seemingly unrelated to the NF2 disorder, such as malignant mesotheliomas. Inactivation of NF2 occurs by a "two-hit" mechanism, as proposed by Al Knudson, and the NF2 gene behaves as a classical tumor suppressor gene. The NF2 gene product, merlin, exhibits homology with the ezrin-radixin-moesin family of membrane-cytoskeleton-linking proteins. During the past several years, there has been intensive investigation aimed at elucidating the mechanisms underlying merlin's functions. In this review, we summarize the involvement of NF2 inactivation in tumorigenesis. We also discuss observations implicating merlin in cell motility and cell proliferation, with a focus on recent findings linking merlin to Rac signaling.
Collapse
Affiliation(s)
- Guang-Hui Xiao
- Human Genetics Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
12
|
Coscoy S, Waharte F, Gautreau A, Martin M, Louvard D, Mangeat P, Arpin M, Amblard F. Molecular analysis of microscopic ezrin dynamics by two-photon FRAP. Proc Natl Acad Sci U S A 2002; 99:12813-8. [PMID: 12271120 PMCID: PMC130542 DOI: 10.1073/pnas.192084599] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ezrin plays a key role in coupling signal transduction to cortical cell organization. This actin-membrane linker undergoes a series of conformational changes that modulate its interactions with various partners and its localization in membrane or cytosolic pools. Its mobility and exchange rates within and between these two pools were assessed by two-photon fluorescence recovery after photobleaching in epithelial cell microvilli. Analysis of ezrin mutants with an altered actin-binding site revealed three ezrin membrane states of different mobilities and exchange properties, reflecting sequential association with membrane components and F-actin in the context of a fast overall turnover.
Collapse
Affiliation(s)
- Sylvie Coscoy
- Laboratoires de Physico-Chimie,Unité Mixte de Recherche 168 and Morphogenèse et Signalisation Cellulaires, Unité Mixte de Recherche 144, Centre National de la Recherche Scientifique/Institut Curie, 26, Rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Shimizu T, Seto A, Maita N, Hamada K, Tsukita S, Tsukita S, Hakoshima T. Structural basis for neurofibromatosis type 2. Crystal structure of the merlin FERM domain. J Biol Chem 2002; 277:10332-6. [PMID: 11756419 DOI: 10.1074/jbc.m109979200] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Neurofibromatosis type 2 (NF2) is a dominantly inherited disease associated with the central nervous system. The NF2 gene product merlin is a tumor suppressor, and its mutation or inactivation causes this disease. We report here the crystal structure of the merlin FERM domain containing a 22-residue alpha-helical segment. The structure reveals that the merlin FERM domain consists of three subdomains displaying notable features of the electrostatic surface potentials, although the overall surface potentials similar to those of ezrin/radixin/moesin (ERM) proteins indicate electrostatic membrane association. The structure also is consistent with inactivation mechanisms caused by the pathogenic mutations associated with NF2.
Collapse
Affiliation(s)
- Toshiyuki Shimizu
- Structural Biology Laboratory, Nara Institute of Science and Technology and CREST, Japan
| | | | | | | | | | | | | |
Collapse
|
14
|
Bashour AM, Meng JJ, Ip W, MacCollin M, Ratner N. The neurofibromatosis type 2 gene product, merlin, reverses the F-actin cytoskeletal defects in primary human Schwannoma cells. Mol Cell Biol 2002; 22:1150-7. [PMID: 11809806 PMCID: PMC134629 DOI: 10.1128/mcb.22.4.1150-1157.2002] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schwannoma tumors, which occur sporadically and in patients with neurofibromatosis, account for 8% of intracranial tumors and can only be treated by surgical removal. Most schwannomas have biallelic mutations in the NF2 tumor suppressor gene. We previously showed that schwannoma-derived Schwann cells exhibit membrane ruffling and aberrant cell spreading when plated onto laminin, indicative of fundamental F-actin cytoskeletal defects. Here we expand these observations to a large group of sporadic and NF2-related tumors and extend them to schwannomatosis-derived tumors. Mutation at NF2 correlated with F-actin abnormalities, but the extent of morphological change did not correlate with the type of NF2 mutation. We used a recently described molecular strategy, TAT-mediated protein transfer, to acutely introduce the NF2 protein, merlin, into primary human schwannoma cells in an attempt to reverse the cytoskeletal phenotype. Abnormal ruffling and cell spreading by cells with identified NF2 mutations were rapidly reversed by introduction of TAT-merlin. The effect is specific to TAT-merlin isoform 1, the growth-suppressive isoform of merlin. TAT-merlin isoform 2, a TAT-merlin mutant (L64P), and merlin lacking TAT were ineffective in reversing the cytoskeletal phenotype. Results show that merlin isoform 1 is sufficient to restore normal actin organization in NF2-deficient human tumor cells, demonstrating a key role for merlin in the NF2 phenotype. These results lay the foundation for epigenetic complementation studies in NF2 mouse models and possibly for experiments to evaluate the utility of merlin transduction into patients as protein therapy.
Collapse
Affiliation(s)
- Anne-Marie Bashour
- Department of Cell Biology, Neurobiology and Anatomy, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | |
Collapse
|
15
|
Chang LS, Akhmametyeva EM, Wu Y, Zhu L, Welling DB. Multiple transcription initiation sites, alternative splicing, and differential polyadenylation contribute to the complexity of human neurofibromatosis 2 transcripts. Genomics 2002; 79:63-76. [PMID: 11827459 DOI: 10.1006/geno.2001.6672] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Northern blot analysis has shown that the human neurofibromatosis type 2 (NF2) cDNA hybridizes to multiple RNA species. To examine whether these hybridizing RNA species represent NF2 transcripts, we cloned the complete NF2 cDNA by a combination of techniques: 5' and 3' rapid amplification of cDNA ends, RT-PCR, and searching and sequencing the NF2-related cDNA clones from the IMAGE consortium. We showed that human NF2 transcripts initiate at multiple positions. Analogous to those reported previously, NF2 transcripts undergo alternative splicing in the coding exons. We isolated eight alternatively spliced NF2 cDNA isoforms, including one that contains a new exon termed exon 2', which potentially could encode proteins of different sizes. We assembled the overlapping cDNA fragments, and the longest NF2 cDNA, containing all 17 exons, consists of 6067 nucleotides, which is consistent with the size of the major RNA species hybridized to the NF2 probe. The cDNA has a 425-nucleotide 5' untranslated region upstream from the ATG start codon, and a long 3' untranslated region of 3869 nucleotides. We also isolated two shorter NF2 cDNAs that were terminated by different polyadenylation signal sequences, which indicates that differential usage of multiple polyadenylation sites also contributes to the complexity of human NF2 transcripts. By reference to the transcription initiation site mapped, we analyzed the 5' flanking sequence of the human NF2 gene. Transient transfection analysis in human 293 kidney, SK-N-AS neuroblastoma, and NT2/D1 teratocarcinoma cells with NF2 promoter-luciferase chimeric constructs revealed a core promoter region extending 400 base pairs from the major transcription initiation site. Although multiple regions are required for full promoter activity, a site-directed mutagenesis experiment identified a GC-rich sequence (position -58 to -46), which could be bound by transcription factor Sp1, as a positive cis-acting regulatory element. Cotransfection studies in Drosophila melanogaster SL2 cells showed that Sp1 could activate the NF2 promoter through the GC-rich sequence.
Collapse
Affiliation(s)
- Long-Sheng Chang
- Children's Research Institute, Children's Hospital, The Ohio State University College of Medicine and Public Health, Columbus, OH 43205, USA.
| | | | | | | | | |
Collapse
|
16
|
Kaneko T, Yamashima T, Tohma Y, Nomura M, Imajoh-Ohmi S, Saido TC, Nakao M, Saya H, Yamamoto H, Yamashita J. Calpain-dependent proteolysis of merlin occurs by oxidative stress in meningiomas: a novel hypothesis of tumorigenesis. Cancer 2001; 92:2662-72. [PMID: 11745202 DOI: 10.1002/1097-0142(20011115)92:10<2662::aid-cncr1620>3.0.co;2-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
BACKGROUND The purpose of this study is to indicate that oxidative stress may contribute to occurrence of meningiomas. Recently, it was reported that aside from the neurofibromatosis type 2 (NF2) gene mutations, the calpain-dependent proteolysis of the NF2 gene product, merlin might be closely related to the development of certain NF2-related tumors. Although meningiomas are well known to occur more frequently in aged persons, it still remains unknown why calpain activation occurs predominantly in them. Because the production of free radicals with aging might be one of the causes of calpain activation especially in leptomeningeal cells being devoid of blood supply, the authors examined the relations between mu-calpain activation and merlin proteolysis induced by the oxidative stress. METHODS The authors examined 12 patient-derived sporadic meningiomas and their primary cultured cells. Malignant glioma cell line (U-251MG), which had no relation to NF2, was used as a control. They were exposed to hydrogen peroxide (H2O2) for 1 hour. After oxidative stress, they were examined by Western blot and immunofluorescence microscopic analyses. RESULTS Despite the consistent expressions of activated mu-calpain in 11 of 12 meningioma tissues, this calpain activation completely disappeared after culture; instead the full-length merlin appeared again in 8 of 11 cases. The treatment of cultured cells with hydrogen peroxide induced both mu-calpain-dependent cleavage of merlin and reduction of an intrinsic calpain inhibitor calpastatin. Such proteolysis was significantly blocked by a specific calpain inhibitor, Z-LLal. The full-length merlin was immunocytochemically colocalized with activated mu-calpain at the plasma membrane, and, after mu-calpain activation, the fragment of merlin translocated to the perinuclear cytoplasm or into the nucleus. CONCLUSIONS These findings suggest that oxidative stress-induced activation of mu-calpain causes proteolysis of merlin conceivably to impair cell adhesion and/or contact inhibition of meningioma cells.
Collapse
Affiliation(s)
- T Kaneko
- Department of Neurosurgery, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Neill GW, Crompton MR. Binding of the merlin-I product of the neurofibromatosis type 2 tumour suppressor gene to a novel site in beta-fodrin is regulated by association between merlin domains. Biochem J 2001; 358:727-35. [PMID: 11535133 PMCID: PMC1222106 DOI: 10.1042/0264-6021:3580727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The mechanism underlying the tumour-suppressor activity of the neurofibromatosis type 2 (NF2) gene product, merlin, is largely undefined but there is evidence that the biological function of the protein might be mediated partly through interactions with the cytoskeleton. Merlin is expressed predominantly as two isoforms that differ at their C-termini owing to alternative splicing of exon 16. By expressing merlin isoform I as bait in a yeast two-hybrid screen, we isolated a clone encoding a region of the cytoskeletal protein beta-fodrin. Confirmation of the merlin-fodrin interaction was provided by using the mammalian two-hybrid system and binding assays in vitro. In addition, these assays and co-immunoprecipitation from mammalian cells revealed that the binding site for fodrin is located in the C-terminal half of merlin at a site that is masked in the native protein. Co-expression of the N-terminus of merlin decreased the interaction of its C-terminus with fodrin, implicating homophilic interactions of merlin isoform I in masking the fodrin-binding site. The effect of three disease-associated mutations on the merlin-fodrin interaction and merlin dimerization was also investigated. The mutation L535P, but not L360P or K413E, significantly decreased the merlin-fodrin interaction but not dimerization, indicating that the tumour suppressor ability of merlin might reside partly in its ability to interact with the cytoskeleton via fodrin.
Collapse
Affiliation(s)
- G W Neill
- Centre for Cutaneous Research, St Bartholomew's and the Royal London, Queen Mary and Westfield College, 2 Newark Street, London E1 2AT, UK
| | | |
Collapse
|
18
|
James MF, Manchanda N, Gonzalez-Agosti C, Hartwig JH, Ramesh V. The neurofibromatosis 2 protein product merlin selectively binds F-actin but not G-actin, and stabilizes the filaments through a lateral association. Biochem J 2001; 356:377-86. [PMID: 11368764 PMCID: PMC1221848 DOI: 10.1042/0264-6021:3560377] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The neurofibromatosis 2 protein product merlin, named for its relatedness to the ezrin, radixin and moesin (ERM) family of proteins, is a tumour suppressor whose absence results in the occurrence of multiple tumours of the nervous system, particularly schwannomas and meningiomas. Merlin's similarity to ERMs suggests that it might share functions, acting as a link between cytoskeletal components and the cell membrane. The N-terminus of merlin has strong sequence identity to the N-terminal actin-binding region of ezrin; here we describe in detail the merlin-actin interaction. Employing standard actin co-sedimentation assays, we have determined that merlin isoform 2 binds F-actin with an apparent binding constant of 3.6 microM and a stoichiometry of 1 mol of merlin per 11.5 mol of actin in filaments at saturation. Further, solid-phase binding assays reveal that merlin isoforms 1 and 2 bind actin filaments differentially, suggesting that the intramolecular interactions in isoform 1 might hinder its ability to bind actin. However, merlin does not bind G-actin. Studies of actin filament dynamics show that merlin slows filament disassembly with no influence on the assembly rate, indicating that merlin binds along actin filament lengths. This conclusion is supported by electron microscopy, which demonstrates that merlin binds periodically along cytoskeletal actin filaments. Comparison of these findings with those reported for ERM proteins reveal a distinct role for merlin in actin filament dynamics.
Collapse
Affiliation(s)
- M F James
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA 02129, USA
| | | | | | | | | |
Collapse
|
19
|
Scherer SS, Xu T, Crino P, Arroyo EJ, Gutmann DH. Ezrin, radixin, and moesin are components of Schwann cell microvilli. J Neurosci Res 2001; 65:150-64. [PMID: 11438984 DOI: 10.1002/jnr.1138] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Ezrin, radixin, and moesin (ERM proteins), as well as the neurofibromatosis 2 (NF2) tumor suppressor merlin/schwannomin, all belong to the protein 4.1 family, yet only merlin is a tumor suppressor in Schwann cells. To gain insight into the possible functions of ERM proteins in Schwann cells, we examined their localization in peripheral nerve, because we have previously shown that merlin is found in paranodes and in Schmidt-Lanterman incisures. All three ERM proteins were highly expressed in the microvilli of myelinating Schwann cells that surround the nodal axolemma as well as in incisures and cytoplasmic puncta in the vicinity of the node. In all of these locations, ERM proteins were colocalized with actin filaments. In contrast, ERM proteins did not surround nodes in the CNS. The colocalization of ERM proteins with actin indicates that they have functions different from those of merlin in myelinating Schwann cells.
Collapse
Affiliation(s)
- S S Scherer
- Department of Neurology, The University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6077, USA.
| | | | | | | | | |
Collapse
|
20
|
Shaw RJ, Paez JG, Curto M, Yaktine A, Pruitt WM, Saotome I, O'Bryan JP, Gupta V, Ratner N, Der CJ, Jacks T, McClatchey AI. The Nf2 tumor suppressor, merlin, functions in Rac-dependent signaling. Dev Cell 2001; 1:63-72. [PMID: 11703924 DOI: 10.1016/s1534-5807(01)00009-0] [Citation(s) in RCA: 271] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mutations in the neurofibromatosis type II (NF2) tumor suppressor predispose humans and mice to tumor development. The study of Nf2+/- mice has demonstrated an additional effect of Nf2 loss on tumor metastasis. The NF2-encoded protein, merlin, belongs to the ERM (ezrin, radixin, and moesin) family of cytoskeleton:membrane linkers. However, the molecular basis for the tumor- and metastasis- suppressing activity of merlin is unknown. We have now placed merlin in a signaling pathway downstream of the small GTPase Rac. Expression of activated Rac induces phosphorylation and decreased association of merlin with the cytoskeleton. Furthermore, merlin overexpression inhibits Rac-induced signaling in a phosphorylation-dependent manner. Finally, Nf2-/- cells exhibit characteristics of cells expressing activated alleles of Rac. These studies provide insight into the normal cellular function of merlin and how Nf2 mutation contributes to tumor initiation and progression.
Collapse
Affiliation(s)
- R J Shaw
- Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Brault E, Gautreau A, Lamarine M, Callebaut I, Thomas G, Goutebroze L. Normal membrane localization and actin association of the NF2 tumor suppressor protein are dependent on folding of its N-terminal domain. J Cell Sci 2001; 114:1901-12. [PMID: 11329377 DOI: 10.1242/jcs.114.10.1901] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The neurofibromatosis type 2 (NF2) tumor suppressor protein, known as schwannomin or merlin, is involved in linking membrane proteins to the cytoskeleton. Like the related ERM proteins, schwannomin has long been suspected of exhibiting a complex 3D organization caused by the association of different regions within the protein. Intramolecular interactions characterized to date are linking N-terminal sequences of the protein to C-terminal sequences. Here, we demonstrate, by a biochemical approach, the existence of a structured domain entirely contained within the N-terminal half of schwannomin. This structure, which is resistant to chymotryptic digestion, encompasses the FERM domain (residues 19–314), but excludes the 18 extreme N-terminal residues specific to schwannomin. The structure is disrupted by some, but not all, naturally occurring NF2 mutations. We investigated the significance of this structured domain in schwannomin cellular functions and found that normal schwannomin localization beneath the plasma membrane is directly dependent on proper folding of the N-terminal domain. In addition, folding of the N-terminal domain influences schwannomin interaction with actin through two novel actin-binding sites located in this region. These results suggest that loss of activity of several naturally occurring schwannomin mutants is due to disruption of the fold of the N-terminal domain, leading to loss of both membrane localization and actin association.
Collapse
Affiliation(s)
- E Brault
- Laboratoire de Génétique des Tumeurs, U434 INSERM-CEPH Fondation Jean Dausset, 75010 Paris, France
| | | | | | | | | | | |
Collapse
|
22
|
Morrison H, Sherman LS, Legg J, Banine F, Isacke C, Haipek CA, Gutmann DH, Ponta H, Herrlich P. The NF2 tumor suppressor gene product, merlin, mediates contact inhibition of growth through interactions with CD44. Genes Dev 2001; 15:968-80. [PMID: 11316791 PMCID: PMC312675 DOI: 10.1101/gad.189601] [Citation(s) in RCA: 394] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The neurofibromatosis-2 (NF2) gene encodes merlin, an ezrin-radixin-moesin-(ERM)-related protein that functions as a tumor suppressor. We found that merlin mediates contact inhibition of growth through signals from the extracellular matrix. At high cell density, merlin becomes hypo-phosphorylated and inhibits cell growth in response to hyaluronate (HA), a mucopolysaccharide that surrounds cells. Merlin's growth-inhibitory activity depends on specific interaction with the cytoplasmic tail of CD44, a transmembrane HA receptor. At low cell density, merlin is phosphorylated, growth permissive, and exists in a complex with ezrin, moesin, and CD44. These data indicate that merlin and CD44 form a molecular switch that specifies cell growth arrest or proliferation.
Collapse
Affiliation(s)
- H Morrison
- Forschungszentrum Karlsruhe, Institute of Toxicology and Genetics, and University of Karlsruhe, Institute of Genetics, 76021 Karlsruhe, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Bretscher A, Chambers D, Nguyen R, Reczek D. ERM-Merlin and EBP50 protein families in plasma membrane organization and function. Annu Rev Cell Dev Biol 2001; 16:113-43. [PMID: 11031232 DOI: 10.1146/annurev.cellbio.16.1.113] [Citation(s) in RCA: 290] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ezrin-radixin-moesin (ERM) family of proteins have emerged as key regulatory molecules in linking F-actin to specific membrane proteins, especially in cell surface structures. Merlin, the product of the NF2 tumor suppressor gene, has sequence similarity to ERM proteins and binds to some of the same membrane proteins, but lacks a C-terminal F-actin binding site. In this review we discuss how ERM proteins and merlin are negatively regulated by an intramolecular association between their N- and C-terminal domains. Activation of at least ERM proteins can be accomplished by C-terminal phosphorylation in the presence of PIP2. We also discuss membrane proteins to which ERM and merlin bind, including those making an indirect linkage through the PDZ-containing adaptor molecules EBP50 and E3KARP. Finally, the function of these proteins in cortical structure, endocytic traffic, signal transduction, and growth control is discussed.
Collapse
Affiliation(s)
- A Bretscher
- Department of Molecular Biology and Genetics, Biotechnology Building, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
24
|
Nguyen R, Reczek D, Bretscher A. Hierarchy of merlin and ezrin N- and C-terminal domain interactions in homo- and heterotypic associations and their relationship to binding of scaffolding proteins EBP50 and E3KARP. J Biol Chem 2001; 276:7621-9. [PMID: 11106646 DOI: 10.1074/jbc.m006708200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neurofibromatosis 2 tumor suppressor gene product merlin has strong sequence identity to the ezrin-radixin-moesin (ERM) family over its approximately 300-residue N-terminal domain. ERM proteins are membrane cytoskeletal linkers that are negatively regulated by an intramolecular association between domains known as NH(2)- and COOH-ERM association domains (N- and C-ERMADs) that mask sites for binding membrane-associated proteins, such as EBP50 and E3KARP, and F-actin. Here we show that merlin has self-association regions analogous to the N- and C-ERMADs. Moreover, the N-/C-ERMAD interaction in merlin is relatively weak and dynamic, and this property is reflected by the ability of full-length recombinant merlin to form homo-oligomers. Remarkably, the merlin C-ERMAD has a higher affinity for the N-ERMAD of ezrin than the N-ERMAD of merlin. Both the ezrin and merlin N-ERMAD bind EBP50. This interaction with the ezrin N-ERMAD can be inhibited by the presence of the ezrin C-ERMAD, whereas interaction with the merlin N-ERMAD is not inhibited by either C-ERMAD. E3KARP binds tightly to the ezrin N-ERMAD but has little affinity for the merlin N-ERMAD. The implications of these associations and the hierarchies of binding for the function and regulation of merlin and ERM proteins are discussed.
Collapse
Affiliation(s)
- R Nguyen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
25
|
den Bakker MA, Riegman PH, Suurmeijer AP, Vissers CJ, Sainio M, Carpen O, Zwarthoff EC. Evidence for a cytoskeleton attachment domain at the N-terminus of the NF2 protein. J Neurosci Res 2000; 62:764-71. [PMID: 11107160 DOI: 10.1002/1097-4547(20001215)62:6<764::aid-jnr2>3.0.co;2-v] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neurofibromatosis type 2 is a hereditary cancer syndrome characterized by the development of bilateral vestibular schwannomas. Underlying the disease are inactivating mutations of the NF2 tumor suppressor gene, located on chromosome 22, encoding a 595-amino-acid protein. The NF2 protein, also known as merlin or schwannomin, is reported to act as a membrane-cytoskeleton linking protein. This assumption is based on the homology of the NF2 protein to a group of band 4.1-related proteins, ezrin, radixin, and moesin. The cytoskeletal association of the NF2 protein has in part been confirmed by its ability to resist extraction from cells by nonionic detergents. We performed detergent extraction on COS cells transfected with NF2 cDNA constructs. The extracts were analyzed by Western blotting and immunofluorescent staining with monoclonal anti-NF2 antibodies. The results provide evidence for a high-affinity cytoskeleton attachment domain at amino acids 29-131 and a putative lower affinity domain between amino acids 321 and 470.
Collapse
Affiliation(s)
- M A den Bakker
- Department of Pathology, Josephine Nefkens Institute, Erasmus Medical Center Rotterdam, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
26
|
Pearson MA, Reczek D, Bretscher A, Karplus PA. Structure of the ERM protein moesin reveals the FERM domain fold masked by an extended actin binding tail domain. Cell 2000; 101:259-70. [PMID: 10847681 DOI: 10.1016/s0092-8674(00)80836-3] [Citation(s) in RCA: 461] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The ezrin-radixin-moesin (ERM) protein family link actin filaments of cell surface structures to the plasma membrane, using a C-terminal F-actin binding segment and an N-terminal FERM domain, a common membrane binding module. ERM proteins are regulated by an intramolecular association of the FERM and C-terminal tail domains that masks their binding sites. The crystal structure of a dormant moesin FERM/tail complex reveals that the FERM domain has three compact lobes including an integrated PTB/PH/ EVH1 fold, with the C-terminal segment bound as an extended peptide masking a large surface of the FERM domain. This extended binding mode suggests a novel mechanism for how different signals could produce varying levels of activation. Sequence conservation suggests a similar regulation of the tumor suppressor merlin.
Collapse
Affiliation(s)
- M A Pearson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
27
|
Goutebroze L, Brault E, Muchardt C, Camonis J, Thomas G. Cloning and characterization of SCHIP-1, a novel protein interacting specifically with spliced isoforms and naturally occurring mutant NF2 proteins. Mol Cell Biol 2000; 20:1699-712. [PMID: 10669747 PMCID: PMC85353 DOI: 10.1128/mcb.20.5.1699-1712.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The neurofibromatosis type 2 (NF2) protein, known as schwannomin or merlin, is a tumor suppressor involved in NF2-associated and sporadic schwannomas and meningiomas. It is closely related to the ezrin-radixin-moesin family members, implicated in linking membrane proteins to the cytoskeleton. The molecular mechanism allowing schwannomin to function as a tumor suppressor is unknown. In attempt to shed light on schwannomin function, we have identified a novel coiled-coil protein, SCHIP-1, that specifically associates with schwannomin in vitro and in vivo. Within its coiled-coil region, this protein is homologous to human FEZ proteins and the related Caenorhabditis elegans gene product UNC-76. Immunofluorescent staining of transiently transfected cells shows a partial colocalization of SCHIP-1 and schwannomin, beneath the cytoplasmic membrane. Surprisingly, immunoprecipitation assays reveal that in a cellular context, association with SCHIP-1 can be observed only with some naturally occurring mutants of schwannomin, or a schwannomin spliced isoform lacking exons 2 and 3, but not with the schwannomin isoform exhibiting growth-suppressive activity. Our observations suggest that SCHIP-1 interaction with schwannomin is regulated by conformational changes in schwannomin, possibly induced by posttranslational modifications, alternative splicing, or mutations.
Collapse
Affiliation(s)
- L Goutebroze
- U434, INSERM-Institut Curie, 75005 Paris, France.
| | | | | | | | | |
Collapse
|
28
|
Gonzalez-Agosti C, Wiederhold T, Herndon ME, Gusella J, Ramesh V. Interdomain interaction of merlin isoforms and its influence on intermolecular binding to NHE-RF. J Biol Chem 1999; 274:34438-42. [PMID: 10567424 DOI: 10.1074/jbc.274.48.34438] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Merlin, the neurofibromatosis 2 tumor suppressor protein, has two major isoforms with alternate C termini and is related to the ERM (ezrin, radixin, moesin) proteins. Regulation of the ERMs involves intramolecular and/or intermolecular head-to-tail associations between family members. We have determined whether merlin undergoes similar interactions, and our findings indicate that the C terminus of merlin isoform 1 is able to associate with its N-terminal domain in a head-to-tail fashion. However, the C terminus of isoform 2 lacks this property. Similarly, the N terminus of merlin can also associate with C terminus of moesin. We have also explored the effect of merlin self-association on binding to the regulatory cofactor of Na(+)-H(+) exchanger (NHE-RF), an interacting protein for merlin and the ERMs. Merlin isoform 2 captures more NHE-RF than merlin isoform 1 in affinity binding assays, suggesting that in full-length merlin isoform 1, the NHE-RF binding site is masked because of the self-interactions of merlin. Treatment with a phospholipid known to decrease self-association of ERMs enhances the binding of merlin isoform 1 to NHE-RF. Thus, although isoform 1 resembles the ERM proteins, which transition between inactive (closed) and active (open) states, isoform 2 is distinct, existing only in the active (open) state and presumably constitutively more available for interaction with other protein partners.
Collapse
Affiliation(s)
- C Gonzalez-Agosti
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Charlestown, Massachusetts 02129, USA
| | | | | | | | | |
Collapse
|
29
|
Zoog SJ, Bertin J, Friesen PD. Caspase inhibition by baculovirus P35 requires interaction between the reactive site loop and the beta-sheet core. J Biol Chem 1999; 274:25995-6002. [PMID: 10473544 DOI: 10.1074/jbc.274.37.25995] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Baculovirus P35 is a universal substrate-inhibitor of the death caspases. Stoichiometric inhibition by P35 is correlated with cleavage of its reactive site loop (RSL) and formation of a stable P35.caspase complex through a novel but undefined mechanism. The P35 crystal structure predicts that the RSL associates with the beta-sheet core of P35 positioning the caspase cleavage site at the loop's apex. Here we demonstrate that proper interaction between the RSL and the beta-sheet core is critical for caspase inhibition, but not cleavage. Disruption of RSL interaction with the beta-sheet by substituting hydrophobic residues of the RSL's transverse helix alpha1 with destabilizing charged residues caused loss of caspase inhibition, without affecting P35 cleavage. Restabilization of the helix/sheet interaction by charge compensation from within the beta-sheet partially restored anti-caspase potency. Mutational effects on P35 helix/sheet interactions were confirmed by measuring intermolecular helix/sheet association with the yeast two-hybrid system. Moreover, the identification of P35 oligomers in baculovirus-infected cells suggested that similar P35 interactions occur in vivo. These findings indicate that P35's anti-caspase potency depends on a distinct conformation of the RSL which is required for events that promote stable, post-cleavage interactions and inhibition of the target caspase.
Collapse
Affiliation(s)
- S J Zoog
- Institute for Molecular Virology, Department of Biochemistry, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
30
|
Maeda M, Matsui T, Imamura M, Tsukita S, Tsukita S. Expression level, subcellular distribution and rho-GDI binding affinity of merlin in comparison with Ezrin/Radixin/Moesin proteins. Oncogene 1999; 18:4788-97. [PMID: 10490812 DOI: 10.1038/sj.onc.1202871] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Merlin, a neurofibromatosis type-2 tumor suppressor, shows significant sequence similarity to ERM (Ezrin/Radixin/Moesin) proteins, general actin filament/plasma membrane cross-linkers, which are regulated in a Rho-dependent manner. To understand its physiological functions, we compared merlin with ERM proteins in vivo and in vitro. Quantitative immunoblotting revealed that the molar ratio of merlin/ERM in cultured epithelial or non-epithelial cells was approximately 0.14 or approximately 0.05, respectively. After centrifugation of cell homogenate, merlin was mostly recovered in the insoluble fraction, whereas almost half of ERM proteins were found in the soluble fraction. Merlin and ERM proteins were concentrated at microvilli when introduced into fibroblasts. In contrast, in epithelial cells, introduced merlin was co-distributed with E-cadherin in lateral membranes, whereas ERM proteins were concentrated in apical microvilli. Finally, we examined the binding affinity of merlin to Rho GDP dissociation inhibitor (Rho-GDI), to which N-terminal halves of ERM proteins but not the full-length molecules specifically bind. In vitro binding assays revealed that the N-terminal halves of merlin isoform-I and -II as well as full-length merlin isoform-II bound to Rho-GDI with similar binding affinity to ERM proteins. Immunoprecipitation confirmed these findings in vivo. These findings do not favor the notion that merlin functions simply in a redundant or competitive manner to ERM proteins.
Collapse
Affiliation(s)
- M Maeda
- Department of Cell Biology, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606, Japan
| | | | | | | | | |
Collapse
|
31
|
Schmucker B, Tang Y, Kressel M. Novel alternatively spliced isoforms of the neurofibromatosis type 2 tumor suppressor are targeted to the nucleus and cytoplasmic granules. Hum Mol Genet 1999; 8:1561-70. [PMID: 10401006 DOI: 10.1093/hmg/8.8.1561] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We cloned novel splice variants Mer150, Mer151 and Mer162 of the neurofibromatosis 2 (NF2) tumor suppressor, which demonstrate a tissue-specific and development-specific expression pattern. Isoform Mer150 is created by cryptic splicing from exon 8 to 14 and represents an N-terminal truncation of 259 residues. Mer151 is characterized by in-frame splicing out of several exons and a modified C-terminus due to a frameshift in exons 13+14 and premature termination. Mer162 represents a head-to-tail isoform resulting from in-frame skipping of exons 5-16. As a common feature, the alpha-helical domain and a variable proportion of the ERM homology domain are spliced out in these isoforms. To investigate differences in subcellular localization, we expressed epitope-tagged cDNA constructs of the wild-type NF2 as well as of the three alternatively spliced transcripts in NIH 3T3 cells by nuclear microinjection or lipid-mediated transfection. Subcellular localization of Mer151 in filopodia and ruffling membranes was similar to the wild-type NF2. Mer151, however, was targeted to the nucleus, which was not observed for wild-type NF2, Mer150 or Mer162. A putative nuclear localization signal created by alternative splicing was identified in Mer151. In contrast to Mer151, Mer150 and Mer162 were not found in regions of the plasma membrane, but localized to a granular intracellular compartment. The results suggest that the recently described actin-binding domain in exon 10, but not the presence or absence of exons 2+3, is relevant for subcellular targeting. Although the NF2 protein is known as a cytoskeletal linker, additional functions in a cytoplasmic compartment and in the nucleus may exist.
Collapse
Affiliation(s)
- B Schmucker
- Institute of Human Genetics, University of Erlangen, Germany
| | | | | |
Collapse
|
32
|
Abstract
Ezrin, radixin and moesin, collectively known as the ERM proteins, are a group of closely related membrane-cytoskeleton linkers that regulate cell adhesion and cortical morphogenesis. ERM proteins can self-associate through intra- and inter-molecular interactions, and these interactions mask several binding sites on the proteins. ERM activation involves unfolding of the molecule, and allows the protein to bind to plasma membrane components either directly, or indirectly through linker proteins. The discovery that the tumour-suppressor NF2, also known as merlin/schwannomin, is related to ERM proteins has added a new impetus to investigations of their roles. This review discusses current understanding of the structure and function of members of the ERM family of proteins.
Collapse
Affiliation(s)
- P Mangeat
- Université Montpellier II, CNRS UMR 5539, C.C. 107, 34095 Montpellier Cedex 05, France.
| | | | | |
Collapse
|
33
|
Huang L, Wong TY, Lin RC, Furthmayr H. Replacement of threonine 558, a critical site of phosphorylation of moesin in vivo, with aspartate activates F-actin binding of moesin. Regulation by conformational change. J Biol Chem 1999; 274:12803-10. [PMID: 10212266 DOI: 10.1074/jbc.274.18.12803] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Point and deletion mutants of moesin were examined for F-actin binding by blot overlay and co-sedimentation, and for intra- and intermolecular interactions with N- and C-terminal domains with yeast two-hybrid and in vitro binding assays. Wild-type moesin molecules interact poorly with F-actin and each other, and bind neither C- nor N-terminal fragments. Interaction with F-actin is strongly enhanced by replacement of Thr558 with aspartate (T558D), by deletion of 11 N-terminal residues (DelN11), by deletion of the entire N-terminal membrane-binding domain of both wild type and T558D mutant molecules, and by exposure to phosphatidylinositol 4, 5-diphosphate. Activation of F-actin binding is accompanied by changes in inter- and intramolecular domain interactions. The T558D mutation renders moesin capable of binding wild type but not mutated (T558D) C-terminal or wild type N-terminal fragments. The interaction between the latter two is prevented. DelN11 truncation enables binding of wild type N and C domain fragments. These changes suggest that the T558D mutation, mimicking phosphorylation of Thr558, promotes F-actin binding by disruption of interdomain interactions between N and C domains and exposure of the high affinity F-actin binding site in the C-terminal domain. Oscillation between activated and resting state could thus provide the structural basis for transient interactions between moesin and the actin cytoskeleton in protruding and retracting microextensions.
Collapse
Affiliation(s)
- L Huang
- Molecular Mechanisms of Disease Laboratories, Department of Pathology, Stanford University School of Medicine, Stanford, California 94305-5324, USA
| | | | | | | |
Collapse
|
34
|
Gusella JF, Ramesh V, MacCollin M, Jacoby LB. Merlin: the neurofibromatosis 2 tumor suppressor. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1423:M29-36. [PMID: 10214350 DOI: 10.1016/s0304-419x(99)00005-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, it has become clear that the ERMs occupy a crucial position as protein linkers that both respond to and participate in reorganization of membrane-cytoskeletal interactions. With the identification of new binding partners, the ERMs are also implicated in linked regulation of the activities of particular membrane proteins. Thus, they reside at a junction in a complex web of interactions that must respond to stimuli from both outside and inside the cell. As expected from its structural motifs, merlin behaves in a manner similar to the ERM proteins, but with some notable differences. Chief among these is the absence of intramolecular interaction to mask intermolecular interaction domains in isoform 2. The full range of merlin's intermolecular interactions remains to be delineated, but it can be expected from the comparison to ERMs that merlin also sits within a web of interactions that may involve multiple partners and signaling pathways, some of which it shares with the ERMs. Defining merlin's tumor suppressor function will likely require identifying those differences that are peculiarly important in the target cell types of NF2. However, the fact that inactivation of merlin in the mouse by targeted mutagenesis produces a variety of malignant tumors with a high rate of metastasis [33] suggests that merlin's suppression of tumor formation may involve different partners and pathways in different cell types and genetic backgrounds. Consequently, the disruptions due to merlin inactivation in the progression of malignant mesothelioma may represent a tumor suppressor role operating by a different pathway than that in schwannoma or meningioma.
Collapse
Affiliation(s)
- J F Gusella
- Molecular Neurogenetics Unit, Massachusetts General Hospital, Boston 02114, USA.
| | | | | | | |
Collapse
|
35
|
Grönholm M, Sainio M, Zhao F, Heiska L, Vaheri A, Carpén O. Homotypic and heterotypic interaction of the neurofibromatosis 2 tumor suppressor protein merlin and the ERM protein ezrin. J Cell Sci 1999; 112 ( Pt 6):895-904. [PMID: 10036239 DOI: 10.1242/jcs.112.6.895] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ezrin, radixin and moesin (ERM) are homologous proteins, which are linkers between plasma membrane components and the actin-containing cytoskeleton. The ERM protein family members associate with each other in a homotypic and heterotypic manner. The neurofibromatosis 2 (NF2) tumor suppressor protein merlin (schwannomin) is structurally related to ERM members. Merlin is involved in tumorigenesis of NF2-associated and sporadic schwannomas and meningiomas, but the tumor suppressor mechanism is poorly understood. We have studied the ability of merlin to self-associate and bind ezrin. Ezrin was coimmunoprecipitated with merlin from lysates of human U251 glioma cells and from COS-1 cells transfected with cDNA encoding for merlin isoform I. The interaction was further studied and the association domains were mapped with the yeast two-hybrid system and with blot overlay and affinity precipitation experiments. The heterotypic binding of merlin and ezrin and the homotypic association of merlin involves interaction between the amino- and carboxy-termini. The amino-terminal association domain of merlin involves residues 1–339 and has similar features with the amino-terminal association domain of ezrin. The carboxy-terminal association domain cannot be mapped as precisely as in ezrin, but it requires residues 585–595 and a more amino-terminal segment. Unlike ezrin, merlin does not require activation for self-association but native merlin molecules can interact with each other. Heterodimerization between merlin and ezrin, however, occurs only following conformational alterations in both proteins. These results biochemically connect merlin to the cortical cytoskeleton and indicate differential regulation of merlin from ERM proteins.
Collapse
Affiliation(s)
- M Grönholm
- Departments of Pathology and Virology, University of Helsinki, Haartman Institute, PO Box 21 (Haartmaninkatu 3), FIN-00014 Helsinki.
| | | | | | | | | | | |
Collapse
|
36
|
Simons PC, Pietromonaco SF, Reczek D, Bretscher A, Elias L. C-terminal threonine phosphorylation activates ERM proteins to link the cell's cortical lipid bilayer to the cytoskeleton. Biochem Biophys Res Commun 1998; 253:561-5. [PMID: 9918767 DOI: 10.1006/bbrc.1998.9823] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The plasma membrane consists of a lipid bilayer with integral membrane proteins stabilized by regulated linkages to the cortical actin cytoskeleton. The regulation is necessary for cells to change shape ormigrate. The ERM (ezrin-radixin-moesin) proteins are believed to provide such links, with the N-terminal halves associating with integral membrane proteins, either directly or indirectly through adapter molecules like EBP50 (ERM binding phosphoprotein, 50 kDa), and their C-terminal halves associating with F-actin. However, isolated ERM proteins largely exist in a dormant state by virtue of an intramolecular interaction between amino- and carboxyl-terminal domains, thereby masking membrane and cytoskeletal association sites. C-terminal threonine phosphorylation of a fragment of radixin has been found to destroy its ability to bind the amino-terminal domain without affecting the C-terminal F-actin binding site. Here we show that C-terminal phosphorylation of full-length, dormant ezrin and moesin by protein kinase C-theta simultaneously unmasks both the F-actin and EBP50 binding sites. Increased phosphorylation of moesin in cells correlated with increased association of moesin with the cortical actin cytoskeleton. These results show that activation of ERM proteins can be accomplished by phosphorylation of a single C-terminal threonine residue.
Collapse
Affiliation(s)
- P C Simons
- Department of Internal Medicine and Cancer Research & Treatment Center, University of New Mexico School of Medicine, Albuquerque 87131, USA
| | | | | | | | | |
Collapse
|