1
|
Salminen A. Aryl hydrocarbon receptor impairs circadian regulation in Alzheimer's disease: Potential impact on glymphatic system dysfunction. Eur J Neurosci 2024; 60:3901-3920. [PMID: 38924210 DOI: 10.1111/ejn.16450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024]
Abstract
Circadian clocks maintain diurnal rhythms of sleep-wake cycle of 24 h that regulate not only the metabolism of an organism but also many other periodical processes. There is substantial evidence that circadian regulation is impaired in Alzheimer's disease. Circadian clocks regulate many properties known to be disturbed in Alzheimer's patients, such as the integrity of the blood-brain barrier (BBB) as well as the diurnal glymphatic flow that controls waste clearance from the brain. Interestingly, an evolutionarily conserved transcription factor, that is, aryl hydrocarbon receptor (AhR), impairs the function of the core clock proteins and thus could disturb diurnal rhythmicity in the BBB. There is abundant evidence that the activation of AhR signalling inhibits the expression of the major core clock proteins, such as the brain and muscle arnt-like 1 (BMAL1), clock circadian regulator (CLOCK) and period circadian regulator 1 (PER1) in different experimental models. The expression of AhR is robustly increased in the brains of Alzheimer's patients, and protein level is enriched in astrocytes of the BBB. It seems that AhR signalling inhibits glymphatic flow since it is known that (i) activation of AhR impairs the function of the BBB, which is cooperatively interconnected with the glymphatic system in the brain, and (ii) neuroinflammation and dysbiosis of gut microbiota generate potent activators of AhR, which are able to impair glymphatic flow. I will examine current evidence indicating that activation of AhR signalling could disturb circadian functions of the BBB and impair glymphatic flow and thus be involved in the development of Alzheimer's pathology.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
2
|
Salminen A. Aryl hydrocarbon receptor (AhR) impairs circadian regulation: impact on the aging process. Ageing Res Rev 2023; 87:101928. [PMID: 37031728 DOI: 10.1016/j.arr.2023.101928] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/23/2023] [Accepted: 04/06/2023] [Indexed: 04/11/2023]
Abstract
Circadian clocks control the internal sleep-wake rhythmicity of 24hours which is synchronized by the solar cycle. Circadian regulation of metabolism evolved about 2.5 billion years ago, i.e., the rhythmicity has been conserved from cyanobacteria and Archaea through to mammals although the mechanisms utilized have developed with evolution. While the aryl hydrocarbon receptor (AhR) is an evolutionarily conserved defence mechanism against environmental threats, it has gained many novel functions during evolution, such as the regulation of cell cycle, proteostasis, and many immune functions. There is robust evidence that AhR signaling impairs circadian rhythmicity, e.g., by interacting with the core BMAL1/CLOCK complex and disturbing the epigenetic regulation of clock genes. The maintenance of circadian rhythms is impaired with aging, disturbing metabolism and many important functions in aged organisms. Interestingly, it is known that AhR signaling promotes an age-related tissue degeneration, e.g., it is able to inhibit autophagy, enhance cellular senescence, and disrupt extracellular matrix. These alterations are rather similar to those induced by a long-term impairment of circadian rhythms. However, it is not known whether AhR signaling enhances the aging process by impairing circadian homeostasis. I will examine the experimental evidence indicating that AhR signaling is able to promote the age-related degeneration via a disruption of circadian rhythmicity.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland.
| |
Collapse
|
3
|
Khazaal AQ, Haque N, Krager CR, Krager SL, Chambers C, Wilber A, Tischkau SA. Aryl hydrocarbon receptor affects circadian-regulated lipolysis through an E-Box-dependent mechanism. Mol Cell Endocrinol 2023; 559:111809. [PMID: 36283500 PMCID: PMC10509633 DOI: 10.1016/j.mce.2022.111809] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
An internal circadian clock regulates timing of systemic energy homeostasis. The central clock in the hypothalamic suprachiasmatic nucleus (SCN) directs local clocks in peripheral tissues such as liver, muscle, and adipose tissue to synchronize metabolism with food intake and rest/activity cycles. Aryl hydrocarbon receptor (AhR) interacts with the molecular circadian clockworks. Activation of AhR dampens rhythmic expression of core clock genes, which may lead to metabolic dysfunction. Given the importance of appropriately-timed adipose tissue function to regulation of energy homeostasis, this study focused on mechanisms by which AhR may influence clock-controlled adipose tissue activity. We hypothesized that AhR activation in adipose tissue would impair lipolysis by dampening adipose rhythms, leading to a decreased lipolysis rate during fasting, and subsequently, altered serum glucose concentrations. Levels of clock gene and lipolysis gene transcripts in mouse mesenchymal stem cells (BMSCs) differentiated into mature adipocytes were suppressed by the AhR agonist β-napthoflavone (BNF), in an AhR dependent manner. BNF altered rhythms of core clock gene and lipolysis gene transcripts in C57bl6/J mice. BNF reduced serum free fatty acids, glycerol and liver glycogen. Chromatin immunoprecipitation indicated that BNF increased binding of AhR to E-Box elements in clock gene and lipolysis gene promoters. These data establish a link between AhR activation and impaired lipolysis, specifically by altering adipose tissue rhythmicity. In response to the decreased available energy from impaired lipolysis, the body increases glycogenolysis, thereby degrading more glycogen to provide necessary energy.
Collapse
Affiliation(s)
- Ali Qasim Khazaal
- Biotechnology Department, College of Science, University of Baghdad, Baghdad, Iraq; Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Nazmul Haque
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Callie R Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Stacey L Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Christopher Chambers
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Andrew Wilber
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Shelley A Tischkau
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA; Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| |
Collapse
|
4
|
Furtado A, Mineiro R, Duarte AC, Gonçalves I, Santos CR, Quintela T. The Daily Expression of ABCC4 at the BCSFB Affects the Transport of Its Substrate Methotrexate. Int J Mol Sci 2022; 23:ijms23052443. [PMID: 35269592 PMCID: PMC8909972 DOI: 10.3390/ijms23052443] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
The choroid plexuses (CPs), located in the brain ventricles, form an interface between the blood and the cerebrospinal fluid named the blood-cerebrospinal barrier, which, by the presence of tight junctions, detoxification enzymes, and membrane transporters, limits the traffic of molecules into the central nervous system. It has already been shown that sex hormones regulate several CP functions, including the oscillations of its clock genes. However, it is less explored how the circadian rhythm regulates CP functions. This study aimed to evaluate the impact of sex hormones and circadian rhythms on the function of CP membrane transporters. The 24 h transcription profiles of the membrane transporters rAbca1, rAbcb1, rAbcc1, rAbcc4, rAbcg2, rAbcg4, and rOat3 were characterized in the CPs of intact male, intact female, sham-operated female, and gonadectomized rats. We found that rAbcc1 is expressed in a circadian way in the CPs of intact male rats, rAbcg2 in the CPs of intact female rats, and both rAbcc4 and rOat3 mRNA levels were expressed in a circadian way in the CPs of intact male and female rats. Next, using an in vitro model of the human blood–cerebrospinal fluid barrier, we also found that methotrexate (MTX) is transported in a circadian way across this barrier. The circadian pattern of Abcc4 found in the human CP epithelial papilloma cells might be partially responsible for MTX circadian transport across the basal membrane of CP epithelial cells.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Rafael Mineiro
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Ana Catarina Duarte
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Isabel Gonçalves
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Cecília R. Santos
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
| | - Telma Quintela
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal; (A.F.); (R.M.); (A.C.D.); (I.G.); (C.R.S.)
- UDI-IPG—Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, 6300-559 Guarda, Portugal
- Correspondence:
| |
Collapse
|
5
|
Rannug A. 6-Formylindolo[3,2-b]carbazole, a Potent Ligand for the Aryl Hydrocarbon Receptor Produced Both Endogenously and by Microorganisms, can Either Promote or Restrain Inflammatory Responses. FRONTIERS IN TOXICOLOGY 2022; 4:775010. [PMID: 35295226 PMCID: PMC8915874 DOI: 10.3389/ftox.2022.775010] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AHR) binds major physiological modifiers of the immune system. The endogenous 6-formylindolo[3,2-b]carbazole (FICZ), which binds with higher affinity than any other compound yet tested, including TCDD, plays a well-documented role in maintaining the homeostasis of the intestines and skin. The effects of transient activation of AHR by FICZ differ from those associated with continuous stimulation and, depending on the dose, include either differentiation into T helper 17 cells that express proinflammatory cytokines or into regulatory T cells or macrophages with anti-inflammatory properties. Moreover, in experimental models of human diseases high doses stimulate the production of immunosuppressive cytokines and suppress pathogenic autoimmunity. In our earlier studies we characterized the formation of FICZ from tryptophan via the precursor molecules indole-3-pyruvate and indole-3-acetaldehyde. In the gut formation of these precursor molecules is catalyzed by microbial aromatic-amino-acid transaminase ArAT. Interestingly, tryptophan can also be converted into indole-3-pyruvate by the amino-acid catabolizing enzyme interleukin-4 induced gene 1 (IL4I1), which is secreted by host immune cells. By thus generating derivatives of tryptophan that activate AHR, IL4I1 may have a role to play in anti-inflammatory responses, as well as in a tumor escape mechanism that reduces survival in cancer patients. The realization that FICZ can be produced from tryptophan by sunlight, by enzymes expressed in our cells (IL4I1), and by microorganisms as well makes it highly likely that this compound is ubiquitous in humans. A diurnal oscillation in the level of FICZ that depends on the production by the fluctuating number of microbes might influence not only intestinal and dermal immunity locally, but also systemic immunity.
Collapse
|
6
|
Daytime Restricted Feeding Modifies the Temporal Expression of CYP1A1 and Attenuated Damage Induced by Benzo[a]pyrene in Rat Liver When Administered before CYP1A1 Acrophase. TOXICS 2021; 9:toxics9060130. [PMID: 34199736 PMCID: PMC8228946 DOI: 10.3390/toxics9060130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/26/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022]
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that heterodimerizes with the AhR nuclear translocator (ARNT) to modulate CYP1A1 expression, a gene involved in the biotransformation of benzo[a]pyrene (BaP). The AhR pathway shows daily variations under the control of the circadian timing system. Daytime restricted feeding (DRF) entrains the expression of genes involved in the processing of nutrients and xenobiotics to food availability. Therefore, we evaluate if temporal AhR, ARNT, and CYP1A1 hepatic expression in rats are due to light/dark cycles or fasting/feeding cycles promoted by DRF. Our results show that AhR oscillates throughout the 24 h period in DRF and ad libitum feeding rats (ALF), showing maximum expression at the same time points. DRF modified the peak of ARNT expression at ZT5; meanwhile, ALF animals showed a peak of maximum expression at ZT17. An increased expression of CYP1A1 was linked to the meal time in both groups of animals. Although a high CYP1A1 expression has been previously associated with BaP genotoxicity, our results show that, compared with the ALF group, DRF attenuated the BaP-CYP1A1 induction potency, the liver DNA-BaP adducts, the liver concentration of unmetabolized BaP, and the blood aspartate aminotransferase and alanine aminotransferase activities when BaP is administered prior to the acrophase of CYP1A1 expression. These results demonstrate that DRF modifies the ARNT and CYP1A1 expression and protects from BaP toxicity.
Collapse
|
7
|
Aryl Hydrocarbon Receptors in Indole Derivative Treated Mice: Neuropharmacological Perspectives. ACTA MEDICA BULGARICA 2021. [DOI: 10.2478/amb-2021-0004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Abstract
Aim/objective. When applied in pharmacological doses, the indole derivative melatonin exhibits neuroactive and neuroprotective effects. Indoles and their metabolites, such as kynurenine, are ligands of aryl hydrocarbon receptors (AhR). This study aimed to evaluate the antiepileptic and analgesic activity of melatonin and two synthetic melatonin derivatives. The possible involvement of AhR and kynurenine in their neuropharmacological effects were also tested.
Methods. The tested substances were: melatonin, two melatonin derivatives bearing aryl hydrocarbon moiety with either furyl or thienyl substitute (3e and 3f), and alpha naphthoflavone (ANF), an antagonist of AhR. After intraperitoneal injection of 30, 100, or 300 mg/kg of the tested agents for seven days, male mice ICR (25-30 g) were subjected to a corneal kindling seizure model. Two tests for analgesia, i.e., the hot plate test and the formalin test, were also applied. AhR and kynurenine concentrations were evaluated in brain homogenates.
Results. Substances 3e and 3f demonstrated an antiepileptic activity comparable to that of melatonin. Some analgesic activity was also shown, albeit lower than that of melatonin in equivalent doses. For melatonin and 3f treated mice, dose-dependent increases in AhR and kynurenine levels in brain homogenates were recorded. The antagonist ANF neither blocks the antiseizure activity of the tested indoles, nor demonstrated analgesic activity.
Conclusion. Melatonin and the two tested melatonin-aroylhydrazone derivatives bearing either furyl or thienyl substitute exhibit antiepileptic and analgesic activity. Our results did not support the involvement of AhR in the demonstrated neurobiological activity. Further studies are needed to elucidate their exact molecular mechanisms.
Collapse
|
8
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
9
|
Rannug A. How the AHR Became Important in Intestinal Homeostasis-A Diurnal FICZ/AHR/CYP1A1 Feedback Controls Both Immunity and Immunopathology. Int J Mol Sci 2020; 21:ijms21165681. [PMID: 32784381 PMCID: PMC7461111 DOI: 10.3390/ijms21165681] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ever since the 1970s, when profound immunosuppression caused by exogenous dioxin-like compounds was first observed, the involvement of the aryl hydrocarbon receptor (AHR) in immunomodulation has been the focus of considerable research interest. Today it is established that activation of this receptor by its high-affinity endogenous ligand, 6-formylindolo[3,2-b]carbazole (FICZ), plays important physiological roles in maintaining epithelial barriers. In the gut lumen, the small amounts of FICZ that are produced from L-tryptophan by microbes are normally degraded rapidly by the inducible cytochrome P4501A1 (CYP1A1) enzyme. This review describes how when the metabolic clearance of FICZ is attenuated by inhibition of CYP1A1, this compound passes through the intestinal epithelium to immune cells in the lamina propria. FICZ, the level of which is thus modulated by this autoregulatory loop involving FICZ itself, the AHR and CYP1A1, plays a central role in maintaining gut homeostasis by potently up-regulating the expression of interleukin 22 (IL-22) by group 3 innate lymphoid cells (ILC3s). IL-22 stimulates various epithelial cells to produce antimicrobial peptides and mucus, thereby both strengthening the epithelial barrier against pathogenic microbes and promoting colonization by beneficial bacteria. Dietary phytochemicals stimulate this process by inhibiting CYP1A1 and causing changes in the composition of the intestinal microbiota. The activity of CYP1A1 can be increased by other microbial products, including the short-chain fatty acids, thereby accelerating clearance of FICZ. In particular, butyrate enhances both the level of the AHR and CYP1A1 activity by stimulating histone acetylation, a process involved in the daily cycle of the FICZ/AHR/CYP1A1 feedback loop. It is now of key interest to examine the potential involvement of FICZ, a major physiological activator of the AHR, in inflammatory disorders and autoimmunity.
Collapse
Affiliation(s)
- Agneta Rannug
- Karolinska Institutet, Institute of Environmental Medicine, 171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Tischkau SA. Mechanisms of circadian clock interactions with aryl hydrocarbon receptor signalling. Eur J Neurosci 2019; 51:379-395. [DOI: 10.1111/ejn.14361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 01/17/2019] [Accepted: 01/23/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Shelley A. Tischkau
- Department of PharmacologySouthern Illinois University School of Medicine Springfield Illinois
| |
Collapse
|
11
|
Sundar IK, Sellix MT, Rahman I. Redox regulation of circadian molecular clock in chronic airway diseases. Free Radic Biol Med 2018; 119:121-128. [PMID: 29097215 PMCID: PMC5910271 DOI: 10.1016/j.freeradbiomed.2017.10.383] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/12/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022]
Abstract
At the cellular level, circadian timing is maintained by the molecular clock, a family of interacting clock gene transcription factors, nuclear receptors and kinases called clock genes. Daily rhythms in pulmonary function are dictated by the circadian timing system, including rhythmic susceptibility to the harmful effects of airborne pollutants, exacerbations in patients with chronic airway disease and the immune-inflammatory response to infection. Further, evidence strongly suggests that the circadian molecular clock has a robust reciprocal interaction with redox signaling and plays a considerable role in the response to oxidative/carbonyl stress. Disruption of the circadian timing system, particularly in airway cells, impairs pulmonary rhythms and lung function, enhances oxidative stress due to airway inhaled pollutants like cigarette smoke and airborne particulate matter and leads to enhanced inflammosenescence, inflammasome activation, DNA damage and fibrosis. Herein, we briefly review recent evidence supporting the role of the lung molecular clock and redox signaling in regulating inflammation, oxidative stress, and DNA damage responses in lung diseases and their exacerbations. We further describe the potential for clock genes as novel biomarkers and therapeutic targets for the treatment of chronic lung diseases.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
12
|
Carmona-Antoñanzas G, Santi M, Migaud H, Vera LM. Light- and clock-control of genes involved in detoxification. Chronobiol Int 2017; 34:1026-1041. [PMID: 28617195 DOI: 10.1080/07420528.2017.1336172] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Circadian regulation of hepatic detoxification seems to be amongst the key roles of the biological clock. The liver is the major site for biotransformation, and in mammals, it contains several clock-controlled transcription factors such as proline and acidic amino acid-rich basic leucine zipper proteins (PAR bZIP) and basic-helix-loop-helix Per-Arnt-Sim (bHLH-PAS) family that act as circadian regulators of detoxification genes. This investigation explored the existence of daily and circadian expression of transcription factors involved in detoxification, as well as the temporal profile of a set of their target genes in zebrafish liver. In our study, zebrafish were able to synchronize to a light-dark (LD) cycle and displayed a diurnal pattern of activity. In addition, the expression of clock genes presented daily and circadian rhythmicity in liver. Apart from hlfa, the expression of PAR bZIP transcription factors also displayed daily rhythms, which appeared to be both light-dependent and clock-controlled, as circadian rhythms free-ran under constant conditions (continuous darkness, DD). Under LD, tefb, dbpa and dbpb expression peaked at the end of the darkness period whereas tefa showed peak levels of expression at the onset of the photophase. In addition, these four genes exhibited circadian expression under DD, with higher expression levels at the end of the subjective night. The expression of the bHLH-PAS transcription factor arh2 also showed circadian rhythmicity in zebrafish liver, peaking in the middle of the subjective night and approximately 3-4 h before peak expression of the PAR bZIP genes. Regarding the detoxification genes, the major target gene of AhR, cyp1a, showed daily and circadian expression with an acrophase 2 h after ahr2. Under LD, abcb4 also showed daily rhythmicity, with an acrophase 1-2 h after that of PAR bZIP factors during the transition between darkness and light phases, when zebrafish become active. However, the expression of six detoxification genes showed circadian rhythmicity under DD, including cyp1a and abcb4 as well as gstr1, mgst3a, abcg2 and sult2_st2. In all cases, the acrophases of these genes were found during the second half of the subjective night, in phase with the PAR bZIP transcription factors. This suggested that their expression is clock-controlled, either directly by core clock genes or through transcription factors. This study presents new data demonstrating that the process of detoxification is under circadian control in fish. Results showed that time of day should be considered when designing toxicological studies or administering drugs to fish.
Collapse
Affiliation(s)
- G Carmona-Antoñanzas
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| | - M Santi
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK.,b Life and Environmental Sciences Department , Marche Polytechnic University , Ancona , Italy
| | - H Migaud
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| | - L M Vera
- a Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling , Stirling , UK
| |
Collapse
|
13
|
Abstract
Chronotherapeutics aim at treating illnesses according to the endogenous biologic rhythms, which moderate xenobiotic metabolism and cellular drug response. The molecular clocks present in individual cells involve approximately fifteen clock genes interconnected in regulatory feedback loops. They are coordinated by the suprachiasmatic nuclei, a hypothalamic pacemaker, which also adjusts the circadian rhythms to environmental cycles. As a result, many mechanisms of diseases and drug effects are controlled by the circadian timing system. Thus, the tolerability of nearly 500 medications varies by up to fivefold according to circadian scheduling, both in experimental models and/or patients. Moreover, treatment itself disrupted, maintained, or improved the circadian timing system as a function of drug timing. Improved patient outcomes on circadian-based treatments (chronotherapy) have been demonstrated in randomized clinical trials, especially for cancer and inflammatory diseases. However, recent technological advances have highlighted large interpatient differences in circadian functions resulting in significant variability in chronotherapy response. Such findings advocate for the advancement of personalized chronotherapeutics through interdisciplinary systems approaches. Thus, the combination of mathematical, statistical, technological, experimental, and clinical expertise is now shaping the development of dedicated devices and diagnostic and delivery algorithms enabling treatment individualization. In particular, multiscale systems chronopharmacology approaches currently combine mathematical modeling based on cellular and whole-body physiology to preclinical and clinical investigations toward the design of patient-tailored chronotherapies. We review recent systems research works aiming to the individualization of disease treatment, with emphasis on both cancer management and circadian timing system–resetting strategies for improving chronic disease control and patient outcomes.
Collapse
Affiliation(s)
- Annabelle Ballesta
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Pasquale F Innominato
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Robert Dallmann
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - David A Rand
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| | - Francis A Lévi
- Warwick Medical School (A.B., P.F.I., R.D., F.A.L.) and Warwick Mathematics Institute (A.B., D.A.R.), University of Warwick, Coventry, United Kingdom; Warwick Systems Biology and Infectious Disease Epidemiological Research Centre, Senate House, Coventry, United Kingdom (A.B., P.F.I., R.D., D.A.R., F.A.L.); INSERM-Warwick European Associated Laboratory "Personalising Cancer Chronotherapy through Systems Medicine" (C2SysMed), Unité mixte de Recherche Scientifique 935, Centre National de Recherche Scientifique Campus, Villejuif, France (A.B., P.F.I., R.D., D.A.R., F.A.L.); and Queen Elisabeth Hospital Birmingham, University Hospitals Birmingham National Health Service Foundation Trust, Cancer Unit, Edgbaston Birmingham, United Kingdom (P.F.I., F.A.L.)
| |
Collapse
|
14
|
Jaeger C, Khazaal AQ, Xu C, Sun M, Krager SL, Tischkau SA. Aryl Hydrocarbon Receptor Deficiency Alters Circadian and Metabolic Rhythmicity. J Biol Rhythms 2017; 32:109-120. [PMID: 28347186 DOI: 10.1177/0748730417696786] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
PAS domain-containing proteins can act as environmental sensors that capture external stimuli to allow coordination of organismal physiology with the outside world. These proteins permit diverse ligand binding and heterodimeric partnership, allowing for varied combinations of PAS-dependent protein-protein interactions and promoting crosstalk among signaling pathways. Previous studies report crosstalk between circadian clock proteins and the aryl hydrocarbon receptor (AhR). Activated AhR forms a heterodimer with the circadian clock protein Bmal1 and thereby functionally inhibits CLOCK/Bmal1 activity. If physiological activation of AhR through naturally occurring, endogenous ligands inhibits clock function, it seems plausible to hypothesize that decreased AhR expression releases AhR-induced inhibition of circadian rhythms. Because both AhR and the clock are important regulators of glucose metabolism, it follows that decreased AhR will also alter metabolic function. To test this hypothesis, rhythms of behavior, metabolic outputs, and circadian and metabolic gene expression were measured in AhR-deficient mice. Genetic depletion of AhR enhanced behavioral responses to changes in the light-dark cycle, increased rhythmic amplitude of circadian clock genes in the liver, and altered rhythms of glucose and insulin. This study provides evidence of AhR-induced inhibition that influences circadian rhythm amplitude.
Collapse
Affiliation(s)
- Cassie Jaeger
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Ali Q Khazaal
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Biotechnology Department, College of Science, Baghdad University, Baghdad, Iraq
| | - Canxin Xu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Mingwei Sun
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Stacey L Krager
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | - Shelley A Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
- Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| |
Collapse
|
15
|
Abstract
Why the interest in dioxins, a group of structurally related chemicals which have a common mechanism of action, a common spectrum of biological responses and are environmentally and biologically persistent? A plethora of effects have been reported in people, wildlife, and domestic animals since chloracne was first described in 1899. Cattle, horses, sheep, and chickens have all been shown to be affected during poisoning episodes with polychlorinated byphenyls (PCBs). Fish, birds, and marine mammals have shown adverse outcomes, such as loss of reproduction and immune suppression, at environmental levels. And in the laboratory, species from all vertebrate classes have been used to study the biological effects from exposure to dioxins [1]. While chloracne is diagnostic of poisoning by dioxins, it is only associated with high levels of exposure. However, industrial accidents such as in Nitro, West Virginia, in 1949, Seveso, Italy in 1976, the polybrominated biphenyl (PBB) flame retardant poisoning in Michigan in 1973, and the Binghamton office building fire in 1981, all resulted in some chloracne. In addition, other human poisonings, such as that due to PCB/polychorinated dibenzofuran (PCDF) contaminated rice oil in Japan in 1968 ("Yusho") and Taiwan in 1979 ("Yucheng"), demonstrated a wide range of toxic effects, both on those who ingested the contaminated oil and on their children born afterwards. Intentional poisoning by 2,3,7,8-tetrachloridibenzo-p-dioxin (TCDD), the most toxic polychlorinated dibenzo-p-dioxin (PCDD) congener, occurred to five people in Vienna in 1999, and to the Ukrainian President in 2004 [2].
Collapse
Affiliation(s)
- Linda S Birnbaum
- Director, National Institute of Environmental Health Sciences, NIH and Director, National Toxicology Program, DHHS, Research Triangle Park, NC 27709
| |
Collapse
|
16
|
Xue Z, Li D, Yu W, Zhang Q, Hou X, He Y, Kou X. Mechanisms and therapeutic prospects of polyphenols as modulators of the aryl hydrocarbon receptor. Food Funct 2017; 8:1414-1437. [DOI: 10.1039/c6fo01810f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polyphenolic AhR modulators displayed concentration-, XRE-, gene-, species- and cell-specific agonistic/antagonistic activity.
Collapse
Affiliation(s)
- Zhaohui Xue
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Dan Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Wancong Yu
- Medical Plant Laboratory
- Tianjin Research Center of Agricultural Biotechnology
- Tianjin 3000381
- China
| | - Qian Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaonan Hou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Yulong He
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
17
|
Jaeger C, Tischkau SA. Role of Aryl Hydrocarbon Receptor in Circadian Clock Disruption and Metabolic Dysfunction. ENVIRONMENTAL HEALTH INSIGHTS 2016; 10:133-141. [PMID: 27559298 PMCID: PMC4990151 DOI: 10.4137/ehi.s38343] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 06/01/2023]
Abstract
The prevalence of metabolic syndrome, a clustering of three or more risk factors that include abdominal obesity, increased blood pressure, and high levels of glucose, triglycerides, and high-density lipoproteins, has reached dangerous and costly levels worldwide. Increases in morbidity and mortality result from a combination of factors that promote altered glucose metabolism, insulin resistance, and metabolic dysfunction. Although diet and exercise are commonly touted as important determinants in the development of metabolic dysfunction, other environmental factors, including circadian clock disruption and activation of the aryl hydrocarbon receptor (AhR) by dietary or other environmental sources, must also be considered. AhR binds a range of ligands, which prompts protein-protein interactions with other Per-Arnt-Sim (PAS)-domain-containing proteins and subsequent transcriptional activity. This review focuses on the reciprocal crosstalk between the activated AhR and the molecular circadian clock. AhR exhibits a rhythmic expression and time-dependent sensitivity to activation by AhR agonists. Conversely, AhR activation influences the amplitude and phase of expression of circadian clock genes, hormones, and the behavioral responses of the clock system to changes in environmental illumination. Both the clock and AhR status and activation play significant and underappreciated roles in metabolic homeostasis. This review highlights the state of knowledge regarding how AhR may act together with the circadian clock to influence energy metabolism. Understanding the variety of AhR-dependent mechanisms, including its interactions with the circadian timing system that promote metabolic dysfunction, reveals new targets of interest for maintenance of healthy metabolism.
Collapse
|
18
|
Abstract
I would certainly never have predicted that I would become the director of the National Institute of Environmental Health Sciences (NIEHS) and the National Toxicology Program (NTP) when I was a Jewish girl growing up in Teaneck, New Jersey. My family stressed the importance of education. Yet for a girl there were many not-so-subtle suggestions that the appropriate careers were in teaching or nursing, and the most important thing was to be a wife and mother. Well, I can't disagree with the latter, although I would have to add grandmother to that list of achievements. My parents were both college graduates, but my mom only taught high school English for one year before leaving the field to start our family. My dad returned from World War II and joined his brother in accounting. After my first sister was born, my father joined my mother's family jewelry business and helped to open a second retail store. My mother helped my dad out during the busy times—Christmas and wedding season—but otherwise focused on our growing family of three girls and one boy. This became increasingly challenging when it became clear that my little brother was severely retarded and would require extra care.
Collapse
Affiliation(s)
- Linda S Birnbaum
- National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709;
| |
Collapse
|
19
|
Sundar IK, Yao H, Sellix MT, Rahman I. Circadian molecular clock in lung pathophysiology. Am J Physiol Lung Cell Mol Physiol 2015; 309:L1056-75. [PMID: 26361874 DOI: 10.1152/ajplung.00152.2015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/08/2015] [Indexed: 02/06/2023] Open
Abstract
Disrupted daily or circadian rhythms of lung function and inflammatory responses are common features of chronic airway diseases. At the molecular level these circadian rhythms depend on the activity of an autoregulatory feedback loop oscillator of clock gene transcription factors, including the BMAL1:CLOCK activator complex and the repressors PERIOD and CRYPTOCHROME. The key nuclear receptors and transcription factors REV-ERBα and RORα regulate Bmal1 expression and provide stability to the oscillator. Circadian clock dysfunction is implicated in both immune and inflammatory responses to environmental, inflammatory, and infectious agents. Molecular clock function is altered by exposomes, tobacco smoke, lipopolysaccharide, hyperoxia, allergens, bleomycin, as well as bacterial and viral infections. The deacetylase Sirtuin 1 (SIRT1) regulates the timing of the clock through acetylation of BMAL1 and PER2 and controls the clock-dependent functions, which can also be affected by environmental stressors. Environmental agents and redox modulation may alter the levels of REV-ERBα and RORα in lung tissue in association with a heightened DNA damage response, cellular senescence, and inflammation. A reciprocal relationship exists between the molecular clock and immune/inflammatory responses in the lungs. Molecular clock function in lung cells may be used as a biomarker of disease severity and exacerbations or for assessing the efficacy of chronotherapy for disease management. Here, we provide a comprehensive overview of clock-controlled cellular and molecular functions in the lungs and highlight the repercussions of clock disruption on the pathophysiology of chronic airway diseases and their exacerbations. Furthermore, we highlight the potential for the molecular clock as a novel chronopharmacological target for the management of lung pathophysiology.
Collapse
Affiliation(s)
- Isaac K Sundar
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Hongwei Yao
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| | - Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, Lung Biology and Disease Program, University of Rochester Medical Center, Rochester, New York; and
| |
Collapse
|
20
|
Interplay between Dioxin-mediated signaling and circadian clock: a possible determinant in metabolic homeostasis. Int J Mol Sci 2014; 15:11700-12. [PMID: 24987953 PMCID: PMC4139808 DOI: 10.3390/ijms150711700] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/16/2022] Open
Abstract
The rotation of the earth on its axis creates the environment of a 24 h solar day, which organisms on earth have used to their evolutionary advantage by integrating this timing information into their genetic make-up in the form of a circadian clock. This intrinsic molecular clock is pivotal for maintenance of synchronized homeostasis between the individual organism and the external environment to allow coordinated rhythmic physiological and behavioral function. Aryl hydrocarbon receptor (AhR) is a master regulator of dioxin-mediated toxic effects, and is, therefore, critical in maintaining adaptive responses through regulating the expression of phase I/II drug metabolism enzymes. AhR expression is robustly rhythmic, and physiological cross-talk between AhR signaling and circadian rhythms has been established. Increasing evidence raises a compelling argument that disruption of endogenous circadian rhythms contributes to the development of disease, including sleep disorders, metabolic disorders and cancers. Similarly, exposure to environmental pollutants through air, water and food, is increasingly cited as contributory to these same problems. Thus, a better understanding of interactions between AhR signaling and the circadian clock regulatory network can provide critical new insights into environmentally regulated disease processes. This review highlights recent advances in the understanding of the reciprocal interactions between dioxin-mediated AhR signaling and the circadian clock including how these pathways relate to health and disease, with emphasis on the control of metabolic function.
Collapse
|
21
|
Druzd D, de Juan A, Scheiermann C. Circadian rhythms in leukocyte trafficking. Semin Immunopathol 2014; 36:149-62. [PMID: 24435096 DOI: 10.1007/s00281-013-0414-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 12/02/2013] [Indexed: 11/28/2022]
Abstract
A broad range of immunological processes oscillates over the course of a day. Recent findings have identified a molecular basis for the circadian clock in the regulation of the immune system. These rhythms manifest themselves in oscillatory behavior of immune cells and proinflammatory mediators, which causes a time-dependent sensitivity in the reaction to pathogens. This rhythmicity impacts disease manifestations and severity and provides an option for therapy that incorporates chronopharmacological considerations. This review will focus on the current knowledge and relevance of rhythmic immune cell trafficking. It will provide an overview of the molecular clock machinery and its interrelations with leukocyte migration and the immune response.
Collapse
Affiliation(s)
- David Druzd
- Walter-Brendel-Center of Experimental Medicine, Ludwig-Maximilians-Universität München, Marchioninistraße 27, 81377, Munich, Germany
| | | | | |
Collapse
|
22
|
Ziv-Gal A, Flaws JA, Mahoney MM, Miller SR, Zacur HA, Gallicchio L. Genetic polymorphisms in the aryl hydrocarbon receptor-signaling pathway and sleep disturbances in middle-aged women. Sleep Med 2013; 14:883-7. [PMID: 23768840 DOI: 10.1016/j.sleep.2013.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 04/02/2013] [Accepted: 04/05/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE We aimed to determine if selected genetic polymorphisms in the aryl hydrocarbon receptor (AHR)-signaling pathway and circadian locomotor output cycles kaput (CLOCK) are associated with insomnia and early awakening in middle-aged women. METHODS Women aged 45 to 54years (n=639) were recruited into a middle-aged health study and agreed to complete questionnaires and donate blood samples. Questionnaires were used to assess sleep outcomes. Blood samples were processed for genotyping for the selected polymorphisms: AHR (rs2066853), AHR repressor (AHRR) (rs2292596), aryl hydrocarbon nuclear translocator (ARNT) (rs2228099), and CLOCK (rs1801260). Data were analyzed using multivariable logistic regression. RESULTS Women heterozygous for the AHRR alleles (GC) had decreased odds of insomnia compared to women homozygous for the AHRR_C allele (adjusted odds ratio [aOR], 0.69; 95% confidence interval [CI], 0.49-0.96). Women with at least one of the AHRR_G or CLOCK_C alleles had significantly decreased odds of insomnia compared to women homozygous for the AHRR_C and CLOCK_T alleles (aOR, 0.64; 95% CI, 0.43-0.96). Additionally, women homozygous for the AHRR_G and CLOCK_C alleles had significantly decreased odds of insomnia compared to women homozygous for the AHRR_C and CLOCK_T alleles (aOR, 0.56; 95% CI, 0.35-0.89). None of the selected single nucleotide polymorphisms (SNPs) or combinations of SNPs were significantly associated with early awakening. CONCLUSIONS Selected genetic polymorphisms in the AHR-signaling pathway (i.e., AHRR) and CLOCK may play a role in decreasing the risk for experiencing insomnia during the menopausal transition.
Collapse
Affiliation(s)
- Ayelet Ziv-Gal
- Comparative Biosciences, University of Illinois, Urbana, IL, USA
| | | | | | | | | | | |
Collapse
|
23
|
Nakabayashi H, Ohta Y, Yamamoto M, Susuki Y, Taguchi A, Tanabe K, Kondo M, Hatanaka M, Nagao Y, Tanizawa Y. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells. Biochem Biophys Res Commun 2013; 434:370-5. [PMID: 23567972 DOI: 10.1016/j.bbrc.2013.03.084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 03/28/2013] [Indexed: 11/18/2022]
Abstract
Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1(-/-) A(y)/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the Arnt promoter in MIN6 cells. These results suggest that in mouse pancreatic islets mRNA expression of Arnt fluctuates significantly in a circadian manner and that the down-regulation of Dbp and up-regulation E4bp4 contribute to direct suppression of Arnt expression in diabetes.
Collapse
Affiliation(s)
- Hiroko Nakabayashi
- Yamaguchi University, Graduate School of Medicine, Division of Endocrinology, Metabolism, Hematological Sciences and Therapeutics, Department of Bio-Signal Analysis, Ube, Yamaguchi 755-8505, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang C, Xu CX, Krager SL, Bottum KM, Liao DF, Tischkau SA. Aryl hydrocarbon receptor deficiency enhances insulin sensitivity and reduces PPAR-α pathway activity in mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:1739-44. [PMID: 21849270 PMCID: PMC3261983 DOI: 10.1289/ehp.1103593] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Accepted: 08/17/2011] [Indexed: 05/09/2023]
Abstract
BACKGROUND Numerous man-made pollutants activate the aryl hydrocarbon receptor (AhR) and are risk factors for type 2 diabetes. AhR signaling also affects molecular clock genes to influence glucose metabolism. OBJECTIVE We investigated mechanisms by which AhR activation affects glucose metabolism. METHODS Glucose tolerance, insulin resistance, and expression of peroxisome proliferator-activated receptor-α (PPAR-α) and genes affecting glucose metabolism or fatty acid oxidation and clock gene rhythms were investigated in wild-type (WT) and AhR-deficient [knockout (KO)] mice. AhR agonists and small interfering RNA (siRNA) were used to examine the effect of AhR on PPAR-α expression and glycolysis in the liver cell line Hepa-1c1c7 (c7) and its c12 and c4 derivatives. Brain, muscle ARNT-like protein 1 (Bmal1) siRNA and Ahr or Bmal1 expression plasmids were used to analyze the effect of BMAL1 on PPAR-α expression in c7 cells. RESULTS KO mice displayed enhanced insulin sensitivity and improved glucose tolerance, accompanied by decreased PPAR-α and key gluconeogenic and fatty acid oxidation enzymes. AhR agonists increased PPAR-α expression in c7 cells. Both Ahr and Bmal1 siRNA reduced PPAR-α and metabolism genes. Moreover, rhythms of BMAL1 and blood glucose were altered in KO mice. CONCLUSIONS These results indicate a link between AhR signaling, circadian rhythms, and glucose metabolism. Furthermore, hepatic activation of the PPAR-α pathway provides a mechanism underlying AhR-mediated insulin resistance.
Collapse
Affiliation(s)
- Chun Wang
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62974-9629, USA
| | | | | | | | | | | |
Collapse
|
25
|
Tanimura N, Kusunose N, Matsunaga N, Koyanagi S, Ohdo S. Aryl hydrocarbon receptor-mediated Cyp1a1 expression is modulated in a CLOCK-dependent circadian manner. Toxicology 2011; 290:203-7. [PMID: 21978865 DOI: 10.1016/j.tox.2011.09.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/08/2011] [Accepted: 09/22/2011] [Indexed: 01/08/2023]
Abstract
The expression of genes involved in xenobiotic detoxification is under the control of the circadian clock. The aryl hydrocarbon receptor (AhR) is one of the transcription factors responsible for the induction of detoxification enzymes in response to xenobiotic toxins, and the expression of AhR has been suggested to be regulated by a circadian oscillator. In this study, we investigated whether toxin-mediated activation of the AhR signaling pathway was modulated by CLOCK protein, a key component of the mammalian circadian clock. The expression of AhR and its DNA binding ability in the lungs of wild-type mice showed significant 24-h oscillation. Clock mutant (Clk/Clk) mice, producing CLOCK protein deficient in transcriptional activity, failed to show significant oscillation in the expression of AhR. The mRNA levels of AhR in the lungs of Clk/Clk mice were significantly lower than in wild-type mice. A single intraperitoneal injection of benzo[α]pyrene, a ligand of AhR, induced the expression of Cyp1a1 in the lungs of wild-type mice, but the induction varied depending on the benzo[α]pyrene injection time. The dosing time-dependency of benzo[α]pyrene-induced Cyp1a1 expression was also modulated by Clock gene mutation. These findings suggest that CLOCK protein affects the toxin-induced expression of detoxification enzymes through modulating the activity of AhR. Our present findings provide a molecular link between the circadian clock and xenobiotic detoxification.
Collapse
Affiliation(s)
- Naomi Tanimura
- Department of Pharmaceutics, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | |
Collapse
|
26
|
Ma Q. Influence of light on aryl hydrocarbon receptor signaling and consequences in drug metabolism, physiology and disease. Expert Opin Drug Metab Toxicol 2011; 7:1267-93. [DOI: 10.1517/17425255.2011.614947] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
27
|
Lensu S, Tiittanen P, Lindén J, Tuomisto J, Pohjanvirta R. Effects of a single exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on macro- and microstructures of feeding and drinking in two differently TCDD-sensitive rat strains. Pharmacol Biochem Behav 2011; 99:487-99. [DOI: 10.1016/j.pbb.2011.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 04/19/2011] [Accepted: 04/27/2011] [Indexed: 11/25/2022]
|
28
|
Tischkau SA, Jaeger CD, Krager SL. Circadian clock disruption in the mouse ovary in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin. Toxicol Lett 2011; 201:116-22. [PMID: 21182907 PMCID: PMC3039055 DOI: 10.1016/j.toxlet.2010.12.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 12/13/2010] [Accepted: 12/14/2010] [Indexed: 12/29/2022]
Abstract
Activation of the aryl hydrocarbon receptor (AhR) by the highly toxic, prototypical ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or other dioxin-like compounds compromises ovarian function by altering follicle maturation and steroid synthesis. Although alteration of transcription after nuclear translocation and heterodimerization of AhR with its binding partner, aryl hydrocarbon nuclear transporter (ARNT), is often cited as a primary mechanism for mediating the toxic effects of dioxins, recent evidence indicates that crosstalk between AhR and several other signaling pathways also occurs. Like the circadian clock genes, AhR is a member of the basic helix-loop-helix, Per-ARNT-SIM (bHLH-PAS) domain family of proteins. Thus, these studies tested the hypothesis that TCDD can act to alter circadian clock regulation in the ovary. Adult female c57bl6/J mice entrained to a typical 12h light/12h dark cycle were exposed to a single 1 μg/kg dose of TCDD by gavage. Six days after exposure, animals were released into constant darkness and ovaries were collected every 4h over a 24h period. Quantitative real-time PCR and immunoblot analysis demonstrated that TCDD exposure alters expression of the canonical clock genes, Bmal1 and Per2 in the ovary. AhR transcript and protein, which displayed a circadian pattern of expression in the ovaries of control mice, were also altered after TCDD treatment. Immunohistochemistry studies revealed co-localization of AhR with BMAL1 in various ovarian cell types. Furthermore, co-immunoprecipitation demonstrated time-of-day dependent interactions of AhR with BMAL1 that were enhanced after TCDD treatment. Collectively these studies suggest that crosstalk between classical AhR signaling and the molecular circadian clockworks may be responsible for altered ovarian function after TCDD exposure.
Collapse
Affiliation(s)
- Shelley A Tischkau
- Department of Pharmacology, Southern Illinois University, School of Medicine, 801N. Rutledge, Springfield, IL 62794-9629, USA.
| | | | | |
Collapse
|
29
|
Gachon F, Firsov D. The role of circadian timing system on drug metabolism and detoxification. Expert Opin Drug Metab Toxicol 2010; 7:147-58. [PMID: 21192771 DOI: 10.1517/17425255.2011.544251] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION It has been known for a long time that the efficiency and toxicity of drugs change during a 24-h period. However, the molecular mechanisms involved in these processes have started to emerge only recently. AREAS COVERED This review aims to highlight recent discoveries showing the direct role of the molecular circadian clock in xenobiotic metabolism at the transcriptional and post-transcriptional levels in the liver and intestine, and the different ways of elimination of these metabolized drugs via biliary and urine excretions. Most of the related literature focuses on transcriptional regulation by the circadian clock of xenobiotic metabolism in the liver; however, the role of this timing system in the excretion of metabolized drugs and the importance of the kidney in this phenomenon are generally neglected. The goal of this review is to describe the molecular mechanisms involved in rhythmic drug metabolism and excretion. EXPERT OPINION Chronopharmacology is used to analyze the metabolism of drugs in mammals according to the time of day. The circadian timing system plays a key role in the changes of toxicity of drugs by influencing their metabolisms in the liver and intestine in addition to their excretion via bile flow and urine.
Collapse
Affiliation(s)
- Frédéric Gachon
- University of Lausanne, Department of Pharmacology and Toxicology, CH-1005 Lausanne, Switzerland.
| | | |
Collapse
|
30
|
Dioxins, the aryl hydrocarbon receptor and the central regulation of energy balance. Front Neuroendocrinol 2010; 31:452-78. [PMID: 20624415 DOI: 10.1016/j.yfrne.2010.07.002] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 06/15/2010] [Accepted: 07/05/2010] [Indexed: 01/03/2023]
Abstract
Dioxins are ubiquitous environmental contaminants that have attracted toxicological interest not only for the potential risk they pose to human health but also because of their unique mechanism of action. This mechanism involves a specific, phylogenetically old intracellular receptor (the aryl hydrocarbon receptor, AHR) which has recently proven to have an integral regulatory role in a number of physiological processes, but whose endogenous ligand is still elusive. A major acute impact of dioxins in laboratory animals is the wasting syndrome, which represents a puzzling and dramatic perturbation of the regulatory systems for energy balance. A single dose of the most potent dioxin, TCDD, can permanently readjust the defended body weight set-point level thus providing a potentially useful tool and model for physiological research. Recent evidence of response-selective modulation of AHR action by alternative ligands suggests further that even therapeutic implications might be possible in the future.
Collapse
|
31
|
Xu CX, Krager SL, Liao DF, Tischkau SA. Disruption of CLOCK-BMAL1 transcriptional activity is responsible for aryl hydrocarbon receptor-mediated regulation of Period1 gene. Toxicol Sci 2010; 115:98-108. [PMID: 20106950 PMCID: PMC2855348 DOI: 10.1093/toxsci/kfq022] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 01/21/2010] [Indexed: 11/13/2022] Open
Abstract
The aryl hydrocarbon receptor (AhR) is a period-aryl hydrocarbon receptor nuclear transporter-simple minded domain transcription factor that shares structural similarity with circadian clock genes and readily interacts with components of the molecular clock. Activation of AhR by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) alters behavioral circadian rhythms and represses the Period1 (Per1) gene in murine hematopoietic stem and progenitor cells. Per1 expression is driven by circadian locomotor activity cycles kaput-brain muscle ARNT-like (CLOCK-BMAL1)-dependent activation of Eboxes in the Per1 promoter. We hypothesized that the effects of AhR activation on the circadian clock are mediated by disruption of CLOCK-BMAL1 function and subsequent Per1 gene suppression. Effects of AhR activation on rhythmic Per1 transcripts were examined in livers of mice after treatment with the AhR agonist, TCDD; the molecular mechanisms of Per1 repression by AhR were determined in hepatoma cells using TCDD and beta-napthoflavone as AhR activators. This study reports, for the first time, that AhR activation by TCDD alters the Per1 rhythm in the mouse liver and that Per1 gene suppression depends upon the presence of AhR. Furthermore, AhR interaction with BMAL1 attenuates CLOCK-BMAL1 activity and decreases CLOCK binding at Ebox1 and Ebox3 in the Per1 promoter. Taken together, these data suggest that AhR activation represses Per1 through disrupting CLOCK-BMAL1 activity, producing dysregulation of rhythmic Per1 gene expression. These data define alteration of the Per1 rhythm as novel signaling events downstream of AhR activation. Downregulation of Per1 could contribute to metabolic disease, cancer, and other detrimental effects resulting from exposure to certain environmental pollutants.
Collapse
Affiliation(s)
- Can-Xin Xu
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62974-9629
- Institute of Pharmacy and Pharmacology, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
| | - Stacey L. Krager
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, Illinois 62974-9629
| | - Duan-Fang Liao
- Institute of Pharmacy and Pharmacology, Life Science Research Center, University of South China, Hengyang, Hunan 421001, China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Shelley A. Tischkau
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, Illinois 62974-9629
| |
Collapse
|
32
|
Qu X, Metz RP, Porter WW, Neuendorff N, Earnest BJ, Earnest DJ. The clock genes period 1 and period 2 mediate diurnal rhythms in dioxin-induced Cyp1A1 expression in the mouse mammary gland and liver. Toxicol Lett 2010; 196:28-32. [PMID: 20371273 DOI: 10.1016/j.toxlet.2010.03.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Revised: 03/24/2010] [Accepted: 03/25/2010] [Indexed: 11/15/2022]
Abstract
Transcription factors expressing Per-Arnt-Sim (PAS) domains are key components of the mammalian circadian clockworks found in most cells and tissues. Because these transcription factors interact with other PAS genes mediating xenobiotic metabolism and because toxin responses are often marked by daily variation, we determined whether the toxin-mediated activation of the signaling pathway involving several PAS genes, the aryl hydrocarbon receptor (AhR) and AhR nuclear translocator (ARNT), fluctuates rhythmically and whether this diurnal oscillation is affected by targeted disruption of key PAS genes in the circadian clockworks, Period 1 (Per1) and Per2. Treatment with the prototypical Ahr ligand, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), had inductive effects on a key target of AhR signaling, Cyp1A1, in both the mammary gland and liver of all animals. In wild type mice, the amplitude of this TCDD-induced Cyp1A1 expression in the mammary gland and liver was significantly greater (23-43-fold) during the night than during the daytime. However, the diurnal variation in the TCDD induction of mammary gland and liver Cyp1A1 expression was abolished in Per1(ldc), Per2(ldc) and Per1(ldc)/Per2(ldc) mutant mice, suggesting that Per1, Per2 and their timekeeping function in the circadian clockworks mediate the diurnal modulation of AhR-regulated responses to TCDD in the mammary gland and liver.
Collapse
Affiliation(s)
- Xiaoyu Qu
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, TX 77843-3258, USA
| | | | | | | | | | | |
Collapse
|
33
|
Shimba S, Watabe Y. Crosstalk between the AHR signaling pathway and circadian rhythm. Biochem Pharmacol 2009; 77:560-5. [DOI: 10.1016/j.bcp.2008.09.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2008] [Revised: 09/25/2008] [Accepted: 09/26/2008] [Indexed: 01/28/2023]
|
34
|
Mukai M, Lin TM, Peterson RE, Cooke PS, Tischkau SA. Behavioral rhythmicity of mice lacking AhR and attenuation of light-induced phase shift by 2,3,7,8-tetrachlorodibenzo-p-dioxin. J Biol Rhythms 2008; 23:200-10. [PMID: 18487412 DOI: 10.1177/0748730408316022] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Transcription factors belonging to the Per/Arnt/Sim (PAS) domain family are highly conserved and many are involved in circadian rhythm regulation. One member of this family, aryl hydrocarbon receptor (AhR), is an orphan receptor whose physiological role is unknown. Recent findings have led to the hypothesis that AhR has a role in circadian rhythm, which is the focus of the present investigation. First, time-of-day-dependent mRNA expression of AhR and its signaling target, cytochrome p4501A1 (Cyp1a1), was determined in C57BL/6J mice by quantitative RT-PCR. Circadian expression of AhR and Cyp1a1 was observed both in the suprachiasmatic nucleus (SCN) and liver. Next, the circadian phenotype of mice lacking AhR (AhRKO) was investigated using behavioral monitoring. Intact AhRKO mice had robust circadian rhythmicity with a similar tau under constant conditions compared to wild-type mice, but a significant difference in tau was observed between genotypes in ovariectomized female mice. Time to reentrainment following 6-h advances or delays of the light/dark cycle was not significantly different between genotypes. However, mice exposed to the AhR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD; 1 microg/kg of body weight) displayed decreased phase shifts in response to light and had altered expression of Per1 and Bmal1. These results suggest that chronic activation of AhR may affect the ability of the circadian timekeeping system to adjust to alterations in environmental lighting by affecting canonical clock genes. Further studies are necessary to decipher the mechanism of how AhR agonists could disrupt light-induced phase shifts. If AhR does have a role in circadian rhythm, it may share redundant roles with other PAS domain proteins and/or the role of AhR may not be exhibited in the behavioral activity rhythm, but could be important elsewhere in the peripheral circadian system.
Collapse
Affiliation(s)
- Motoko Mukai
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois, Urbana, Illinois, USA
| | | | | | | | | |
Collapse
|
35
|
Claudel T, Cretenet G, Saumet A, Gachon F. Crosstalk between xenobiotics metabolism and circadian clock. FEBS Lett 2007; 581:3626-33. [PMID: 17451689 DOI: 10.1016/j.febslet.2007.04.009] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Revised: 03/30/2007] [Accepted: 04/03/2007] [Indexed: 01/25/2023]
Abstract
Many aspects of physiology and behavior in organisms from bacteria to man are subjected to circadian regulation. Indeed, the major function of the circadian clock consists in the adaptation of physiology to daily environmental change and the accompanying stresses such as exposition to UV-light and food-contained toxic compounds. In this way, most aspects of xenobiotic detoxification are subjected to circadian regulation. These phenomena are now considered as the molecular basis for the time-dependence of drug toxicities and efficacy. However, there is now evidences that these toxic compounds can, in turn, regulate circadian gene expression and thus influence circadian rhythms. As food seems to be the major regulator of peripheral clock, the possibility that food-contained toxic compounds participate in the entrainment of the clock will be discussed.
Collapse
Affiliation(s)
- Thierry Claudel
- Department of Pediatrics, Research Laboratory, University Medical Center Groningen, Groningen, ND-9700 RB, The Netherlands
| | | | | | | |
Collapse
|
36
|
Abstract
The mammalian circadian system is organized in a hierarchical manner in that a central pacemaker in the suprachiasmatic nucleus (SCN) of the brain's hypothalamus synchronizes cellular circadian oscillators in most peripheral body cells. Fasting-feeding cycles accompanying rest-activity rhythms are the major timing cues in the synchronization of many, if not most, peripheral clocks, suggesting that the temporal coordination of metabolism and proliferation is a major task of the mammalian timing system. The inactivation of noxious food components by hepatic, intestinal, and renal detoxification systems is among the metabolic processes regulated in a circadian manner, with the understanding of the involved clock output pathways emerging. The rhythmic control of xenobiotic detoxification provides the molecular basis for the dosing time-dependence of drug toxicities and efficacy. This knowledge can in turn be used in improving or designing chronotherapeutics for the patients who suffer from many of the major human diseases.
Collapse
Affiliation(s)
- Francis Levi
- INSERM U776, Unité de Chronothérapie, Service de Cancérologie, Hôpital Paul Brousse et Université Paris XI, 94800 Villejuif, France.
| | | |
Collapse
|
37
|
Arpiainen S, Lämsä V, Pelkonen O, Yim SH, Gonzalez FJ, Hakkola J. Aryl hydrocarbon receptor nuclear translocator and upstream stimulatory factor regulate Cytochrome P450 2a5 transcription through a common E-box site. J Mol Biol 2007; 369:640-52. [PMID: 17466327 DOI: 10.1016/j.jmb.2007.03.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2007] [Revised: 03/28/2007] [Accepted: 03/28/2007] [Indexed: 12/15/2022]
Abstract
The aryl hydrocarbon receptor nuclear translocator (ARNT) belongs to the basic-helix-loop-helix (bHLH) transcription factors and regulates several genes as heterodimers with other bHLH proteins. ARNT is also able to homodimerize, but no mammalian target genes for the homodimer have been shown. We identified a palindromic E-box element in the 5' regulatory region of the murine cytochrome P450 (Cyp) 2a5 gene that was found to be important for Cyp2a5 transcription in primary hepatocytes, and was found by chromatin immunoprecipitation assays to interact with ARNT. Electrophoretic mobility-shift assay experiments with in vitro translated ARNT showed binding without heterodimerization partner, indicating binding as a homodimer. Transfection studies in wild-type and ARNT-deficient Hepa-1 cells revealed that ARNT expression is necessary for full activity of the Cyp2a5 promoter. In the liver-specific Arnt-null mouse line, the level of hepatic CYP2A5 mRNA was decreased significantly. Co-transfection studies with an ARNT expression vector lacking the transactivation domain (TAD) demonstrated that the ARNT TAD is needed for Cyp2a5 activation, which suggests that ARNT transactivates Cyp2a5 as a homodimer. In primary hepatocytes, the mRNA levels of both CYP2A5 and ARNT splice variant 1 were increased during cultivation. Upstream stimulatory factors 1 and 2a were also able to bind to the same E-box as ARNT, indicating that there may be competition for DNA binding between these factors. Indeed, the upstream stimulatory factors activated the Cyp2a5 promoter through the E-box only in the presence of hepatocyte nuclear factor-4alpha, while ARNT transactivation was independent of hepatocyte nuclear factor-4alpha. In conclusion, these results indicate that ARNT controls Cyp2a5 transcription and thus, for the first time, suggest active involvement of the ARNT homodimer in mammalian gene regulation.
Collapse
Affiliation(s)
- Satu Arpiainen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | | | | | | | | | | |
Collapse
|
38
|
Lim FL, Currie RA, Orphanides G, Moggs JG. Emerging evidence for the interrelationship of xenobiotic exposure and circadian rhythms: a review. Xenobiotica 2007; 36:1140-51. [PMID: 17118921 DOI: 10.1080/00498250600861819] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The circadian clock controls many aspects of mammalian physiology and behaviour with a periodicity of approximately 24 h. These include the anticipation of, and adaptation to, daily environmental changes such as the light-dark cycle, temperature fluctuations and the availability of food. The toxicity of many drugs is dependent on the circadian phase at which they are administered, and recent work has begun to unravel the molecular basis for circadian variations in sensitivity to xenobiotic exposure. Between 2 and 10% of the transcriptome is expressed in a circadian manner, including many key genes associated with the metabolism and transport of xenobiotics. Furthermore, a number of xenobiotics may directly alter the expression of genes that control circadian rhythms. This review discusses the emerging evidence for the regulation of circadian rhythm genes having an important impact on molecular response to xenobiotics.
Collapse
Affiliation(s)
- F L Lim
- Syngenta CTL, Alderley Park, UK.
| | | | | | | |
Collapse
|
39
|
Rifkind AB. CYP1A in TCDD toxicity and in physiology-with particular reference to CYP dependent arachidonic acid metabolism and other endogenous substrates. Drug Metab Rev 2006; 38:291-335. [PMID: 16684662 DOI: 10.1080/03602530600570107] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Toxicologic and physiologic roles of CYP1A enzyme induction, the major biochemical effect of aryl hydrocarbon receptor activation by TCDD and other receptor ligands, are unknown. Evidence is presented that CYP1A exerts biologic effects via metabolism of endogenous substrates (i.e., arachidonic acid, other eicosanoids, estrogens, bilirubin, and melatonin), production of reactive oxygen, and effects on K(+) and Ca(2+) channels. These interrelated pathways may connect CYP1A induction to TCDD toxicities, including cardiotoxicity, vascular dysfunction, and wasting. They may also underlie homeostatic roles for CYP1A, especially when transiently induced by common chemical exposures and environmental conditions (i.e., tryptophan photoproducts, dietary indoles, and changes in oxygen tension).
Collapse
Affiliation(s)
- Arleen B Rifkind
- Department of Pharmacology, Weill Medical College of Cornell University, New York, NY 10021, USA.
| |
Collapse
|
40
|
Zvonic S, Ptitsyn AA, Conrad SA, Scott LK, Floyd ZE, Kilroy G, Wu X, Goh BC, Mynatt RL, Gimble JM. Characterization of peripheral circadian clocks in adipose tissues. Diabetes 2006; 55:962-70. [PMID: 16567517 DOI: 10.2337/diabetes.55.04.06.db05-0873] [Citation(s) in RCA: 372] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
First described in the suprachiasmatic nucleus, circadian clocks have since been found in several peripheral tissues. Although obesity has been associated with dysregulated circadian expression profiles of leptin, adiponectin, and other fat-derived cytokines, there have been no comprehensive analyses of the circadian clock machinery in adipose depots. In this study, we show robust and coordinated expression of circadian oscillator genes (Npas2, Bmal1, Per1-3, and Cry1-2) and clock-controlled downstream genes (Rev-erb alpha, Rev-erb beta, Dbp, E4bp4, Stra13, and Id2) in murine brown, inguinal, and epididymal (BAT, iWAT, and eWAT) adipose tissues. These results correlated with respective gene expression in liver and the serum markers of circadian function. Through Affymetrix microarray analysis, we identified 650 genes that shared circadian expression profiles in BAT, iWAT, and liver. Furthermore, we have demonstrated that temporally restricted feeding causes a coordinated phase-shift in circadian expression of the major oscillator genes and their downstream targets in adipose tissues. The presence of circadian oscillator genes in fat has significant metabolic implications, and their characterization may have potential therapeutic relevance with respect to the pathogenesis and treatment of diseases such as obesity, type 2 diabetes, and the metabolic syndrome.
Collapse
Affiliation(s)
- Sanjin Zvonic
- Stem Cell Laboratory, Louisiana State University, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Garrett RW, Gasiewicz TA. The aryl hydrocarbon receptor agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin alters the circadian rhythms, quiescence, and expression of clock genes in murine hematopoietic stem and progenitor cells. Mol Pharmacol 2006; 69:2076-83. [PMID: 16556773 DOI: 10.1124/mol.105.021006] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), an aryl hydrocarbon receptor (AhR) agonist, has been identified as a potent immunohematopoietic toxicant with the ability to alter the number of Lin(-) Sca-1(+) cKit(+) (LSK) bone marrow cells, a population enriched for murine hematopoietic stem cells. The biology of these cells is governed by circadian rhythms and TCDD has been shown to disrupt circadian rhythms of other biological endpoints. We investigated the effect of TCDD on the circadian rhythms of hematopoietic precursors. Female C57BL/6 mice were treated with a single oral dose of 10 mug/kg TCDD. Five days later, bone marrow was harvested every 4 h for 24 h and stained for specific hematopoietic populations using fluorescently labeled antibodies. In addition, cells were placed into semisolid culture to measure different functionally defined populations. Activation of the AhR by TCDD elicited disruptions in the rhythms of LSK cell numbers and phenotypically defined myeloid and erythroid precursors. Simultaneous DNA and RNA staining revealed an abnormal in vivo rhythm of percentage of total number of LSK cells in G(0) phase of the cell cycle, suggesting disruption of stem cell quiescence. Finally, quantitative reverse transcription-polymerase chain reaction revealed that expression of AhR and Arnt mRNA within enriched hematopoietic precursors oscillates with a circadian period. Modest changes in the 24-h expression of mPer1 and mPer2 mRNA and increased AhR repressor mRNA after TCDD exposure suggest a direct effect on the molecular machinery responsible for these rhythms. Together, these data demonstrate that activation of the AhR by TCDD disrupts the circadian rhythms associated with murine hematopoietic precursors.
Collapse
Affiliation(s)
- Russell W Garrett
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box EHSC, Rochester, NY 14642, USA
| | | |
Collapse
|
42
|
Abstract
The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that has been intensively studied with respect to the toxicity of xenobiotics. However, its function in response to light has never been summarized. Here, we provide an overview of AhR activation by light with a focus on the role of tryptophan in light-induced AhR activation. We discuss the involvement of the AhR in different biological rhythms and speculate on the possible role of the AhR in UV-induced responses in skin. Furthermore, this review points out future research needs in this field.
Collapse
Affiliation(s)
- Agneta Rannug
- Karolinska Institute, Institute of Environmental Medicine, P.O. Box 210, S-171 77 Stockholm, Sweden.
| | | |
Collapse
|
43
|
Merson RR, Franks DG, Karchner SI, Hahn ME. Development and characterization of polyclonal antibodies against the aryl hydrocarbon receptor protein family (AHR1, AHR2, and AHR repressor) of Atlantic killifish Fundulus heteroclitus. Comp Biochem Physiol C Toxicol Pharmacol 2006; 142:85-94. [PMID: 16364694 DOI: 10.1016/j.cbpc.2005.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2005] [Revised: 10/24/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
The aryl hydrocarbon receptor (AHR) and AHR repressor (AHRR) proteins regulate gene expression in response to some halogenated aromatic hydrocarbons and polycyclic aromatic hydrocarbons. The Atlantic killifish is a valuable model of the AHR signaling pathway, but antibodies are not available to fully characterize AHR and AHRR proteins. Using bacterially expressed AHRs, we developed specific and sensitive polyclonal antisera against the killifish AHR1, AHR2, and AHRR. In immunoblots, these antibodies recognized full-length killifish AHR and AHRR proteins synthesized in rabbit reticulocyte lysate, proteins expressed in mammalian cells transfected with killifish AHR and AHRR constructs, and AHR proteins in cytosol preparations from killifish tissues. Killifish AHR1 and AHR2 proteins were detected in brain, gill, kidney, heart, liver, and spleen. Antisera specifically precipitated their respective target proteins in immunoprecipitation experiments with in vitro-expressed proteins. Killifish ARNT2 co-precipitated with AHR1 and AHR2. These sensitive, specific, and versatile antibodies will be valuable to researchers investigating AHR signaling and other physiological processes involving AHR and AHRR proteins.
Collapse
Affiliation(s)
- Rebeka R Merson
- Biology Department, Woods Hole Oceanographic Institution, MA 02543, USA.
| | | | | | | |
Collapse
|
44
|
Oberg M, Bergander L, Håkansson H, Rannug U, Rannug A. Identification of the Tryptophan Photoproduct 6-Formylindolo[3,2-b]carbazole, in Cell Culture Medium, as a Factor That Controls the Background Aryl Hydrocarbon Receptor Activity. Toxicol Sci 2005; 85:935-43. [PMID: 15788723 DOI: 10.1093/toxsci/kfi154] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The presence of high affinity ligands for the aryl hydrocarbon receptor (AhR) in cell culture medium has generally been overlooked. Such compounds may confound mechanistic studies of the important AhR regulatory network. Numerous reports have described that light exposed cell culture medium induces AhR-dependent activity. In this study, we aimed at identifying the causative substance(s). A three-dimensional factorial design was used to study how the background activity of CYP1A1 in a rat hepatoma cell line (MH1C1) was controlled by photoproducts formed in the medium exposed to normal laboratory light. The light induced activity was found to be tryptophan dependent, but independent of riboflavin and other components in the medium. The light exposed medium showed the same transient enzyme inducing activity in vitro as the AhR ligand 6-formylindolo[3,2-b]carbazole (FICZ). This substance, which we have previously identified as being formed in UV-exposed tryptophan solutions, is a substrate for CYP1A1 and it has a higher AhR binding affinity than TCDD. Several tryptophan related photoproducts were detected in the light-exposed medium. For the first time one of the formed photoproducts was identified as FICZ with bioassay driven fractionation coupled with HPLC/MS. These results clearly show that tryptophan derived AhR ligands, which have been suggested to be endogenous AhR ligands, influence the background levels of CYP1A1 activity in cells in culture.
Collapse
Affiliation(s)
- Mattias Oberg
- Institute of Environmental Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
45
|
Laiosa MD, Wyman A, Murante FG, Fiore NC, Staples JE, Gasiewicz TA, Silverstone AE. Cell proliferation arrest within intrathymic lymphocyte progenitor cells causes thymic atrophy mediated by the aryl hydrocarbon receptor. THE JOURNAL OF IMMUNOLOGY 2004; 171:4582-91. [PMID: 14568932 DOI: 10.4049/jimmunol.171.9.4582] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Activation of the aryl hydrocarbon receptor (AHR), a basic helix-loop-helix transcription factor, in lymphocytes by the immunosuppressive environmental contaminant 2,3,7,8,-tetrachlorodibenzo-p-dioxin (TCDD) has been shown to cause thymic atrophy in every species studied. We set out to identify the specific hemopoietic cellular populations in which the AHR was activated to lead to thymic atrophy and to determine the effect of AHR activation in those cellular populations. Initially, we examined whether AHR activation in intrathymic dendritic cells could mediate TCDD-induced thymic atrophy. It was found that thymic atrophy occurred only when the AHR could be activated in the thymocytes but not hemopoietic-derived dendritic cells or other APCs. We next analyzed the effect of TCDD on the proliferation of thymocytes in vivo. There was a significant increase in the percentage of thymocytes in the G(1) phase of the cell cycle and a significant decrease in the percentage of S plus G(2)/M thymocytes, especially in the CD4(-)CD8(-)CD3(-) triple-negative intrathymic progenitor cell population 24 h after exposure to 30 micro g/kg TCDD. Furthermore, by 12 h after exposure to TCDD, we observed approximately 60% reduction of 5-bromo-2'-deoxyuridine incorporation in specific intrathymic progenitor cell populations. This reduction persisted for at least 6 days. These data indicate that intrathymic progenitor cells are direct targets of TCDD in the thymus and suggest that TCDD causes thymic atrophy by reducing entrance into cell cycle in these populations.
Collapse
Affiliation(s)
- Michael D Laiosa
- Department of Microbiology and Immunology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Schultz R, Suominen J, Värre T, Hakovirta H, Parvinen M, Toppari J, Pelto-Huikko M. Expression of aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator messenger ribonucleic acids and proteins in rat and human testis. Endocrinology 2003; 144:767-76. [PMID: 12586752 DOI: 10.1210/en.2002-220642] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dioxins, e.g. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), use the aryl hydrocarbon receptor (AHR)/aryl hydrocarbon receptor nuclear translocator (ARNT) receptor complex to mediate their toxic actions. In addition to interaction with environmental pollutants, several transcription factors, steroid receptors, and growth factors are capable interacting with the AHR/ARNT complex, which suggests a constitutive role for the receptor complex. The testis has been reported to be among the most sensitive organs to TCDD exposure. Our experiments revealed a complex distribution of AHR and ARNT mRNAs and proteins in rat and human testis. AHR and ARNT immunoreactivities could be detected in the nuclei of interstitial and tubular cells. The incubation of seminiferous tubules in a serum-free culture medium resulted in up-regulation of AHR mRNA, which could be depressed by adding FSH to the culture medium. Furthermore, the incubation of tubular segments with a solution of 1 or 100 nM TCDD resulted in a 2- to 3-fold increase in apoptotic cells. Thus, up-regulation of AHR in cultured tubular segments and consecutive depression by FSH suggest a role for AHR in controlled cell death during spermatogenesis. We suggest that AHR and ARNT mediate effects by direct action on testicular cells in the rat and human testis.
Collapse
Affiliation(s)
- Rüdiger Schultz
- Department of Developmental Biology, Tampere University, FIN-33014 Tampere, Finland
| | | | | | | | | | | | | |
Collapse
|
47
|
Huang P, Ceccatelli S, Rannug A. A study on diurnal mRNA expression of CYP1A1, AHR, ARNT, and PER2 in rat pituitary and liver. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2002; 11:119-126. [PMID: 21782593 DOI: 10.1016/s1382-6689(01)00111-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2001] [Revised: 10/26/2001] [Accepted: 11/02/2001] [Indexed: 05/31/2023]
Abstract
The ligand activated basic-helix-loop-helix (bHLH)-PAS transcription factor, the aryl hydrocarbon receptor (AHR) protein, heterodimerizes with its partner protein the aryl hydrocarbon receptor nuclear translocator (ARNT). The heterodimer activates transcription via xenobiotic responsive elements to regulate the transcription of a battery of biotransformation genes as well as genes involved in growth, differentiation, and cellular homeostasis. In this study we have investigated the diurnal expression of cytochrome P450 1A1, one of the genes in the AHR target gene battery, in rat pituitary and liver. The mRNA expression patterns of AHR, ARNT, and the periodic gene (PER2) were also analyzed. PER2 belongs to another group of bHLH-PAS transcription factor complexes, which are involved in the control of circadian rhythms. Diurnal variation of cytochrome P450 1A1 (CYP1A1) mRNA expression was observed in the anterior and posterior pituitary and in the liver. The accumulation of CYP1A1 mRNA occurred during different times of the day and exhibited an opposite expression in anterior and posterior pituitary, respectively. A daily upregulation of CYP1A1 and PER2 mRNAs that was in antiphase to the AHR and ARNT mRNAs was seen in the liver. The AHR/ARNT system is considered a defense system against toxic chemicals. The high inducibility of CYP1A1 in the pituitary, shown in an earlier study, as well as the tissue specific expression patterns shown here, suggest that AHR and CYP1A1 may play a physiological role in controlling neuroendocrine functions.
Collapse
Affiliation(s)
- Ping Huang
- Division of Toxicology and Neurotoxicology, National Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden; Division of Genetic Toxicology, National Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Franc MA, Pohjanvirta R, Tuomisto J, Okey AB. Persistent, low-dose 2,3,7,8-tetrachlorodibenzo-p-dioxin exposure: effect on aryl hydrocarbon receptor expression in a dioxin-resistance model. Toxicol Appl Pharmacol 2001; 175:43-53. [PMID: 11509025 DOI: 10.1006/taap.2001.9222] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Most toxic effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are mediated by the aryl hydrocarbon receptor (AHR). A single, acute dose of TCDD can alter its own receptor levels thus complicating evaluation of dose-response relationships for AHR-mediated events. Since environmental exposure to dioxins is typically of a repeated low-dose nature, we examined the effect of such exposure on AHR expression. Three rat strains differing greatly in their sensitivity to acute TCDD lethality, Long-Evans (Turku AB) (L-E) (LD50 approximately 10 microg/kg); Sprague Dawley (SD) (LD50 approximately 50 microg/kg); and Han/Wistar (Kuopio) (H/W) (LD50 > 9600 microg/kg), were administered TCDD intragastrically, biweekly for 22 weeks producing doses equivalent to 0, 10, 30, and 100 ng/kg/day. Changes in hepatic AHR levels were quantitated at the protein level by radioligand binding and immunoblotting and at the mRNA level by RT-PCR. Cytosolic AHR protein was elevated at 10 or 30 ng/kg/day TCDD in SD and L-E rats; AHR mRNA was also elevated at these doses, suggesting a pretranslational mechanism. There was no apparent relationship between TCDD-induced AHR regulation and strain sensitivity to TCDD. Overall, "subchronic" TCDD did not greatly perturb AHR expression. The maintenance of relatively constant receptor levels in the face of persistent agonist stimulation is in contrast to the sustained depletion of AHR by TCDD observed in cell culture and to the fluctuations in AHR observed hours to days following acute TCDD exposure in vivo. Changes in AHR levels may affect dose-response relationships; the effect of TCDD on its own receptor at environmentally relevant dosing schemes is therefore important to risk assessment.
Collapse
Affiliation(s)
- M A Franc
- Department of Pharmacology, University of Toronto, Ontario, Canada, M5S 1A8
| | | | | | | |
Collapse
|