1
|
Probing the Conformational States of Thimet Oligopeptidase in Solution. Int J Mol Sci 2022; 23:ijms23137297. [PMID: 35806299 PMCID: PMC9266445 DOI: 10.3390/ijms23137297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
Thimet oligopeptidase (TOP) is a metallopeptidase involved in the metabolism of oligopeptides inside and outside cells of various tissues. It has been proposed that substrate or inhibitor binding in the TOP active site induces a large hinge-bending movement leading to a closed structure, in which the bound ligand is enclosed. The main goal of the present work was to study this conformational change, and fluorescence techniques were used. Four active TOP mutants were created, each equipped with a single-Trp residue (fluorescence donor) and a p-nitro-phenylalanine (pNF) residue as fluorescence acceptor at opposite sides of the active site. pNF was biosynthetically incorporated with high efficiency using the amber codon suppression technology. Inhibitor binding induced shorter Donor-Acceptor (D-A) distances in all mutants, supporting the view that a hinge-like movement is operative in TOP. The activity of TOP is known to be dependent on the ionic strength of the assay buffer and D-A distances were measured at different ionic strengths. Interestingly, a correlation between the D-A distance and the catalytic activity of TOP was observed: the highest activities corresponded to the shortest D-A distances. In this study for the first time the hinge-bending motion of a metallopeptidase in solution could be studied, yielding insight about the position of the equilibrium between the open and closed conformation. This information will contribute to a more detailed understanding of the mode of action of these enzymes, including therapeutic targets like neurolysin and angiotensin-converting enzyme 2 (ACE2).
Collapse
|
2
|
Tragni V, Preziusi F, Laera L, Onofrio A, Mercurio I, Todisco S, Volpicella M, De Grassi A, Pierri CL. Modeling SARS-CoV-2 spike/ACE2 protein-protein interactions for predicting the binding affinity of new spike variants for ACE2, and novel ACE2 structurally related human protein targets, for COVID-19 handling in the 3PM context. EPMA J 2022; 13:149-175. [PMID: 35013687 PMCID: PMC8732965 DOI: 10.1007/s13167-021-00267-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/04/2021] [Indexed: 12/12/2022]
Abstract
Aims The rapid spread of new SARS-CoV-2 variants has highlighted the crucial role played in the infection by mutations occurring at the SARS-CoV-2 spike receptor binding domain (RBD) in the interactions with the human ACE2 receptor. In this context, it urgently needs to develop new rapid tools for quickly predicting the affinity of ACE2 for the SARS-CoV-2 spike RBD protein variants to be used with the ongoing SARS-CoV-2 genomic sequencing activities in the clinics, aiming to gain clues about the transmissibility and virulence of new variants, to prevent new outbreaks and to quickly estimate the severity of the disease in the context of the 3PM. Methods In our study, we used a computational pipeline for calculating the interaction energies at the SARS-CoV-2 spike RBD/ACE2 protein-protein interface for a selected group of characterized infectious variants of concern/interest (VoC/VoI). By using our pipeline, we built 3D comparative models of the SARS-CoV-2 spike RBD/ACE2 protein complexes for the VoC B.1.1.7-United Kingdom (carrying the mutations of concern/interest N501Y, S494P, E484K at the RBD), P.1-Japan/Brazil (RBD mutations: K417T, E484K, N501Y), B.1.351-South Africa (RBD mutations: K417N, E484K, N501Y), B.1.427/B.1.429-California (RBD mutations: L452R), the B.1.141 (RBD mutations: N439K), and the recent B.1.617.1-India (RBD mutations: L452R; E484Q) and the B.1.620 (RBD mutations: S477N; E484K). Then, we used the obtained 3D comparative models of the SARS-CoV-2 spike RBD/ACE2 protein complexes for predicting the interaction energies at the protein-protein interface. Results Along SARS-CoV-2 mutation database screening and mutation localization analysis, it was ascertained that the most dangerous mutations at VoC/VoI spike proteins are located mainly at three regions of the SARS-CoV-2 spike "boat-shaped" receptor binding motif, on the RBD domain. Notably, the P.1 Japan/Brazil variant present three mutations, K417T, E484K, N501Y, located along the entire receptor binding motif, which apparently determines the highest interaction energy at the SARS-CoV-2 spike RBD/ACE2 protein-protein interface, among those calculated. Conversely, it was also observed that the replacement of a single acidic/hydrophilic residue with a basic residue (E484K or N439K) at the "stern" or "bow" regions, of the boat-shaped receptor binding motif on the RBD, appears to determine an interaction energy with ACE2 receptor higher than that observed with single mutations occurring at the "hull" region or with other multiple mutants. In addition, our pipeline allowed searching for ACE2 structurally related proteins, i.e., THOP1 and NLN, which deserve to be investigated for their possible involvement in interactions with the SARS-CoV-2 spike protein, in those tissues showing a low expression of ACE2, or as a novel receptor for future spike variants. A freely available web-tool for the in silico calculation of the interaction energy at the SARS-CoV-2 spike RBD/ACE2 protein-protein interface, starting from the sequences of the investigated spike and/or ACE2 variants, was made available for the scientific community at: https://www.mitoairm.it/covid19affinities. Conclusion In the context of the PPPM/3PM, the employment of the described pipeline through the provided webservice, together with the ongoing SARS-CoV-2 genomic sequencing, would help to predict the transmissibility of new variants sequenced from future patients, depending on SARS-CoV-2 genomic sequencing activities and on the specific amino acid replacement and/or on its location on the SARS-CoV-2 spike RBD, to put in play all the possible counteractions for preventing the most deleterious scenarios of new outbreaks, taking into consideration that a greater transmissibility has not to be necessarily related to a more severe manifestation of the disease. Supplementary Information The online version contains supplementary material available at 10.1007/s13167-021-00267-w.
Collapse
Affiliation(s)
- Vincenzo Tragni
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Francesca Preziusi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Luna Laera
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Angelo Onofrio
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Ivan Mercurio
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Simona Todisco
- Department of Sciences, University of Basilicata, Viale dell’Ateneo Lucano, 10-85100 Potenza, Italy
| | - Mariateresa Volpicella
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Anna De Grassi
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
- BROWSer S.r.l. at Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70126 Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies, Biopharmaceutics, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
- BROWSer S.r.l. at Department of Biosciences, Biotechnologies, Biopharmaceutics, University “Aldo Moro” of Bari, Via E. Orabona, 4, 70126 Bari, Italy
| |
Collapse
|
3
|
Thimet Oligopeptidase Biochemical and Biological Significances: Past, Present, and Future Directions. Biomolecules 2020; 10:biom10091229. [PMID: 32847123 PMCID: PMC7565970 DOI: 10.3390/biom10091229] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/15/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15, THOP1) is a metallopeptidase ubiquitously distributed in mammalian tissues. Beyond its previously well characterized role in major histocompatibility class I (MHC-I) antigen presentation, the recent characterization of the THOP1 C57BL6/N null mice (THOP1−/−) phenotype suggests new key functions for THOP1 in hyperlipidic diet-induced obesity, insulin resistance and non-alcoholic liver steatosis. Distinctive levels of specific intracellular peptides (InPeps), genes and microRNAs were observed when comparing wild type C57BL6/N to THOP1−/− fed either standard or hyperlipidic diets. A possible novel mechanism of action was suggested for InPeps processed by THOP1, which could be modulating protein-protein interactions and microRNA processing, thus affecting the phenotype. Together, research into the biochemical and biomedical significance of THOP1 suggests that degradation by the proteasome is a step in the processing of various proteins, not merely for ending their existence. This allows many functional peptides to be generated by proteasomal degradation in order to, for example, control mRNA translation and the formation of protein complexes.
Collapse
|
4
|
The Relevance of Thimet Oligopeptidase in the Regulation of Energy Metabolism and Diet-Induced Obesity. Biomolecules 2020; 10:biom10020321. [PMID: 32079362 PMCID: PMC7072564 DOI: 10.3390/biom10020321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15; THOP1) is a potential therapeutic target, as it plays key biological functions in processing biologically functional peptides. The structural conformation of THOP1 provides a unique restriction regarding substrate size, in that it only hydrolyzes peptides (optimally, those ranging from eight to 12 amino acids) and not proteins. The proteasome activity of hydrolyzing proteins releases a large number of intracellular peptides, providing THOP1 substrates within cells. The present study aimed to investigate the possible function of THOP1 in the development of diet-induced obesity (DIO) and insulin resistance by utilizing a murine model of hyperlipidic DIO with both C57BL6 wild-type (WT) and THOP1 null (THOP1−/−) mice. After 24 weeks of being fed a hyperlipidic diet (HD), THOP1−/− and WT mice ingested similar chow and calories; however, the THOP1−/− mice gained 75% less body weight and showed neither insulin resistance nor non-alcoholic fatty liver steatosis when compared to WT mice. THOP1−/− mice had increased adrenergic-stimulated adipose tissue lipolysis as well as a balanced level of expression of genes and microRNAs associated with energy metabolism, adipogenesis, or inflammation. Altogether, these differences converge to a healthy phenotype of THOP1−/− fed a HD. The molecular mechanism that links THOP1 to energy metabolism is suggested herein to involve intracellular peptides, of which the relative levels were identified to change in the adipose tissue of WT and THOP1−/− mice. Intracellular peptides were observed by molecular modeling to interact with both pre-miR-143 and pre-miR-222, suggesting a possible novel regulatory mechanism for gene expression. Therefore, we successfully demonstrated the previously anticipated relevance of THOP1 in energy metabolism regulation. It was suggested that intracellular peptides were responsible for mediating the phenotypic differences that are described herein by a yet unknown mechanism of action.
Collapse
|
5
|
Dalio FM, Machado MFM, Marcondes MF, Juliano MA, Chagas JR, Cunha RLOR, Oliveira V. CPP-Ala-Ala-Tyr-PABA inhibitor analogs with improved selectivity for neurolysin or thimet oligopeptidase. Biochem Biophys Res Commun 2020; 522:368-373. [PMID: 31761323 DOI: 10.1016/j.bbrc.2019.11.097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/15/2019] [Indexed: 11/15/2022]
Abstract
Thimet oligopeptidase (TOP, EC 3.4.24.15) and neurolysin (NEL, EC 3.4.24.16) are closely related zinc-dependent metalo-oligopeptidases, which take part in the metabolism of oligopeptides (from 5 to 17 amino acid residues) inside and outside cells. Both peptidases are ubiquitously distributed in tissues. TOP is one of the main intracellular peptide-processing enzymes being important for the antigen selection in the MHC Class I presentation route, while NEL function has been more associated with the extracellular degradation of neurotensin. Despite efforts being made to develop specific inhibitors for these peptidases, the most used are: CPP-Ala-Ala-Tyr-PABA, described by Orlowski et al. in 1988, and CPP-Ala-Aib-Tyr-PABA (JA-2) that is an analog more resistant to proteolysis, which development was made by Shrimpton et al. in 2000. In the present work, we describe other analogs of these compounds but, with better discriminatory capacity to inhibit specifically NEL or TOP. The modifications introduced in these new analogs were based on a key difference existent in the extended binding sites of NEL and TOP: the negatively charged Glu469 residue of TOP corresponds to the positively charged Arg470 residue of NEL. These residues are in position to interact with the residue at the P1' and/or P2' of their substrates (mimicked by the Ala-Ala/P1'-P2' residues of the CPP-Ala-Ala-Tyr-PABA). Therefore, exploring this single difference, the following compounds were synthesized: CPP-Asp-Ala-Tyr-PABA, CPP-Arg-Ala-Tyr-PABA, CPP-Ala-Asp-Tyr-PABA, CPP-Ala-Arg-Tyr-PABA. Confirming the predictions, the replacement of each non-charged residue of the internal portion Ala-Ala by a charged residue Asp or Arg resulted in compounds with higher selectivity for NEL or TOP, especially due to the electrostatic attraction or repulsion by the NEL Arg470 or TOP Glu469 residue. The CPP-Asp-Ala-Tyr-PABA and CPP-Ala-Asp-Tyr-PABA presented higher affinities for NEL, and, the CFP-Ala-Arg-Tyr-PABA showed higher affinity for TOP.
Collapse
Affiliation(s)
- Fernanda M Dalio
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Maurício F M Machado
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, 08780-911, Mogi das Cruzes, SP, Brazil
| | - Marcelo F Marcondes
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Maria A Juliano
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Jair R Chagas
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil
| | - Rodrigo L O R Cunha
- Laboratório de Biologia Química, Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC, 09210-170, Santo André, SP, Brazil
| | - Vitor Oliveira
- Departamento de Biofísica, Universidade Federal de São Paulo, 04044-020, São Paulo, SP, Brazil.
| |
Collapse
|
6
|
Visniauskas B, Simões PSR, Dalio FM, Naffah-Mazzacoratti MDG, Oliveira V, Tufik S, Chagas JR. Sleep deprivation changes thimet oligopeptidase (THOP1) expression and activity in rat brain. Heliyon 2019; 5:e02896. [PMID: 31828230 PMCID: PMC6889027 DOI: 10.1016/j.heliyon.2019.e02896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/01/2019] [Accepted: 11/18/2019] [Indexed: 12/27/2022] Open
Abstract
The consequences of sleep deprivation on memory, cognition, nociception, stress, and endocrine function are related to the balance of neuropeptides, with peptidases being particularly essential. Thimet oligopeptidase (THOP1) is a metallopeptidase implicated in the metabolism of many sleep-related peptides, including angiotensin I, gonadotropin releasing hormone (GnRH), neurotensin, and opioid peptides. In the present study, we evaluated the effect of sleep deprivation and sleep recovery in male rats on THOP1 expression and specific activity in the central nervous system. In the striatum and hypothalamus, THOP1 activity decreased following sleep deprivation and a recovery period. Meanwhile, THOP1 activity and immunoexpression increased in the hippocampal dentate gyrus during the sleep recovery period. Changes in THOP1 expression after sleep deprivation and during sleep recovery can potentially alter the processing of neuropeptides. In particular, processing of opioid peptides may be related to the known increase in pain sensitivity in this model. These results suggest that THOP1 may be an important player in the effects of sleep deprivation.
Collapse
Affiliation(s)
- Bruna Visniauskas
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Priscila S R Simões
- Department of Neurology/Neurosurgery, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Fernanda M Dalio
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | | | - Vitor Oliveira
- Department of Biophysics, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| | - Sergio Tufik
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil
| | - Jair R Chagas
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, 04024-002, Brazil.,Department of Biophysics, Universidade Federal de São Paulo, São Paulo, 04039-032, Brazil
| |
Collapse
|
7
|
Thimet Oligopeptidase (EC 3.4.24.15) Key Functions Suggested by Knockout Mice Phenotype Characterization. Biomolecules 2019; 9:biom9080382. [PMID: 31431000 PMCID: PMC6722639 DOI: 10.3390/biom9080382] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Thimet oligopeptidase (THOP1) is thought to be involved in neuropeptide metabolism, antigen presentation, neurodegeneration, and cancer. Herein, the generation of THOP1 C57BL/6 knockout mice (THOP1−/−) is described showing that they are viable, have estrus cycle, fertility, and a number of puppies per litter similar to C57BL/6 wild type mice (WT). In specific brain regions, THOP1-/- exhibit altered mRNA expression of proteasome beta5, serotonin 5HT2a receptor and dopamine D2 receptor, but not of neurolysin (NLN). Peptidomic analysis identifies differences in intracellular peptide ratios between THOP1-/- and WT mice, which may affect normal cellular functioning. In an experimental model of multiple sclerosis THOP1-/- mice present worse clinical behavior scores compared to WT mice, corroborating its possible involvement in neurodegenerative diseases. THOP1-/- mice also exhibit better survival and improved behavior in a sepsis model, but also a greater peripheral pain sensitivity measured in the hot plate test after bradykinin administration in the paw. THOP1-/- mice show depressive-like behavior, as well as attention and memory retention deficits. Altogether, these results reveal a role of THOP1 on specific behaviors, immune-stimulated neurodegeneration, and infection-induced inflammation.
Collapse
|
8
|
Mechanisms of HIV protein degradation into epitopes: implications for vaccine design. Viruses 2014; 6:3271-92. [PMID: 25196483 PMCID: PMC4147695 DOI: 10.3390/v6083271] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 12/02/2022] Open
Abstract
The degradation of HIV-derived proteins into epitopes displayed by MHC-I or MHC-II are the first events leading to the priming of HIV-specific immune responses and to the recognition of infected cells. Despite a wealth of information about peptidases involved in protein degradation, our knowledge of epitope presentation during HIV infection remains limited. Here we review current data on HIV protein degradation linking epitope production and immunodominance, viral evolution and impaired epitope presentation. We propose that an in-depth understanding of HIV antigen processing and presentation in relevant primary cells could be exploited to identify signatures leading to efficient or inefficient epitope presentation in HIV proteomes, and to improve the design of immunogens eliciting immune responses efficiently recognizing all infected cells.
Collapse
|
9
|
Ferro ES, Rioli V, Castro LM, Fricker LD. Intracellular peptides: From discovery to function. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Simões PSR, Visniauskas B, Perosa SR, Yacubian EMT, Centeno R, Canzian M, Lopes-Cendes I, Maurer Morelli CV, Carrete H, Cavalheiro EA, Tufik S, Chagas JR, Naffah Mazzacoratti MDG. Expression and activity of thimet oligopeptidase (TOP) are modified in the hippocampus of subjects with temporal lobe epilepsy (TLE). Epilepsia 2014; 55:754-762. [DOI: 10.1111/epi.12606] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2014] [Indexed: 01/26/2023]
Affiliation(s)
| | - Bruna Visniauskas
- Psychobiology Department; Federal University of São Paulo (UNIFESP); São Paulo Brazil
| | - Sandra Regina Perosa
- Neurology/Neurosurgery Department; Federal University of São Paulo (UNIFESP); São Paulo Brazil
| | | | - Ricardo Centeno
- Neurology/Neurosurgery Department; Federal University of São Paulo (UNIFESP); São Paulo Brazil
| | - Mauro Canzian
- Pathology Department, Heart Institute-Medicine School University of São Paulo; (INCOR-FMUSP); São Paulo Brazil
| | - Iscia Lopes-Cendes
- Department of Medical Genetics; University of Campinas (UNICAMP); Campinas Brazil
| | | | - Henrique Carrete
- Image and Diagnostic Department; Federal University of São Paulo (UNIFESP); São Paulo Brazil
| | - Esper Abrão Cavalheiro
- Neurology/Neurosurgery Department; Federal University of São Paulo (UNIFESP); São Paulo Brazil
| | - Sergio Tufik
- Psychobiology Department; Federal University of São Paulo (UNIFESP); São Paulo Brazil
| | - Jair Ribeiro Chagas
- Psychobiology Department; Federal University of São Paulo (UNIFESP); São Paulo Brazil
| | | |
Collapse
|
11
|
Russo LC, Castro LM, Gozzo FC, Ferro ES. Inhibition of thimet oligopeptidase by siRNA alters specific intracellular peptides and potentiates isoproterenol signal transduction. FEBS Lett 2012; 586:3287-92. [DOI: 10.1016/j.febslet.2012.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 06/14/2012] [Accepted: 07/02/2012] [Indexed: 12/11/2022]
|
12
|
Wangler NJ, Santos KL, Schadock I, Hagen FK, Escher E, Bader M, Speth RC, Karamyan VT. Identification of membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16) as the non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site. J Biol Chem 2011; 287:114-122. [PMID: 22039052 DOI: 10.1074/jbc.m111.273052] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recently, we discovered a novel non-angiotensin type 1 (non-AT1), non-AT2 angiotensin binding site in rodent and human brain membranes, which is distinctly different from angiotensin receptors and key proteases processing angiotensins. It is hypothesized to be a new member of the renin-angiotensin system. This study was designed to isolate and identify this novel angiotensin binding site. An angiotensin analog, photoaffinity probe 125I-SBpa-Ang II, was used to specifically label the non-AT1, non-AT2 angiotensin binding site in mouse forebrain membranes, followed by a two-step purification procedure based on the molecular size and isoelectric point of the photoradiolabeled binding protein. Purified samples were subjected to two-dimensional gel electrophoresis followed by mass spectrometry identification of proteins in the two-dimensional gel sections containing radioactivity. LC-MS/MS analysis revealed eight protein candidates, of which the four most abundant were immunoprecipitated after photoradiolabeling. Immunoprecipitation studies indicated that the angiotensin binding site might be the membrane-bound variant of metalloendopeptidase neurolysin (EC 3.4.24.16). To verify these observations, radioligand binding and photoradiolabeling experiments were conducted in membrane preparations of HEK293 cells overexpressing mouse neurolysin or thimet oligopeptidase (EC 3.4.24.15), a closely related metalloendopeptidase of the same family. These experiments also identified neurolysin as the non-AT1, non-AT2 angiotensin binding site. Finally, brain membranes of mice lacking neurolysin were nearly devoid of the non-AT1, non-AT2 angiotensin binding site, further establishing membrane-bound neurolysin as the binding site. Future studies will focus on the functional significance of this highly specific, high affinity interaction between neurolysin and angiotensins.
Collapse
Affiliation(s)
- Naomi J Wangler
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | - Kira L Santos
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328
| | - Ines Schadock
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Fred K Hagen
- Proteomics Center, Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642
| | - Emanuel Escher
- Department of Pharmacology, Université de Sherbrooke, Sherbrooke, Quebec J1H5N4, Canada
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine, Berlin 13092, Germany
| | - Robert C Speth
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida 33328; Department of Physiology and Functional Genomics, College of Medicine, University of Florida, Gainesville, Florida 32611
| | - Vardan T Karamyan
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Vascular Drug Research Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas 79106.
| |
Collapse
|
13
|
Antigen processing by nardilysin and thimet oligopeptidase generates cytotoxic T cell epitopes. Nat Immunol 2010; 12:45-53. [PMID: 21151101 DOI: 10.1038/ni.1974] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 11/17/2010] [Indexed: 12/18/2022]
Abstract
Cytotoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C terminus of these CTL epitopes is considered to be produced by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus protein EBNA3C, and a clinically important epitope from the melanoma protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing, and nardilysin contributed to both the C-terminal and N-terminal generation of CTL epitopes. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer.
Collapse
|
14
|
Berti DA, Morano C, Russo LC, Castro LM, Cunha FM, Zhang X, Sironi J, Klitzke CF, Ferro ES, Fricker LD. Analysis of intracellular substrates and products of thimet oligopeptidase in human embryonic kidney 293 cells. J Biol Chem 2009; 284:14105-16. [PMID: 19282285 PMCID: PMC2682859 DOI: 10.1074/jbc.m807916200] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/05/2009] [Indexed: 01/03/2023] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is an intracellular enzyme that has been proposed to metabolize peptides within cells, thereby affecting antigen presentation and G protein-coupled receptor signal transduction. However, only a small number of intracellular substrates of EP24.15 have been reported previously. Here we have identified over 100 peptides in human embryonic kidney 293 (HEK293) cells that are derived from intracellular proteins; many but not all of these peptides are substrates or products of EP24.15. First, cellular peptides were extracted from HEK293 cells and incubated in vitro with purified EP24.15. Then the peptides were labeled with isotopic tags and analyzed by mass spectrometry to obtain quantitative data on the extent of cleavage. A related series of experiments tested the effect of overexpression of EP24.15 on the cellular levels of peptides in HEK293 cells. Finally, synthetic peptides that corresponded to 10 of the cellular peptides were incubated with purified EP24.15 in vitro, and the cleavage was monitored by high pressure liquid chromatography and mass spectrometry. Many of the EP24.15 substrates identified by these approaches are 9-11 amino acids in length, supporting the proposal that EP24.15 can function in the degradation of peptides that could be used for antigen presentation. However, EP24.15 also converts some peptides into products that are 8-10 amino acids, thus contributing to the formation of peptides for antigen presentation. In addition, the intracellular peptides described here are potential candidates to regulate protein interactions within cells.
Collapse
Affiliation(s)
- Denise A Berti
- Department of Cell Biology and Development , Biomedical Science Institute, University of São Paulo, São Paulo SP 05508-900, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bruce LA, Sigman JA, Randall D, Rodriguez S, Song MM, Dai Y, Elmore DE, Pabon A, Glucksman MJ, Wolfson AJ. Hydrogen bond residue positioning in the 599-611 loop of thimet oligopeptidase is required for substrate selection. FEBS J 2008; 275:5607-17. [PMID: 18959747 DOI: 10.1111/j.1742-4658.2008.06685.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15) is a zinc(II) endopeptidase implicated in the processing of numerous physiological peptides. Although its role in selecting and processing peptides is not fully understood, it is believed that flexible loop regions lining the substrate-binding site allow the enzyme to conform to substrates of varying structure. This study describes mutant forms of thimet oligopeptidase in which Gly or Tyr residues in the 599-611 loop region were replaced, individually and in combination, to elucidate the mechanism of substrate selection by this enzyme. Decreases in k(cat) observed on mutation of Tyr605 and Tyr612 demonstrate that these residues contribute to the efficient cleavage of most substrates. Modeling studies showing that a hinge-bend movement brings both Tyr612 and Tyr605 within hydrogen bond distance of the cleaved peptide bond supports this role. Thus, molecular modeling studies support a key role in transition state stabilization of this enzyme by Tyr605. Interestingly, kinetic parameters show that a bradykinin derivative is processed distinctly from the other substrates tested, suggesting that an alternative catalytic mechanism may be employed for this particular substrate. The data demonstrate that neither Tyr605 nor Tyr612 is necessary for the hydrolysis of this substrate. Relative to other substrates, the bradykinin derivative is also unaffected by Gly mutations in the loop. This distinction suggests that the role of Gly residues in the loop is to properly orientate these Tyr residues in order to accommodate varying substrate structures. This also opens up the possibility that certain substrates may be cleaved by an open form of the enzyme.
Collapse
Affiliation(s)
- Lisa A Bruce
- Chemistry Department, Wellesley College, MA 02481-8203, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Sandén C, Enquist J, Bengtson SH, Herwald H, Leeb-Lundberg LMF. Kinin B2Receptor-Mediated Bradykinin Internalization and Metalloendopeptidase EP24.15-Dependent Intracellular Bradykinin Degradation. J Pharmacol Exp Ther 2008; 326:24-32. [DOI: 10.1124/jpet.108.136911] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Demasi M, Piassa Filho GM, Castro LM, Ferreira JC, Rioli V, Ferro ES. Oligomerization of the cysteinyl-rich oligopeptidase EP24.15 is triggered by S-glutathionylation. Free Radic Biol Med 2008; 44:1180-90. [PMID: 18206667 DOI: 10.1016/j.freeradbiomed.2007.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2007] [Revised: 11/07/2007] [Accepted: 12/10/2007] [Indexed: 10/22/2022]
Abstract
Thimet oligopeptidase (EC 3.4.24.15; EP24.15) is a thiol-rich metallopeptidase ubiquitously distributed in mammalian tissues and involved in oligopeptide metabolism both within and outside cells. Fifteen Cys residues are present in the rat EP24.15 protein, seven are solvent accessible, and two are found inside the catalytic site cleft; no intraprotein disulfide is described. In the present investigation, we show that mammalian immunoprecipitated EP24.15 is S-glutathionylated. In vitro EP24.15 S-glutathionylation was demonstrated by the incubation of bacterial recombinant EP24.15 with oxidized glutathione concentration as low as 10 microM. The in vitro S-glutathionylation of EP24.15 was responsible for its oxidative oligomerization to dimer and trimer complexes. EP24.15 immunoprecipitated from cells submitted to oxidative challenge showed increased trimeric forms and decreased S-glutathionylation compared to immunoprecipitated protein from control cells. Our present data also show that EP24.15 maximal enzymatic activity is maintained by partial S-glutathionylation, a mechanism that apparently regulates the protein oligomerization. Present results raise the possibility of an unconventional property of protein S-glutathionylation, inducing oligomerization by interprotein thiol-disulfide exchange.
Collapse
Affiliation(s)
- Marilene Demasi
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
18
|
Machado M, Rioli V, Dalio F, Castro L, Juliano M, Tersariol I, Ferro E, Juliano L, Oliveira V. The role of Tyr605 and Ala607 of thimet oligopeptidase and Tyr606 and Gly608 of neurolysin in substrate hydrolysis and inhibitor binding. Biochem J 2007; 404:279-88. [PMID: 17313369 PMCID: PMC1868798 DOI: 10.1042/bj20070060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The physicochemical properties of TOP (thimet oligopeptidase) and NEL (neurolysin) and their hydrolytic activities towards the FRET (fluorescence resonance energy transfer) peptide series Abz-GFSXFRQ-EDDnp [where Abz is o-aminobenzoyl; X=Ala, Ile, Leu, Phe, Tyr, Trp, Ser, Gln, Glu, His, Arg or Pro; and EDDnp is N-(2,4-dinitrophenyl)-ethylenediamine] were compared with those of site-mutated analogues. Mutations at Tyr605 and Ala607 in TOP and at Tyr606 and Gly608 in NEL did not affect the overall folding of the two peptidases, as indicated by their thermal stability, CD analysis and the pH-dependence of the intrinsic fluorescence of the protein. The kinetic parameters for the hydrolysis of substrates with systematic variations at position P1 showed that Tyr605 and Tyr606 of TOP and NEL respectively, played a role in subsite S1. Ala607 of TOP and Gly608 of NEL contributed to the flexibility of the loops formed by residues 600-612 (GHLAGGYDGQYYG; one-letter amino acid codes used) in NEL and 599-611 (GHLAGGYDAQYYG; one-letter amino acid codes used) in TOP contributing to the distinct substrate specificities, particularly with an isoleucine residue at P1. TOP Y605A was inhibited less efficiently by JA-2 {N-[1-(R,S)-carboxy-3-phenylpropyl]Ala-Aib-Tyr-p-aminobenzoate}, which suggested that the aromatic ring of Tyr605 was an important anchor for its interaction with wild-type TOP. The hydroxy groups of Tyr605 and Tyr606 did not contribute to the pH-activity profiles, since the pKs obtained in the assays of mutants TOP Y605F and NEL Y606F were similar to those of wild-type peptidases. However, the pH-kcat/Km dependence curve of TOP Y605A differed from that of wild-type TOP and from TOP Y606F. These results provide insights into the residues involved in the substrate specificities of TOP and NEL and how they select cytosolic peptides for hydrolysis.
Collapse
Affiliation(s)
- Maurício F. M. Machado
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Vanessa Rioli
- †Laboratório Especial de Toxinologia Aplicada (CAT/CEPID) Instituto Butantan, 05467-010, São Paulo, SP, Brazil
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Fernanda M. Dalio
- §Laboratório de Neurociências, Universidade Cidade de São Paulo, 03071-000, São Paulo, SP, Brazil
| | - Leandro M. Castro
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Maria A. Juliano
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Ivarne L. Tersariol
- ∥Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes, 08780-911, Mogi das Cruzes, SP, Brazil
| | - Emer S. Ferro
- ‡Departamento de Biologia Celular e Desenvolvimento, Programa de Biologia Celular, Instituto de Ciências Biomédicas, Universidade de São Paulo (USP), 05508-900, São Paulo, SP, Brazil
| | - Luiz Juliano
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
| | - Vitor Oliveira
- *Departamento de Biofísica, Universidade Federal de São Paulo (UNIFESP), 04044-020 São Paulo, SP, Brazil
- §Laboratório de Neurociências, Universidade Cidade de São Paulo, 03071-000, São Paulo, SP, Brazil
- To whom correspondence should be addressed (email )
| |
Collapse
|
19
|
Lim EJ, Sampath S, Coll-Rodriguez J, Schmidt J, Ray K, Rodgers DW. Swapping the Substrate Specificities of the Neuropeptidases Neurolysin and Thimet Oligopeptidase. J Biol Chem 2007; 282:9722-9732. [PMID: 17251185 DOI: 10.1074/jbc.m609897200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Thimet oligopeptidase (EC 3.4.24.15) and neurolysin (EC 3.4.24.16) are closely related zinc-dependent metallopeptidases that metabolize small bioactive peptides. They cleave many substrates at the same sites, but they recognize different positions on others, including neurotensin, a 13-residue peptide involved in modulation of dopaminergic circuits, pain perception, and thermoregulation. On the basis of crystal structures and previous mapping studies, four sites (Glu-469/Arg-470, Met-490/Arg-491, His-495/Asn-496, and Arg-498/Thr-499; thimet oligopeptidase residues listed first) in their substrate-binding channels appear positioned to account for differences in specificity. Thimet oligopeptidase mutated so that neurolysin residues are at all four positions cleaves neurotensin at the neurolysin site, and the reverse mutations in neurolysin switch hydrolysis to the thimet oligopeptidase site. Using a series of constructs mutated at just three of the sites, it was determined that mutations at only two (Glu-469/Arg-470 and Arg-498/Thr-499) are required to swap specificity, a result that was confirmed by testing the two-mutant constructs. If only either one of the two sites is mutated in thimet oligopeptidase, then the enzyme cleaves almost equally at the two hydrolysis positions. Crystal structures of both two-mutant constructs show that the mutations do not perturb local structure, but side chain conformations at the Arg-498/Thr-499 position differ from those of the mimicked enzyme. A model for differential recognition of neurotensin based on differences in surface charge distribution in the substrate binding sites is proposed. The model is supported by the finding that reducing the positive charge on the peptide results in cleavage at both hydrolysis sites.
Collapse
Affiliation(s)
- Eun Jeong Lim
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Sowmya Sampath
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Jerry Coll-Rodriguez
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Jack Schmidt
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - Kallol Ray
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536
| | - David W Rodgers
- Department of Molecular and Cellular Biochemistry and Center for Structural Biology, University of Kentucky, Lexington, Kentucky 40536.
| |
Collapse
|
20
|
Wherry EJ, Golovina TN, Morrison SE, Sinnathamby G, McElhaugh MJ, Shockey DC, Eisenlohr LC. Re-evaluating the Generation of a “Proteasome-Independent” MHC Class I-Restricted CD8 T Cell Epitope. THE JOURNAL OF IMMUNOLOGY 2006; 176:2249-61. [PMID: 16455981 DOI: 10.4049/jimmunol.176.4.2249] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The proteasome is primarily responsible for the generation of MHC class I-restricted CTL epitopes. However, some epitopes, such as NP(147-155) of the influenza nucleoprotein (NP), are presented efficiently in the presence of proteasome inhibitors. The pathways used to generate such apparently "proteasome-independent" epitopes remain poorly defined. We have examined the generation of NP(147-155) and a second proteasome-dependent NP epitope, NP(50-57), using cells adapted to growth in the presence of proteasome inhibitors and also through protease overexpression. We observed that: 1) Ag processing and presentation proceeds in proteasome-inhibitor adapted cells but may become more dependent, at least in part, on nonproteasomal protease(s), 2) tripeptidyl peptidase II does not substitute for the proteasome in the generation of NP(147-155), 3) overexpression of leucine aminopeptidase, thymet oligopeptidase, puromycin-sensitive aminopeptidase, and bleomycin hydrolase, has little impact on the processing and presentation of NP(50-57) or NP(147-155), and 4) proteasome-inhibitor treatment altered the specificity of substrate cleavage by the proteasome using cell-free digests favoring NP(147-155) epitope preservation. Based on these results, we propose a central role for the proteasome in epitope generation even in the presence of proteasome inhibitors, although such inhibitors will likely alter cleavage patterns and may increase the dependence of the processing pathway on postproteasomal enzymes.
Collapse
Affiliation(s)
- E John Wherry
- Department of Microbiology and Immunology, Jefferson Medical College and Kimmel Cancer Institute, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Shastri N, Cardinaud S, Schwab SR, Serwold T, Kunisawa J. All the peptides that fit: the beginning, the middle, and the end of the MHC class I antigen-processing pathway. Immunol Rev 2005; 207:31-41. [PMID: 16181325 DOI: 10.1111/j.0105-2896.2005.00321.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The end result of the antigen-processing pathway is the display of peptide-bound major histocompatibility complex I (pMHC I) molecules. The pMHC I molecules are expressed on the cell surface where they can be surveyed by CD8(+) T cells for abnormal proteins. MHC I molecules present a large repertoire of peptides that fit perfectly in their binding grooves and represent the otherwise hidden intracellular contents. Many peptides originate as defective ribosomal products in the cytoplasm. In a stepwise manner, the antigen-processing pathway generates and protects the proteolytic intermediates until they yield the final peptides that can fit the MHC I in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Nilabh Shastri
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, CA 94720, USA.
| | | | | | | | | |
Collapse
|
22
|
Oliveira V, Garrido PAG, Rodrigues CC, Colquhoun A, Castro LM, Almeida PC, Shida CS, Juliano MA, Juliano L, Camargo ACM, Hyslop S, Roberts JL, Grum-Tokars V, Glucksman MJ, Ferro ES. Calcium modulates endopeptidase 24.15 (EC 3.4.24.15) membrane association, secondary structure and substrate specificity. FEBS J 2005; 272:2978-92. [PMID: 15955058 DOI: 10.1111/j.1742-4658.2005.04692.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metalloendopeptidase 24.15 (EP24.15) is ubiquitously present in the extracellular environment as a secreted protein. Outside the cell, this enzyme degrades several neuropeptides containing from 5 to 17 amino acids (e.g. gonadotropin releasing hormone, bradykinin, opioids and neurotensin). The constitutive secretion of EP24.15 from glioma C6 cells was demonstrated to be stimulated linearly by reduced concentrations of extracellular calcium. In the present report we demonstrate that extracellular calcium concentration has no effect on the total amount of the extracellular (cell associated + medium) enzyme. Indeed, immuno-cytochemical analyses by confocal and electron microscopy suggested that the absence of calcium favors the enzyme shedding from the plasma membrane into the medium. Two putative calcium-binding sites on EP24.15 (D93 and D159) were altered by site-directed mutagenesis to investigate their possible contribution to binding of the enzyme at the cell surface. These mutated recombinant proteins behave similarly to the wild-type enzyme regarding enzymatic activity, secondary structure, calcium sensitivity and immunoreactivity. However, immunocytochemical analyses by confocal microscopy consistently show a reduced ability of the D93A mutant to associate with the plasma membrane of glioma C6 cells when compared with the wild-type enzyme. These data and the model of the enzyme's structure as determined by X-ray diffraction suggest that D93 is located at the enzyme surface and is consistent with membrane association of EP24.15. Moreover, calcium was also observed to induce a major change in the EP24.15 cleavage site on distinctive fluorogenic substrates. These data suggest that calcium may be an important modulator of ep24.15 cell function.
Collapse
Affiliation(s)
- Vitor Oliveira
- Laboratório de Neurociências, Universidade da Cidade de São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Carreño FR, Goñi CN, Castro LM, Ferro ES. 14-3-3 epsilon modulates the stimulated secretion of endopeptidase 24.15. J Neurochem 2005; 93:10-25. [PMID: 15773901 DOI: 10.1111/j.1471-4159.2004.02967.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Endopeptidase 24.15 (ep24.15: EC3.4.24.15), a secreted protein involved in peptide metabolism, is unusual in that it does not contain a signal peptide sequence. In this work, we describe the physical interaction between ep24.15 and 14-3-3 epsilon, one isoform of a family of ubiquitous phosphoserine/threonine-scaffold proteins that organizes cell signaling and is involved in exocytosis. The interaction between ep24.15 and 14-3-3 epsilon increased following phosphorylation of ep24.15 at Ser(644) by protein kinase A (PKA). The co-localization of ep24.15 and 14-3-3 epsilon was increased by exposure of HEK293 cells (human embryonic kidney cells) to forskolin (10 microm). Overexpression of 14-3-3 epsilon in HEK293 cells almost doubled the secretion of ep24.15 stimulated by A23187 (7.5 microm) from 10%[1.4 +/- 0.24 AFU/(min 10(6) cells)] to 19%[2.54 +/- 0.24 AFU/(min 10(6) cells)] (p < 0.001) of the total intracellular enzyme activity. Treatment with forskolin had a synergistic effect on the A23187-stimulated secretion of ep24.15 that was totally blocked by the PKA inhibitor KT5720. The ep24.15 point mutation S644A reduced the co-localization of ep24.15 and 14-3-3 in stably transfected HEK293 cells. Indeed, secretion of the ep24.15 S644A mutant from these cells was only slightly stimulated by A23187 and insensitive to forskolin, in contrast to that of the wild type enzyme. Together, these data suggest that prior interaction with 14-3-3 is an important step in the unconventional stimulated secretion of ep24.15.
Collapse
Affiliation(s)
- Flávia R Carreño
- Department of Cell Biology and Development, Cell Biology Program, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | | |
Collapse
|
24
|
Heimann AS, Favarato MH, Gozzo FC, Rioli V, Carreño FR, Eberlin MN, Ferro ES, Krege JH, Krieger JE. ACE gene titration in mice uncovers a new mechanism for ACE on the control of body weight. Physiol Genomics 2004; 20:173-82. [PMID: 15522949 DOI: 10.1152/physiolgenomics.00145.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Mice harboring 1, 2, or 3 copies of the angiotensin-converting enzyme (ACE) gene were used to evaluate the quantitative role of the ACE locus on obesity. Three-copy mice fed with a high-fat diet had lower body weight and peri-epididymal adipose tissue than did 1- and 2-copy mice (P < 0.05). On regular diet, 3-copy mice had to eat more to maintain the same body weight; on a high-fat diet, they ate the same but weighed less than 1- and 2-copy mice (P < 0.05), indicating a higher metabolic rate in 3-copy mice that was not affected by ANG II AT(1) blocker treatment. A catalytically inactive form of thimet oligopeptidase (EC 3.4.24.15; EP24.15) was used to isolate ACE substrates from adipose tissue. Liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI-MS/MS) identified 162 peptide peaks; 16 peptides were present in both groups (1- and 3-copy mice fed with a high-fat diet), whereas 58 of the 72 unique peptides were found only in the 3-copy mice. Peptide size distribution was shifted to lower molecular weight in 3-copy mice. Two of the identified peptides, LVVYPWTQRY and VVYPWTQRY, which are ACE substrates, inhibited in vitro protein kinase C phosphorylation in a concentration-dependent manner. In addition, neurolysin (EC 3.4.24.16; EP24.16) activity was lower in fat tissue from 3- vs. 1-copy mice (P < 0.05). Taken together, these results provide evidence that ACE is associated with body weight and peri-epididymal fat accumulation. This response may involve the generation of oligopeptides that inhibit the activity of EP24.16 and other oligopeptidases within the adipose tissue.
Collapse
Affiliation(s)
- A S Heimann
- Heart Institute (InCor) and Department of Medicine-LIM13, University of São Paulo Medical School, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Saric T, Graef CI, Goldberg AL. Pathway for Degradation of Peptides Generated by Proteasomes. J Biol Chem 2004; 279:46723-32. [PMID: 15328361 DOI: 10.1074/jbc.m406537200] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The degradation of cellular proteins by proteasomes generates peptides 2-24 residues long, which are hydrolyzed rapidly to amino acids. To define the final steps in this pathway and the responsible peptidases, we fractionated by size the peptides generated by proteasomes from beta-[14C]casein and studied in HeLa cell extracts the degradation of the 9-17 residue fraction and also of synthetic deca- and dodecapeptide libraries, because peptides of this size serve as precursors to MHC class I antigenic peptides. Their hydrolysis was followed by measuring the generation of smaller peptides or of new amino groups using fluorescamine. The 14C-labeled peptides released by 20 S proteasomes could not be degraded further by proteasomes. However, their degradation in the extracts and that of the peptide libraries was completely blocked by o-phenanthroline and thus required metallopeptidases. One such endopeptidase, thimet oligopeptidase (TOP), which was recently shown to degrade many antigenic precursors in the cytosol, was found to play a major role in degrading proteasome products. Inhibition or immunodepletion of TOP decreased their degradation and that of the peptide libraries by 30-50%. Pure TOP failed to degrade proteasome products 18-24 residues long but degraded the 9-17 residue fraction to peptides of 6-9 residues. When aminopeptidases in the cell extract were inhibited with bestatin, the 9-17 residue proteasome products were also converted to peptides of 6-9 residues, instead of smaller products. Accordingly, the cytosolic aminopeptidase, leucine aminopeptidase, could not degrade the 9-17 residue fraction but hydrolyzed the peptides generated by TOP to smaller products, recapitulating the process in cell extracts. Inactivation of both TOP and aminopeptidases blocked the degradation of proteasome products and peptide libraries nearly completely. Thus, degradation of most 9-17 residue proteasome products is initiated by endoproteolytic cleavages, primarily by TOP, and the resulting 6-9 residue fragments are further digested to amino acids by aminopeptidases.
Collapse
Affiliation(s)
- Tomo Saric
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
26
|
Kim SI, Grum-Tokars V, Swanson TA, Cotter EJ, Cahill PA, Roberts JL, Cummins PM, Glucksman MJ. Novel roles of neuropeptide processing enzymes: EC3.4.24.15 in the neurome. J Neurosci Res 2003; 74:456-67. [PMID: 14598322 DOI: 10.1002/jnr.10779] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neuropeptide processing metalloenzymes, such as angiotensin converting enzyme, neprilysin, endothelin converting enzyme, neurolysin, and EC3.4.24.15 (EP24.15), are central to the formation and degradation of bioactive peptides. We present EP24.15 as a paradigm for novel functions ascribed to these enzymes in the neurome. Although the neurome typically encompasses proteomes of the brain and central nervous system, exciting new roles of these neuropeptidases have been demonstrated in other organ systems. We discuss the involvement of EP24.15 with clinical sequelae involving the use of gonadotropin-releasing hormone (GnRH; LHRH) analogs that act as enzyme inhibitors, in vascular physiology (blood pressure regulation), and in the hematologic system (immune surveillance). Hemodynamic forces, such as cyclic strain and shear stress, on vascular cells, induce an increase in EP24.15 transcription, suggesting that neuropeptidase-mediated hydrolysis of pressor/depressor peptides is likely regulated by changes in hemodynamic force and blood pressure. Lastly, EP24.15 regulates surface expression of major histocompatibility complex Class I proteins in vivo, suggesting that EP24.15 may play an important role in maintenance of immune privilege in sites of increased endogenous expression. In these extraneural systems, regulation of both neuropeptide and other peptide substrates by neuropeptidases indicates that the influence of these enzymes may be more global than was anticipated previously, and suggests that their attributed role as neuropeptidases underestimates their physiologic actions in the neural system.
Collapse
Affiliation(s)
- S I Kim
- Midwest Proteome Center, Department of Biochemistry and Molecular Biology, Finch University of Health Sciences/Chicago Medical School, North Chicago, Illinois 60064, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Kim SI, Pabon A, Swanson TA, Glucksman MJ. Regulation of cell-surface major histocompatibility complex class I expression by the endopeptidase EC3.4.24.15 (thimet oligopeptidase). Biochem J 2003; 375:111-20. [PMID: 12877658 PMCID: PMC1223673 DOI: 10.1042/bj20030490] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 07/23/2003] [Accepted: 07/24/2003] [Indexed: 11/17/2022]
Abstract
Endopeptidase EP24.15 (EC 3.4.24.15; thimet oligopeptidase), traditionally classified as a neuropeptide-processing enzyme, degrades well-known MHC I (major histocompatibility complex class I) peptides in cell extracts. In the present study, we determine the contribution of EP24.15 in vivo to the surface expression of MHC I on intact cells. CTLs (cytotoxic T-lymphocytes) recognize a vast array of peptides presented in the context of MHC I cell-surface molecules. Stable retroviral overexpression of EP24.15 induces a dramatic, long-term inhibition of surface MHC I. In contrast, overexpression of a mutant EP24.15, which is expressed, but is enzymically inactive, does not affect the surface MHC I expression level. We observed no difference in the effect of EP24.15 on the expression of different classes of MHC I. IFN-gamma (interferon-gamma) treatment re-established MHC I expression on these EP24.15-overexpressing cells, and also induced EP24.15 cytosolic protein expression and enzyme activity. To our knowledge, this is the first demonstration of cytokine-induced EP24.15 expression and activity. Conversely, stable retroviral silencing of endogenous EP24.15 by RNA interference induced a striking, long-term increase in surface MHC I. Subcellular fractionation and enzyme-activity experiments localized the vast majority of EP24.15 protein expression and function to the cytosol. Therefore we introduce a novel function of the cytosolic form of EP24.15. EP24.15 activity in the extracellular space is significant for neuropeptide processing, and in the present paper, we demonstrate that EP24.15 activity in the cytosol may be significant for regulation of MHC I cell-surface expression.
Collapse
Affiliation(s)
- Sandra I Kim
- Midwest Proteome Center, Department of Biochemistry and Molecular Biology, Finch University of Health Sciences/Chicago Medical School, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|
28
|
York IA, Mo AXY, Lemerise K, Zeng W, Shen Y, Abraham CR, Saric T, Goldberg AL, Rock KL. The cytosolic endopeptidase, thimet oligopeptidase, destroys antigenic peptides and limits the extent of MHC class I antigen presentation. Immunity 2003; 18:429-40. [PMID: 12648459 DOI: 10.1016/s1074-7613(03)00058-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Most antigenic peptides presented on MHC class I molecules are generated by proteasomes during protein breakdown. It is unknown whether these peptides are protected from destruction by cytosolic peptidases. In cytosolic extracts, most antigenic peptides are degraded by the metalloendopeptidase, thimet oligopeptidase (TOP). We therefore examined whether TOP destroys antigenic peptides in vivo. When TOP was overexpressed in cells, class I presentation of antigenic peptides was reduced. In contrast, TOP overexpression didn't reduce presentation of peptides generated in the endoplasmic reticulum or endosomes. Conversely, preventing TOP expression with siRNA enhanced presentation of antigenic peptides. TOP therefore plays an important role in vivo in degrading peptides released by proteasomes and is a significant factor limiting the extent of antigen presentation.
Collapse
Affiliation(s)
- Ian A York
- Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nussbaum AK, Kuttler C, Tenzer S, Schild H. Using the World Wide Web for predicting CTL epitopes. Curr Opin Immunol 2003; 15:69-74. [PMID: 12495736 DOI: 10.1016/s0952791502000043] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Alexander K Nussbaum
- The Scripps Research Institute, Department of Neuropharmacology, CVN-9, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | | | | | | |
Collapse
|
30
|
Rock KL, York IA, Saric T, Goldberg AL. Protein degradation and the generation of MHC class I-presented peptides. Adv Immunol 2002; 80:1-70. [PMID: 12078479 DOI: 10.1016/s0065-2776(02)80012-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Over the past decade there has been considerable progress in understanding how MHC class I-presented peptides are generated. The emerging theme is that the immune system has not evolved its own specialized proteolytic mechanisms but instead utilizes the phylogenetically ancient catabolic pathways that continually turnover proteins in all cells. Three distinct proteolytic steps have now been defined in MHC class I antigen presentation. The first step is the degradation of proteins by the ubiquitin-proteasome pathway into oligopeptides that either are of the correct size for presentation or are extended on their amino-termini. In the second step, aminopeptidases trim N-extended precursors into peptides of the correct length to be presented on class I molecules. The third step involves the destruction of peptides by endo- and exopeptidases, which limits antigen presentation, but is important for preventing the accumulation of peptides and recycling them back to amino acids for protein synthesis or production of energy. The immune system has evolved several components that modify the activity of these ancient pathways in ways that enhance the generation of class I-presented peptides. These include catalytically active subunits of the proteasome, the PA28 proteasome activator, and leucine aminopeptidase, all of which are upregulated by interferon-gamma. In addition to these pathways that operate in all cells, dendritic cells and macrophages can also generate class I-presented peptides from proteins internalized from the extracellular fluids by degrading them in endocytic compartments or transferring them to the cyotosol for degradation by proteasomes.
Collapse
Affiliation(s)
- Kenneth L Rock
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | |
Collapse
|
31
|
Bastiani M, Hillebrand S, Horn F, Kist TBL, Guimarães JA, Termignoni C. Cattle tick Boophilus microplus salivary gland contains a thiol-activated metalloendopeptidase displaying kininase activity. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1439-1446. [PMID: 12530211 DOI: 10.1016/s0965-1748(02)00064-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This work reports on the characterization of a metalloendopeptidase kininase present in Boophilus microplus salivary glands. Using the guinea pig ileum assay, salivary gland whole extracts (SGE) were found to have a potent kininase activity. Ion-exchange chromatography separated two kininase activities from SGE. The major enzymatic component, eluted at lower ionic strength, was named BooKase (Boophilus Kininase). Analysis of the hydrolysis products by capillary electrophoresis identified Phe5-Ser6 as the only hydrolyzable peptide bond in bradykinin after BooKase treatment. This is the same specificity as the mammalian thimet oligoendopeptidase (EC 3.4.24.15). Like this enzyme, BooKase is also a metallo-peptidase (requires Mn2+) and is activated by-SH protecting reagents. In addition, BooKase was partially inhibited by cFP-AAF-pAB, a specific inhibitor of thimet oligopeptidase. Contrary to other kininases, BooKase had no activity upon angiontensin I. Our results show that BooKase behaves as a typical peptidase with kinase activity.
Collapse
Affiliation(s)
- Michele Bastiani
- Centro de Biotecnologia, Universidade, Departamento de Biofísica, Universidade Federal do Rio Grande do Sul. Caixa Postal 15005, 91501-970, Porto Alegre, Brazil
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Peptidases play a vital and often highly specific role in the physiological and pathological generation and termination of peptide hormone signals. The thermolysin-like family of metalloendopeptidases involved in the extracellular processing of neuroendocrine and cardiovascular peptides are of particular significance, reflecting both their specificity for particular peptide substrates and their utility as therapeutic targets. Although the functions of the membrane-bound members of this family, such as angiotensin-converting enzyme and neutral endopeptidase, are well established, a role for the predominantly soluble family members in peptide metabolism is only just emerging. This review will focus on the biochemistry, cell biology, and physiology of the soluble metalloendopeptidases EC 3.4.24.15 (thimet oligopeptidase) and EC 3.4.24.16 (neurolysin), as well as presenting evidence that both peptidases play an important role in such diverse functions as reproduction, nociception, and cardiovascular homeostasis.
Collapse
|
33
|
Saveanu L, Fruci D, van Endert P. Beyond the proteasome: trimming, degradation and generation of MHC class I ligands by auxiliary proteases. Mol Immunol 2002; 39:203-15. [PMID: 12200051 DOI: 10.1016/s0161-5890(02)00102-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The proteasome is now recognized to be implicated in the generation of the vast majority of MHC class I ligands. Moreover, it is probably the only cytosolic protease generating their carboxyterminals. However, solid evidence documents a role of additional and only partly identified proteases in MHC class I antigen processing. Cytosolic tripeptidyl peptidase (TTP II) may be able to carry out some functions normally ascribed to the proteasome, including that of generating antigenic peptides. Several cytosolic enzymes, including bleomycin hydrolase (BH) and puromycin-sensitive aminopeptidase (PSA), but especially the IFNgamma-inducible leucyl aminopeptidase (LAP), can trim the aminoterminal ends of class I ligands. The vast majority of cytosolic peptides is degraded, a process likely to limit antigen presentation, in which thimet oligopeptidase (TOP) may play an important role. Proteolytic activity in the secretory pathway, though much more limited than in the cytosol, also contributes to class I antigen presentation. Signal peptide fragments and peptides at the carboxyterminal end of various proteins targeted to the endoplasmic reticulum can be highly efficient TAP-independent class I ligands. However, an as yet unidentified luminal trimming aminopeptidase may eventually turn out to play the most important role for class I ligand generation in the secretory pathway. Defining the extent of the involvement of cytosolic and luminal peptidases in class I antigen processing will be a challenging task for the future.
Collapse
|
34
|
Goldberg AL, Cascio P, Saric T, Rock KL. The importance of the proteasome and subsequent proteolytic steps in the generation of antigenic peptides. Mol Immunol 2002; 39:147-64. [PMID: 12200047 DOI: 10.1016/s0161-5890(02)00098-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three different proteolytic processes have been shown to be important in the generation of antigenic peptides displayed on MHC-class I molecules. The great majority of these peoptides are derived from oligopeptides produced during the degradation of intracellular proteins by the ubiquitin-proteasome pathway. Novel methods were developed to follow this process in vitro. When pure 26S proteasomes degrade the model substrate, ovalbumin, they produce the immunodominant peptide, SIINFEKL, occasionally, but more often an N-extended form of SIINFEKL. Interferon-gamma stimulates antigen presentation in part by inducing new forms of the proteasome that are more efficient in antigen presentation, and in vitro these immunoproteasomes specifically produce more of the N-extended versions of SIINFEKL. In addition, gamma-interferon induces a novel 26S complex containing the 19S and 20S particles and the proteasome activator, PA28, which we show cleaves proteins in distinct ways. In vivo studies established that proteasomal cleavages produce the C-termini of antigenic peptides, but not their N-termini, which can be formed efficiently by aminopeptidases that trim longer proteasomal products to the presented epitopes. gamma-interferon stimulates this trimming process by inducing in the cytosol leucine aminopeptidase and a novel aminopeptidase in the ER. Peptides released by proteasomes, including antigenic peptides, are labile in cytosolic extracts, and most of the longer proteasome products are rapidly cleaved by the cytosolic enzyme, thymet oligopeptidase (TOP). If cells express large amounts of TOP, class I presentation decreases, and if TOP is inhibited, presentation increases. Thus, peptide degradation in the cytosol appears to limit the efficiency of antigen presentation.
Collapse
Affiliation(s)
- Alfred L Goldberg
- Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
35
|
Oliveira V, Gatti R, Rioli V, Ferro ES, Spisni A, Camargo ACM, Juliano MA, Juliano L. Temperature and salts effects on the peptidase activities of the recombinant metallooligopeptidases neurolysin and thimet oligopeptidase. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:4326-34. [PMID: 12199711 DOI: 10.1046/j.1432-1033.2002.03129.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the recombinant neurolysin and thimet oligopeptidase (TOP) hydrolytic activities towards internally quenched fluorescent peptides derived from the peptide Abz-GGFLRRXQ-EDDnp (Abz, ortho-aminobenzoicacid; EDDnp, N-(2,4-dinitrophenyl) ethylenediamine), in which X was substituted by 11 different natural amino acids. Neurolysin hydrolyzed these peptides at R-R or at R-X bonds, and TOP hydrolyzed at R-R or L-R bonds, showing a preference to cleave at three or four amino acids from the C-terminal end. The kinetic parameters of hydrolysis and the variations of the cleavage sites were evaluated under different conditions of temperature and salt concentration. The relative amount of cleavage varied with the nature of the substitution at the X position as well as with temperature and NaCl concentration. TOP was activated by all assayed salts in the range 0.05-0.2 m for NaCl, KCl, NH4Cl and NaI, and 0.025-0.1 m for Na2SO4. Concentration higher than 0.2 N NH4Cl and NaI reduced TOP activity, while 0.5 N or higher concentration of NaCl, KCl and Na2SO4 increased TOP activity. Neurolysin was strongly activated by NaCl, KCl and Na2SO4, while NH4Cl and NaI have very modest effect. High positive values of enthalpy (DeltaH*) and entropy (DeltaS*) of activation were found together with an unusual temperature dependence upon the hydrolysis of the substrates. The effects of low temperature and high NaCl concentration on the hydrolytic activities of neurolysin and TOP do not seem to be a consequence of large secondary structure variation of the proteins, as indicated by the far-UV CD spectra. However, the modulation of the activities of the two oligopeptidases could be related to variations of conformation, in limited regions of the peptidases, enough to modify their activities.
Collapse
Affiliation(s)
- Vitor Oliveira
- Department of Biophysics, Escola Paulista de Medicina, São Paulo, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fontenele-Neto JD, Massarelli EE, Gurgel Garrido PA, Beaudet A, Ferro ES. Comparative fine structural distribution of endopeptidase 24.15 (EC3.4.24.15) and 24.16 (EC3.4.24.16) in rat brain. J Comp Neurol 2001; 438:399-410. [PMID: 11559896 DOI: 10.1002/cne.1323] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Endopeptidase 24.15 (EP24.15) and 24.16 (EP24.16) are closely related metalloendopeptidases implicated in the metabolism of several neuropeptides and widely expressed in mammalian brain. To gain insight into the functional role of these two enzymes in the central nervous system, we examined their cellular and subcellular distribution in rat brain by using electron microscopic immunogold labeling. In all areas examined, EP24.15 and EP24.16 immunoreactivity were observed in selective subpopulations of neuronal and glial cells. Subcellular localization of EP24.15 in neurons revealed that this enzyme was predominantly concentrated in the nucleus, whereas EP24.16 was almost exclusively cytoplasmic. The amount of EP24.15 found in the nucleus was inversely correlated with that found in the cytoplasm, suggesting that the enzyme could be mobilized from one compartment to the other. Within the cytoplasm, EP24.15 and EP24.16 immunoreactivity showed comparable distributional patterns. Both enzymes were detected throughout perikarya and dendrites, as well as within axons and axon terminals. In all neuronal compartments, EP24.15 and EP24.16 showed a major association with membranes of neurosecretory elements, including Golgi cisternae, tubulovesicular organelles, synaptic vesicles, and endosomes. However, whereas EP24.15 always faced the cytoplasmic face of the membranes, EP24.16 was observed on both cytoplasmic and luminal sides, suggesting that the latter was more likely to contribute to the processing of peptides or to the degradation of internalized ligands. Taken together, the present results suggest that EP24.15 could play a major role in the hydrolysis of intranuclear substrates, whereas EP24.16 would be predominantly involved in the processing and inactivation of signaling peptides.
Collapse
Affiliation(s)
- J D Fontenele-Neto
- Department of Histology and Embryology, Cell Biology Program, Biomedical Sciences Institute, USP, São Paulo 05508-900, SP, Brazil
| | | | | | | | | |
Collapse
|
37
|
Saric T, Beninga J, Graef CI, Akopian TN, Rock KL, Goldberg AL. Major histocompatibility complex class I-presented antigenic peptides are degraded in cytosolic extracts primarily by thimet oligopeptidase. J Biol Chem 2001; 276:36474-81. [PMID: 11479311 DOI: 10.1074/jbc.m105517200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Nearly all peptides generated by proteasomes during protein degradation are digested rapidly to amino acids, but a few proteasomal products escape this fate and are presented to the immune system on cell surface major histocompatibility complex class I molecules. To test whether these antigenic peptides may be inherently resistant to cytosolic peptidases, six different antigenic peptides were incubated with HeLa cell extracts. All six were degraded rapidly by a process involving o-phenanthroline-sensitive metallopeptidases. One antigenic peptide, FAPGNYPAL, was rapidly destroyed in the extracts by a bestatin-sensitive exopeptidase, apparently by the puromycin-sensitive aminopeptidase. The disappearance of the other five was reduced 30-90% by a specific inhibitor of the cytosolic endopeptidase, thimet oligopeptidase (TOP) (EC ), whose physiological function(s) have been unclear and controversial. All these peptides were sensitive to pure recombinant TOP. Furthermore, upon fractionation of the extracts, the major peptidase peak that degraded the ovalbumin-derived epitope, SIINFEKL, co-purified with TOP. In the extracts, TOP also catalyzed rapid degradation of N-extended variants of SIINFEKL and of other antigenic peptides, which in vivo can serve as precursors of these major histocompatibility complex-presented epitopes. This enzyme (unlike cell proteins that promote production of antigenic peptides) is not regulated by interferon-gamma. TOP seems to be primarily responsible for the rapid breakdown of antigenic peptides in cytosolic extracts, and our related studies (A. X. Y. Mo, K. Lemerise, W. Zeng, Y. Shen, C. R. Abraham, A. L. Goldberg, and K. L. Rock, submitted for publication) indicate that TOP by destroying such peptides limits antigen presentation in vivo.
Collapse
Affiliation(s)
- T Saric
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
38
|
Yewdell JW. Not such a dismal science: the economics of protein synthesis, folding, degradation and antigen processing. Trends Cell Biol 2001; 11:294-7. [PMID: 11413040 DOI: 10.1016/s0962-8924(01)02030-x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is a pronounced tendency among cell biologists to focus on qualitative aspects of cell physiology. The remarkable accomplishments of evolution in creating cells can only be fully appreciated, however, by combining this qualitative analysis with a quantitative assessment of cellular constituents and processes. Here, I consider the overall protein economy of cells as it relates to recent advances in understanding protein folding, ubiquitin-targeted proteasome-mediated degradation of proteins and the generation of peptide ligands for major histocompatibility complex (MHC) class I molecules.
Collapse
Affiliation(s)
- J W Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, National Institute of Allergy and Infectious Disease, 20892-0440, Bethesda, MD, USA.
| |
Collapse
|
39
|
Abstract
Progress in understanding how peptide ligands are generated for MHC class I molecules took several interesting leaps and twists in the past year. Two independent lines of evidence suggest that most peptides are generated by proteasomal digestion of nascent proteins. The amino-terminally extended cytosolic precursors of an antigenic peptide were identified, bound to a mysterious carrier protein. Knowledge about the role of immunoproteasomes in antigen processing was fortified, cellular locales specialized for proteasomal degradation (and possibly antigenic-peptide production) were discovered and novel cytosolic proteases potentially involved in generating and trimming antigenic peptides were identified. The field is poised for quantitative analysis of the various pathways that contribute to the pool of peptides presented to the immune system by MHC class I molecules.
Collapse
Affiliation(s)
- J W Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Room 211, 4 Center Drive, National Institutes of Health, Bethesda, MD 20892-0440, USA.
| | | |
Collapse
|
40
|
Portaro FC, Hayashi MA, Silva CL, de Camargo AC. Free ATP inhibits thimet oligopeptidase (EC 3.4.24.15) activity, induces autophosphorylation in vitro, and controls oligopeptide degradation in macrophage. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:887-94. [PMID: 11179954 DOI: 10.1046/j.1432-1327.2001.01978.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fate of the proteasome-generated peptides depends upon the cytosolic peptidases whose activities ought to be regulated. One of the most important oligopeptide-degrading and -binding proteins in the cytosol is the thimet oligopeptidase (EC 3.4.24.15), ubiquitously found in mammalian tissues. To date, there is no indication whether thimet oligopeptidase activities are physiologically regulated. Here, we present evidences suggesting that the concentration of unbound ATP in the cytosol regulates the thimet oligopeptidase activities both, in vitro and ex vivo. To perform these studies two oligopeptides were used: a quenched fluorescent peptide, which is susceptible to thimet oligopeptidase degradation, and the ovalbumin257-264 (MHC class I ovalbumin epitope), which displays high affinity to the thimet oligopeptidase without being degraded. We also showed that the thimet oligopeptidase undergoes autophosphorylation by ATP, a modification that does not affect the peptidase activity. The autophosphorylation is abolished in the presence of the thimet oligopeptidase substrates, as well as by the effect of a site directed inhibitor of this enzyme, and by the substitution of Glu474 for Asp at the metallo-peptidase motif. Altogether, the results presented here suggest that Zn2+ at the active center of the thimet oligopeptidase is the target for the ATP binding, leading to the inhibition of the enzyme activity, and inducing autophosphorylation. These effects, which depend upon the concentration of the unbound ATP, may help to explain the fate of the proteasomal-generated oligopeptides in the cytosol.
Collapse
Affiliation(s)
- F C Portaro
- Laboratory of Biochemistry and Biophysics, Instituto Butantan, São Paulo, Brazil
| | | | | | | |
Collapse
|
41
|
Okida N, Tokumoto M, Tokumoto T, Nagahama Y, Ohe Y, Miyamoto K, Ishikawa K. Cloning of cDNA Encoding Thimet Oligopeptidase from Xenopus Oocytes and Regulation of the mRNA During Oogenesis. Zoolog Sci 2000. [DOI: 10.2108/0289-0003(2000)17[431:coceto]2.0.co;2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Hayashi MA, Portaro FC, Tambourgi DV, Sucupira M, Yamane T, Fernandes BL, Ferro ES, Rebouças NA, de Camargo AC. Molecular and immunochemical evidences demonstrate that endooligopeptidase A is the predominant cytosolic oligopeptidase of rabbit brain. Biochem Biophys Res Commun 2000; 269:7-13. [PMID: 10694468 DOI: 10.1006/bbrc.2000.2243] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Oligopeptidases are tissue endopeptidases that do not attack proteins and are likely to be involved in the maturation and degradation of peptide hormones and neuropeptides. The rabbit brain endooligopeptidase A and the rat testes soluble metallopeptidase (EC 3.4.24.15) are thiol-activated oligopeptidases which are able to generate enkephalin from a number of opioid peptides and to inactivate bradykinin and neurotensin by hydrolyzing the same peptide bonds. A monospecific antibody raised against the purified rabbit brain endooligopeptidase A allowed the identification of a 2. 3 kb cDNA coding for a truncated enzyme of 512 amino acids, displaying the same enzymatic features as endooligopeptidase A. In spite of all efforts, employing several strategies, the full-length cDNA could not be cloned until now. The analysis of the deduced amino acid sequence showed no similarity to the rat testes metalloendopeptidase sequence, except for the presence of the typical metalloprotease consensus sequence [HEXXH]. The antibody raised against recombinant endooligopeptidase A specifically inhibited its own activity and reduced the thiol-activated oligopeptidase activity of rabbit brain cytosol to less than 30%. Analysis of the endooligopeptidase A tissue distribution indicated that this enzyme is mainly expressed in the CNS, whereas the soluble metallo EC 3.4.24.15 is mainly expressed in peripheral tissues.
Collapse
Affiliation(s)
- M A Hayashi
- Department of Biophysics and Biochemistry, Butantan Institute, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Oliveira V, Ferro ES, Gomes MD, Oshiro ME, Almeida PC, Juliano MA, Juliano L. Characterization of thiol-, aspartyl-, and thiol-metallo-peptidase activities in Madin-Darby canine kidney cells. J Cell Biochem 2000. [DOI: 10.1002/(sici)1097-4644(20000301)76:3<478::aid-jcb14>3.0.co;2-h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|