1
|
Protein Kinase C Alpha (PKCα) overexpression leads to a better response to retinoid acid therapy through Retinoic Acid Receptor Beta (RARβ) activation in mammary cancer cells. J Cancer Res Clin Oncol 2020; 146:3241-3253. [PMID: 32865619 DOI: 10.1007/s00432-020-03368-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 08/18/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE Retinoids have proved to be effective for hematologic malignancies treatment but till nowadays, their use as single agent for the solid tumor's management is still controversial. All-trans retinoic acid (ATRA), the main active metabolite of vitamin A, exerts non-genomic interactions with different members of the protein kinase C (PKC) family, recognized modulators of different tumor progression pathways. To determine whether a group of patients could become benefited employing a retinoid therapy, in this study we have evaluated whether PKCα expression (a poor prognosis marker in breast cancer) could sensitizes mammary cells to ATRA treatment. METHODS PKCα overexpression was achieved by stable transfection and confirmed by western blot. Transfected PKC functionality was determined by nuclear translocation-induction and confocal microscopy. In vitro proliferation was evaluated by cell counting and cell cycle distribution was analyzed by flow cytometry. In vivo studies were performed to evaluate orthotopic tumor growth and experimental lung colonization. Retinoic acid response elements (RARE) and AP1 sites-dependent activity was studied by gene reporter assays and retinoic acid receptors (RARs) were measured by RT-qPCR. RESULTS Our findings suggest that high PKCα levels improve the differentiation response to ATRA in a RAR signaling-dependent manner. Moreover, RARβ expression appears to be critical to induce ATRA sensitization, throughout AP1 trans-repression. CONCLUSION Here we propose that retinoids could lead a highly personalized anticancer treatment, bringing benefits to patients with aggressive breast tumors resulting from high PKCα expression but, an adequate expression of the RARβ receptor is required to ensure the effect on this process.
Collapse
|
2
|
Shi N, Chen SY. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases. J Cell Physiol 2015; 231:777-87. [DOI: 10.1002/jcp.25208] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 02/06/2023]
Affiliation(s)
- Ning Shi
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| | - Shi-You Chen
- Department of Physiology and Pharmacology; University of Georgia; Athens Georgia
| |
Collapse
|
3
|
Berardi DE, Bessone MID, Motter A, Bal de Kier Joffé ED, Urtreger AJ, Todaro LB. Involvement of protein kinase C α and δ activities on the induction of the retinoic acid system in mammary cancer cells. Mol Carcinog 2014; 54:1110-21. [PMID: 24838400 DOI: 10.1002/mc.22181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 03/20/2014] [Accepted: 04/17/2014] [Indexed: 01/26/2023]
Abstract
It has been established that retinoids exert some of their effects on cell differentiation and malignant phenotype reversion through the interaction with different members of the protein kinase C (PKC) family. Till nowadays the nature and extension of this interaction is not well understood. Due to the cytostatic and differentiating effects of retinoids, in the present study we propose to evaluate whether the crosstalk between the retinoid system and the PKC pathway could become a possible target for breast cancer treatment. We could determine that ATRA (all-trans retinoic) treatment showed a significant growth inhibition due to (G1 or G2) cell cycle arrest both in LM3 and SKBR3, a murine and human mammary cell line respectively. ATRA also induced a remarkable increase in PKCα and PKCδ expression and activity. Interestingly, the pharmacological inhibition of these two PKC isoforms prevented the activation of retinoic acid receptors (RARs) by ATRA, indicating that both PKC isoforms are required for RARs activation. Moreover, PKCδ inhibition also impaired ATRA-induced RARα translocation to the nucleus. In vivo assays revealed that a combined treatment using ATRA and PKCα inhibitors prevented lung metastatic dissemination in an additive way. Our results clearly indicate that ATRA modulates the expression and activity of different PKCs. Besides inducing cell arrest, the activity of both PKC is necessary for the induction of the retinoic acid system. The combined ATRA and PKCα inhibitors could be an option for the hormone-independent breast cancer treatment.
Collapse
Affiliation(s)
- Damián E Berardi
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - María I Díaz Bessone
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Andrea Motter
- Scientific Coordination, Operative Unit Biological Containment Center (UOCCB) ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | - Elisa D Bal de Kier Joffé
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Alejandro J Urtreger
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| | - Laura B Todaro
- Research Area, Institute of Oncology "Angel H. Roffo", University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Zhan Q, Fang Y, He Y, Liu HX, Fang J, Wan YJY. Function annotation of hepatic retinoid x receptor α based on genome-wide DNA binding and transcriptome profiling. PLoS One 2012; 7:e50013. [PMID: 23166811 PMCID: PMC3499475 DOI: 10.1371/journal.pone.0050013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Accepted: 10/19/2012] [Indexed: 02/05/2023] Open
Abstract
Background Retinoid x receptor α (RXRα) is abundantly expressed in the liver and is essential for the function of other nuclear receptors. Using chromatin immunoprecipitation sequencing and mRNA profiling data generated from wild type and RXRα-null mouse livers, the current study identifies the bona-fide hepatic RXRα targets and biological pathways. In addition, based on binding and motif analysis, the molecular mechanism by which RXRα regulates hepatic genes is elucidated in a high-throughput manner. Principal Findings Close to 80% of hepatic expressed genes were bound by RXRα, while 16% were expressed in an RXRα-dependent manner. Motif analysis predicted direct repeat with a spacer of one nucleotide as the most prevalent RXRα binding site. Many of the 500 strongest binding motifs overlapped with the binding motif of specific protein 1. Biological functional analysis of RXRα-dependent genes revealed that hepatic RXRα deficiency mainly resulted in up-regulation of steroid and cholesterol biosynthesis-related genes and down-regulation of translation- as well as anti-apoptosis-related genes. Furthermore, RXRα bound to many genes that encode nuclear receptors and their cofactors suggesting the central role of RXRα in regulating nuclear receptor-mediated pathways. Conclusions This study establishes the relationship between RXRα DNA binding and hepatic gene expression. RXRα binds extensively to the mouse genome. However, DNA binding does not necessarily affect the basal mRNA level. In addition to metabolism, RXRα dictates the expression of genes that regulate RNA processing, translation, and protein folding illustrating the novel roles of hepatic RXRα in post-transcriptional regulation.
Collapse
Affiliation(s)
- Qi Zhan
- Department of Gastroenterology Hepatology, Guangzhou First Municipal People's Hospital, Guangzhou Medical College, Guangzhou, Guangdong Province, China
| | - Yaping Fang
- Applied Bioinformatics Laboratory, University of Kansas, Lawrence, Kansas, United States of America
| | - Yuqi He
- Department of Medical Pathology and Laboratory Medicine, University of California Davis, Davis Health Systems, Sacramento, California, United States of America
| | - Hui-Xin Liu
- Department of Medical Pathology and Laboratory Medicine, University of California Davis, Davis Health Systems, Sacramento, California, United States of America
| | - Jianwen Fang
- Applied Bioinformatics Laboratory, University of Kansas, Lawrence, Kansas, United States of America
| | - Yu-Jui Yvonne Wan
- Department of Gastroenterology Hepatology, Guangzhou First Municipal People's Hospital, Guangzhou Medical College, Guangzhou, Guangdong Province, China
- Department of Medical Pathology and Laboratory Medicine, University of California Davis, Davis Health Systems, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
5
|
Li S, Zhang D, Yang L, Burnier JV, Wang N, Lin R, Lee ER, Glazer RI, Brodt P. The IGF-I receptor can alter the matrix metalloproteinase repertoire of tumor cells through transcriptional regulation of PKC-{alpha}. Mol Endocrinol 2009; 23:2013-25. [PMID: 19855090 DOI: 10.1210/me.2009-0197] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The IGF-I receptor (IGF-IR) was identified as a tumor progression factor, but its role in invasion and metastasis has been the subject of some controversy. Previously we reported that in murine lung carcinoma M-27 cells, overexpression of IGF-IR increased the synthesis and activation of matrix metalloproteinase (MMP)-2 via Akt/phosphatidylinositol 3-kinase signaling. In contrast, we show here that in these and other cells, IGF-IR overexpression reduced the constitutive and phorbol 12-myristate 13-acetate (PMA)-inducible expression of three protein kinase C (PKC)-regulated metalloproteinases, MMP-3, MMP-9, and MMP-13, in cultured cells as well as in vivo in sc tumors. To elucidate the underlying mechanism, we analyzed the effect of IGF-IR on PKC expression and activity using wild-type and IGF-IR-overexpressing (M-27(IGFIR)) tumor cells. Our results show that overexpression and activation of IGF-IR reduced PKC-alpha expression, PKC activity, and downstream ERK1/2 signaling, and these effects were reversed in cells expressing kinase (Y(1131,1135,1136)F) or C-terminal (Y(1250/51)F) domain mutants of IGF-IR. This reduction was due to transcriptional down-regulation of PKC-alpha as evidenced by reduced PKC-alpha mRNA expression in a phosphatidylinositol 3-kinase-dependent manner and a blockade of PKC-alpha promoter activation as revealed by a reporter gene assay. Finally, reconstitution of PKC-alpha levels could restore MMP-9 expression levels in these cells. Collectively, these results show that IGF-IR can inhibit PKC-alpha gene transcription and thereby block the synthesis of PMA-regulated MMPs, suggesting that within the same cells, IGF-IR can act as both a positive and negative regulator of MMP expression and function.
Collapse
Affiliation(s)
- Shun Li
- Department of Medicine, McGill University Health Center, Royal Victoria Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chen JY, Wei CC, Chiou MJ, Su HY, Kuo CM. Cloning and expression analysis of a protein kinase C gene, PKCmu, and its regulation of the promoter region in zebrafish. DNA Cell Biol 2007; 26:415-24. [PMID: 17570765 DOI: 10.1089/dna.2006.0569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cDNA and genomic DNA of zebrafish (Danio rerio) protein kinase Cmu (PKCmu), with its promoter region, were obtained. The 508-amino acid zebrafish PKCmu has 86.17% similarity to human PKCmu. Real-time reverse-transcription polymerase chain reaction analysis with starvation and hormonal treatment found significant differences between the control group and the experimental group after 14 days of starvation. After injecting insulin-like growth factor II (IGF-II), growth hormone (GH), insulin, or human chorionic gonadotropin, significant differences were observed between the control and experimental groups 24 h after treatment. After injecting the gonadotropin-releasing hormone or luteotropin-releasing hormone, significant differences were seen between the control and experimental groups 15 h after treatment. These results suggest that in vivo PKCmu expression is regulated by the insulin family or by the GH, but other sex hormones produced a significant expression level more quickly than the insulin family and GH. The zebrafish PKCmu gene is located on zebrafish chromosome 17 and consists of 16 exons. A 2.6 kilobase pair on the 5' flanking region displayed maximal promoter activity in the zebrafish liver (ZFL) cell line after treatment with IGF-I, IGF-II, and GH. However, a 1.6 kilobase pair on the 5' flanking region displayed maximal promoter activity in the HeLa cell line after treatment with IGF-I, IGF-II, and GH. Finally, PKCmu may have important nuclear effects on cell growth and may involve nuclear localization. By transiently transfecting ZFL cells with various zebrafish PKCmu segments, we identified a nuclear localization signal: the amino acid sequence between amino acids 206 and 209 was able to predominantly direct enhanced green fluorescence protein (EGFP) into the nucleus, whereas a deletion of this motif abrogated the nuclear localization property.
Collapse
Affiliation(s)
- Jyh-Yih Chen
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Jiaushi, Ilan, Taiwan.
| | | | | | | | | |
Collapse
|
7
|
Jacobs S, Lie DC, DeCicco KL, Shi Y, DeLuca LM, Gage FH, Evans RM. Retinoic acid is required early during adult neurogenesis in the dentate gyrus. Proc Natl Acad Sci U S A 2006; 103:3902-7. [PMID: 16505366 PMCID: PMC1450163 DOI: 10.1073/pnas.0511294103] [Citation(s) in RCA: 199] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Retinoic acid (RA) is commonly used in vitro to differentiate stem cell populations including adult neural stem cells into neurons; however, the in vivo function of RA during adult neurogenesis remains largely unexplored. We found that depletion of RA in adult mice leads to significantly decreased neuronal differentiation within the granular cell layer of the dentate gyrus. RA contribution to neurogenesis occurs early, for RA deficiency also results in a decrease in newborn cells expressing an immature neuronal marker. Furthermore, although proliferation is unaffected during RA absence, cell survival is significantly reduced. Finally, a screen for retinoid-induced genes identifies metabolic targets including the lipid transporters, CD-36 and ABCA-1, the lipogenic master regulator SREBP1c as well as components of the Wnt signaling pathway. Our results reveal RA as a crucial contributor to early stages of adult neurogenesis and survival in vivo.
Collapse
Affiliation(s)
| | - D. Chichung Lie
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | - Kathleen L. DeCicco
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, MD 20892
| | | | - Luigi M. DeLuca
- Laboratory of Cellular Carcinogenesis and Tumor Promotion, National Cancer Institute, Bethesda, MD 20892
| | - Fred H. Gage
- Laboratory of Genetics, Salk Institute for Biological Studies, La Jolla, CA 92037; and
| | | |
Collapse
|
8
|
Bour G, Taneja R, Rochette‐Egly C. Mouse embryocarcinoma F9 cells and retinoic acid: A model to study the molecular mechanisms of endodermal differentiation. NUCLEAR RECEPTORS IN DEVELOPMENT 2006. [DOI: 10.1016/s1574-3349(06)16007-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
López-Andreo MJ, Torrecillas A, Conesa-Zamora P, Corbalán-García S, Gómez-Fernández JC. Retinoic acid as a modulator of the activity of protein kinase Calpha. Biochemistry 2005; 44:11353-60. [PMID: 16114872 DOI: 10.1021/bi0504862] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
All-trans-retinoic acid (atRA) is a derivative of vitamin A and possesses antitumor activity. We demonstrate that atRA is able to modulate the activity of protein kinase C alpha (PKCalpha), which is related to tumor development. In vitro, it was found that atRA activated PKCalpha in the presence of Ca(2+) and in the absence of phosphatidylserine, although such activity is considerably inhibited in mutations affecting residues D246 and D248 and also residue N189, all of which are known to be essential for the interaction with Ca(2+) and phosphatidylserine in the C2 domain. It was concluded that atRA substitutes phosphatidylserine although with lower specific activities. However, atRA had a biphasic effect on PKCalpha activity in the presence of activating phospholipids, such as phosphatidylserine and phosphatidylinositol 4,5-bisphosphate, yielding activation at low concentrations but inactivation at higher ones. This second inhibitory characteristic was not shown with K209 and K211 mutations (residues located in the Lys-rich cluster in the C2 domain) in PKCalpha. This interesting effect revealed the importance of phospholipid binding at this site to ensure maximum activity for the wild-type PKCalpha. The C1 domain was not related with the atRA effect on PKCalpha. It was concluded that whereas atRA may activate PKCalpha through the Ca(2+)-phosphatidylserine-binding site of the C2 domain, it may also inhibit the activity of this enzyme when displacing the phospholipid from the Lys-rich cluster also located in the C2 domain.
Collapse
Affiliation(s)
- María-José López-Andreo
- Departamento de Bioquímica y Biología Molecular (A), Facultad de Veterinaria, Universidad de Murcia, Apartado de Correos 4021, E-30080-Murcia, Spain
| | | | | | | | | |
Collapse
|
10
|
Tighe AP, Talmage DA. Retinoids arrest breast cancer cell proliferation: retinoic acid selectively reduces the duration of receptor tyrosine kinase signaling. Exp Cell Res 2005; 301:147-57. [PMID: 15530851 PMCID: PMC2742418 DOI: 10.1016/j.yexcr.2004.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 07/08/2004] [Indexed: 01/12/2023]
Abstract
Retinoic acid (RA) induces cell cycle arrest of hormone-dependent human breast cancer (HBC) cells. Previously, we demonstrated that RA-induced growth arrest of T-47D HBC cells required the activity of the RA-induced protein kinase, protein kinase Calpha (PKCalpha) [J. Cell Physiol. 172 (1997) 306]. Here, we demonstrate that RA treatment of T-47D cells interfered with growth factor signaling to downstream, cytoplasmic and nuclear targets. RA treatment did not inhibit epidermal growth factor (EGF) receptor activation but resulted in rapid inactivation. The lack of sustained EGFR activation was associated with transient rather than sustained association of the EGFR with the Shc adaptor proteins and activation of Erk 1/2 and with compromised induction of expression of immediate early response genes. Inhibiting the activity of PKCalpha, a retinoic acid-induced target gene, prevented the effects of RA on cell proliferation and EGF signaling. Constitutive expression of PKCalpha, in the absence of RA, decreased cell proliferation and decreased EGF signaling. RA treatment increased steady-state levels of the protein tyrosine phosphatase PTP-1C and all measured effects of RA on EGF receptor function were reversed by the tyrosine phosphate inhibitor orthovanadate. These results indicate that RA-induced target genes, particularly PKCalpha, prevent sustained growth factor signaling, uncoupling activated receptor tyrosine kinases and nuclear targets that are required for cell cycle progression.
Collapse
Affiliation(s)
- Ann P. Tighe
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
| | - David A. Talmage
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
- Department of Pediatrics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, United States
- Corresponding author. Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, HHSC5-503, New York, NY 10032. Fax: +1 212 305 3079. E-mail address: (D.A. Talmage)
| |
Collapse
|
11
|
Tao Q, Cheng Y, Clifford J, Lotan R. Characterization of the murine orphan G-protein-coupled receptor gene Rai3 and its regulation by retinoic acid. Genomics 2004; 83:270-80. [PMID: 14706456 DOI: 10.1016/s0888-7543(03)00237-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A retinoic acid-inducible gene (RAI3) encoding an orphan G-protein-coupled receptor is regulated during embryonal carcinoma differentiation. To elucidate the mechanisms that mediate its regulation, we isolated and characterized the mouse gene (Rai3) and promoter region. Rai3 spans about 18 kb containing four exons separated by three introns and maps to mouse chromosome 6 near D6mit25. A functional analysis of the Rai3 gene promoter revealed that the proximal region harbors most of the elements necessary for its regulation, including GC boxes and Sp1-, AP1-, and AP2-binding sites. A functional retinoic acid response element direct repeat of two novel motifs separated by a 5-bp spacer (5'-TGTCCCtcggtTCACCC-3') was identified at -64 bp upstream of the transcription start site using the methods of promoter truncation, electrophoretic mobility shift assay, and mutation analysis. These findings provide strong evidence that Rai3 is regulated directly by retinoic acid via its receptors.
Collapse
Affiliation(s)
- Qingguo Tao
- Department of Thoracic/Head & Neck Medical Oncology--432, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
12
|
Gustafson WC, Ray S, Jamieson L, Thompson EA, Brasier AR, Fields AP. Bcr-Abl regulates protein kinase Ciota (PKCiota) transcription via an Elk1 site in the PKCiota promoter. J Biol Chem 2003; 279:9400-8. [PMID: 14670960 DOI: 10.1074/jbc.m312840200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The protein kinase C (PKC) family of serine/threonine kinases plays an important role in numerous cancer signaling pathways, including those downstream of the bcr-abl oncogene. We demonstrated previously that atypical PKCiota is required for Bcr-Abl-mediated resistance of human K562 chronic myelogenous leukemia (CML) cells to Taxol-induced apoptosis. Here, we report that the pattern of PKC isozyme expression characteristic of CML cells is regulated by Bcr-Abl. When Bcr-Abl was expressed in Bcr-Abl-negative HL-60 promyelocytic leukemia cells, expression of the PKCbetaI, PKCbetaII, and PKCiota genes was induced, whereas expression of the PKCdelta gene was reduced to levels similar to those found in CML cells. Given the importance of PKCiota in Bcr-Abl-mediated transformation, we characterized the mechanism by which Bcr-Abl regulates PKCiota expression. A 1200-bp PKCiota promoter construct isolated from genomic DNA was highly active in Bcr-Abl-positive K562 cells and was activated when Bcr-Abl-negative cells were transfected with Bcr-Abl. Bcr-Abl-mediated induction of the PKCiota promoter was dependent upon MEK1/2 activity, but not phosphatidylinositol 3-kinase or p38 MAPK activity. Mutational analysis of the PKCiota promoter revealed a region between 97 and 114 bp upstream of the transcriptional start site that is responsible for Bcr-Abl-mediated regulation. Mutation of a consensus Elk1-binding site within this region abolished Bcr-Abl-mediated regulation. We conclude that Bcr-Abl regulates PKCiota expression through the MEK-dependent activation of an Elk1 element within the proximal PKCiota promoter. Our results indicate that Bcr-Abl-mediated transformation involves transcriptional activation of the PKCiota gene, which in turn is required for Bcr-Abl-mediated chemoresistance.
Collapse
Affiliation(s)
- W Clay Gustafson
- Mayo Clinic Comprehensive Cancer Center, Jacksonville, Florida 32224, USA
| | | | | | | | | | | |
Collapse
|
13
|
Ochoa WF, Torrecillas A, Fita I, Verdaguer N, Corbalán-García S, Gomez-Fernandez JC. Retinoic acid binds to the C2-domain of protein kinase C(alpha). Biochemistry 2003; 42:8774-9. [PMID: 12873138 DOI: 10.1021/bi034713g] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein kinase C(alpha) (PKC(alpha)) is a key enzyme regulating the physiology of cells and their growth, differentiation, and apoptosis. PKC activity is known to be modulated by all-trans retinoic acid (atRA), although neither the action mechanism nor even the possible binding to PKCs has been established. Crystals of the C2-domain of PKC(alpha), a regulatory module in the protein that binds Ca(2+) and acidic phospholipids, have now been obtained by cocrystallization with atRA. The crystal structure, refined at 2.0 A resolution, shows that RA binds to the C2-domain in two locations coincident with the two binding sites previously reported for acidic phospholipids. The first binding site corresponds to the Ca(2+)-binding pocket, where Ca(2+) ions mediate the interactions of atRA with the protein, as they do with acidic phospholipids. The second binding site corresponds to the conserved lysine-rich cluster localized in beta-strands three and four. These observations are strongly supported by [(3)H]-atRA-binding experiments combined with site-directed mutagenesis. Wild-type C2-domain binds 2 mol of atRA per mol of protein, while the rate reduces to one in the case of C2-domain variants, in which mutations affect either Ca(2+) coordination or the integrity of the lysine-rich cluster site. Competition between atRA and acidic phospholipids to bind to PKC is a possible mechanism for modulating PKC(alpha) activity.
Collapse
Affiliation(s)
- Wendy F Ochoa
- Instituto de Biología Molecular de Barcelona (CSIC), Jordi Girona Salgado 18-26, E-08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Cho SH, Oh CD, Kim SJ, Kim IC, Chun JS. Retinoic acid inhibits chondrogenesis of mesenchymal cells by sustaining expression of N-cadherin and its associated proteins. J Cell Biochem 2003; 89:837-47. [PMID: 12858348 DOI: 10.1002/jcb.10553] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Retinoic acid (RA) is a well-known regulator of chondrocyte phenotype. RA inhibits chondrogenic differentiation of mesenchymal cells and also causes loss of differentiated chondrocyte phenotype. The present study investigated the mechanisms underlying RA regulation of chondrogenesis. RA treatment in chondrifying mesenchymal cells did not affect precartilage condensation, but blocked progression from precartilage condensation to cartilage nodule formation. This inhibitory effect of RA was independent of protein kinase C and extracellular signal-regulated protein kinase, which are positive and negative regulators of cartilage nodule formation, respectively. The progression from precartilage condensation to cartilage nodule requires downregulation of N-cadherin expression. However, RA treatment caused sustained expression of N-cadherin and its associated proteins including alpha- and beta-catenin suggesting that modulation of expression of these molecules is associated with RA-induced inhibition of chondrogenesis. This hypothesis was supported by the observation that disruption of the actin cytoskeleton by cytochalasin D (CD) blocks RA-induced sustained expression of cell adhesion molecules and overcomes RA-induced inhibition of chondrogenesis. Taken together, our results suggest RA inhibits chondrogenesis by stabilizing cell-to-cell interactions at the post-precartilage condensation stage.
Collapse
Affiliation(s)
- Seo-Hyun Cho
- Department of Life Sciences, Kwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | |
Collapse
|
15
|
Clark JH, Haridasse V, Glazer RI. Modulation of the human protein kinase C alpha gene promoter by activator protein-2. Biochemistry 2002; 41:11847-56. [PMID: 12269829 DOI: 10.1021/bi025600k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein kinase Calpha (PKCalpha) is a phospholipid-dependent protein-serine/threonine kinase that plays a major role in intracellular signaling pathways associated with transformation and tumor progression. Glioblastoma multiforme (GBM) and GBM cell lines exhibit increased levels of PKCalpha compared to normal brain tissue that relates to their proliferative and invasive potential. To investigate the transcriptional regulation of PKCalpha, the 5'-flanking sequence of the human PKCalpha gene was cloned and its promoter activity assessed in U-87 GBM cells. This sequence contained a TATA-less promoter region and a single transcription start site within an initiator sequence. Basal promoter activity was restricted to a region spanning -227 to +77 relative to the transcription start site. DNase I footprinting revealed multiple activator protein-2 (AP-2) binding sites and one Sp1 binding site within this region, and point mutations of two AP-2 elements resulted in a loss of DNA binding and transcriptional activation. Overexpression of Sp1 in either U-87 or insect cells increased transcription from the -227/+77 promoter region, whereas overexpression of AP-2 increased transcription only in insect cells. Cis activation of the promoter in U-87 cells was increased by phorbol esters but not by cyclic AMP or phosphatidylinositol 3-kinase inhibitors. These results provide evidence that cis activation of the basal promoter of the human PKCalpha gene occurs through an AP-2-dependent, phorbol ester-responsive pathway, which suggests an autoregulatory manner of transcription in GBM.
Collapse
Affiliation(s)
- Joannah Hackenbruck Clark
- Department of Pharmacology, Lombardi Cancer Center, Georgetown University School of Medicine, 3970 Reservoir Road NW, Washington, D.C. 20007, USA
| | | | | |
Collapse
|
16
|
Kim SJ, Kim HG, Oh CD, Hwang SG, Song WK, Yoo YJ, Kang SS, Chun JS. p38 kinase-dependent and -independent Inhibition of protein kinase C zeta and -alpha regulates nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes. J Biol Chem 2002; 277:30375-81. [PMID: 12048219 DOI: 10.1074/jbc.m205193200] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
In articular chondrocytes, nitric oxide (NO) production triggers dedifferentiation and apoptotic cell death that is regulated by the converse functions of two mitogen-activated protein kinase subtypes, extracellular signal-regulated kinase (ERK) and p38 kinase. Since protein kinase C (PKC) transduces signals that influence differentiation, survival, and apoptosis of various cell types, we investigated the roles and underlying molecular mechanisms of action of PKC isoforms in NO-induced dedifferentiation and apoptosis of articular chondrocytes. We report here that among the expressed isoforms, activities of PKCalpha and -zeta were reduced during NO-induced dedifferentiation and apoptosis. Inhibition of PKCalpha activity was independent of NO-induced activation of ERK or p38 kinase and occurred due to blockage of expression. On the other hand, PKCzeta activity was inhibited as a result of NO-induced p38 kinase activation and was observed prior to proteolytic cleavage by a caspase-mediated process to generate enzymatically inactive fragments. Inhibition of PKCalpha or -zeta activities potentiated NO-induced apoptosis, whereas ectopic expression of these isoforms significantly reduced the number of apoptotic cells and blocked dedifferentiation. Ectopic expression of PKCalpha or -zeta did not affect p38 kinase or ERK but inhibited the p53 accumulation and caspase-3 activation that are required for NO-induced apoptosis of chondrocytes. Therefore, our results collectively indicate that p38 kinase-independent and -dependent inhibition of PKCalpha and -zeta, respectively, regulates NO-induced apoptosis and dedifferentiation of articular chondrocytes.
Collapse
Affiliation(s)
- Song-Ja Kim
- Department of Life Science, Kwangju Institute of Science and Technology, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Protein kinase C (PKC) is a family of ten isoforms of phospholipid-dependent serine/threonine kinases, which participate in many cellular responses including cell growth, differentiation, and tumorigenesis. Of the isoforms, PKC alpha is distributed ubiquitously in almost all tissues and involved in various signal transductions. Furthermore, PKC alpha plays an important role in the growth and malignant progression of some tumor cell lines. Elucidating the roles of PKC alpha in vivo would lead to understanding of the mechanism of tumorigenesis and other biological functions. In this study, we isolated and characterized genomic DNA clones of the mouse PKC alpha gene (Prkca). The Prkca gene was a unigene consisting of 17 exons and spanning at least 116 kb. All the exon-intron boundaries followed the GT/AG rule. The genomic structure of PKC alpha was markedly conserved among the mouse, human, and fly. By radiation hybrid mapping, the Prkca gene was closely linked to sequence-tagged site marker D11Mit258 that locates 65.0 cM from the centromere of chromosome 11, and its transcription was towards the centromere. This study shows that generation of PKC alpha-mutant mice may reveal the PKC alpha function in vivo.
Collapse
Affiliation(s)
- Takeshi Hara
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | |
Collapse
|
18
|
Cho Y, Talmage DA. Protein kinase Calpha expression confers retinoic acid sensitivity on MDA-MB-231 human breast cancer cells. Exp Cell Res 2001; 269:97-108. [PMID: 11525643 DOI: 10.1006/excr.2001.5298] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retinoic acid activation of retinoic acid receptor alpha (RARalpha) induces protein kinase Calpha (PKCalpha) expression and inhibits proliferation of the hormone-dependent T-47D breast cancer cell line. Retinoic acid has no effect on proliferation or PKCalpha expression in a hormone-independent, breast cancer cell line (MDA-MB-231). To test the role of PKCalpha in retinoic acid-induced growth arrest of human breast cancer cells we established MDA-MB-231 cell lines stably expressing PKCalpha. Constitutive expression of PKCalpha did not affect proliferation of MDA-MB-231 cells but did result in partial retinoic acid sensitivity. Retinoic acid treatment of PKCalpha-MDA-MB-231 cells decreased proliferation (by approximately 40%) and inhibited serum activation of MAP kinases and induction of c-fos. Similar results were seen in MDA-MB-231 cells in which transcription of the transfected PKCalpha cDNA was reversibly induced by isopropyl beta-d-thiogalactoside. Expression of RARalpha in PKCalpha expressing MDA-MB-231 cells resulted in even greater retinoic acid responses, as measured by effects on cell proliferation, inhibition of serum signaling, and transactivation of an RARE-CAT reporter plasmid. In summary, PKCalpha synergizes with activated RARalpha to disrupt serum growth factor signaling, ultimately arresting proliferation of MDA-MB-231 cells.
Collapse
MESH Headings
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Blood Proteins/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/enzymology
- Breast Neoplasms/physiopathology
- Calcium/metabolism
- Cell Division/drug effects
- Cell Division/physiology
- Drug Interactions
- Epidermal Growth Factor/pharmacology
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/physiology
- Genes, Reporter/drug effects
- Genes, Reporter/physiology
- Humans
- Isoenzymes/drug effects
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Isopropyl Thiogalactoside/pharmacology
- Mitogen-Activated Protein Kinases/genetics
- Protein Kinase C/drug effects
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Protein Kinase C-alpha
- Proto-Oncogene Proteins c-fos/genetics
- Proto-Oncogene Proteins c-jun/genetics
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptors, Retinoic Acid/drug effects
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transfection
- Tretinoin/metabolism
- Tretinoin/pharmacology
- Tumor Cells, Cultured/cytology
- Tumor Cells, Cultured/drug effects
- Tumor Cells, Cultured/enzymology
Collapse
Affiliation(s)
- Y Cho
- Institute of Human Nutrition, Columbia University, New York, New York 10032, USA
| | | |
Collapse
|
19
|
Frey MR, Clark JA, Leontieva O, Uronis JM, Black AR, Black JD. Protein kinase C signaling mediates a program of cell cycle withdrawal in the intestinal epithelium. J Cell Biol 2000; 151:763-78. [PMID: 11076962 PMCID: PMC2169440 DOI: 10.1083/jcb.151.4.763] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2000] [Accepted: 09/25/2000] [Indexed: 12/21/2022] Open
Abstract
Members of the protein kinase C (PKC) family of signal transduction molecules have been widely implicated in regulation of cell growth and differentiation, although the underlying molecular mechanisms involved remain poorly defined. Using combined in vitro and in vivo intestinal epithelial model systems, we demonstrate that PKC signaling can trigger a coordinated program of molecular events leading to cell cycle withdrawal into G(0). PKC activation in the IEC-18 intestinal crypt cell line resulted in rapid downregulation of D-type cyclins and differential induction of p21(waf1/cip1) and p27(kip1), thus targeting all of the major G(1)/S cyclin-dependent kinase complexes. These events were associated with coordinated alterations in expression and phosphorylation of the pocket proteins p107, pRb, and p130 that drive cells to exit the cell cycle into G(0) as indicated by concomitant downregulation of the DNA licensing factor cdc6. Manipulation of PKC isozyme levels in IEC-18 cells demonstrated that PKCalpha alone can trigger hallmark events of cell cycle withdrawal in intestinal epithelial cells. Notably, analysis of the developmental control of cell cycle regulatory molecules along the crypt-villus axis revealed that PKCalpha activation is appropriately positioned within intestinal crypts to trigger this program of cell cycle exit-specific events in situ. Together, these data point to PKCalpha as a key regulator of cell cycle withdrawal in the intestinal epithelium.
Collapse
Affiliation(s)
- M R Frey
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA.
| | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- J M Miano
- Center for Cardiovascular Research, University of Rochester Medical Center, Rochester, NY 14642, USA.
| | | |
Collapse
|
21
|
McCaffery P, Dräger UC. Regulation of retinoic acid signaling in the embryonic nervous system: a master differentiation factor. Cytokine Growth Factor Rev 2000; 11:233-49. [PMID: 10817966 DOI: 10.1016/s1359-6101(00)00002-2] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes some of the properties of retinoic acid (RA) in its functions as a locally synthesized differentiation factor for the developing nervous system. The emphasis is on the characterization of the metabolic enzymes that synthesize and inactivate RA, and which determine local RA concentrations. These enzymes create regions of autocrine and paracrine RA signaling in the embryo. One mechanism by which RA can act as a differentiation agent is through the induction of growth factors and their receptors. Induction of growth factor receptors in neural progenitor cells can lead to growth factor dependency, and the consequent developmental fate of the cell will depend on the local availability of growth factors. Because RA activates the early events of cell differentiation, which then induce context-specific differentiation programs, RA may be called a master differentiation factor.
Collapse
Affiliation(s)
- P McCaffery
- E. Kennedy Shriver Center, Waltham, MA 02452, USA.
| | | |
Collapse
|