1
|
Yu S, Wang R, Wang W. Hsa-miR-342-3p and hsa-miR-360 may be the key molecules that promote periodontitis in type 2 diabetes mellitus. Heliyon 2024; 10:e32198. [PMID: 38873685 PMCID: PMC11170139 DOI: 10.1016/j.heliyon.2024.e32198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/15/2024] Open
Abstract
Background Periodontitis (PD) has been acknowledged as a complication associated with type 2 diabetes mellitus (T2DM). However, the precise mechanism through which T2DM fosters the development of PD remains elusive. Our objective is to elucidate the connection between these two conditions by conducting bioinformatics analysis. Methods In this study, we analyzed miRNA datasets pertaining to T2DM and PD sourced from GEO. Through differential expression analysis, we identified common differentially expressed miRNAs (DE-miRNAs) and subsequently analyzed the functional enrichment of these common DE-miRNAs. We further leveraged the PD transcriptome database to select DE-miRNA-targeted mRNAs and examined their association with immune infiltration. Finally, machine learning was used to further screen hub DE-miRNA-targeted mRNAs and validate our data in external datasets. Results Two common DE-miRNAs, namely hsa-miR-342-3p and hsa-miR-360, were identified from the miRNA datasets of PD and T2DM. Functional enrichment analysis indicated that these two common DE-miRNAs predominantly participate in Ras, PI3K-Akt, p53, and MAPK signaling pathways. Integration of the PD transcriptome dataset revealed a total of 21 DE-miRNA-targeted mRNAs in PD, with strong correlations observed with plasma cells and dendritic cells. Finally, three hub DE-miRNA-targeted mRNAs (hsa-miR-342-3p-/hsa-miR-360-RASAL2, hsa-miR-360-ENTPD1/PLXDC2) were identified. ENTPD1 exhibited a robust positive correlation with plasma cells and a negative correlation with resting dendritic cells. Conclusions Therefore, hsa-miR-342-3p-/hsa-miR-360-RASAL2, as well as hsa-miR-360-ENTPD1/PLXDC2, may serve as diagnostic and therapeutic targets for T2DM-associated PD.
Collapse
Affiliation(s)
- Shaobing Yu
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Clinical Laboratory, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| | - Ruxin Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Jinan University, Guangzhou Oversea Chinese Hospital, Guangzhou, China
| | - Wei Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Clinical Laboratory, Stomatological Hospital and Dental School, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Oliveros A, Poleschuk M, Cole PD, Boison D, Jang MH. Chemobrain: An accelerated aging process linking adenosine A 2A receptor signaling in cancer survivors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:267-305. [PMID: 37741694 PMCID: PMC10947554 DOI: 10.1016/bs.irn.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Chemotherapy has a significant positive impact in cancer treatment outcomes, reducing recurrence and mortality. However, many cancer surviving children and adults suffer from aberrant chemotherapy neurotoxic effects on learning, memory, attention, executive functioning, and processing speed. This chemotherapy-induced cognitive impairment (CICI) is referred to as "chemobrain" or "chemofog". While the underlying mechanisms mediating CICI are still unclear, there is strong evidence that chemotherapy accelerates the biological aging process, manifesting as effects which include telomere shortening, epigenetic dysregulation, oxidative stress, mitochondrial defects, impaired neurogenesis, and neuroinflammation, all of which are known to contribute to increased anxiety and neurocognitive decline. Despite the increased prevalence of CICI, there exists a lack of mechanistic understanding by which chemotherapy detrimentally affects cognition in cancer survivors. Moreover, there are no approved therapeutic interventions for this condition. To address this gap in knowledge, this review attempts to identify how adenosine signaling, particularly through the adenosine A2A receptor, can be an essential tool to attenuate accelerated aging phenotypes. Importantly, the adenosine A2A receptor uniquely stands at the crossroads of cancer treatment and improved cognition, given that it is widely known to control tumor induced immunosuppression in the tumor microenvironment, while also posited to be an essential regulator of cognition in neurodegenerative disease. Consequently, we propose that the adenosine A2A receptor may provide a multifaceted therapeutic strategy to enhance anticancer activity, while combating chemotherapy induced cognitive deficits, both which are essential to provide novel therapeutic interventions against accelerated aging in cancer survivors.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Michael Poleschuk
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter D Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| |
Collapse
|
3
|
Rodriguez NR, Fortune T, Vuong T, Swartz TH. The role of extracellular ATP and P2X receptors in the pathogenesis of HIV-1. Curr Opin Pharmacol 2023; 69:102358. [PMID: 36848824 PMCID: PMC10023410 DOI: 10.1016/j.coph.2023.102358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 03/01/2023]
Abstract
Human Immunodeficiency Virus Type 1 (HIV-1) causes a chronic, incurable infection associated with chronic inflammation despite virologic suppression on antiretroviral therapy (ART). This chronic inflammation underlies significant comorbidities, including cardiovascular disease, neurocognition decline, and malignancies. The mechanisms of chronic inflammation have been attributed, in part, to the role of extracellular ATP and P2X-type purinergic receptors that sense damaged or dying cells and undergo signaling responses to activate inflammation and immunomodulation. This review describes the current literature on the role of extracellular ATP and P2X receptors in HIV-1 pathogenesis, describing the known intersection with the HIV-1 life cycle in mediating immunopathogenesis and neuronal disease. The literature supports key roles for this signaling mechanism in cell-to-cell communication and in activating transcriptional changes that impact the inflammatory state leading to disease progression. Future studies must characterize the numerous functions of ATP and P2X receptors in HIV-1 pathogenesis to inform future therapeutic targeting.
Collapse
Affiliation(s)
- Natalia R Rodriguez
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Trinisia Fortune
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thien Vuong
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Huang J, Chen Y, Guo Z, Yu Y, Zhang Y, Li P, Shi L, Lv G, Sun B. Prospective study and validation of early warning marker discovery based on integrating multi-omics analysis in severe burn patients with sepsis. BURNS & TRAUMA 2023; 11:tkac050. [PMID: 36659877 PMCID: PMC9840905 DOI: 10.1093/burnst/tkac050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/22/2022] [Indexed: 01/17/2023]
Abstract
Background Early detection, timely diagnosis and rapid response are essential for case management and precautions of burn-associated sepsis. However, studies on indicators for early warning and intervention have rarely been conducted. This study was performed to better understand the pathophysiological changes and targets for prevention of severe burn injuries. Methods We conducted a multi-center, prospective multi-omics study, including genomics, microRNAomics, proteomics and single-cell transcriptomics, in 60 patients with severe burn injuries. A mouse model of severe burn injuries was also constructed to verify the early warning ability and therapeutic effects of potential markers. Results Through genomic analysis, we identified seven important susceptibility genes (DNAH11, LAMA2, ABCA2, ZFAND4, CEP290, MUC20 and ENTPD1) in patients with severe burn injuries complicated with sepsis. Through plasma miRNAomics studies, we identified four miRNAs (hsa-miR-16-5p, hsa-miR-185-5p, hsa-miR-451a and hsa-miR-423-5p) that may serve as early warning markers of burn-associated sepsis. A proteomic study indicated the changes in abundance of major proteins at different time points after severe burn injury and revealed the candidate early warning markers S100A8 and SERPINA10. In addition, the proteomic analysis indicated that neutrophils play an important role in the pathogenesis of severe burn injuries, as also supported by findings from single-cell transcriptome sequencing of neutrophils. Through further studies on severely burned mice, we determined that S100A8 is also a potential early therapeutic target for severe burn injuries, beyond being an early warning indicator. Conclusions Our multi-omics study identified seven susceptibility genes, four miRNAs and two proteins as early warning markers for severe burn-associated sepsis. In severe burn-associated sepsis, the protein S100A8 has both warning and therapeutic effects.
Collapse
Affiliation(s)
| | | | | | - Yanzhen Yu
- Department of Burns and Plastic Surgery, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, Jiangsu Province, China
| | - Yi Zhang
- Department of Burns and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong 226000, Jiangsu, China
| | - Pingsong Li
- Department of Burns and Plastic Surgery, Northern Jiangsu People’s Hospital, Yangzhou 225001, Jiangsu, China
| | - Lei Shi
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang 212001, Jiangsu, China
| | - Guozhong Lv
- Department of Burns and Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi 214041, Jiangsu, China
| | | |
Collapse
|
5
|
Zeng J, Ning Z, Wang Y, Xiong H. Implications of CD39 in immune-related diseases. Int Immunopharmacol 2020; 89:107055. [PMID: 33045579 DOI: 10.1016/j.intimp.2020.107055] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/10/2020] [Accepted: 09/26/2020] [Indexed: 02/07/2023]
Abstract
Extracellular adenosine triphosphate (eATP) mediates pro-inflammatory responses by recruiting and activating inflammatory cells. CD39 can hydrolyze eATP into adenosine monophosphate (AMP), while CD73 can convert AMP into the immunosuppressive nucleoside adenosine (ADO). CD39 is a rate-limiting enzyme in this cascade, which is regarded as an immunological switch shifting the ATP-mediated pro-inflammatory environment to the ADO- mediated anti-inflammatory status. The CD39 expression can be detected in a wide spectrum of immunocytes, which is under the influence of environmental and genetic factors. It is increasingly suggested that, CD39 participates in some pathophysiological processes, like inflammatory bowel disease (IBD), sepsis, multiple sclerosis (MS), allergic diseases, ischemia-reperfusion (I/R) injury, systemic lupus erythematosus (SLE), diabetes and cancer. Here, we focus on the current understanding of CD39 in immunity, and comprehensively illustrate the diverse CD39 functions within a variety of disorders.
Collapse
Affiliation(s)
- Jianrui Zeng
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China
| | - Yuzhong Wang
- Department of Neurology and Central Laboratory, Affiliated Hospital of Jining Medical University, Shandong 272000, China.
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Jining Medical University, Shandong 272067, China.
| |
Collapse
|
6
|
Green JP, Souilhol C, Xanthis I, Martinez-Campesino L, Bowden NP, Evans PC, Wilson HL. Atheroprone flow activates inflammation via endothelial ATP-dependent P2X7-p38 signalling. Cardiovasc Res 2019; 114:324-335. [PMID: 29126223 PMCID: PMC5852506 DOI: 10.1093/cvr/cvx213] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 11/03/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are incompletely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors and downstream signalling was assessed. Methods and results Cultured human endothelial cells were exposed to atheroprotective (high uniform) or atheroprone (low oscillatory) shear stress for 72 h prior to assessment of ATP responses. Imaging of cells loaded with a calcium-sensitive fluorescent dye revealed that atheroprone flow enhanced extracellular calcium influx in response to 300 µM 2'(3')-O-(4-Benzoylbenzoyl) adenosine-5'-triphosphate. Pre-treatment with pharmacological inhibitors demonstrated that this process required purinergic P2X7 receptors. The mechanism involved altered expression of P2X7, which was induced by atheroprone flow conditions in cultured cells. Similarly, en face staining of the murine aorta revealed enriched P2X7 expression at an atheroprone site. Functional studies in cultured endothelial cells showed that atheroprone flow induced p38 phosphorylation and up-regulation of E-selectin and IL-8 secretion via a P2X7-dependent mechanism. Moreover, genetic deletion of P2X7 significantly reduced E-selectin at atheroprone regions of the murine aorta. Conclusions These findings reveal that P2X7 is regulated by shear forces leading to its accumulation at atheroprone sites that are exposed to disturbed patterns of blood flow. P2X7 promotes endothelial inflammation at atheroprone sites by transducing ATP signals into p38 activation. Thus P2X7 integrates vascular mechanical responses with purinergic signalling to promote endothelial dysfunction and may provide an attractive potential therapeutic target to prevent or reduce atherosclerosis.
Collapse
Affiliation(s)
- Jack P Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Celine Souilhol
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Ioannis Xanthis
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Laura Martinez-Campesino
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Neil P Bowden
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK
| | - Paul C Evans
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.,Bateson Centre, University of Sheffield, Sheffield, UK.,INSIGNEO Institute, University of Sheffield, Sheffield, UK
| | - Heather L Wilson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Beech Hill Road, Sheffield S10 2RX, UK.,Bateson Centre, University of Sheffield, Sheffield, UK
| |
Collapse
|
7
|
Wang LL, Tang PH, Shi CG, Wan YH, Tang W, Hou XX, Pan NL, Shi YB, Tao QL. Expression of CD39 mRNA is altered in the peripheral blood of patients with allergic asthma. Biomed Rep 2013; 2:75-78. [PMID: 24649072 DOI: 10.3892/br.2013.196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 10/03/2013] [Indexed: 12/13/2022] Open
Abstract
The ectoenzyme CD39 hydrolyzes extracellular adenosine 5'-triphosphate (ATP), which possesses pro-inflammatory properties. However, the role of CD39 in allergic asthma has not been fully elucidated. A total of 18 patients with persistent asthma who were allergic to house dust mites and 19 healthy volunteers were enrolled in this study. The expression of CD39, GATA3, RAR-related orphan receptor γ (ROR-γt) and forkhead box P3 (FoxP3) mRNA in peripheral blood mononuclear cells (PBMCs) was determined by SYBR-Green I quantitative polymerase chain reaction (qPCR). The cytokines interleukin (IL)-4, IL-17A, transforming growth factor β (TGF-β) and DP.sIgE were detected by enzyme-linked immunosorbent assay. Our data demonstrated that the expression of CD39 mRNA in PBMCs from asthmatic patients was significantly lower compared to that in normal controls [(1.49±0.59)×10-3 vs. (2.17±0.77)×10-3, respectively; P<0.01]. CD39 mRNA was negatively correlated with serum IL-4, IL-17A and GATA3 expression (r=-0.468, P<0.05; r=-0.550, P<0.05; and r=-0.424, P<0.01, respectively) and positively correlated with FoxP3 and TGF-β expression (r=0.373, P<0.05; and r=0.425, P<0.05, respectively). There was no obvious correlation between CD39 and ROR-γt expression (r=-0.259, P=0.122). These data suggested that CD39 mRNA expression was downregulated in allergic asthma, which was positively correlated with serum IL-4, IL-17A and GATA3 expression and negatively correlated with serum TGF-β and FoxP3 expression, whereas there was no correlation with ROR-γt. Therefore, it was hypothesized that CD39 may participate in the occurrence and progression of allergic asthma.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ping-Hua Tang
- Department of Pulmonary Medicine, Qingdao Municipal Hospital, Qingdao University School of Medicine, Qingdao, Shandong 266011
| | - Chao-Guo Shi
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Ying-Huan Wan
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Wei Tang
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Xia-Xiao Hou
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Na-Li Pan
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Yu-Bao Shi
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| | - Qin-Lian Tao
- Department of Pulmonary Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R. China
| |
Collapse
|
8
|
Fan J, Zhang Y, Chuang-Smith ON, Frank KL, Guenther BD, Kern M, Schlievert PM, Herzberg MC. Ecto-5'-nucleotidase: a candidate virulence factor in Streptococcus sanguinis experimental endocarditis. PLoS One 2012; 7:e38059. [PMID: 22685551 PMCID: PMC3369921 DOI: 10.1371/journal.pone.0038059] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/02/2012] [Indexed: 11/18/2022] Open
Abstract
Streptococcus sanguinis is the most common cause of infective endocarditis (IE). Since the molecular basis of virulence of this oral commensal bacterium remains unclear, we searched the genome of S. sanguinis for previously unidentified virulence factors. We identified a cell surface ecto-5′-nucleotidase (Nt5e), as a candidate virulence factor. By colorimetric phosphate assay, we showed that S. sanguinis Nt5e can hydrolyze extracellular adenosine triphosphate to generate adenosine. Moreover, a nt5e deletion mutant showed significantly shorter lag time (P<0.05) to onset of platelet aggregation than the wild-type strain, without affecting platelet-bacterial adhesion in vitro (P = 0.98). In the absence of nt5e, S. sanguinis caused IE (4 d) in a rabbit model with significantly decreased mass of vegetations (P<0.01) and recovered bacterial loads (log10CFU, P = 0.01), suggesting that Nt5e contributes to the virulence of S. sanguinis in vivo. As a virulence factor, Nt5e may function by (i) hydrolyzing ATP, a pro-inflammatory molecule, and generating adenosine, an immunosuppressive molecule to inhibit phagocytic monocytes/macrophages associated with valvular vegetations. (ii) Nt5e-mediated inhibition of platelet aggregation could also delay presentation of platelet microbicidal proteins to infecting bacteria on heart valves. Both plausible Nt5e-dependent mechanisms would promote survival of infecting S. sanguinis. In conclusion, we now show for the first time that streptococcal Nt5e modulates S. sanguinis-induced platelet aggregation and may contribute to the virulence of streptococci in experimental IE.
Collapse
Affiliation(s)
- Jingyuan Fan
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Yongshu Zhang
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Olivia N. Chuang-Smith
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Kristi L. Frank
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Brian D. Guenther
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Marissa Kern
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, Minnesota, United States of America
- Mucosal and Vaccine Research Center, Minneapolis Veterans Affairs Medical Center, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
9
|
Kukulski F, Lévesque SA, Sévigny J. Impact of ectoenzymes on p2 and p1 receptor signaling. ADVANCES IN PHARMACOLOGY 2011; 61:263-99. [PMID: 21586362 DOI: 10.1016/b978-0-12-385526-8.00009-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
P2 receptors that are activated by extracellular nucleotides (e.g., ATP, ADP, UTP, UDP, Ap(n)A) and P1 receptors activated by adenosine control a diversity of biological processes. The activation of these receptors is tightly regulated by ectoenzymes that metabolize their ligands. This review presents these enzymes as well as their roles in the regulation of P2 and P1 receptor activation. We focus specifically on the role of ectoenzymes in processes of our interest, that is, inflammation, vascular tone, and neurotransmission. An update on the development of ectonucleotidase inhibitors is also presented.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Québec, Canada
| | | | | |
Collapse
|
10
|
Cieślak M, Kukulski F, Komoszyński M. Emerging role of extracellular nucleotides and adenosine in multiple sclerosis. Purinergic Signal 2011; 7:393-402. [PMID: 21792574 PMCID: PMC3224637 DOI: 10.1007/s11302-011-9250-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 07/11/2011] [Indexed: 12/12/2022] Open
Abstract
Extracellular nucleotides and adenosine play important roles in inflammation. These signaling molecules interact with the cell-surface-located P2 and P1 receptors, respectively, that are widely distributed in the central nervous system and generally exert opposite effects on immune responses. Indeed, extracellular ATP, ADP, UTP, and UDP serve as alarmins or damage-associated molecular patterns that activate mainly proinflammatory mechanisms, whereas adenosine has potent anti-inflammatory and immunosuppressive effects. This review discusses the actual and potential role of extracellular nucleotides and adenosine in multiple sclerosis (MS).
Collapse
Affiliation(s)
- Marek Cieślak
- Department of Neurology, WSZ Hospital, 53/59 St. Joseph Street, Toruń, 87-100, Poland,
| | | | | |
Collapse
|
11
|
Kukulski F, Bahrami F, Ben Yebdri F, Lecka J, Martín-Satué M, Lévesque SA, Sévigny J. NTPDase1 controls IL-8 production by human neutrophils. THE JOURNAL OF IMMUNOLOGY 2011; 187:644-53. [PMID: 21670316 DOI: 10.4049/jimmunol.1002680] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The ectonucleotidase NTPDase1 (CD39) terminates P2 receptor activation by the hydrolysis of extracellular nucleotides (i.e., the P2 receptor ligands). In agreement with that role, exacerbated inflammation has been observed in NTPDase1-deficient mice. In this study, we extend these observations by showing that inhibition of NTPDase1 markedly increases IL-8 production by TLR-stimulated human neutrophils. First, immunolabeling of human blood neutrophils and neutrophil-like HL60 cells displayed the expression of NTPDase1 protein, which correlated with the hydrolysis of ATP at their surface. NTPDase1 inhibitors (e.g., NF279 and ARL 67156) as well as NTPDase1-specific small interfering RNAs markedly increased IL-8 production in neutrophils stimulated with LPS and Pam(3)CSK(4) (agonists of TLR4 and TLR1/2, respectively) but not with flagellin (TLR5) and gardiquimod (TLR7 and 8). This increase in IL-8 release was due to the synergy between TLRs and P2 receptors. Indeed, ATP was released from neutrophils constitutively and accumulated in the medium upon NTPDase1 inhibition by NF279. Likewise, both human blood neutrophils and neutrophil-like HL60 cells produced IL-8 in response to exogenous nucleotides, ATP being the most potent inducer. In agreement, P2Y(2) receptor knockdown in neutrophil-like HL60 cells markedly decreased LPS- and Pam(3)CSK(4)-induced IL-8 production. In line with these in vitro results, injection of LPS in the air pouches of NTPDase1-deficient mice triggered an increased production of the chemokines MIP-2 and keratinocyte-derived chemokine (i.e., the rodent counterparts of human IL-8) compared with that in wild-type mice. In summary, NTPDase1 controls IL-8 production by human neutrophils via the regulation of P2Y(2) activation.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec (pavillon Centre Hospitalier de l'Université Lava), Québec City, Québec G1V 4G2, Canada.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ceruti S, Colombo L, Magni G, Viganò F, Boccazzi M, Deli MA, Sperlágh B, Abbracchio MP, Kittel A. Oxygen-glucose deprivation increases the enzymatic activity and the microvesicle-mediated release of ectonucleotidases in the cells composing the blood-brain barrier. Neurochem Int 2011; 59:259-71. [PMID: 21672581 DOI: 10.1016/j.neuint.2011.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 05/19/2011] [Accepted: 05/26/2011] [Indexed: 01/25/2023]
Abstract
The blood-brain barrier (BBB), the dynamic interface between the nervous tissue and the blood, is composed by endothelial cells, pericytes and astrocytes. Extracellular nucleotides and nucleosides and their receptors (the purinergic system) constitute a widely diffused signaling system involved in many pathophysiological processes. However, the role of this system in controlling BBB functions is still largely unknown. By using cultures of these three cell types grown separately and a BBB in vitro model consisting of triple co-cultures, we studied for the first time the expression and distribution of the ecto-enzymes nucleoside triphosphate diphosphohydrolases (NTPDases, the enzymes which hydrolyze extracellular nucleotides) under control and ischemic (oxygen-glucose deprivation in vitro; OGD) conditions. NTPDase1 was detected in all three cell types, whereas NTPDase2 was expressed by astrocytes and pericytes and, to a lesser extent, by endothelial cells. Endothelial cells were extremely susceptible to cell death when OGD was applied to mimic in vitro the cytotoxicity induced by ischemia, whereas astrocytes and pericytes were more resistant. A semi-quantitative assay highlighted markedly increased e-ATPase activity following exposure to OGD in all three cell types, either when grown separately or when co-cultured together to resemble the composition of the BBB. Moreover, electron microscopy analysis showed that both endothelial cells and astrocytes shed microvesicles containing NTPDases from their membrane, which may suggest a novel mechanism to increase the breakdown of ATP released to toxic levels by damaged BBB cells. We hypothesize that this phenomenon could have a protective and/or modulatory effect for brain parenchymal cells. This in vitro model is therefore useful to study the role of extracellular nucleotides in modulating BBB responses to ischemic events, and to develop new effective purinergic-based approaches for brain ischemia.
Collapse
Affiliation(s)
- Stefania Ceruti
- Laboratory of Molecular and Cellular Pharmacology of Purinergic Transmission, Department of Pharmacological Sciences, Università degli Studi di Milano, Via Balzaretti, 9, 20133 Milan, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Expression and function of P2X(7) receptor and CD39/Entpd1 in patients with type 2 diabetes and their association with biochemical parameters. Cell Immunol 2011; 269:135-43. [PMID: 21492831 DOI: 10.1016/j.cellimm.2011.03.022] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2010] [Revised: 02/26/2011] [Accepted: 03/21/2011] [Indexed: 12/12/2022]
Abstract
Chronic inflammation is an important contributor to the insulin resistance observed in type 2 diabetes (T2D). We evaluated the expression and function of the P2X(7) receptor and CD39/Entpd1, molecules involved in the cellular regulation of inflammation, in peripheral blood mononuclear cells from T2D patients, and their correlation with the concentration of HbA1c in blood. T2D patients with deficient metabolic control (DC) showed increased proportion of P2X(7)(+) cells compared with healthy individuals; T2D-DC subjects also displayed higher proportion of CD14(+), CD4(+) and CD19(+) subpopulations of P2X(7)(+) cells when compared with T2D patients with acceptable metabolic control. A significant association was observed between the proportion of P2X(7)(+)CD14(+) cells and blood concentration of LDL-c. In addition, the percentages of CD39(+) cells and CD39(+)CD19(+) cells were significantly associated with HbA1c and fasting plasma glucose levels. No changes were observed in the function of P2X(7)(+) cells from T2D patients; however, enhanced CD39/Entpd1 enzyme activity and low serum levels of IL-17 were detected. Therefore, CD39(+) cells could have a balancing regulatory role in the inflammatory process observed in patients with T2D.
Collapse
|
14
|
Lung and blood lymphocytes NTPDase and acetylcholinesterase activity in cigarette smoke-exposed rats treated with curcumin. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.bionut.2011.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
15
|
Deaglio S, Robson SC. Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:301-32. [PMID: 21586363 PMCID: PMC5879773 DOI: 10.1016/b978-0-12-385526-8.00010-2] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Evolving studies in models of transplant rejection, inflammatory bowel disease, and cancer, among others, have implicated purinergic signaling in clinical manifestations of vascular injury and thrombophilia, inflammation, and immune disturbance. Within the vasculature, spatial and temporal expression of CD39 nucleoside triphosphate diphosphohydrolase (NTPDase) family members together with CD73 ecto-5'-nucleotidase control platelet activation, thrombus size, and stability. This is achieved by closely regulated phosphohydrolytic activities to scavenge extracellular nucleotides, maintain P2-receptor integrity, and coordinate adenosinergic signaling responses. The CD38/CD157 family of extracellular NADases degrades NAD(+) and generates Ca(2+)-active metabolites, including cyclic ADP ribose and ADP ribose. These mediators regulate leukocyte adhesion and chemotaxis. These mechanisms are crucial in vascular homeostasis, hemostasis, thrombogenesis, and during inflammation. There has been recent interest in ectonucleotidase expression by immune cells. CD39 expression identifies Langerhans-type dendritic cells and efficiently distinguishes T regulatory cells from other resting or activated T cells. CD39, together with CD73 in mice, serves as an integral component of the suppressive machinery of T cells. Purinergic responses also impact generation of T helper-type 17 cells. Further, CD38 and changes in NAD(+) availability modulate ADP ribosylation of the cytolytic P2X7 receptor that deletes T regulatory cells. Expression of CD39, CD73, and CD38 ectonucleotidases on either endothelial or immune cells allows for homeostatic integration and control of vascular inflammatory and immune cell reactions at sites of injury. Ongoing development of therapeutic strategies targeting these and other ectonucleotidases offers promise for the management of vascular thrombosis, disordered inflammation, and aberrant immune reactivity.
Collapse
Affiliation(s)
- Silvia Deaglio
- Department of Genetics, Biology, and Biochemistry, University of Turin & Human Genetics Foundation, Italy
| | | |
Collapse
|
16
|
Moncrieffe H, Nistala K, Kamhieh Y, Evans J, Eddaoudi A, Eaton S, Wedderburn LR. High expression of the ectonucleotidase CD39 on T cells from the inflamed site identifies two distinct populations, one regulatory and one memory T cell population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:134-43. [PMID: 20498355 PMCID: PMC2890024 DOI: 10.4049/jimmunol.0803474] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The ectonucleotidase CD39 has recently been described as being highly expressed on regulatory Foxp3(+) CD4 T cells. Through hydrolysis of proinflammatory extracellular ATP, CD39 activity represents a newly described mechanism of regulatory T cell action. We report a novel population of human CD4 T cells that express CD39 yet are Foxp3 negative. These cells produce the proinflammatory cytokines IFN-gamma and IL-17 and fail to suppress proliferation; however, they still have high ATP hydrolysis activity. In the inflammatory site in human juvenile idiopathic arthritis, the CD39(+)Foxp3(-) population is greatly increased compared with peripheral blood of patients or healthy controls. We also show that cells expressing the AMPase CD73 are less frequent in the joint than in blood. To our knowledge, this is the first study to describe and characterize CD39 function on CD4 T cells from the target site in a human autoinflammatory condition. Our data suggest that in human CD4(+) T cells from the inflamed site, CD39 can be highly expressed on two populations, one regulatory and the other of a memory phenotype.
Collapse
Affiliation(s)
- Halima Moncrieffe
- Rheumatology Unit, University College London, London, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
17
|
Lévesque SA, Kukulski F, Enjyoji K, Robson SC, Sévigny J. NTPDase1 governs P2X7-dependent functions in murine macrophages. Eur J Immunol 2010; 40:1473-85. [PMID: 20201036 DOI: 10.1002/eji.200939741] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
P2X7 receptor is an adenosine triphosphate (ATP)-gated ion channel within the multiprotein inflammasome complex. Until now, little is known about regulation of P2X7 effector functions in macrophages. In this study, we show that nucleoside triphosphate diphosphohydrolase 1 (NTPDase1)/CD39 is the dominant ectonucleotidase expressed by murine peritoneal macrophages and that it regulates P2X7-dependent responses in these cells. Macrophages isolated from NTPDase1-null mice (Entpd1(-/-)) were devoid of all ADPase and most ATPase activities when compared with WT macrophages (Entpd1(+/+)). Entpd1(-/-) macrophages exposed to millimolar concentrations of ATP were more susceptible to cell death, released more IL-1beta and IL-18 after TLR2 or TLR4 priming, and incorporated the fluorescent dye Yo-Pro-1 more efficiently (suggestive of increased pore formation) than Entpd1(+/+) cells. Consistent with these observations, NTPDase1 regulated P2X7-associated IL-1beta release after synthesis, and this process occurred independently of, and prior to, cytokine maturation by caspase-1. NTPDase1 also inhibited IL-1beta release in vivo in the air pouch inflammatory model. Exudates of LPS-injected Entpd1(-/-) mice had significantly higher IL-1beta levels when compared with Entpd1(+/+) mice. Altogether, our studies suggest that NTPDase1/CD39 plays a key role in the control of P2X7-dependent macrophage responses.
Collapse
Affiliation(s)
- Sébastien A Lévesque
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC, Canada
| | | | | | | | | |
Collapse
|
18
|
Salcido-Ochoa F, Tsang J, Tam P, Falk K, Rotzschke O. Regulatory T cells in transplantation: does extracellular adenosine triphosphate metabolism through CD39 play a crucial role? Transplant Rev (Orlando) 2010; 24:52-66. [PMID: 20153159 DOI: 10.1016/j.trre.2010.01.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite tremendous improvements in short-term renal allograft survival, many patients still have chronic rejection or side effects of nonspecific immunosuppression. The discovery of Foxp3(+) regulatory T cells (Tregs) has revolutionized the concepts in immunoregulation and offers perspectives for overcoming rejection. Recently, a subset of Foxp3(+)CD39(+) effector/memory-like Tregs (T(REM)) was identified. The role of CD39(+) Tregs in immunoregulation is supported by the occurrence of alopecia areata and experimental autoimmune encephalomyelitis in CD39-deficient mice and by the failure of CD39(-) Tregs to suppress contact hypersensitivity. In humans, CD39 polymorphisms have been associated with diabetes and nephropathy, and multiple sclerosis patients have reduced numbers of blood CD39(+) Tregs. Preliminary experiments in a murine transplantation model showed that CD39(+) Tregs can determine allograft outcome. CD39 degrades the extracellular adenosine triphosphate (ATP) released during tissue injury, which otherwise would trigger inflammation. Currently, our groups are assessing the role of CD39(+) Tregs and extracellular ATP metabolism in clinical transplantation and whether tolerogenic Treg profiles possess immunopredictive value, envisioning the development of clinical trials using CD39(+) Treg-based vaccination for autoimmunity or transplantation. This is a comprehensive review on the fundamentals of Treg biology, the potential role of ATP metabolism in immunoregulation, and the potential use of Treg-based immunotherapy in transplantation.
Collapse
|
19
|
Corriden R, Insel PA. Basal release of ATP: an autocrine-paracrine mechanism for cell regulation. Sci Signal 2010; 3:re1. [PMID: 20068232 DOI: 10.1126/scisignal.3104re1] [Citation(s) in RCA: 263] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells release adenosine triphosphate (ATP), which activates plasma membrane-localized P2X and P2Y receptors and thereby modulates cellular function in an autocrine or paracrine manner. Release of ATP and the subsequent activation of P2 receptors help establish the basal level of activation (sometimes termed "the set point") for signal transduction pathways and regulate a wide array of responses that include tissue blood flow, ion transport, cell volume regulation, neuronal signaling, and host-pathogen interactions. Basal release and autocrine or paracrine responses to ATP are multifunctional, evolutionarily conserved, and provide an economical means for the modulation of cell, tissue, and organismal biology.
Collapse
Affiliation(s)
- Ross Corriden
- Departments of Pharmacology and Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
20
|
CD4+CD25+ regulatory T cells suppress contact hypersensitivity reactions through a CD39, adenosine-dependent mechanism. J Allergy Clin Immunol 2009; 123:1287-96.e2. [PMID: 19427686 DOI: 10.1016/j.jaci.2009.03.022] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/29/2009] [Accepted: 03/10/2009] [Indexed: 12/20/2022]
Abstract
BACKGROUND Injection of regulatory T (Treg) cells into sensitized mice abrogates the elicitation phase of contact hypersensitivity (CHS) reactions by blocking the adherence of leukocytes to vascular endothelium. OBJECTIVE We set out to analyze whether adenosine, a suppressive factor recently described as produced by Treg cells, can account for the suppression of the effector T-cell-endothelial cell (EC) interaction. METHODS T cells and ECs were cultured in the presence of adenosine, and expression of adhesion molecules and adhesion of T cells to ECs under shear stress were assessed. Furthermore, we injected Treg cells derived from ectonucleotidase-deficient (CD39-/-) mice into sensitized mice and analyzed the sticking and rolling of leukocytes during a CHS response using intravital microscopy. RESULTS Adenosine or Treg cells, respectively, abrogated the adherence of effector T cells to ECs in vitro. Likewise, injection of adenosine and Treg cells abrogated the ear-swelling reaction, indicating a role of adenosine during Treg cell-induced suppression of CHS responses. As a source for Treg cell-derived adenosine, we identified the ectonucleotidase CD39 because CD39-deficient Treg cells did not prevent adhesion of leukocytes to the endothelium. Furthermore, we show that the impaired adhesion of effector T cells to inflamed endothelium was induced by adenosine-mediated downregulation of expression of E- and P-selectin on the vascular endothelium. CONCLUSION Adenosine release by Treg cells is essential to block leukocyte adhesion to endothelium, providing a novel mechanism by which Treg cells mediate immune suppression in vivo.
Collapse
|
21
|
Possible effects of microbial ecto-nucleoside triphosphate diphosphohydrolases on host-pathogen interactions. Microbiol Mol Biol Rev 2009; 72:765-81, Table of Contents. [PMID: 19052327 DOI: 10.1128/mmbr.00013-08] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In humans, purinergic signaling plays an important role in the modulation of immune responses through specific receptors that recognize nucleoside tri- and diphosphates as signaling molecules. Ecto-nucleoside triphosphate diphosphohydrolases (ecto-NTPDases) have important roles in the regulation of purinergic signaling by controlling levels of extracellular nucleotides. This process is key to pathophysiological protective responses such as hemostasis and inflammation. Ecto-NTPDases are found in all higher eukaryotes, and recently it has become apparent that a number of important parasitic pathogens of humans express surface-located NTPDases that have been linked to virulence. For those parasites that are purine auxotrophs, these enzymes may play an important role in purine scavenging, although they may also influence the host response to infection. Although ecto-NTPDases are rare in bacteria, expression of a secreted NTPDase in Legionella pneumophila was recently described. This ecto-enzyme enhances intracellular growth of the bacterium and potentially affects virulence. This discovery represents an important advance in the understanding of the contribution of other microbial NTPDases to host-pathogen interactions. Here we review other progress made to date in the characterization of ecto-NTPDases from microbial pathogens, how they differ from mammalian enzymes, and their association with organism viability and virulence. In addition, we postulate how ecto-NTPDases may contribute to the host-pathogen interaction by reviewing the effect of selected microbial pathogens on purinergic signaling. Finally, we raise the possibility of targeting ecto-NTPDases in the development of novel anti-infective agents based on potential structural and clear enzymatic differences from the mammalian ecto-NTPDases.
Collapse
|
22
|
Song KS, Kim HJ, Kim K, Lee JG, Yoon JH. Regulator of G-protein signaling 4 suppresses LPS-induced MUC5AC overproduction in the airway. Am J Respir Cell Mol Biol 2008; 41:40-9. [PMID: 19059885 DOI: 10.1165/rcmb.2008-0280oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mucus overproduction and airway obstruction are common features in airway mucosal inflammation. The mechanism by which LPS induces MUC5AC overexpression, however, has not been fully explored. The aims of this study were twofold: first, to examine the ATP-dependent mechanism by which LPS induces MUC5AC gene expression, and second, to identify specific molecules that could suppress LPS-induced MUC5AC expression at a G-protein-coupled receptor level. Here, we suggest that LPS from Pseudomonas aeruginosa induces MUC5AC overproduction by both an ATP-dependent pathway and an ATP-independent pathway. In addition, we showed that Regulator of G-protein signaling (RGS) 4 plays as a suppressor for ATP-induced MUC5AC expression by interacting with G alpha q in a GTP-dependent manner in vivo. These results give additional insights into the molecular mechanism of negative regulation of mucin overproduction and enhance our understanding of mucus hypersecretion during airway mucosal inflammation.
Collapse
Affiliation(s)
- Kyoung Seob Song
- The Airway Mucus Institute, Yonsei University College of Medicine, Seoul 120-752, Korea
| | | | | | | | | |
Collapse
|
23
|
Pelegrin P, Barroso-Gutierrez C, Surprenant A. P2X7 receptor differentially couples to distinct release pathways for IL-1beta in mouse macrophage. THE JOURNAL OF IMMUNOLOGY 2008; 180:7147-57. [PMID: 18490713 DOI: 10.4049/jimmunol.180.11.7147] [Citation(s) in RCA: 339] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The proinflammatory IL-1 cytokines IL-1alpha, IL-1beta, and IL-18 are key mediators of the acute immune response to injury and infection. Mechanisms underlying their cellular release remain unclear. Activation of purinergic P2X(7) receptors (P2X(7)R) by extracellular ATP is a key physiological inducer of rapid IL-1beta release from LPS-primed macrophage. We investigated patterns of ATP-mediated release of IL-1 cytokines from three macrophage types in attempts to provide direct evidence for or against distinct release mechanisms. We used peritoneal macrophage from P2X(7)R(-/-) mice and found that release of IL-1alpha, IL-18, as well as IL-1beta, by ATP resulted exclusively from activation of P2X(7)R, release of all these IL-1 cytokines involved pannexin-1 (panx1), and that there was both a panx1-dependent and -independent component to IL-1beta release. We compared IL-1-release patterns from LPS-primed peritoneal macrophage, RAW264.7 macrophage, and J774A.1 macrophage. We found RAW264.7 macrophage readily release pro-IL-1beta independently of panx1 but do not release mature IL-1beta because they do not express apoptotic speck-like protein with a caspase-activating recruiting domain and so have no caspase-1 inflammasome activity. We delineated two distinct release pathways: the well-known caspase-1 cascade mediating release of processed IL-1beta that was selectively blocked by inhibition of caspase-1 or panx1, and a calcium-independent, caspase-1/panx1-independent release of pro-IL-1beta that was selectively blocked by glycine. None of these release responses were associated with cell damage or cytolytic effects. This provides the first direct demonstration of a distinct signaling mechanism responsible for ATP-induced release of pro-IL-1beta.
Collapse
Affiliation(s)
- Pablo Pelegrin
- Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | | | | |
Collapse
|
24
|
Abstract
In this review we discuss the role of dendritic cells (DC) in the pathogenesis of allergic contact hypersensitivity (ACH) and atopic disorders, such as asthma and atopic eczema. In ACH patients, DC recognize the invasion of simple chemicals such as haptens, and trigger antigen-specific T cell responses leading to the characteristic histological and clinical changes such as spongiosis and papulovesicular eruptions. During atopic disorders, it is well known that the Th2-deviated immune response plays a crucial role in their pathogenesis. DC provide T cells with antigen and costimulatory signals (signals 1 and 2, respectively), as well as with a polarizing signal (signal 3). When studying ACH, it is important to understand how simple chemicals induce the activation of DC and their migration to the draining lymph nodes where they supply signals 1 and 2 to naive T cells. The mechanisms by which DC induce the Th2-deviated immune response, namely via the Th2-deviated signal 3, are central topics in the pathogenesis of atopic disorders.
Collapse
Affiliation(s)
- Setsuya Aiba
- Department of Dermatology, Tohoku University Graduate School of Medicine, Miyagi, Japan.
| |
Collapse
|
25
|
Kittel A, Sperlágh B, Pelletier J, Sévigny J, Kirley TL. Transient changes in the localization and activity of ecto-nucleotidases in rat hippocampus following lipopolysaccharide treatment. Int J Dev Neurosci 2007; 25:275-82. [PMID: 17576046 PMCID: PMC5239665 DOI: 10.1016/j.ijdevneu.2007.05.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2007] [Revised: 05/09/2007] [Accepted: 05/09/2007] [Indexed: 11/30/2022] Open
Abstract
The concentrations of extracellularly released nucleotides are controlled by metabolism via ecto-nucleotidases, but the precise physiological roles of the ecto-nucleoside triphosphate diphosphohydrolases in the modulation of purinergic receptor signalling are still unclear. Bacterial endotoxin lipopolysaccharide (LPS) treatment (administered intraperitoneally, 2 mg/kg body weight) of rats resulted in no significant changes in the overall ecto-nucleotidase activities of the hippocampus, however, LPS treatment did cause transient changes in the morphology of endothelial cells and pericytes and in the localization pattern of ecto-ATPase activity in rat hippocampus. The transient decrease in NTPDase1 (ecto-nucleoside triphosphate diphosphohydrolase1) activity, located on the luminal side of the endothelial cells, was balanced by increases in ecto-nucleotidase activities in pericytes and at other sites, consistent with an unchanged overall ecto-ATPase activity of the hippocampus. Since the transient loss of NTPDase1 activity was not accompanied by a loss of NTPDase1 protein, we hypothesize that LPS caused transient alterations in the lipid membranes, since NTPDase1 activity is known to be sensitive to changes in membrane structure via its transmembrane domains. After 2-3 days, the LPS-induced changes in cell morphology and ecto-nucleotidase localization disappeared. We conclude that a low dose of LPS causes transient changes in the localization pattern of ecto-nucleotidases in endothelial cells and pericytes, which, coupled with the observed cellular morphological changes, may indicate modified cellular signalling in the hippocampus.
Collapse
Affiliation(s)
- Agnes Kittel
- Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | |
Collapse
|
26
|
Borsellino G, Kleinewietfeld M, Di Mitri D, Sternjak A, Diamantini A, Giometto R, Höpner S, Centonze D, Bernardi G, Dell'Acqua ML, Rossini PM, Battistini L, Rötzschke O, Falk K. Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 2007; 110:1225-32. [PMID: 17449799 DOI: 10.1182/blood-2006-12-064527] [Citation(s) in RCA: 921] [Impact Index Per Article: 54.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the immune system, extracellular ATP functions as a "natural adjuvant" that exhibits multiple proinflammatory effects. It is released by damaged cells as an indicator of trauma and cell death but can be inactivated by CD39 (nucleoside triphosphate diphosphohydrolase-1 [NTPDase 1]), an ectoenzyme that degrades ATP to AMP. Here, we show that CD39 is expressed primarily by immune-suppressive Foxp3(+) regulatory T (Treg) cells. In mice, the enzyme is present on virtually all CD4(+)CD25(+) cells. CD39 expression is driven by the Treg-specific transcription factor Foxp3 and its catalytic activity is strongly enhanced by T-cell receptor (TCR) ligation. Activated Treg cells are therefore able to abrogate ATP-related effects such as P2 receptor-mediated cell toxicity and ATP-driven maturation of dendritic cells. Also, human Treg cells express CD39. In contrast to mice, CD39 expression in man is restricted to a subset of Foxp3(+) regulatory effector/memory-like T (T(REM)) cells. Notably, patients with the remitting/relapsing form of multiple sclerosis (MS) have strikingly reduced numbers of CD39(+) Treg cells in the blood. Thus, in humans CD39 is a marker of a Treg subset likely involved in the control of the inflammatory autoimmune disease.
Collapse
|
27
|
Wilson HL, Varcoe RW, Stokes L, Holland KL, Francis SE, Dower SK, Surprenant A, Crossman DC. P2X receptor characterization and IL-1/IL-1Ra release from human endothelial cells. Br J Pharmacol 2007; 151:115-27. [PMID: 17351655 PMCID: PMC2012976 DOI: 10.1038/sj.bjp.0707213] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND AND PURPOSE The pro-inflammatory cytokine, interleukin-1beta (IL-1beta), has been implicated in the pathogenesis of atherosclerosis, potentially via its release from vascular endothelium. Endothelial cells (EC) synthesize IL-1beta in response to inflammatory stimuli, but the demonstration and mechanism of release of IL-1 from ECs remains unclear. In activated monocytes, efficient release of bioactive IL-1beta occurred via activation of ATP-gated P2X(7) receptors (P2X(7)Rs). Activation of P2X(7)R in ECs from human umbilical vein (HUVECs) released IL-1 receptor antagonist (IL-1Ra). The purpose of this study was to provide a quantitative investigation of P2XR expression and function, in parallel with IL-1beta and IL-1Ra synthesis, processing and release, in HUVECs under pro-inflammatory conditions. EXPERIMENTAL APPROACH Quantitative RT-PCR, immunoblotting, ELISA, flow cytometry, and whole-cell patch clamp recordings were used to determine protein expression and receptor function. IL-8-luciferase-reporter was used as an IL-1 sensitive bioassay. KEY RESULTS HUVECs expressed P2X(4)R and P2X(7)R subtypes and both were significantly up-regulated under inflammatory conditions. P2X(7)R currents were increased 3-fold by inflammatory stimuli, whereas no P2X(4)R-mediated currents were detected. Caspase-1, but not IL-1beta, was present intracellularly under basal conditions; inflammatory stimuli activated the synthesis of intracellular pro-IL-1beta and increased caspase-1 levels. Activation of P2X(7)Rs resulted in low-level release of bioactive IL-1beta and simultaneous release of IL-1Ra. The net biological effect of release was anti-inflammatory. CONCLUSIONS AND IMPLICATIONS Endothelial P2X(7)Rs induced secretion of both pro- and anti-inflammatory IL-1 receptor ligands, the balance of which may provide a means for altering the inflammatory state of the arterial vessel wall.
Collapse
Affiliation(s)
- H L Wilson
- School of Medicine and Biomedical Sciences, University of Sheffield, Royal Hallamshire Hospital, Sheffield, UK.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kukulski F, Ben Yebdri F, Lefebvre J, Warny M, Tessier PA, Sévigny J. Extracellular nucleotides mediate LPS-induced neutrophil migration in vitro and in vivo. J Leukoc Biol 2007; 81:1269-75. [PMID: 17322022 PMCID: PMC5239669 DOI: 10.1189/jlb.1206758] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Extracellular nucleotides are emerging as important inflammatory mediators. Here, we demonstrate that these molecules mediate LPS-induced neutrophil migration in vitro and in vivo. Apyrase, a nucleotide scavenger, reduced the ability of LPS-stimulated monocytes to recruit neutrophils, as assayed using a modified Boyden chamber. This effect resulted from the inhibition of IL-8 release from monocytes. Furthermore, LPS-induced IL-8 release by monocytes was attenuated significantly by P2Y6 receptor antagonists, RB-2 and MRS2578. Reciprocally, UDP, the selective P2Y6 agonist, induced IL-8 release by monocytes. As for LPS, the media of UDP-stimulated monocytes were chemotactic for neutrophils; IL-8 accounted for approximately 50% of neutrophil migration induced by the media of LPS- or UDP-treated monocytes in transendothelial migration assays. It is important that in the murine air-pouch model, extracellular nucleotides were instrumental in LPS-induced neutrophil migration. Altogether, these data imply that LPS induces the release of nucleotides from monocytes and that by autocrine stimulation, the latter molecules regulate neutrophil migration caused by Gram-negative bacteria, suggesting a proinflammatory role of extracellular nucleotides in innate immunity.
Collapse
Affiliation(s)
- Filip Kukulski
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Fethia Ben Yebdri
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Julie Lefebvre
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | | | - Philippe A. Tessier
- Centre de Recherche en Infectiologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
| | - Jean Sévigny
- Centre de Recherche en Rhumatologie et Immunologie, Centre Hospitalier Universitaire de Québec, Université Laval, Québec, Canada
- Correspondence: Centre de Recherche en Rhumatologie et Immunologie, Université Laval, 2705, Boulevard Laurier, local T1-49, Québec, QC, G1V 4G2, Canada.
| |
Collapse
|
29
|
Vuaden FC, de Paula Cognato G, Bonorino C, Bogo MR, de Freitas Sarkis JJ, Bonan CD. Lipopolysaccharide alters nucleotidase activities from lymphocytes and serum of rats. Life Sci 2007; 80:1784-91. [PMID: 17363004 DOI: 10.1016/j.lfs.2007.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2006] [Revised: 01/24/2007] [Accepted: 02/07/2007] [Indexed: 11/21/2022]
Abstract
ATP exerts a proinflammatory role and induces cytokine release by acting at P2X(7) receptors. The product of ATP hydrolysis is the nucleoside adenosine, an important immunomodulator. The main source of extracellular adenosine is the hydrolysis of extracellular ATP by a group of ecto-enzymes: ENTPDase family, NPP family and ecto-5'-nucleotidase. Considering the role of ATP and adenosine in inflammatory processes, we investigated the effect of lipopolysaccharide on ectonucleotidases activities and expression in lymphocytes from mesenteric lymph nodes and serum of rats, in order to better understand the involvement of extracellular nucleotide hydrolysis in an endotoxemia model. We observed significant changes on nucleotidase activities from lymphocytes and serum of rats after in vitro and in vivo exposure to LPS. In vitro results have shown an increase on nucleotide hydrolysis in lymphocytes and a decrease on the enzyme activity of NPP in blood serum. In vivo, we observed an increase on nucleotide hydrolysis in lymphocytes and a decrease in the hydrolysis of all nucleotides tested in blood serum. After 24 and 48 h of LPS treatment, there was a reduction in NTPDase1, 2, 3 and ecto-5'-nucleotidase transcripts. These results suggest that there is a time-dependent enhancement of extracellular nucleotides metabolism in lymphocytes and blood serum after the induction of an endotoxemic model. The changes observed suggest that these enzymes can act in the regulation of extracellular nucleosides and nucleotides in a model able to trigger inflammatory process.
Collapse
Affiliation(s)
- Fernanda Cenci Vuaden
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, Anexo, 90035-003, Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
30
|
Dwyer KM, Deaglio S, Gao W, Friedman D, Strom TB, Robson SC. CD39 and control of cellular immune responses. Purinergic Signal 2007; 3:171-80. [PMID: 18404431 PMCID: PMC2096766 DOI: 10.1007/s11302-006-9050-y] [Citation(s) in RCA: 211] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2006] [Accepted: 12/05/2006] [Indexed: 01/01/2023] Open
Abstract
CD39 is the cell surface-located prototypic member of the ecto-nucleoside triphosphate diphosphohydrolase (E-NTPDase) family. Biological actions of CD39 are a consequence (at least in part) of the regulated phosphohydrolytic activity on extracellular nucleotides. This ecto-enzymatic cascade in tandem with CD73 (ecto-5'-nucleotidase) also generates adenosine and has major effects on both P2 and adenosine receptor signalling. Despite the early recognition of CD39 as a B lymphocyte activation marker, little is known of the role of CD39 in humoral or cellular immune responses. There is preliminary evidence to suggest that CD39 may impact upon antibody affinity maturation. Pericellular nucleotide/nucleoside fluxes caused by dendritic cell expressed CD39 are also involved in the recruitment, activation and polarization of naïve T cells. We have recently explored the patterns of CD39 expression and the functional role of this ecto-nucleotidase within quiescent and activated T cell subsets. Our data indicate that CD39, together with CD73, efficiently distinguishes T regulatory cells (Treg) from other resting or activated T cells in mice (and humans). Furthermore, CD39 serves as an integral component of the suppressive machinery of Treg, acting, at least in part, through the modulation of pericellular levels of adenosine. We have also shown that the coordinated regulation of CD39/CD73 expression and of the adenosine receptor A2A activates an immunoinhibitory loop that differentially regulates Th1 and Th2 responses. The in vivo relevance of this network is manifest in the phenotype of Cd39-null mice that spontaneously develop features of autoimmune diseases associated with Th1 immune deviation. These data indicate the potential of CD39 and modulated purinergic signalling in the co-ordination of immunoregulatory functions of dendritic and Treg cells. Our findings also suggest novel therapeutic strategies for immune-mediated diseases.
Collapse
Affiliation(s)
- Karen M Dwyer
- Immunology Research Centre, St. Vincent’s Health, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
31
|
Nie K, Zheng GG, Zhang XJ, Lin YM, Wang L, Li G, Song YH, Wu KF. CD 39-associated high ATPase activity contribute to the loss of P 2 X 7-mediated calcium response in LCL cells. Leuk Res 2005; 29:1325-33. [PMID: 15885776 DOI: 10.1016/j.leukres.2005.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 03/23/2005] [Indexed: 01/10/2023]
Abstract
The P 2 X 7 nucleotide receptor is an adenosine 5'-triphosphate (ATP)-gated ion channel, which induces cation channel opening imparting significant permeability to Ca(2+), and is widely expressed in cells of hematopoietic origin. Our previous report showed that P 2 X 7-mediated calcium response was absent in three Epstein-Barr virus (EBV)-positive and P 2 X 7 positive cell lines. In this report, we detected the cell surface ATPase activity, which contributes to the hydrolysis of extracellular ATP, and the expression of CD 39, which is the main source of ATPase on hematopoietic cells, in these cell lines. Then, we tried to restore the P 2 X 7-mediated calcium response in LCL-H and J 6-1 cells by either increasing the concentration of agonist or suppressing the ATPase activity by betagammaMeATP, a synthetic poorly metabolizable ATP analogue. The results showed that LCL-H and J 6-1 cells had higher levels of ATPase activity and CD 39 expression. The treatment of 300 microM betagammaMeATP efficiently inhibited the ATPase activity on LCL-H and J 6-1 cells. Both elevation of agonist concentration (10mM ATP or 1mM BzATP) and pretreatment with 300 microM betagammaMeATP followed by stimulation with normal concentration of agonists (1mM ATP or 0.1mM BzATP) could cause P 2 X 7-mediated calcium response in LCL-H but neither in J 6-1 cells. These results suggested that multiple mechanisms contributed to the loss of the P 2 X 7-mediated calcium response. CD 39-associated high ATPase activity contributed to the loss of the P 2 X 7-mediated calcium response in LCL-H cells, while additional mechanism(s) existed in J 6-1 cells.
Collapse
Affiliation(s)
- Kun Nie
- State Key Laboratory for Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Tianjin 300020, PR China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
Endothelial cells are key regulators of the inflammatory response. Lining blood vessels, they provide in the steady state an antiinflammatory, anticoagulatory surface. However, in the case of injury or infection, endothelial cells control the adhesion and migration of inflammatory cells, as well as the exchange of fluid from the bloodstream into the damaged tissue. Thus, expression of endothelial adhesion molecules, cytokines, and changes in permeability need to be tightly regulated to allow for a controlled inflammatory response. Acute inflammation is characterized by tissue infiltration of neutrophils, followed by monocytes/macrophages. For successful tissue regeneration and healing, the acute inflammatory response needs to be actively shut down, a process called resolution of inflammation. Unsuccessful resolution may lead to excessive tissue damage and ultimately results in chronic, self-promoting inflammation. This review will summarize recent advances in the field of endothelial biology, which point to an active participation of the endothelial barrier in the resolving process.
Collapse
Affiliation(s)
- Alexandra Kadl
- Cardiovascular Research Center and Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | |
Collapse
|
33
|
Sylte MJ, Kuckleburg CJ, Atapattu D, Leite FP, McClenahan D, Inzana TJ, Czuprynski CJ. Signaling through interleukin-1 type 1 receptor diminishes Haemophilus somnus lipooligosaccharide-mediated apoptosis of endothelial cells. Microb Pathog 2005; 39:121-30. [PMID: 16125894 DOI: 10.1016/j.micpath.2005.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Revised: 07/11/2005] [Accepted: 07/11/2005] [Indexed: 10/25/2022]
Abstract
During sepsis, endothelial cells are both a source and target of pro-inflammatory cytokines (e.g. IL-1alpha, IL-1beta, TNFalpha and others), which may be detrimental to vascular homeostasis. Our laboratory has demonstrated that Haemophilus somnus, a gram-negative pathogen of cattle that causes sepsis and vasculitis, and its lipooligosaccharide (LOS) induce caspases-3, -8 and -9 activation, and apoptosis of endothelial cells in vitro. In this study, we provide evidence that H. somnus LOS increases IL-1alpha and IL-1beta mRNA expression, and caspase-1 activation in endothelial cells. Addition of a caspase-1 inhibitor (YVAD), or incubation in a high extracellular potassium buffer (150 mM), reduced caspase-1 activation and significantly enhanced H. somnus LOS-mediated caspase-3 activation. Likewise, blocking the IL-1 type 1 receptor by addition of IL-receptor antagonist (IL-1ra) significantly enhanced LOS-mediated caspase-3 activation. Conversely, addition of exogenous recombinant bovine IL-1beta (100 ng/mL) to endothelial cells diminished LOS-mediated apoptosis. IL-1beta has been reported previously to protect numerous cell types from apoptosis by activating PI3 kinase/p-Akt signaling pathways. Addition of selective PI3 kinase inhibitors (e.g. wortmannin and LY294002) significantly enhanced LOS-mediated caspase-3 activation. Exposure of endothelial cells to IL-1beta or LOS increased pAkt protein as assessed by western blot. Overall, these results suggest that signaling through the IL-1 type 1 receptor diminishes H. somnus LOS-mediated apoptosis.
Collapse
Affiliation(s)
- Matt J Sylte
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 63706, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Fulgenzi A, Dell'Antonio G, Foglieni C, Cin ED, Ticozzi P, Franzone JS, Ferrero ME. Inhibition of chemokine expression in rat inflamed paws by systemic use of the antihyperalgesic oxidized ATP. BMC Immunol 2005; 6:18. [PMID: 16042776 PMCID: PMC1190175 DOI: 10.1186/1471-2172-6-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 07/22/2005] [Indexed: 11/17/2022] Open
Abstract
Background We previously showed that local use of periodate oxidized ATP (oATP, a selective inhibitor of P2X7 receptors for ATP) in rat paw treated with Freund's adjuvant induced a significant reduction of hyperalgesia Herein we investigate the role of oATP, in the rat paws inflamed by carrageenan, which mimics acute inflammation in humans. Results Local, oral or intravenous administration of a single dose of oATP significantly reduced thermal hyperalgesia in hind paws of rats for 24 hours, and such effect was greater than that induced by diclofenac or indomethacin. Following oATP treatment, the expression of the pro-inflammatory chemokines interferon-gamma-inducible protein-10 (IP-10), mon ocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8) within the inflamed tissues markedly decreased on vessels and infiltrated cells. In parallel, the immunohistochemical findings showed an impairment, with respect to the untreated rats, in P2X7 expression, mainly on nerves and vessels close to the site of inflammation. Finally, oATP treatment significantly reduced the presence of infiltrating inflammatory macrophages in the paw tissue. Conclusion Taken together these results clearly show that oATP reduces carrageenan-induced inflammation in rats.
Collapse
MESH Headings
- Adenosine Triphosphate/administration & dosage
- Adenosine Triphosphate/analogs & derivatives
- Adenosine Triphosphate/pharmacology
- Adenosine Triphosphate/physiology
- Adenosine Triphosphate/therapeutic use
- Administration, Cutaneous
- Administration, Oral
- Analgesics, Non-Narcotic/administration & dosage
- Analgesics, Non-Narcotic/pharmacology
- Analgesics, Non-Narcotic/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Carrageenan/toxicity
- Chemokine CCL2/biosynthesis
- Chemokine CCL2/genetics
- Chemokine CXCL10
- Chemokines/biosynthesis
- Chemokines/genetics
- Chemokines, CXC/biosynthesis
- Chemokines, CXC/genetics
- Diclofenac/administration & dosage
- Diclofenac/therapeutic use
- Disease Models, Animal
- Hindlimb
- Hot Temperature
- Hyperalgesia/chemically induced
- Hyperalgesia/drug therapy
- Hyperalgesia/etiology
- Indomethacin/administration & dosage
- Indomethacin/therapeutic use
- Injections, Intravenous
- Interleukin-8/biosynthesis
- Interleukin-8/genetics
- Macrophages/drug effects
- Male
- Purinergic P2 Receptor Antagonists
- Rats
- Rats, Wistar
- Receptors, Purinergic P2/biosynthesis
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2X7
- Single-Blind Method
Collapse
Affiliation(s)
- Alessandro Fulgenzi
- Università degli Studi di Milano, Istituto di Patologia Generale, via Mangiagalli 31, 20133, Milano, Italy
| | | | - Chiara Foglieni
- Ospedale S. Raffaele, via Olgettina 60, 20100, Milano, Italy
| | - Elena Dal Cin
- Ospedale S. Raffaele, via Olgettina 60, 20100, Milano, Italy
| | - Paolo Ticozzi
- Università degli Studi di Milano, Istituto di Patologia Generale, via Mangiagalli 31, 20133, Milano, Italy
| | - Josè S Franzone
- Medestea Research and Production, via Magenta 43, 10128, Torino, Italy
| | - Maria Elena Ferrero
- Università degli Studi di Milano, Istituto di Patologia Generale, via Mangiagalli 31, 20133, Milano, Italy
| |
Collapse
|
35
|
Kittel A, Kiss AL, Müllner N, Matkó I, Sperlágh B. Expression of NTPDase1 and caveolins in human cardiovascular disease. Histochem Cell Biol 2005; 124:51-9. [PMID: 16028070 DOI: 10.1007/s00418-005-0018-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2005] [Indexed: 10/25/2022]
Abstract
Pathological circumstances like inflammation or ischemic insult facilitate the release of adenine nucleotides from several types of cells. These extracellular nucleotides are rapidly converted to adenosine by ectonucleotidases, mainly ectonucleoside triphosphate diphosphohydrolase1 (NTPDase1/CD39) and CD73. NTPDase1/CD39 can interact with caveolins, structural proteins of signal-transducing microdomains termed caveolae. Caveolins are thought to have physiological roles in heart ageing and cardiac diseases. The aim of this study was to investigate the expression of NTPDase1 together with caveolins in chronic human cardiovascular diseases and elucidate their role in human heart. The HPLC analysis showed significant increase in ATPase activity in pathological samples from patients with ischemic heart disease. Immunostaining also showed alterations in the expression and distribution of NTPDase1. Caveolin-1 and caveolin-2 expression was much alike in control and pathological cases, while expression of caveolin-3 was lower in pathological samples. Changes in the expression of NTPDase1 and caveolins seem to be independent of human cardiovascular disease.
Collapse
Affiliation(s)
- Agnes Kittel
- Department of Pharmacology, Hungarian Academy of Sciences, Institute of Experimental Medicine, P.O. Box 67, 1450 Budapest, Hungary.
| | | | | | | | | |
Collapse
|
36
|
Sylte MJ, Kuckleburg CJ, Inzana TJ, Bertics PJ, Czuprynski CJ. Stimulation of P2X receptors enhances lipooligosaccharide-mediated apoptosis of endothelial cells. J Leukoc Biol 2005; 77:958-65. [PMID: 15728716 DOI: 10.1189/jlb.1004597] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Exposure of endothelial cells to lipid A-containing molecules, such as lipopolysaccharide (LPS) or lipooligosaccharide (LOS), causes the release of purinergic compounds [e.g., adenosine 5'-triphosphate (ATP)] and can lead to apoptosis. The P2X family of purinergic receptors (e.g., P2X(7)) has been reported to modulate LPS signaling events and to participate in apoptosis. We investigated the role that P2X receptors play in the apoptosis that follows exposure of bovine endothelial cells to Haemophilus somnus LOS. Addition of P2X inhibitors, such as periodate-oxidized ATP (oATP) or pyridoxal-phosphate-6-azophenyl-2',4'-disulfonic acid tetrasodium, significantly reduced LOS-induced apoptosis. Incubation of endothelial cells with apyrase, which degrades ATP, diminished LOS-induced apoptosis of endothelial cells. Concomitant addition of P2X agonists [e.g., 2',3'-(4-benzoyl)-benzoyl ATP or ATP] to LOS-treated endothelial cells significantly enhanced caspase-3 activation. The P2X antagonist oATP significantly blocked caspase-8 but not caspase-9 activation in LOS-treated endothelial cells. Together, these data indicate that stimulation of P2X receptors enhances LOS-induced apoptosis of endothelial cells, possibly as a result of endogenous release of ATP, which results in caspase-8 activation.
Collapse
Affiliation(s)
- Matt J Sylte
- Department of Pathobiological Sciences, School of Veterinary Medicine, Madison, WI 63706, USA
| | | | | | | | | |
Collapse
|
37
|
Mizumoto N, Mummert ME, Shalhevet D, Takashima A. Keratinocyte ATP release assay for testing skin-irritating potentials of structurally diverse chemicals. J Invest Dermatol 2004; 121:1066-72. [PMID: 14708608 DOI: 10.1046/j.1523-1747.2003.12558.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Irritant dermatitis represents innate inflammatory responses to toxic chemicals. We have reported recently that ATP released from chemically injured keratinocytes may serve as a causative mediator for irritant dermatitis. In this study, we examined whether ATP release from keratinocytes would serve as a reliable readout for predicting skin irritating potentials of structurally diverse compounds. A vast majority (19/20) of the tested compounds, i.e., strong and weak irritant chemicals selected from the literature, induced rapid (<10 min) and significant (P<0.05) ATP release from Pam 212 keratinocytes. Two compounds caused no detectable skin inflammation in our standard mouse model, documenting relatively high sensitivity (false negative rate of 0/18) and specificity (false positive rate of 1/20) of our ATP release assay. Selected compounds, primarily those containing phenol residues or hydrophobic hydrocarbon chains, triggered rapid (<10 min) and robust leakage of a fluorescence probe from liposomes, suggesting that lipid bilayers serve as one, but not the only, target moiety on keratinocytes. Not only do our data support the pathogenic role for keratinocyte-derived ATP in irritant dermatitis, they also form the basis for a formal validation study to evaluate the utility of the keratinocyte-based in vitro assay in screening environmental and industrial chemicals.
Collapse
Affiliation(s)
- Norikatsu Mizumoto
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | | | |
Collapse
|
38
|
Burnstock G, Knight GE. Cellular Distribution and Functions of P2 Receptor Subtypes in Different Systems. INTERNATIONAL REVIEW OF CYTOLOGY 2004; 240:31-304. [PMID: 15548415 DOI: 10.1016/s0074-7696(04)40002-3] [Citation(s) in RCA: 581] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
This review is aimed at providing readers with a comprehensive reference article about the distribution and function of P2 receptors in all the organs, tissues, and cells in the body. Each section provides an account of the early history of purinergic signaling in the organ?cell up to 1994, then summarizes subsequent evidence for the presence of P2X and P2Y receptor subtype mRNA and proteins as well as functional data, all fully referenced. A section is included describing the plasticity of expression of P2 receptors during development and aging as well as in various pathophysiological conditions. Finally, there is some discussion of possible future developments in the purinergic signaling field.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Institute, Royal Free and University College Medical School, London NW3 2PF, United Kingdom
| | | |
Collapse
|
39
|
Picher M, Graff RD, Lee GM. Extracellular nucleotide metabolism and signaling in the pathophysiology of articular cartilage. ACTA ACUST UNITED AC 2003; 48:2722-36. [PMID: 14558075 DOI: 10.1002/art.11289] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Maryse Picher
- School of Medicine, University of North Carolina, Chapel Hill 27599, USA.
| | | | | |
Collapse
|
40
|
Abraham EH, Salikhova AY, Rapaport E. ATP in the Treatment of Advanced Cancer. CURRENT TOPICS IN MEMBRANES 2003. [DOI: 10.1016/s1063-5823(03)01013-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
41
|
Dell'Antonio G, Quattrini A, Cin ED, Fulgenzi A, Ferrero ME. Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. ARTHRITIS AND RHEUMATISM 2002; 46:3378-85. [PMID: 12483745 DOI: 10.1002/art.10678] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Oxidized ATP (oATP) is a selective inhibitor of the P2Z/P2X7 ATP receptor for extracellular ATP, which contributes to the antinociceptive effect. This study sought to determine the mechanism by which local administration of oATP is able to relieve inflammatory pain in arthritic rat paws. METHODS Arthritis was induced in Wistar rats by injections of Freund's complete adjuvant into one hind paw. Nociceptive thresholds were measured before and after local injection of oATP into the inflamed paws. The influence on pain transmission due to the presence of recruited inflammatory cells at the site of inflammation was determined by inhibiting the initial phase of their migration (by intravenous treatment with fucoidin, which blocks the adhesion molecules of the selectin family). ATP intraplantar content was determined in the different experimental conditions. Histologic features of the hind paws were evaluated by using the anti-P2X7 receptor polyclonal antibody. RESULTS Intraplantar administration of oATP into inflamed paws significantly relieved inflammatory pain. The antinociceptive effect of oATP was independent of the immune-cell recruitment. ATP levels in inflamed tissues were significantly reduced by oATP treatment. A variable presence of P2X7 receptors on cutaneous sensory nerves with respect to the different treatments was observed. Following oATP treatment, there was a reduction in P2X7 expression in the endings of peripheral nerves, as well as in endothelial cells. CONCLUSION Oxidized ATP inhibits inflammatory pain in arthritic rats by inhibition of the P2X7 receptor for ATP, which is localized on nerve terminals.
Collapse
|
42
|
Blain H, Abdelmouttaleb I, Belmin J, Blain A, Floquet J, Guéant JL, Jeandel C. Arterial wall production of cytokines in giant cell arteritis: results of a pilot study using human temporal artery cultures. J Gerontol A Biol Sci Med Sci 2002; 57:M241-5. [PMID: 11909890 DOI: 10.1093/gerona/57.4.m241] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Giant cell arteritis (GCA) is a subacute periarteritis predominantly affecting segments of the external carotids of elderly patients. Vasculitic lesions in GCA samples might be characterized by in situ production of cytokines mRNA, indicative of macrophage and T-cell activation. However, whether the cytokine production of vessels with arteritis differs from that of vessels exposed to inflammatory conditions that originate peripheral to the vessel remains unknown. METHODS We investigated cytokine and soluble receptor cytokine production in blood samples and cultures of human temporal arteries from 22 consecutive patients (mean age 77 +/- 6 years) further investigated for possible diagnosis of GCA: 7 patients had GCA and 15 had neither GCA nor vasculitis but had other inflammatory, infectious, or malignant diseases (controls). The production of cytokines and soluble cytokine receptors in the supernatants of cultures of 3-mm segments of temporal artery specimens, before and after lipopolysaccharide (LPS) stimulation (10 ng/ml and 10 microg/ml) and in serum, was quantified using sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS Cytokine production by temporal arteries increased significantly and in a dose-dependent manner (p <.01) after LPS stimulation in all patients studied, suggesting that the system is methodologically functional. Despite a large interindividual variation, we found similar differences in cytokine production before and after stimulation by 10 ng/ml and 10 microg/ml LPS between both groups: temporal arteries of GCA patients produced more interleukin (IL)-1beta (p <.05) and IFNgamma (nonsignificant) and less tumor necrosis factor (TNF)alpha (p <.05) and IL-6 (nonsignificant) than temporal arteries of controls. The levels of TNFalpha (p <.05) and IL-6 soluble receptor (p <.05) were significantly lower in GCA patients as compared with controls in blood samples, whereas levels of cytokines in temporal artery and in blood samples were not significantly correlated at the individual level in both groups. CONCLUSIONS The present pilot study, which requires further confirmation on a larger number of well-defined patients with GCA, suggests that a specific arterial cytokine production profile might exist in GCA (high IL-1beta +/- IFNgamma and low TNFalpha), addresses the question of the mechanisms by which IL-1beta and TNFalpha might be differentially regulated at the level of the arterial cell wall, and supports the view that cultures of the temporal artery might be an interesting tool for evaluating the role of cytokines in GCA pathogenesis.
Collapse
Affiliation(s)
- Hubert Blain
- Department of Internal Medicine and Geriatrics, University Hospital, Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Kalsi K, Lawson C, Dominguez M, Taylor P, Yacoub MH, Smolenski RT. Regulation of ecto-5'-nucleotidase by TNF-alpha in human endothelial cells. Mol Cell Biochem 2002; 232:113-9. [PMID: 12030367 DOI: 10.1023/a:1014806916844] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Ecto-5'-nucleotidase (E5'N, CD73) is key enzyme responsible for formation of anti-inflammatory and immunosuppressive adenosine from extracellular nucleotides as well as an important surface molecule involved in cellular signalling. In this study we provide evidence that the pro-inflammatory cytokine, tumour necrosis factor-alpha (TNF-alpha) may reduce the capacity of human endothelial cells to produce adenosine by a decrease in surface expression and in the activity of E5'N. Human umbilical vein endothelial cells incubated for 24 h with TNF-alpha lost 54% of the activity of E5'N while activities of the other enzymes involved in adenosine metabolism remained unaffected. Immunofluorescence staining with anti-E5'N (1E9) following exposure to TNF-alpha, showed reduced numbers of positive cells. TNF-alpha induced down-regulation of E5'N was prevented by addition of the PLC inhibitor neomycin, but not by inhibitors of MAPK-like pathways (MEK and p38). Therefore, we conclude that TNF-alpha through activation of endogenous PLC leads to cleavage of the GPI-linkage of E5'N resulting in loss of E5'N from the extracellular surface. This change may lead to decrease in formation of adenosine and could be an important mechanism of endothelial activation during inflammation.
Collapse
Affiliation(s)
- Kameljit Kalsi
- Imperial College School of Medicine, National Heart and Lung Institute at Harefield Hospital, Middlesex, UK
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Atherosclerosis is a focal inflammatory disease of the arterial wall. It starts with the formation of fatty streaks on the arterial wall that evolve to form a raised plaque made of smooth muscle cells (SMCs), and infiltrating leukocytes surrounding a necrotic core. The pathogenesis of the atherosclerotic lesion is incompletely understood, but it is clear that a dysfunction of the endothelium, recruitment and activation of inflammatory cells and SMC proliferation have a pivotal role. Over recent years receptors for extracellular nucleotides, the P2 receptors, have been recognized as fundamental modulators of leukocytes, platelets, SMCs and endothelial cells. P2 receptors mediate chemotaxis, cytokine secretion, NO generation, platelet aggregation and cell proliferation in response to accumulation of nucleotides into the extracellular milieu. Clinical trials have shown the benefit of antagonists of the ADP platelet receptor(s) in the prevention of vascular accidents in patients with atherosclerosis. Therefore, we anticipate that a deeper understanding of the involvement of P2 receptors in atheroma formation will open new avenues for drug design and therapeutic intervention.
Collapse
Affiliation(s)
- Francesco Di Virgilio
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Via Borsari 46, I-44100 Ferrara, Italy.
| | | |
Collapse
|
45
|
Brough D, Le Feuvre RA, Iwakura Y, Rothwell NJ. Purinergic (P2X7) receptor activation of microglia induces cell death via an interleukin-1-independent mechanism. Mol Cell Neurosci 2002; 19:272-80. [PMID: 11860279 DOI: 10.1006/mcne.2001.1054] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of purinergic P2X7 receptors, principally by extracellular ATP, promotes the processing and release of the cytokine interleukin-1beta (IL-1beta) and induces cell death in activated microglia and macrophages. The objective of this study was to determine if IL-1beta release contributes directly to this cell death in microglia. Exposure of microglia to bacterial lipopolysaccharide (LPS) and ATP induced release of IL-1beta and IL-1alpha, as well as cell death. Neither cell death nor IL-1 release was observed in microglia lacking the P2X7 receptor. Microglia from mice lacking the IL-1beta gene demonstrated a profile of death identical to that of wild-type microglia in response to LPS and ATP. Thus, IL-1beta is not required for P2X7 receptor-stimulated microglial death.
Collapse
Affiliation(s)
- David Brough
- Division of Neuroscience, School of Biological Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
46
|
Krupnick AS, Kreisel D, Szeto WY, Popma SH, Amin KM, Moore JS, Rosengard BR. Multiparameter flow cytometric approach for simultaneous evaluation of T lymphocyte-endothelial cell interactions. CYTOMETRY 2001; 46:271-80. [PMID: 11746102 DOI: 10.1002/cyto.1168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since vascular endothelium is now recognized as an immunologically active tissue, a better understanding of the relationship between endothelial cells and T lymphocytes is critical to the field of solid organ transplantation. Investigations of endothelial cell-T cell interactions have been limited by methodology. We developed a flow cytometric method allowing for concurrent investigation of multiple cell populations within the same culture that can be applied to these complex interactions. Allogeneic CD8+ or CD4+ T cells labeled with 5,6-carboxyfluorescein diacetate succinimidyl ester (CFSE) were added to a murine endothelial cell monolayer, in which endothelial proliferation was not inhibited by irradiation or addition of a cell cycle-blocking agent. At specific time points, the coculture was analyzed by flow cytometry. T-cell proliferation could be detected by gating on the T-cell subset and evaluating the CFSE fluorescence peaks. By directly analyzing cellular division, we minimized erroneous interpretation of the data encountered by previous studies, which utilized (3)H-thymidine incorporation as sole measure of proliferation. Further subgating on cells that divided facilitated the study of CD8+ lymphocyte activation, differentiation, and acquisition of effector function. By gating on the endothelial cell population, phenotypic changes such as upregulation of surface MHC molecules or immune-mediated apoptosis could be detected. In conclusion, we present a flow cytometric approach that could have important applications for clinical immunological monitoring in allogeneic or xenogeneic transplantation, and might provide the requisite information to better tailor immunotherapy to prevent chronic rejection.
Collapse
Affiliation(s)
- A S Krupnick
- Department of Surgery, University of Pennsylvania Medical Center, 3400 Spruce, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Robson SC, Enjyoji K, Goepfert C, Imai M, Kaczmarek E, Lin Y, Sévigny J, Warny M. Modulation of extracellular nucleotide-mediated signaling by CD39/nucleoside triphosphate diphosphohydrolase-1. Drug Dev Res 2001. [DOI: 10.1002/ddr.1188] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Warny M, Aboudola S, Robson SC, Sévigny J, Communi D, Soltoff SP, Kelly CP. P2Y(6) nucleotide receptor mediates monocyte interleukin-8 production in response to UDP or lipopolysaccharide. J Biol Chem 2001; 276:26051-6. [PMID: 11349132 DOI: 10.1074/jbc.m102568200] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Extracellular nucleotides are autocrine and paracrine cellular mediators that signal through P2 nucleotide receptors. Monocytic cells express several P2Y receptors but the role of these G protein-coupled receptors in monocytes is not known. Here, we present evidence that P2Y(6) regulates chemokine production and release in monocytes. We find that UDP, a selective P2Y(6) agonist, stimulates interleukin (IL)-8 release in human THP-1 monocytic cells whereas other nucleotides are relatively inactive. P2 receptor antagonists or P2Y(6) antisense oligonucleotides inhibit IL-8 release induced by UDP. Furthermore, UDP specifically activated IL-8 production in astrocytoma 1321N1 cells transfected with human P2Y(6). Since lipopolysaccharide has been suggested to activate P2 receptors via nucleotide release, we tested whether IL-8 production stimulated by lipopolysaccharide might result from P2Y(6) activation. P2 antagonists or apyrase, an enzyme which hydrolyzes nucleotides including UDP, inhibit IL-8 production induced by lipopolysaccharide but not by other stimuli. Furthermore, IL-8 gene expression activated by lipopolysaccharide is enhanced by P2Y(6) overexpression and inhibited by P2Y(6) antisense oligonucleotides. Thus, UDP activates IL-8 production via P2Y(6) in monocytic cells. Furthermore, lipopolysaccharide mediates IL-8 production at least in part by autocrine P2Y(6) activation. These findings indicate a novel role for P2Y(6) in innate immune defenses.
Collapse
Affiliation(s)
- M Warny
- Gastroenterology Divison, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02215, USA.
| | | | | | | | | | | | | |
Collapse
|